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PREFACE

ABOUT ROGAWSKI’S CALCULUS for AP* by Jon Rogawski

On Teaching Mathematics
As a young instructor, I enjoyed teaching but I didn’t appreciate how difficult it is to
communicate mathematics effectively. Early in my teaching career, I was confronted with
a student rebellion when my efforts to explain epsilon-delta proofs were not greeted with
the enthusiasm I anticipated. Experiences of this type taught me two basic principles:

1. We should try to teach students as much as possible, but not more.

2. As math teachers, how we say it is as important as what we say.

The formal language of mathematics is intimidating to the uninitiated. By presenting
concepts in everyday language, which is more familiar but not less precise, we open the
way for students to understand the underlying ideas and integrate them into their way of
thinking. Students are then in a better position to appreciate the need for formal definitions
and proofs and to grasp their logic.

On Writing a Calculus Text
I began writing Calculus with the goal of creating a text in which exposition, graphics,
and layout would work together to enhance all facets of a student’s calculus experience:
mastery of basic skills, conceptual understanding, and an appreciation of the wide range
of applications. I also wanted students to be aware, early in the course, of the beauty of
the subject and the important role it will play, both in their further studies and in their
understanding of the wider world. I paid special attention to the following aspects of the
text:

(a) Clear, accessible exposition that anticipates and addresses student difficulties.

(b) Layout and figures that communicate the flow of ideas.

(c) Highlighted features in the text that emphasize concepts and mathematical reasoning:
Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical
Perspective.

(d) A rich collection of examples and exercises of graduated difficulty that teach basic
skills, problem-solving techniques, reinforce conceptual understanding, and motivate cal-
culus through interesting applications. Each section also contains exercises that develop
additional insights and challenge students to further develop their skills.

Encouraged by the enthusiastic response to the First Edition, I approached the new
edition with the aim of further developing these strengths. Every section of text was
carefully revised. During the revision process, I paid particular attention to feedback from
adopters, reviewers, and students who have used the book. Their insights and creative
suggestions brought numerous improvements to the text.

Calculus has a deservedly central role in higher education. It is not only the key to
the full range of quantitative disciplines; it is also a crucial component in a student’s
intellectual development. I hope this new edition will continue to play a role in opening
up for students the multifaceted world of calculus.

My textbook follows a largely traditional organization, with a few exceptions. One
such exception is the placement of Taylor polynomials in Chapter 8.

ix



x PREFACE

Placement of Taylor Polynomials
Taylor polynomials appear in Chapter 8, before infinite series in Chapter 10. My goal is
to present Taylor polynomials as a natural extension of the linear approximation. When I
teach infinite series, the primary focus is on convergence, a topic that many students find
challenging. After studying the basic convergence tests and convergence of power series,
students are ready to tackle the issues involved in representing a function by its Taylor
series. They can then rely on their previous work with Taylor polynomials and the Error
Bound from Chapter 8. However, the section on Taylor polynomials is designed so that
you can cover it together with the material on power series and Taylor series in Chapter 10
if you prefer this order.

CAREFUL, PRECISE DEVELOPMENT

W. H. Freeman is committed to high quality and precise textbooks and supplements.
From this project’s inception and throughout its development and production, quality and
precision have been given significant priority. We have in place unparalleled procedures
to ensure the accuracy of all facets of the text:

• Exercises and Examples
• Exposition
• Figures
• Editing
• Composition

Together, these procedures far exceed prior industry standards to safeguard the quality
and precision of a calculus textbook.

New to the Second Edition
The new edition of Rogawski’s Calculus for AP* builds on the strengths of the bestselling
First Edition by incorporating the author’s own classroom experience, as well as exten-
sive feedback from many in the mathematics community, including adopters, nonusers,
reviewers, and students. Every section has been carefully revised in order to further polish
a text that has been enthusiastically recognized for its meticulous pedagogy and its careful
balance among the fundamental pillars of calculus instruction: conceptual understanding,
skill development, problem solving, and innovative real-world applications.

Enhanced Exercise Sets—with Approximately 25% New and Revised Problems The
Second Edition features thousands of new and updated problems. Exercise sets were metic-
ulously reviewed by users and nonusers to assist the author as he revised this cornerstone
feature of the text. Rogawski carefully evaluated and rewrote exercise sets as needed to
further refine quality, pacing, coverage, and quantity.

The Second Edition also includes new AP-style multiple-choice and free-response
questions (FRQ’s) written by former College Board AP Calculus Chief Reader, Ray Can-
non. These questions, found at the end of each chapter, will help prepare students for the
style and structure of questions on the AP exam.

New and Larger Variety of Applications To show students how calculus directly relates
to the real world, the Second Edition features many fresh and creative examples and
exercises centered on innovative, contemporary applications from engineering, the life
sciences, physical sciences, business, economics, medicine, and the social sciences.

Updated Art Program—with Approximately 15% New Figures Throughout the Sec-
ond Edition, there are numerous new and updated figures with refined labeling to enhance
student understanding. The author takes special care to position the art with the related ex-
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position and provide multiple figures rather than a single one for increased visual support
of the concepts.

Key Content Changes Rogawski’s Second Edition includes several content changes in
response to feedback from users and reviewers. The key revisions include the following:

• The topic “Limits at Infinity” has been moved up from Chapter 4 to Section 2.7
so all types of limits are introduced together (Chapter 2 Limits).

• Coverage of “Differentials” has been expanded in Section 4.1 and Section 12.4 for
those who wish to emphasize differentials in their approach to Linear Approxima-
tion.

• “L’Hôpital’s Rule” has been moved up so this topic can support the section on
graph sketching (Chapter 4 Applications of the Derivative).

• The section on “Numerical Integration” has been moved to the end of the chapter
after the techniques of integration are presented (Techniques of Integration chapter).

• A section on “Probability and Integration” was added to allow students to explore
new applications of integration important in the physical sciences as well as in
business and the social sciences (Techniques of Integration chapter).

• A new example addressing the trapezoidal sum has been added to Section 7.8.
• Lagrange error bound for Taylor polynomials in Section 8.4.
• A new example covering the derivative of polar coordinates has been added to

Section 11.4.

Multivariable Calculus: Recognized as especially strong in Rogawski’s Calculus, the
multivariable chapter has been meticulously refined to enhance pedagogy and conceptual
clarity. Exercise sets have been improved and rebalanced to fully support basic skill
development, as well as conceptual and visual understanding.
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TO THE AP INSTRUCTOR by Ray Cannon

Through my five years as Chief Reader Designate and Chief Reader, and my time on the
Test Development Committee for the AP Examinations, I have come to understand the
challenge of preparing students for the AP exam. Enabling students to master the concepts
required for a Calculus AB or BC course is only half of the equation. Students must
also learn how to approach the AP exam questions, which can be different from the style
of questions they’re accustomed to finding in their high school math texts. This text is
designed to prepare students for these challenges by providing the relevant content at the
proper level and in a clear and accessible manner. AP students are expected to deal with
functions presented analytically, graphically, numerically, and verbally. This text uses all
four representations throughout.

In addition to the text coverage and style, beginning with Chapter 2, each chapter is
followed by 20 multiple-choice questions, each with five distracters, and four multipart
free response questions. These questions have been written in the style of the questions
that appear on the AP Calculus exam, and they are designed to present a range of difficulty
from the routine to the challenging. Some observers may think all questions on the AP
exam are challenging, but the test developers must make sure there is a mix of many
different levels of difficulty. When a chapter deals with BC-only material as well as other
material, a “BC” icon next to a question number indicates that it tests a BC-only topic.
Questions in chapters whose content is entirely BC will not carry this designation.

The AP exam tests students on the cumulative knowledge they have gained in prepa-
ration for the rigors of a college-level Calculus course. However, because I have written
questions to cover the content found within a given chapter, not all question sets will
reflect the breadth of the questions on the AP exam (though questions naturally become
more comprehensive in later chapters). The benefit of my approach is that instructors
will be able to use these questions immediately to test material they have just covered.
By gaining experience with the AP style of questions from the beginning of the course,
students should feel more confident in their ability to do well on the AP exam.

The free response questions will help them understand the importance of showing
their work and justifying their answers. Similarly, having course-long experience with the
multiple-choice questions will equip students with the techniques for efficiently handling
distracters and identifying correct answers. Furthermore, though questions are written in
the style of AP questions, some questions at the end of a particular chapter may require
knowledge of material from that chapter not specifically required by the AP course de-
scription. As the course progresses, instructors can assemble more general coverage in
mock AP exams by choosing different questions from different chapters.

To helpAP instructors navigate the text, I have provided an overview for each chapter.
These overviews briefly address how the chapter content fits the AP course descriptions.
They also point out how topics that are not required per se can be integrated into the
teaching of the AP content. Sometimes we work so hard on an individual topic that we
lose sight of how it fits into the development of the course. The following overviews will
allow instructors and students to develop a feel for the flow of the AP Calculus course.
(For more detailed chapter overviews, please see the accompanying Teacher’s Resource
Binder.)
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CHAPTER OVERVIEWS
• Chapter 1: Precalculus Review provides a review of material the students should

have encountered in preparation for their AP Calculus course. This chapter provides
a useful reference for students as they proceed through the course.

• Chapter 2: Limits introduces the concept of limit, the central concept that distin-
guishes a Calculus course from math courses the student may have taken in the past.
The concept of limit underlies the ideas of continuity, derivatives, definite integrals,
and series. All the material covered in this chapter is required for both the AB and
BC exams, with the exception of Section 2.9: The Formal Definition of a Limit,
which is not required on either exam.

• Chapter 3: Differentiation starts with the definition of the derivative. The chapter
then develops the theorems that allow students to compute derivatives of combina-
tions of the elementary functions quickly, and ends with the closely related topics
of implicit differentiation and related rates. All this material, except the hyperbolic
functions, is covered on both the AB and BC exams.

• Chapter 4: Applications of the Derivative presents applications of the derivative
starting with a reminder that the tangent line is a local linearization of the func-
tion. Section 4.8: Newton’s Method covers material that neither exam requires.
Section 4.5: L’Hôpital’s Rule is covered only in the BC course description.

• Chapter 5: The Integral develops the definition of the definite integral, leading to
both versions of the Fundamental Theorem of Calculus. Section 5.5: Net Change
as the Integral of a Rate gives special emphasis to an interpretation of the definite
integral that has become central to both AP exams. All of the material in this chapter
is found in both course descriptions.

• Chapter 6: Applications of the Integral presents additional applications of the
definite integral. The topics in the first three sections are common to both course
descriptions, except for density, which neither exam requires. The topics addressed
in Sections 6.4 and 6.5 are also not demanded by either course description. However,
both course descriptions stress that a wide variety of applications should be chosen,
with the common theme of the setting up of an approximating Riemann sum and
then using the limit to arrive at the definite integral. The text does that here, as well
as in the applications presented in Chapter 8.

• Chapter 7: Techniques of Integration deals with the techniques of antidifferen-
tiation. The particular techniques required by only the BC exam are covered in
Sections 1, 2, 3, 5, and 6. (The exam will deal only with denominators with non-
repeating linear factors from Section 5: Partial Fractions.) Sections 4 and 7 are
optional. Section 8: Numerical Integration deals with trapezoidal sums as the aver-
age of the left-hand and right-hand Riemann sums; this is required for both exams.
Simpson’s rule is optional.

• Chapter 8: FurtherApplications of the Integral and Taylor Polynomials focuses
on more applications. Of the applications presented in this chapter, only arc length
is required by the BC course description. Section 8.4: Taylor Polynomials is also a
required BC topic.

• Chapter 9: Introduction to Differential Equations presents material that both
courses require, although to different degrees. Sections 1 and 2 are common to
both courses. Both courses require coverage of slope fields found in Section 3,
but only the BC course requires Euler’s method. The BC course also requires the
logistics equation, presented in Section 4. Section 5: First-Order Linear Equations
is optional.
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• Chapter 10: Infinite Series is devoted to the BC-only topic of infinite series.
Everything in this chapter is required by the exam, except for the Root Test in
Section 5.

• Chapter 11: Parametric Equations, Polar Coordinates, and Vector Functions
treats the calculus that is associated with plane curves, whether given parametrically,
in polar form, or in terms of vectors. Coverage of vector functions in this chapter
focuses exclusively on two dimensions, as required by the exam. This material is
BC-only.

• Chapter 12: Differentiation in Several Variables provides students with an in-
troduction to multivariable calculus. The content in this chapter is not required by
either AP course, but its inclusion in the text allows teachers to look beyond the
exam and address more advanced calculus topics that their students will face in the
future.

SUPPLEMENTS
• Rogawski’s Calculus for AP* Teacher’s Resource BinderFor Instructors

Lin McMullin, National Math and Science Initiative
ET: 1-4292-8629-6
LT: 1-4292-8634-2
An invaluable resource for new and experienced teachers alike, the Teacher’s Re-
source Binder addresses a variety of approaches to the course with pacing guides,
key points, lecture materials, discussion topics, activities and projects, worksheets,
AP-style questions, and more. New chapter overviews by Ray Cannon provide
a succinct look at each chapter and identify which concepts and topics are most
important for students to master in preparation for the AP exam.

• Teacher’s Resource CD
ET: 1-4292-8884-1
LT: 1-4292-8885-X
The contents of the Teacher’s Resource Binder, complete solutions, PowerPoint
slides, images, and extra material from the book companion site are all included on
this searchable CD.

• Instructor’s Solutions Manual
Brian Bradie, Christopher Newport University; Greg Dresden, Washington and Lee
University; and Ray Cannon, Baylor University
ET: 1-4292-8626-1
LT: 1-4292-8631-8
Complete worked-out solutions to all text exercises are provided to support teachers.

• Printed Test Bank
ET: 1-4292-8627-X
LT: 1-4292-8632-6
The comprehensive test bank includes thousands of AP-style multiple-choice ques-
tions and short answer problems. Modeled on the types of questions students will
see on the AP exam, formats include five distracters and questions based on figures
or graphs. All questions may also be found in the ExamView® test bank.

• ExamView® Assessment Suite
ET: 1-4292-8625-3
LT: 1-4292-8630-X
ExamView Test Generator guides teachers through the process of creating online or
paper tests and quizzes quickly and easily. Users may select from our extensive bank
of test questions or use the step-by-step tutorial to write their own questions. Tests
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may be printed in many different types of formats to provide maximum flexibility
or may be administered on-line using the ExamView Player. Results can flow into
a number of different course management systems or be recorded and managed in
the integrated Test Manager.

• Student Solutions ManualFor Students
Brian Bradie, Christopher Newport University; Greg Dresden, Washington and Lee
University; and Ray Cannon, Baylor University
ET: 1-4292-8628-8
LT: 1-4292-8633-4
Complete worked-out solutions to all odd-numbered text exercises.

• Online eBook
Both the LT and ET versions of Rogawski’s Calculus for AP* are available in eBook
format. The eBook integrates the text with the student media. Each eBook offers
a range of customization tools including bookmarking, highlighting, note-taking,
and a convenient glossary.

• Book Companion Site at www.whfreeman.com/rogawskiforAP
This site serves as a FREE 24/7 interactive study guide with online quizzing, tech-
nology manuals, and other study tools. The password-protected teacher’s side offers
a variety of presentation, assessment, and course management resources—including
many of the valuable materials from the Teacher’s Resource Binder.
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FEATURES

Conceptual Insights encourage students to
develop a conceptual understanding of
calculus by explaining important ideas
clearly but informally.

CONCEPTUAL INSIGHT Leibniz notation is widely used for several reasons. First, it re-
minds us that the derivative df/dx, although not itself a ratio, is in fact a limit of ratios

. Second, the notation specifies the independent variable. This is useful when
variables other than x are used. For example, if the independent variable is t , we write
df/dt . Third, we often think of d/dx as an “operator” that performs differentiation on
functions. In other words, we apply the operator d/dx to f to obtain the derivative
df/dx. We will see other advantages of Leibniz notation when we discuss the Chain
Rule in Section 3.7.

Ch. 3, p. 130

Graphical Insights enhance students’ visual
understanding by making the crucial
connections between graphical properties
and the underlying concepts.

GRAPHICAL INSIGHT Keep the graphical interpretation of limits in mind. In Figure 4(A),
f (x) approaches L as x → c because for any 0, we can make the gap less than

by taking δ sufficiently small. By contrast, the function in Figure 4(B) has a jump
discontinuity at x � c. The gap cannot be made small, no matter how small δ is taken.
Therefore, the limit does not exist.

Ch. 2, p. 114

Reminders are margin notes
that link the current
discussion to important
concepts introduced earlier
in the text to give students a
quick review and make
connections with related
ideas.

O A

B � (cos θ, sin θ)

Area of triangle � sin θ Area of triangle �Area of sector �

tan θ

θ

O A111

C

B

θ

O A

B

θ xxx

yyy

1
2

tan θθ

11

1
2

1
2

FIGURE 5

Proof Assume first that 0 < θ < π
2 . Our proof is based on the following relation between

the areas in Figure 5:

Area of OAB < area of sector BOA < area of OAC 2

Let’s compute these three areas. First, OAB has base 1 and height sin θ , so its area isREMINDER Let’s recall why a sector of
angle θ in a circle of radius r has area
1
2 r2θ . A sector of angle θ represents a
fraction θ

2π
of the entire circle. The circle

has area πr2, so the sector has area
θ

2π
πr2 � 1

2 r2θ . In the unit circle

(r � 1), the sector has area 1
2 θ .

1
2 sin θ . Next, recall that a sector of angle θ has area 1

2θ . Finally, to compute the area of
OAC, we observe that

tan θ � opposite side

adjacent side
� AC

OA
� AC

1
� AC

Thus, OAC has base 1, height tan θ , and area 1
2 tan θ . We have shown, therefore, that

Note: Our proof of Theorem 3 uses the
formula 1

2 θ for the area of a sector, but this
formula is based on the formula πr2 for
the area of a circle, a complete proof of
which requires integral calculus.

1

2
sin θ

Area OAB

≤ 1

2
θ

Area of sector

≤ 1

2

sin θ

cos θ

Area OAC

3

The first inequality yields sin θ ≤ θ , and because θ > 0, we obtain

sin θ

θ
≤ 1 4

Ch. 2, p. 97
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We make a few remarks before proceeding:

• It may be helpful to remember the Power Rule in words: To differentiate xn, “bring
down the exponent and subtract one (from the exponent).”

d

dx
xexponent � (exponent) xexponent−1

• The Power Rule is valid for all exponents, whether negative, fractional, or irrational:

CAUTION The Power Rule applies only to
the power functions y � xn. It does not
apply to exponential functions such as
y � 2x . The derivative of y � 2x is not
x2x−1. We will study the derivatives of
exponential functions later in this section.

d

dx
x−3/5 � −3

5
x−8/5,

d

dx
x

√
2 � √

2 x
√

2−1

Ch. 3, p. 131

Caution Notes warn
students of common pitfalls
they may encounter in
understanding the material.

HISTORICAL
PERSPECTIVE

Philosophy is written in
this grand book—I
mean the universe—
which stands

continually open to our gaze, but it cannot be
understood unless one first learns to comprehend the
language … in which it is written. It is written in the
language of mathematics …

—Galileo Galilei, 1623

The scientific revolution of the sixteenth and
seventeenth centuries reached its high point in
the work of Isaac Newton (1643–1727), who
was the first scientist to show that the physical
world, despite its complexity and diversity, is
governed by a small number of universal laws.
One of Newton’s great insights was that the uni-
versal laws are dynamical, describing how the
world changes over time in response to forces,
rather than how the world actually is at any given
moment in time. These laws are expressed best
in the language of calculus, which is the mathe-
matics of change.

More than 50 years before the work
of Newton, the astronomer Johannes Kepler
(1571–1630) discovered his three laws of plan-
etary motion, the most famous of which states
that the path of a planet around the sun is an
ellipse. Kepler arrived at these laws through a
painstaking analysis of astronomical data, but he
could not explain why they were true. Accord-
ing to Newton, the motion of any object—planet
or pebble—is determined by the forces acting
on it. The planets, if left undisturbed, would
travel in straight lines. Since their paths are el-
liptical, some force—in this case, the gravita-
tional force of the sun—must be acting to make
them change direction continuously. In his mag-
num opus Principia Mathematica, published in
1687, Newton proved that Kepler’s laws follow
from Newton’s own universal laws of motion
and gravity.

For these discoveries, Newton gained
widespread fame in his lifetime. His fame con-
tinued to increase after his death, assuming a
nearly mythic dimension and his ideas had a pro-
found influence, not only in science but also in
the arts and literature, as expressed in the epi-
taph by British poet Alexander Pope: “Nature
and Nature’s Laws lay hid in Night. God said,
Let Newton be! and all was Light.”

This statue of Isaac Newton in Cambridge
University was described in The Prelude, a
poem by William Wordsworth
(1770–1850):

“Newton with his prism and silent face,
The marble index of a mind for ever
Voyaging through strange seas of Thought,

alone.”
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Historical Perspectives
are brief vignettes that
place key discoveries and
conceptual advances in
their historical context.
They give students a
glimpse into some of the
accomplishments of great
mathematicians and an
appreciation for their
significance.

Assumptions Matter uses short explanations and well-chosen counterexamples to help
students appreciate why hypotheses are needed in theorems.

Section Summaries summarize a section’s key points in a concise and useful way and
emphasize for students what is most important in each section.

Section Exercise Sets offer a comprehensive set of exercises closely coordinated with
the text. These exercises vary in difficulty from routine, to moderate, to more challenging.
Also included are icons indicating problems that require the student to give a written

response or require the use of technology .

Chapter Review Exercises offer a comprehensive set of exercises closely coordinated with
the chapter material to provide additional problems for self-study or assignments.

Preparing for the AP Exam helps to ready students for the exam by providing AP-style
multiple-choice and free response questions that are tied directly to the chapter material.
These questions allow students to familiarize themselves with the AP question format
from the beginning of the course so that they will be more comfortable and successful
when they take the AP exam.
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TO THE AP STUDENT

Although I have taught calculus for more than 30 years, when I enter the classroom on the
first day of a new semester, I always have a feeling of excitement, as if a great drama is
about to unfold. Does the word drama seem out of place in a discussion of mathematics?

Most people would agree that calculus is useful—it is applied across the sciences and
engineering to everything from space flight and weather prediction to nanotechnology and
financial modeling. But what is dramatic about it?

For me, one part of the drama lies in the conceptual and logical development of
calculus. Calculus is based on just a few fundamental concepts (such as limits, tangent
lines, and approximations). But as the subject develops, we find that these concepts are
adequate to build, step-by-step, a mathematical discipline capable of solving innumer-
able problems of great practical importance. Along the way, there are high points and
moments of suspense—for example, computing a derivative using limits for the first time
or learning from the Fundamental Theorem of Calculus that the two branches of calculus
(differential and integral) are much more closely related than we might have expected.
We also discover that calculus provides the right language for expressing our most funda-
mental and universal laws of nature, not just Newton’s laws of motion, but also the laws
of electromagnetism and even the quantum laws of atomic structure.

Another part of the drama is the learning process itself—the personal voyage of dis-
covery. Certainly, one aspect of learning calculus is developing various technical skills.
You will learn how to compute derivatives and integrals, solve optimization problems,
and so on. These skills are necessary for applying calculus in practical situations, and
they provide a foundation for further study of more advanced branches of mathematics.
But perhaps more importantly, you will become acquainted with the fundamental ideas
on which calculus is based. These ideas are central in the sciences and in all quantitative
disciplines, and so they will open up for you a world of new opportunities. The distin-
guished mathematician I. M. Gelfand put it this way: “The most important thing a student
can get from the study of mathematics is the attainment of a higher intellectual level.”

This text is designed to develop both skills and conceptual understanding. In fact,
the two go hand in hand. As you become proficient in problem solving, you will come to
appreciate the underlying ideas. And it is equally true that a solid understanding of the
concepts will make you a more effective problem solver. You are likely to devote much
of your time to studying the examples in the text and working the exercises. However,
the text also contains numerous down-to-earth explanations of the underlying concepts,
ideas, and motivations (sometimes under the heading “Conceptual Insight” or “Graphical
Insight”). I urge you to take the time to read these explanations and think about them.

Learning calculus will always be a challenge, and it will always require effort. Ac-
cording to legend, Alexander the Great once asked the mathematician Menaechmus to
show him an easy way to learn geometry. Menaechmus replied, “There is no royal road to
geometry.” Even kings must work hard to learn geometry, and the same is true of calculus.

One of the main challenges in writing this textbook was finding a way to present
calculus as clearly as possible, in a style that students would find comprehensible and
interesting. While writing, I continually asked myself: Can it be made simpler? Have I
assumed something the student may not be aware of? Can I explain the deeper significance
of an underlying concept without confusing a student who is learning the subject for the
first time?

I hope my efforts have resulted in a textbook that is not only student friendly but
also encourages you to see the big picture—the beautiful and elegant ideas that hold the
entire structure of calculus together. Please let me know if you have any comments or
suggestions for improving the text. I look forward to hearing from you.

Best wishes and good luck!
Jon Rogawski



xxvi PREFACE

A Note from Ray Cannon
Welcome to the wonderful world of calculus, one of the greatest constructs of the human
mind! Professor Rogawski has provided a road map of this world for you, and your teacher
will be your guide on the journey. There is much technical material to master, but there
is more to calculus than mastering skills. This text has a large collection of exercises that
will help you develop these skills and learn how to apply them, but be sure to pause and
enjoy the “Historical Perspectives” and the “Conceptual Insights” also found within the
chapters.

This course culminates in the AP exam that you will take at the conclusion. It is
important to familiarize yourself with the types of questions you will encounter. To help
you do so, this text includes AP-style multiple-choice and free response questions at the
end of each chapter. In addition to introducing you to the level of understanding you are
expected to display on the AP exam, these questions will help you hone your test-taking
abilities. The free response questions, in particular, are intended to help you, from the
beginning of the course, become accustomed to writing out your complete solutions in a
way that someone else can easily follow. Remember that on a written exam, it is not just
what you know that matters, but also how well you communicate what you know.

TheAP-style multiple-choice and free response questions in this text follow the format
you’ll see on the exam of either allowing you to use a calculator or not. It is important to
learn that just because you can use a calculator doesn’t always mean you should. When
the calculator icon appears next to a question in the text, it means a calculator is allowed;
it does not necessarily mean a calculator is required.

The text begins with a chapter called Precalculus Review, which provides a succinct
review of material that you may find handy to reference at various times in the course.
Familiarize yourself with the concepts covered in that chapter, and keep it handy when
you begin your exam preparation.

There is hard work ahead, but we all want you to succeed!

Ray Cannon



Functions are one of our most important tools

for analyzing phenomena. Biologists have

studied the antler weight of male red deer as

a function of age (see p. 6).

1 PRECALCULUS
REVIEW

C alculus builds on the foundation of algebra, analytic geometry, and trigonometry. In
this chapter, therefore, we review some concepts, facts, and formulas from precalculus

that are used throughout the text. In the last section, we discuss ways in which technology
can be used to enhance your visual understanding of functions and their properties.

1.1 Real Numbers, Functions, and Graphs
We begin with a short discussion of real numbers. This gives us the opportunity to recall
some basic properties and standard notation.

A real number is a number represented by a decimal or “decimal expansion.” There
are three types of decimal expansions: finite, repeating, and infinite but nonrepeating. For
example,

3

8
= 0.375,

1

7
= 0.142857142857 . . . = 0.142857

π = 3.141592653589793 . . .

The number 3
8 is represented by a finite decimal, whereas 1

7 is represented by a repeating
or periodic decimal. The bar over 142857 indicates that this sequence repeats indefinitely.
The decimal expansion of π is infinite but nonrepeating.

The set of all real numbers is denoted by a boldface R. When there is no risk of
confusion, we refer to a real number simply as a number. We also use the standard symbol
∈ for the phrase “belongs to.” Thus,

a ∈ R reads “a belongs to R”

The set of integers is commonly denoted by the letter Z (this choice comes from theAdditional properties of real numbers are
discussed in Appendix B. German word Zahl, meaning “number”). Thus, Z = {. . . , −2,−1, 0, 1, 2, . . . }. A whole

number is a nonnegative integer—that is, one of the numbers 0, 1, 2, . . . .

A real number is called rational if it can be represented by a fraction p/q, where p

and q are integers with q �= 0. The set of rational numbers is denoted Q (for “quotient”).
Numbers that are not rational, such as π and

√
2, are called irrational.

We can tell whether a number is rational from its decimal expansion: Rational numbers
have finite or repeating decimal expansions, and irrational numbers have infinite, non-
repeating decimal expansions. Furthermore, the decimal expansion of a number is unique,
apart from the following exception: Every finite decimal is equal to an infinite decimal in
which the digit 9 repeats. For example,

1 = 0.999 . . . ,
3

8
= 0.375 = 0.374999 . . . ,

47

20
= 2.35 = 2.34999 . . .

We visualize real numbers as points on a line (Figure 1). For this reason, real numbers
are often referred to as points. The point corresponding to 0 is called the origin.

−2 −1 0 21

FIGURE 1 The set of real numbers
represented as a line.

1
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The absolute value of a real number a, denoted |a|, is defined by (Figure 2)

0a

|a|

FIGURE 2 |a| is the distance from a to the
origin.

|a| = distance from the origin =
{

a if a ≥ 0

−a if a < 0

For example, |1.2| = 1.2 and |−8.35| = 8.35. The absolute value satisfies

|a| = |−a|, |ab| = |a| |b|

The distance between two real numbers a and b is |b − a|, which is the length of the line
segment joining a and b (Figure 3).

a b

|b − a|
−2 −1 0 21

FIGURE 3 The distance from a to b is
|b − a|.

Two real numbers a and b are close to each other if |b − a| is small, and this is the
case if their decimal expansions agree to many places. More precisely, if the decimal
expansions of a and b agree to k places (to the right of the decimal point), then the
distance |b − a| is at most 10−k . Thus, the distance between a = 3.1415 and b = 3.1478
is at most 10−2 because a and b agree to two places. In fact, the distance is exactly
|3.1478 − 3.1415| = 0.0063.

Beware that |a + b| is not equal to |a| + |b| unless a and b have the same sign or at
least one of a and b is zero. If they have opposite signs, cancellation occurs in the sum
a + b, and |a + b| < |a| + |b|. For example, |2 + 5| = |2| + |5| but |−2 + 5| = 3, which
is less than |−2| + |5| = 7. In any case, |a + b| is never larger than |a| + |b| and this gives
us the simple but important triangle inequality:

|a + b| ≤ |a| + |b| 1

We use standard notation for intervals. Given real numbers a < b, there are four
intervals with endpoints a and b (Figure 4). They all have length b − a but differ accord-
ing to which endpoints are included.

Closed interval [a, b]
(endpoints included)

a b

Open interval (a, b)  
(endpoints excluded)

a b

Half-open interval [a, b)

a b

Half-open interval (a, b]

a b

FIGURE 4 The four intervals with endpoints
a and b.

The closed interval [a, b] is the set of all real numbers x such that a ≤ x ≤ b:

[a, b] = {x ∈ R : a ≤ x ≤ b}
We usually write this more simply as {x : a ≤ x ≤ b}, it being understood that x belongs
to R. The open and half-open intervals are the sets

(a, b) = {x : a < x < b}︸ ︷︷ ︸
Open interval (endpoints excluded)

, [a, b) = {x : a ≤ x < b}︸ ︷︷ ︸
Half-open interval

, (a, b] = {x : a < x ≤ b}︸ ︷︷ ︸
Half-open interval

The infinite interval (−∞, ∞) is the entire real line R.Ahalf-infinite interval is closed
if it contains its finite endpoint and is open otherwise (Figure 5):

[a, ∞) = {x : a ≤ x < ∞}, (−∞, b] = {x : −∞ < x ≤ b}

[a, ∞)

a

(−∞, b]

b

FIGURE 5 Closed half-infinite intervals.
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Open and closed intervals may be described by inequalities. For example, the interval

0 r

|x| < r

−r

FIGURE 6 The interval
(−r, r) = {x : |x| < r}.

(−r, r) is described by the inequality |x| < r (Figure 6):

|x| < r ⇔ −r < x < r ⇔ x ∈ (−r, r) 2

More generally, for an interval symmetric about the value c (Figure 7),

c c + rc − r

r r

FIGURE 7 (a, b) = (c − r, c + r), where

c = a + b

2
, r = b − a

2

|x − c| < r ⇔ c − r < x < c + r ⇔ x ∈ (c − r, c + r) 3

Closed intervals are similar, with < replaced by ≤. We refer to r as the radius and to c as
the midpoint or center. The intervals (a, b) and [a, b] have midpoint c = 1

2 (a + b) and
radius r = 1

2 (b − a) (Figure 7).

EXAMPLE 1 Describe [7, 13] using inequalities.

Solution The midpoint of the interval [7, 13] is c = 1
2 (7 + 13) = 10 and its radius is

r = 1
2 (13 − 7) = 3 (Figure 8). Therefore,

137

3 3

10

FIGURE 8 The interval [7, 13] is described
by |x − 10| ≤ 3.

[7, 13] = {
x ∈ R : |x − 10| ≤ 3

}
EXAMPLE 2 Describe the set S = {

x : ∣∣ 1
2x − 3

∣∣ > 4
}

in terms of intervals.

Solution It is easier to consider the opposite inequality
∣∣ 1

2x − 3
∣∣ ≤ 4 first. By (2),

In Example 2 we use the notation ∪ to
denote “union”: The union A ∪ B of sets
A and B consists of all elements that
belong to either A or B (or to both).

∣∣∣∣12x − 3

∣∣∣∣ ≤ 4 ⇔ −4 ≤ 1

2
x − 3 ≤ 4

−1 ≤ 1

2
x ≤ 7 (add 3)

−2 ≤ x ≤ 14 (multiply by 2)

Thus,
∣∣ 1

2x − 3
∣∣ ≤ 4 is satisfied when x belongs to [−2, 14]. The set S is the complement,−2 0 14

FIGURE 9 The set S = {
x : ∣∣ 1

2x − 3
∣∣ > 4

}
.

consisting of all numbers x not in [−2, 14]. We can describe S as the union of two intervals:
S = (−∞, −2) ∪ (14, ∞) (Figure 9).

Graphing
Graphing is a basic tool in calculus, as it is in algebra and trigonometry. Recall that rect-
angular (or Cartesian) coordinates in the plane are defined by choosing two perpendicular
axes, the x-axis and the y-axis. To a pair of numbers (a, b) we associate the point P locatedThe term “Cartesian” refers to the French

philosopher and mathematician René
Descartes (1596–1650), whose Latin
name was Cartesius. He is credited (along
with Pierre de Fermat) with the invention of
analytic geometry. In his great work La
Géométrie, Descartes used the letters
x, y, z for unknowns and a, b, c for
constants, a convention that has been
followed ever since.

at the intersection of the line perpendicular to the x-axis at a and the line perpendicular to
the y-axis at b [Figure 10(A)]. The numbers a and b are the x- and y-coordinates of P .
The x-coordinate is sometimes called the “abscissa” and the y-coordinate the “ordinate.”
The origin is the point with coordinates (0, 0).

The axes divide the plane into four quadrants labeled I–IV, determined by the signs
of the coordinates [Figure 10(B)]. For example, quadrant III consists of points (x, y) such
that x < 0 and y < 0.

The distance d between two points P1 = (x1, y1) and P2 = (x2, y2) is computed
using the Pythagorean Theorem. In Figure 11, we see that P1P2 is the hypotenuse of a
right triangle with sides a = |x2 − x1| and b = |y2 − y1|. Therefore,

d2 = a2 + b2 = (x2 − x1)
2 + (y2 − y1)

2

We obtain the distance formula by taking square roots.
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xx

b

aa

yy

21−1−2

−1

−2

2

1

P = (a, b)

(A) (B)

II
(−, +)

I
(+, +)

III
(−, −)

IV
(+, −)

FIGURE 10 Rectangular coordinate system.

Distance Formula The distance between P1 = (x1, y1) and P2 = (x2, y2) is equal to

d =
√

(x2 − x1)2 + (y2 − y1)2

Once we have the distance formula, we can derive the equation of a circle of radius r

d

x1

P1 = (x1, y1)

P2 = (x2, y2)

x2

y1

y2

|y2 − y1|

|x2 − x1|

x

y

FIGURE 11 Distance d is given by the
distance formula.

and center (a, b) (Figure 12). A point (x, y) lies on this circle if the distance from (x, y)

a

(a, b)

r

b

x

y

(x, y)

FIGURE 12 Circle with equation
(x − a)2 + (y − b)2 = r2.

to (a, b) is r: √
(x − a)2 + (y − b)2 = r

Squaring both sides, we obtain the standard equation of the circle:

(x − a)2 + (y − b)2 = r2

We now review some definitions and notation concerning functions.

DEFINITION A function f from a set D to a set Y is a rule that assigns, to each
element x in D, a unique element y = f (x) in Y . We write

f : D → Y

The set D, called the domain of f , is the set of “allowable inputs.” For x ∈ D, f (x) is
called the value of f at x (Figure 13). The range R of f is the subset of Y consisting of
all values f (x):

R = {y ∈ Y : f (x) = y for some x ∈ D}
Informally, we think of f as a “machine” that produces an output y for every input xA function f : D → Y is also called a

“map.” The sets D and Y can be arbitrary.
For example, we can define a map from the
set of living people to the set of whole
numbers by mapping each person to his or
her year of birth. The range of this map is
the set of years in which a living person
was born. In multivariable calculus, the
domain might be a set of points in
three-dimensional space and the range a
set of numbers, points, or vectors.

in the domain D (Figure 14).

f (x)x

Domain D Y

f

FIGURE 13 A function assigns an element
f (x) in Y to each x ∈ D.

f (x)
output

x
input

Machine “f ”

FIGURE 14 Think of f as a “machine” that
takes the input x and produces the output
f (x).
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The first part of this text deals with numerical functions f , where both the domain
and the range are sets of real numbers. We refer to such a function interchangeably as f

or f (x). The letter x is used often to denote the independent variable that can take on
any value in the domain D. We write y = f (x) and refer to y as the dependent variable
(because its value depends on the choice of x).

When f is defined by a formula, its natural domain is the set of real numbers x for
which the formula is meaningful. For example, the function f (x) = √

9 − x has domain
D = {x : x ≤ 9} because

√
9 − x is defined if 9 − x ≥ 0. Here are some other examples

of domains and ranges:

f (x) Domain D Range R

x2 R {y : y ≥ 0}
cos x R {y : −1 ≤ y ≤ 1}

1

x + 1
{x : x �= −1} {y : y �= 0}

The graph of a function y = f (x) is obtained by plotting the points (a, f (a)) for a

in the domain D (Figure 15). If you start at x = a on the x-axis, move up to the graph
y = f (x)

Zero of f (x)

f (a) (a, f (a))

a c

y

x

FIGURE 15

and then over to the y-axis, you arrive at the value f (a). The absolute value |f (a)| is the
distance from the graph to the x-axis.

A zero or root of a function f (x) is a number c such that f (c) = 0. The zeros are the
values of x where the graph intersects the x-axis.

In Chapter 4, we will use calculus to sketch and analyze graphs. At this stage, to
sketch a graph by hand, we can make a table of function values, plot the corresponding
points (including any zeros), and connect them by a smooth curve.

EXAMPLE 3 Find the roots and sketch the graph of f (x) = x3 − 2x.

Solution First, we solve

x3 − 2x = x(x2 − 2) = 0.

The roots of f (x) are x = 0 and x = ±√
2. To sketch the graph, we plot the roots and a

few values listed in Table 1 and join them by a curve (Figure 16).

TABLE 1

x x3 − 2x

−2 −4
−1 1

0 0
1 −1
2 4

−1−2

−4

−1

4

1

2

1
x

y

−�2

�2

FIGURE 16 Graph of f (x) = x3 − 2x.

Functions arising in applications are not always given by formulas. For example,
data collected from observation or experiment define functions for which there may be no
exact formula. Such functions can be displayed either graphically or by a table of values.
Figure 17 and Table 2 display data collected by biologist Julian Huxley (1887–1975) in a
study of the antler weight W of male red deer as a function of age t . We will see that many
of the tools from calculus can be applied to functions constructed from data in this way.
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Antler weight W (kg)

0
20 4 6 8 10 12

Age t (years)

1

2

3

4

5

6

7

8

FIGURE 17 Male red deer shed their antlers
every winter and regrow them in the
spring. This graph shows average antler
weight as a function of age.

TABLE 2

t (years) W (kg) t (years) W (kg)

1 0.48 7 5.34
2 1.59 8 5.62
3 2.66 9 6.18
4 3.68 10 6.81
5 4.35 11 6.21
6 4.92 12 6.1

−1 1

(1, 1)

(1, −1)

x

y

1

−1

FIGURE 18 Graph of 4y2 − x3 = 3. This
graph fails the Vertical Line Test, so it is
not the graph of a function.

We can graph not just functions but, more generally, any equation relating y and x.
Figure 18 shows the graph of the equation 4y2 − x3 = 3; it consists of all pairs (x, y)

satisfying the equation. This curve is not the graph of a function because some x-values
are associated with two y-values. For example, x = 1 is associated with y = ±1. A curve
is the graph of a function if and only if it passes the Vertical Line Test; that is, every
vertical line x = a intersects the curve in at most one point.

We are often interested in whether a function is increasing or decreasing. Roughly
speaking, a function f (x) is increasing if its graph goes up as we move to the right and is
decreasing if its graph goes down [Figures 19(A) and (B)]. More precisely, we define the
notion of increase/decrease on an open interval:

• Increasing on (a, b) if f (x1) < f (x2) for all x1, x2 ∈ (a, b) such that x1 < x2
• Decreasing on (a, b) if f (x1) > f (x2) for all x1, x2 ∈ (a, b) such that x1 < x2

We say that f (x) is monotonic if it is either increasing or decreasing. In Figure 19(C),
the function is not monotonic because it is neither increasing nor decreasing for all x.

A function f (x) is called nondecreasing if f (x1) ≤ f (x2) for x1 < x2 (defined by ≤
rather than a strict inequality <). Nonincreasing functions are defined similarly. Function
(D) in Figure 19 is nondecreasing, but it is not increasing on the intervals where the graph
is horizontal.

(A) Increasing (C)(B) Decreasing Decreasing on (a, b)
but not decreasing
everywhere

(D)

x

y

x

y

a b
x

y

x

y

Nondecreasing but not
increasing

FIGURE 19

Another important property is parity, which refers to whether a function is even or
odd:

• f (x) is even if f (−x) = f (x)
• f (x) is odd if f (−x) = −f (x)



S E C T I O N 1.1 Real Numbers, Functions, and Graphs 7

The graphs of functions with even or odd parity have a special symmetry:

• Even function: graph is symmetric about the y-axis. This means that if P = (a, b)

lies on the graph, then so does Q = (−a, b) [Figure 20(A)].
• Odd function: graph is symmetric with respect to the origin. This means that if

P = (a, b) lies on the graph, then so does Q = (−a, −b) [Figure 20(B)].

Many functions are neither even nor odd [Figure 20(C)].

(A) Even function: f (−x) = f (x)
Graph is symmetric
about the y-axis.

(B) Odd function: f (−x) = −f (x)
Graph is symmetric
about the origin.

(C) Neither even nor odd

(a, b)

(a, b)

(−a, b) b

a−a

(−a, −b)

b

a

−a

−b

x x x

y

y

y

FIGURE 20

EXAMPLE 4 Determine whether the function is even, odd, or neither.

(a) f (x) = x4 (b) g(x) = x−1 (c) h(x) = x2 + x

Solution

(a) f (−x) = (−x)4 = x4. Thus, f (x) = f (−x) and f (x) is even.

(b) g(−x) = (−x)−1 = −x−1. Thus, g(−x) = −g(x), and g(x) is odd.

(c) h(−x) = (−x)2 + (−x) = x2 − x. We see that h(−x) is not equal to h(x) or to
−h(x) = −x2 − x. Therefore, h(x) is neither even nor odd.

EXAMPLE 5 Using Symmetry Sketch the graph of f (x) = 1

x2 + 1
.

Solution The function f (x) is positive [f (x) > 0] and even [f (−x) = f (x)]. Therefore,
the graph lies above the x-axis and is symmetric with respect to the y-axis. Furthermore,
f (x) is decreasing for x ≥ 0 (because a larger value of x makes the denominator larger).
We use this information and a short table of values (Table 3) to sketch the graph (Figure 21).
Note that the graph approaches the x-axis as we move to the right or left because f (x)

gets smaller as |x| increases.

TABLE 3

x
1

x2 + 1

0 1

±1 1
2

±2 1
5

1

−1−2 21
x

y

f (x) = 1
x2 + 1

FIGURE 21
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Two important ways of modifying a graph are translation (or shifting) and scaling.
Translation consists of moving the graph horizontally or vertically:

DEFINITION Translation (Shifting)

• Vertical translation y = f (x) + c: shifts the graph by |c| units vertically, up-
ward if c > 0 and c units downward if c < 0.

• Horizontal translation y = f (x + c): shifts the graph by |c| units horizontally,
to the right if c < 0 and c units to the left if c > 0.

Figure 22 shows the effect of translating the graph of f (x) = 1/(x2 + 1) vertically and
horizontally.

−1−2 21
x

y

1

2
Shift one unit

upward Shift one unit
to the left

−1−2−3 1
x

y

1

2

−1−2 21
x

y

1

2

(A) y = f (x) = 1 + 1
x2 + 1

1
x2 + 1

(B) y = f (x) + 1 = (C)  y = f (x + 1) = 1
(x + 1)2 + 1

FIGURE 22

EXAMPLE 6 Figure 23(A) is the graph of f (x) = x2, and Figure 23(B) is a horizontal

Remember that f (x) + c and f (x + c)

are different. The graph of y = f (x) + c

is a vertical translation and y = f (x + c)

a horizontal translation of the graph of
y = f (x).

and vertical shift of (A). What is the equation of graph (B)?

−1−2 2 31

2

1

4

3

−1

(A)  f (x) = x2 (B)

x

y

−1−2 2 31

2

1

4

3

−1

x

y

FIGURE 23

Solution Graph (B) is obtained by shifting graph (A) one unit to the right and one unit
down. We can see this by observing that the point (0, 0) on the graph of f (x) is shifted to
(1, −1). Therefore, (B) is the graph of g(x) = (x − 1)2 − 1.

Scaling (also called dilation) consists of compressing or expanding the graph in the

y = −2 f (x)

y = f (x)
2

1

−2

−4

x

y

FIGURE 24 Negative vertical scale factor
k = −2.

vertical or horizontal directions:

DEFINITION Scaling

• Vertical scaling y = kf (x): If k > 1, the graph is expanded vertically by the
factor k. If 0 < k < 1, the graph is compressed vertically. When the scale factor
k is negative (k < 0), the graph is also reflected across the x-axis (Figure 24).

• Horizontal scaling y = f (kx): If k > 1, the graph is compressed in the hori-
zontal direction. If 0 < k < 1, the graph is expanded. If k < 0, then the graph is
also reflected across the y-axis.
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We refer to the vertical size of a graph as its amplitude. Thus, vertical scaling changes
the amplitude by the factor |k|.

EXAMPLE 7 Sketch the graphs of f (x) = sin(πx) and its dilates f (3x) and 3f (x).Remember that kf (x) and f (kx) are
different. The graph of y = kf (x) is a
vertical scaling, and y = f (kx) a
horizontal scaling, of the graph of
y = f (x).

Solution The graph of f (x) = sin(πx) is a sine curve with period 2. It completes one
cycle over every interval of length 2—see Figure 25(A).

• The graph of f (3x) = sin(3πx) is a compressed version of y = f (x), completing
three cycles instead of one over intervals of length 2 [Figure 25(B)].

• The graph of y = 3f (x) = 3 sin(πx) differs from y = f (x) only in amplitude: It
is expanded in the vertical direction by a factor of 3 [Figure 25(C)].

(C) Vertical expansion:
y = 3 f (x) = 3sin(πx)

(B) Horizontal compression:
y = f (3x) = sin(3πx)

1

2

3

−3

−2

−1

1

−1
2 41 3 2 41 3

(A)  y = f (x) = sin(πx)

1

−1
2 41 3

xx x

y

yy

One cycle Three cycles

FIGURE 25 Horizontal and vertical scaling
of f (x) = sin(πx).

1.1 SUMMARY

• Absolute value: |a| =
{

a if a ≥ 0

−a if a < 0

• Triangle inequality: |a + b| ≤ |a| + |b|
• Four intervals with endpoints a and b:

(a, b), [a, b], [a, b), (a, b]
• Writing open and closed intervals using inequalities:

(a, b) = {x : |x − c| < r}, [a, b] = {x : |x − c| ≤ r}
where c = 1

2 (a + b) is the midpoint and r = 1
2 (b − a) is the radius.

• Distance d between (x1, y1) and (x2, y2):

d =
√

(x2 − x1)2 + (y2 − y1)2

• Equation of circle of radius r with center (a, b):

(x − a)2 + (y − b)2 = r2

• A zero or root of a function f (x) is a number c such that f (c) = 0.
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• Vertical Line Test: A curve in the plane is the graph of a function if and only if each
vertical line x = a intersects the curve in at most one point.

•

Increasing: f (x1) < f (x2) if x1 < x2

Nondecreasing: f (x1) ≤ f (x2) if x1 < x2

Decreasing: f (x1) > f (x2) if x1 < x2

Nonincreasing: f (x1) ≥ f (x2) if x1 < x2

• Even function: f (−x) = f (x) (graph is symmetric about the y-axis).
• Odd function: f (−x) = −f (x) (graph is symmetric about the origin).
• Four ways to transform the graph of f (x):

f (x) + c Shifts graph vertically |c| units (upward if c > 0, downward if c < 0)

f (x + c) Shifts graph horizontally |c| units (to the right if c < 0, to the left if c > 0)

kf (x) Scales graph vertically by factor k;
if k < 0, graph is reflected across x-axis

f (kx) Scales graph horizontally by factor k (compresses if k > 1);
if k < 0, graph is reflected across y-axis

1.1 EXERCISES

Preliminary Questions
1. Give an example of numbers a and b such that a < b and |a| > |b|.
2. Which numbers satisfy |a| = a? Which satisfy |a| = −a? What

about |−a| = a?

3. Give an example of numbers a and b such that
|a + b| < |a| + |b|.

4. What are the coordinates of the point lying at the intersection of
the lines x = 9 and y = −4?

5. In which quadrant do the following points lie?

(a) (1, 4) (b) (−3, 2) (c) (4, −3) (d) (−4, −1)

6. What is the radius of the circle with equation
(x − 9)2 + (y − 9)2 = 9?

7. The equation f (x) = 5 has a solution if (choose one):

(a) 5 belongs to the domain of f .

(b) 5 belongs to the range of f .

8. What kind of symmetry does the graph have if f (−x) = −f (x)?

Exercises
1. Use a calculator to find a rational number r such that

|r − π2| < 10−4.

2. Which of (a)–(f) are true for a = −3 and b = 2?

(a) a < b (b) |a| < |b| (c) ab > 0

(d) 3a < 3b (e) −4a < −4b (f)
1

a
<

1

b

In Exercises 3–8, express the interval in terms of an inequality involving
absolute value.

3. [−2, 2] 4. (−4, 4) 5. (0, 4)

6. [−4, 0] 7. [1, 5] 8. (−2, 8)

In Exercises 9–12, write the inequality in the form a < x < b.

9. |x| < 8 10. |x − 12| < 8

11. |2x + 1| < 5 12. |3x − 4| < 2

In Exercises 13–18, express the set of numbers x satisfying the given
condition as an interval.

13. |x| < 4 14. |x| ≤ 9

15. |x − 4| < 2 16. |x + 7| < 2

17. |4x − 1| ≤ 8 18. |3x + 5| < 1

In Exercises 19–22, describe the set as a union of finite or infinite in-
tervals.

19. {x : |x − 4| > 2} 20. {x : |2x + 4| > 3}
21. {x : |x2 − 1| > 2} 22. {x : |x2 + 2x| > 2}
23. Match (a)–(f) with (i)–(vi).

(a) a > 3 (b) |a − 5| <
1

3

(c)

∣∣∣∣a − 1

3

∣∣∣∣ < 5 (d) |a| > 5

(e) |a − 4| < 3 (f) 1 ≤ a ≤ 5
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(i) a lies to the right of 3.

(ii) a lies between 1 and 7.

(iii) The distance from a to 5 is less than 1
3 .

(iv) The distance from a to 3 is at most 2.

(v) a is less than 5 units from 1
3 .

(vi) a lies either to the left of −5 or to the right of 5.

24. Describe

{
x : x

x + 1
< 0

}
as an interval.

25. Describe {x : x2 + 2x < 3} as an interval. Hint: Plot y = x2 +
2x − 3.

26. Describe the set of real numbers satisfying |x − 3| = |x − 2| + 1
as a half-infinite interval.

27. Show that if a > b, then b−1 > a−1, provided that a and b have
the same sign. What happens if a > 0 and b < 0?

28. Which x satisfy both |x − 3| < 2 and |x − 5| < 1?

29. Show that if |a − 5| < 1
2 and |b − 8| < 1

2 , then
|(a + b) − 13| < 1. Hint: Use the triangle inequality.

30. Suppose that |x − 4| ≤ 1.

(a) What is the maximum possible value of |x + 4|?
(b) Show that |x2 − 16| ≤ 9.

31. Suppose that |a − 6| ≤ 2 and |b| ≤ 3.

(a) What is the largest possible value of |a + b|?
(b) What is the smallest possible value of |a + b|?
32. Prove that |x| − |y| ≤ |x − y|. Hint: Apply the triangle inequality
to y and x − y.

33. Express r1 = 0.27 as a fraction. Hint: 100r1 − r1 is an integer.
Then express r2 = 0.2666 . . . as a fraction.

34. Represent 1/7 and 4/27 as repeating decimals.

35. The text states: If the decimal expansions of numbers a and b agree
to k places, then |a − b| ≤ 10−k . Show that the converse is false: For
all k there are numbers a and b whose decimal expansions do not agree
at all but |a − b| ≤ 10−k .

36. Plot each pair of points and compute the distance between them:

(a) (1, 4) and (3, 2) (b) (2, 1) and (2, 4)

(c) (0, 0) and (−2, 3) (d) (−3, −3) and (−2, 3)

37. Find the equation of the circle with center (2, 4):

(a) with radius r = 3.

(b) that passes through (1, −1).

38. Find all points with integer coordinates located at a distance 5
from the origin. Then find all points with integer coordinates located at
a distance 5 from (2, 3).

39. Determine the domain and range of the function

f : {r, s, t, u} → {A, B, C, D, E}
defined by f (r) = A, f (s) = B, f (t) = B, f (u) = E.

40. Give an example of a function whose domain D has three elements
and whose range R has two elements. Does a function exist whose do-
main D has two elements and whose range R has three elements?

In Exercises 41–48, find the domain and range of the function.

41. f (x) = −x 42. g(t) = t4

43. f (x) = x3 44. g(t) = √
2 − t

45. f (x) = |x| 46. h(s) = 1

s

47. f (x) = 1

x2
48. g(t) = cos

1

t

In Exercises 49–52, determine where f (x) is increasing.

49. f (x) = |x + 1| 50. f (x) = x3

51. f (x) = x4 52. f (x) = 1

x4 + x2 + 1

In Exercises 53–58, find the zeros of f (x) and sketch its graph by plot-
ting points. Use symmetry and increase/decrease information where
appropriate.

53. f (x) = x2 − 4 54. f (x) = 2x2 − 4

55. f (x) = x3 − 4x 56. f (x) = x3

57. f (x) = 2 − x3 58. f (x) = 1

(x − 1)2 + 1

59. Which of the curves in Figure 26 is the graph of a function?

(B)

(D)(C)

(A)

x

x

x

x

y

y

y

y

FIGURE 26

60. Determine whether the function is even, odd, or neither.

(a) f (x) = x5 (b) g(t) = t3 − t2

(c) F(t) = 1

t4 + t2
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61. Determine whether the function is even, odd, or neither.

(a) f (t) = 1

t4 + t + 1
− 1

t4 − t + 1
(b) g(t) = 2t − 2−t

(c) G(θ) = sin θ + cos θ (d) H(θ) = sin(θ2)

62. Write f (x) = 2x4 − 5x3 + 12x2 − 3x + 4 as the sum of an even
and an odd function.

63. Show that f (x) = ln

(
1 − x

1 + x

)
is an odd function.

64. State whether the function is increasing, decreasing, or neither.

(a) Surface area of a sphere as a function of its radius

(b) Temperature at a point on the equator as a function of time

(c) Price of an airline ticket as a function of the price of oil

(d) Pressure of the gas in a piston as a function of volume

In Exercises 65–70, let f (x) be the function shown in Figure 27.

65. Find the domain and range of f (x)?

66. Sketch the graphs of f (x + 2) and f (x) + 2.

67. Sketch the graphs of f (2x), f
( 1

2x
)
, and 2f (x).

68. Sketch the graphs of f (−x) and −f (−x).

69. Extend the graph of f (x) to [−4, 4] so that it is an even function.

70. Extend the graph of f (x) to [−4, 4] so that it is an odd function.

1 2 3 4
0

1

2

3

4

x

y

FIGURE 27

71. Suppose that f (x) has domain [4, 8] and range [2, 6]. Find the
domain and range of:

(a) f (x) + 3 (b) f (x + 3)

(c) f (3x) (d) 3f (x)

72. Let f (x) = x2. Sketch the graph over [−2, 2] of:

(a) f (x + 1) (b) f (x) + 1

(c) f (5x) (d) 5f (x)

73. Suppose that the graph of f (x) = sin x is compressed horizontally
by a factor of 2 and then shifted 5 units to the right.

(a) What is the equation for the new graph?

(b) What is the equation if you first shift by 5 and then compress by 2?

(c) Verify your answers by plotting your equations.

74. Figure 28 shows the graph of f (x) = |x| + 1. Match the functions
(a)–(e) with their graphs (i)–(v).

(a) f (x − 1) (b) −f (x) (c) −f (x) + 2

(d) f (x − 1) − 2 (e) f (x + 1)

y = f (x) = |x| + 1 (i) (ii)

1

2

3

−1
−2−3 −1 2 31

y

x
1

2

3

−1
−2−3 −1 2 31

y

x
1

2

3

−1
−2−3 −1 2 31

y

x

(iv) (v)(iii)

1

2

3

−1
−2

−3

−2−3 −1 2 31

y

x
1

2

3

−1
−2

−3

−2−3 −1 2 31

y

x
1

2

3

−1
−2

−3

−2−3 −1 2 31

y

x

FIGURE 28

75. Sketch the graph of f (2x) and f
( 1

2x
)
, where f (x) = |x| + 1 (Fig-

ure 28).

76. Find the function f (x) whose graph is obtained by shifting the
parabola y = x2 three units to the right and four units down, as in
Figure 29.

y = f (x)

y = x2

−4

3

y

x

FIGURE 29

77. Define f (x) to be the larger of x and 2 − x. Sketch the graph of
f (x). What are its domain and range? Express f (x) in terms of the
absolute value function.

78. For each curve in Figure 30, state whether it is symmetric with
respect to the y-axis, the origin, both, or neither.

(D)

(B)

(C)

(A)

yy

yy

xx

x
x

FIGURE 30
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79. Show that the sum of two even functions is even and the sum of
two odd functions is odd.

80. Suppose that f (x) and g(x) are both odd. Which of the following
functions are even? Which are odd?
(a) f (x)g(x) (b) f (x)3

(c) f (x) − g(x) (d)
f (x)

g(x)

81. Prove that the only function whose graph is symmetric with respect
to both the y-axis and the origin is the function f (x) = 0.

Further Insights and Challenges
82. Prove the triangle inequality by adding the two inequalities

−|a| ≤ a ≤ |a|, −|b| ≤ b ≤ |b|

83. Show that a fraction r = a/b in lowest terms has a finite decimal
expansion if and only if

b = 2n5m for some n, m ≥ 0.

Hint: Observe that r has a finite decimal expansion when 10Nr is an
integer for some N ≥ 0 (and hence b divides 10N ).

84. Let p = p1 . . . ps be an integer with digits p1, . . . , ps . Show that

p

10s − 1
= 0.p1 . . . ps

Use this to find the decimal expansion of r = 2
11 . Note that

r = 2

11
= 18

102 − 1

85. A function f (x) is symmetric with respect to the vertical
line x = a if f (a − x) = f (a + x).

(a) Draw the graph of a function that is symmetric with respect to
x = 2.

(b) Show that if f (x) is symmetric with respect to x = a, then g(x) =
f (x + a) is even.

86. Formulate a condition for f (x) to be symmetric with re-
spect to the point (a, 0) on the x-axis.

1.2 Linear and Quadratic Functions
Linear functions are the simplest of all functions, and their graphs (lines) are the simplest
of all curves. However, linear functions and lines play an enormously important role in
calculus. For this reason, you should be thoroughly familiar with the basic properties of
linear functions and the different ways of writing an equation of a line.

Let’s recall that a linear function is a function of the form

f (x) = mx + b (m and b constants)

The graph of f (x) is a line of slope m, and since f (0) = b, the graph intersects the y-axis
at the point (0, b) (Figure 1). The number b is called the y-intercept, and the equation
y = mx + b for the line is said to be in slope-intercept form.

x1 x2

y -intercept

y = mx + b

m =

�y

�y

�x

�x

y2

y1

b

y

x

FIGURE 1 The slope m is the ratio “rise
over run.”

We use the symbols �x and �y to denote the change (or increment) in x and
y = f (x) over an interval [x1, x2] (Figure 1):

�x = x2 − x1, �y = y2 − y1 = f (x2) − f (x1)

The slope m of a line is equal to the ratio

m = �y

�x
= vertical change

horizontal change
= rise

run

This follows from the formula y = mx + b:

�y

�x
= y2 − y1

x2 − x1
= (mx2 + b) − (mx1 + b)

x2 − x1
= m(x2 − x1)

x2 − x1
= m
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The slope m measures the rate of change of y with respect to x. In fact, by writing

�y = m�x

we see that a one-unit increase in x (i.e., �x = 1) produces an m-unit change �y in y. For
example, if m = 5, then y increases by five units per unit increase in x. The rate-of-change
interpretation of the slope is fundamental in calculus. We discuss it in greater detail in
Section 2.1.

Graphically, the slope m measures the steepness of the line y = mx + b. Figure 2(A)
shows lines through a point of varying slope m. Note the following properties:

• Steepness: The larger the absolute value |m|, the steeper the line.
• Negative slope: If m < 0, the line slants downward from left to right.
• f (x) = mx + b is increasing if m > 0 and decreasing if m < 0.
• The horizontal line y = b has slope m = 0 [Figure 2(B)].
• A vertical line has equation x = c, where c is a constant. The slope of a vertical

line is undefined. It is not possible to write the equation of a vertical line in slope-
intercept form y = mx + b.

125

0.5−0.5

0

(A) Lines of varying slopes through P

−1 −2 −5

y = b
(slope 0)

x = c
(slope undefined)

c

b
P P

(B) Horizontal and vertical lines through P

yy

xx

FIGURE 2

CAUTION: Graphs are often plotted using different scales for the x- and y-axes. This
is necessary to keep the sizes of graphs within reasonable bounds. However, when the
scales are different, lines do not appear with their true slopes.

Scale is especially important in applications because the steepness of a graph depends
on the choice of units for the x- and y-axes. We can create very different subjective
impressions by changing the scale. Figure 3 shows the growth of company profits over a
four-year period. The two plots convey the same information, but the upper plot makes
the growth look more dramatic.

100

125

150

100
20012000 2002 2003 2004

20012000 2002 2003 2004

Profits (in millions)

Profits (in millions)

125

150

175

200

225

250

275

300

FIGURE 3 Growth of company profits.

Next, we recall the relation between the slopes of parallel and perpendicular lines
(Figure 4):

• Lines of slopes m1 and m2 are parallel if and only if m1 = m2.
• Lines of slopes m1 and m2 are perpendicular if and only if

m1 = − 1

m2
(or m1m2 = −1).
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Slope = m

Slope = m
Slope = m

(B) Perpendicular lines (A) Parallel lines

yy

xx

Slope = − 1
m

FIGURE 4 Parallel and perpendicular lines.

CONCEPTUAL INSIGHT The increments over an interval [x1, x2]:
�x = x2 − x1, �y = f (x2) − f (x1)

are defined for any function f (x) (linear or not), but the ratio �y/�x may depend on
the interval (Figure 5). The characteristic property of a linear function f (x) = mx + b

is that �y/�x has the same value m for every interval. In other words, y has a constant
rate of change with respect to x. We can use this property to test if two quantities are
related by a linear equation.

�x

�y

�x

Nonlinear function: the ratio 
�y /�x changes, depending 
on the interval.

Linear function: the ratio
�y /�x is the same over 
all intervals.

x

y

x

y

�y

FIGURE 5

EXAMPLE 1 Testing for a Linear Relationship Do the data in Table 1 suggest a linear
relation between the pressure P and temperature T of a gas?

TABLE 1

Temperature (◦C) Pressure (kPa)

40 1365.80
45 1385.40
55 1424.60
70 1483.40
80 1522.60
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Solution We calculate �P/�T at successive data points and check whether this ratio is
constant:

(T1, P1) (T2, P2)
�P

�T

(40, 1365.80) (45, 1385.40)
1385.40 − 1365.80

45 − 40
= 3.92

(45, 1385.40) (55, 1424.60)
1424.60 − 1385.40

55 − 45
= 3.92

(55, 1424.60) (70, 1483.40)
1483.40 − 1424.60

70 − 55
= 3.92

(70, 1483.40) (80, 1522.60)
1522.60 − 1483.40

80 − 70
= 3.92

Because �P/�T has the constant value 3.92, the data points lie on a line with slope
m = 3.92 (this is confirmed in the plot in Figure 6).

Real experimental data are unlikely to
reveal perfect linearity, even if the data
points do essentially lie on a line. The
method of “linear regression” is used to
find the linear function that best fits the
data.

40 60 80

1350

1400

1450

1500

1550
Pressure (kPa)

T (°C)

FIGURE 6 Line through pressure-
temperature data points.

As mentioned above, it is important to be familiar with the standard ways of writing
the equation of a line. The general linear equation is

ax + by = c 1

where a and b are not both zero. For b = 0, we obtain the vertical line ax = c. When
b �= 0, we can rewrite Eq. (1) in slope-intercept form. For example, −6x + 2y = 3 can
be rewritten as y = 3x + 3

2 .
Two other forms we will use frequently are the point-slope and point-point forms.

(a1, b1)

(a2, b2)

b2 − b1

a2 − a1

x

y

FIGURE 7 Slope of the line between
P = (a1, b1) and Q = (a2, b2) is

m = b2 − b1

a2 − a1
.

Given a point P = (a, b) and a slope m, the equation of the line through P with slope
m is y − b = m(x − a). Similarly, the line through two distinct points P = (a1, b1) and
Q = (a2, b2) has slope (Figure 7)

m = b2 − b1

a2 − a1

Therefore, we can write its equation as y − b1 = m(x − a1).

Equations for Lines

1. Point-slope form of the line through P = (a, b) with slope m:

y − b = m(x − a)

2. Point-point form of the line through P = (a1, b1) and Q = (a2, b2):

y − b1 = m(x − a1) where m = b2 − b1

a2 − a1



S E C T I O N 1.2 Linear and Quadratic Functions 17

EXAMPLE 2 Line of Given Slope Through a Given Point Find the equation of the line
through (9, 2) with slope − 2

3 .

P = (9, 2)

x + 8y = −

2

8

x

y

9 12

2
3

FIGURE 8 Line through P = (9, 2) with
slope m = − 2

3 .

Solution In point-slope form:

y − 2 = −2

3
(x − 9)

In slope-intercept form: y = − 2
3 (x − 9) + 2 or y = − 2

3x + 8. See Figure 8.

EXAMPLE 3 Line Through Two Points Find the equation of the line through (2, 1)

and (9, 5).

Solution The line has slope

m = 5 − 1

9 − 2
= 4

7

Because (2, 1) lies on the line, its equation in point-slope form is y − 1 = 4
7 (x − 2).

A quadratic function is a function defined by a quadratic polynomial

f (x) = ax2 + bx + c (a, b, c, constants with a �= 0)

The graph of f (x) is a parabola (Figure 9). The parabola opens upward if the leading
coefficient a is positive and downward if a is negative. The discriminant of f (x) is the
quantity

D = b2 − 4ac

The roots of f (x) are given by the quadratic formula (see Exercise 56):

Roots of f (x) = −b ± √
b2 − 4ac

2a
= −b ± √

D

2a

The sign of D determines whether or not f (x) has real roots (Figure 9). If D > 0, then
f (x) has two real roots, and if D = 0, it has one real root (a “double root”). If D < 0,
then

√
D is imaginary and f (x) has no real roots.

Two real roots
a > 0 and D > 0

Double root
a > 0 and D = 0

No real roots
a > 0 and D < 0

Two real roots
a < 0 and D > 0

xxxx

yyyy

FIGURE 9 Graphs of quadratic functions
f (x) = ax2 + bx + c.

When f (x) has two real roots r1 and r2, then f (x) factors as

f (x) = a(x − r1)(x − r2)

For example, f (x) = 2x2 − 3x + 1 has discriminant D = b2 − 4ac = 9 − 8 = 1 > 0,
and by the quadratic formula, its roots are (3 ± 1)/4 or 1 and 1

2 . Therefore,

f (x) = 2x2 − 3x + 1 = 2(x − 1)

(
x − 1

2

)
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The technique of completing the square consists of writing a quadratic polynomial
as a multiple of a square plus a constant:

ax2 + bx + c = a
(
x + b

2a

)2

︸ ︷︷ ︸
Square term

+ 4ac − b2

4a︸ ︷︷ ︸
Constant

2

It is not necessary to memorize this formula, but you should know how to carry out the
process of completing the square.

EXAMPLE 4 Completing the Square Complete the square for the quadratic polyno-
mial 4x2 − 12x + 3.

Cuneiform texts written on clay tablets
show that the method of completing the
square was known to ancient Babylonian
mathematicians who lived some 4000
years ago.

Solution First factor out the leading coefficient:

4x2 − 12x + 3 = 4

(
x2 − 3x + 3

4

)

Then complete the square for the term x2 − 3x:

x2 + bx =
(

x + b

2

)2

− b2

4
, x2 − 3x =

(
x − 3

2

)2

− 9

4

Therefore,

4x2 − 12x + 3 = 4

((
x − 3

2

)2

− 9

4
+ 3

4

)
= 4

(
x − 3

2

)2

− 6

The method of completing the square can be used to find the minimum or maximum
value of a quadratic function.

EXAMPLE 5 Finding the Minimum of a Quadratic Function Complete the square and
find the minimum value of f (x) = x2 − 4x + 9.

5

9

2
x

y

FIGURE 10 Graph of f (x) = x2 − 4x + 9.

Solution We have

f (x) = x2 − 4x + 9 = (x − 2)2 − 4 + 9 =
This term is ≥ 0︷ ︸︸ ︷

(x − 2)2 + 5

Thus, f (x) ≥ 5 for all x, and the minimum value of f (x) is f (2) = 5 (Figure 10).

1.2 SUMMARY

• A linear function is a function of the form f (x) = mx + b.
• The general equation of a line is ax + by = c. The line y = c is horizontal and x = c

is vertical.
• Three convenient ways of writing the equation of a nonvertical line:

– Slope-intercept form: y = mx + b (slope m and y-intercept b)
– Point-slope form: y − b = m(x − a) [slope m, passes through (a, b)]
– Point-point form: The line through two points P = (a1, b1) and Q = (a2, b2) has

slope m = b2 − b1

a2 − a1
and equation y − b1 = m(x − a1).

• Two lines of slopes m1 and m2 are parallel if and only if m1 = m2, and they are perpen-
dicular if and only if m1 = −1/m2.
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• Quadratic function: f (x) = ax2 + bx + c. The roots are x = (−b ± √
D)/(2a), where

D = b2 − 4ac is the discriminant. The roots are real and distinct if D > 0, there is a
double root if D = 0, and there are no real roots if D < 0.
• Completing the square consists of writing a quadratic function as a multiple of a square
plus a constant.

1.2 EXERCISES

Preliminary Questions
1. What is the slope of the line y = −4x − 9?

2. Are the lines y = 2x + 1 and y = −2x − 4 perpendicular?

3. When is the line ax + by = c parallel to the y-axis? To the x-axis?

4. Suppose y = 3x + 2. What is �y if x increases by 3?

5. What is the minimum of f (x) = (x + 3)2 − 4?

6. What is the result of completing the square for f (x) = x2 + 1?

Exercises
In Exercises 1–4, find the slope, the y-intercept, and the x-intercept of
the line with the given equation.

1. y = 3x + 12 2. y = 4 − x

3. 4x + 9y = 3 4. y − 3 = 1
2 (x − 6)

In Exercises 5–8, find the slope of the line.

5. y = 3x + 2 6. y = 3(x − 9) + 2

7. 3x + 4y = 12 8. 3x + 4y = −8

In Exercises 9–20, find the equation of the line with the given descrip-
tion.

9. Slope 3, y-intercept 8

10. Slope −2, y-intercept 3

11. Slope 3, passes through (7, 9)

12. Slope −5, passes through (0, 0)

13. Horizontal, passes through (0, −2)

14. Passes through (−1, 4) and (2, 7)

15. Parallel to y = 3x − 4, passes through (1, 1)

16. Passes through (1, 4) and (12, −3)

17. Perpendicular to 3x + 5y = 9, passes through (2, 3)

18. Vertical, passes through (−4, 9)

19. Horizontal, passes through (8, 4)

20. Slope 3, x-intercept 6

21. Find the equation of the perpendicular bisector of the segment join-
ing (1, 2) and (5, 4) (Figure 11). Hint: The midpoint Q of the segment

joining (a, b) and (c, d) is

(
a + c

2
,
b + d

2

)
.

Q

(1, 2)

(5, 4)

Perpendicular
bisector

x

y

FIGURE 11

22. Intercept-Intercept Form Show that if a, b �= 0, then the line
with x-intercept x = a and y-intercept y = b has equation (Figure 12)

x

a
+ y

b
= 1

b

a
x

y

FIGURE 12

23. Find an equation of the line with x-intercept x = 4 and y-intercept
y = 3.

24. Find y such that (3, y) lies on the line of slope m = 2 through
(1, 4).

25. Determine whether there exists a constant c such that the line
x + cy = 1:

(a) Has slope 4 (b) Passes through (3, 1)

(c) Is horizontal (d) Is vertical

26. Assume that the number N of concert tickets that can be sold at a
price of P dollars per ticket is a linear function N(P ) for 10 ≤ P ≤ 40.
Determine N(P ) (called the demand function) if N(10) = 500 and
N(40) = 0. What is the decrease �N in the number of tickets sold if
the price is increased by �P = 5 dollars?
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27. Materials expand when heated. Consider a metal rod of length L0 at
temperature T0. If the temperature is changed by an amount �T , then
the rod’s length changes by �L = αL0�T , where α is the thermal
expansion coefficient. For steel, α = 1.24 × 10−5 ◦C−1.

(a) A steel rod has length L0 = 40 cm at T0 = 40◦C. Find its length
at T = 90◦C.
(b) Find its length at T = 50◦C if its length at T0 = 100◦C is 65 cm.
(c) Express length L as a function of T if L0 = 65 cm at T0 = 100◦C.

28. Do the points (0.5, 1), (1, 1.2), (2, 2) lie on a line?

29. Find b such that (2, −1), (3, 2), and (b, 5) lie on a line.

30. Find an expression for the velocity v as a linear function of t that
matches the following data.

t (s) 0 2 4 6

v (m/s) 39.2 58.6 78 97.4

31. The period T of a pendulum is measured for pendulums of several
different lengths L. Based on the following data, does T appear to be
a linear function of L?

L (cm) 20 30 40 50

T (s) 0.9 1.1 1.27 1.42

32. Show that f (x) is linear of slope m if and only if

f (x + h) − f (x) = mh (for all x and h)

33. Find the roots of the quadratic polynomials:

(a) 4x2 − 3x − 1 (b) x2 − 2x − 1

In Exercises 34–41, complete the square and find the minimum or max-
imum value of the quadratic function.

34. y = x2 + 2x + 5 35. y = x2 − 6x + 9

36. y = −9x2 + x 37. y = x2 + 6x + 2

38. y = 2x2 − 4x − 7 39. y = −4x2 + 3x + 8

40. y = 3x2 + 12x − 5 41. y = 4x − 12x2

42. Sketch the graph of y = x2 − 6x + 8 by plotting the roots and the
minimum point.

43. Sketch the graph of y = x2 + 4x + 6 by plotting the minimum
point, the y-intercept, and one other point.

44. If the alleles A and B of the cystic fibrosis gene occur in a popu-
lation with frequencies p and 1 − p (where p is a fraction between 0
and 1), then the frequency of heterozygous carriers (carriers with both
alleles) is 2p(1 − p). Which value of p gives the largest frequency of
heterozygous carriers?

45. For which values of c does f (x) = x2 + cx + 1 have a double
root? No real roots?

46. Let f (x) be a quadratic function and c a constant. Which
of the following statements is correct? Explain graphically.

(a) There is a unique value of c such that y = f (x) − c has a double
root.

(b) There is a unique value of c such that y = f (x − c) has a double
root.

47. Prove that x + 1
x ≥ 2 for all x > 0. Hint: Consider

(x1/2 − x−1/2)2.

48. Let a, b > 0. Show that the geometric mean
√

ab is not larger than
the arithmetic mean (a + b)/2. Hint: Use a variation of the hint given
in Exercise 47.

49. If objects of weights x and w1 are suspended from the balance in
Figure 13(A), the cross-beam is horizontal if bx = aw1. If the lengths
a and b are known, we may use this equation to determine an unknown
weight x by selecting w1 such that the cross-beam is horizontal. If a and
b are not known precisely, we might proceed as follows. First balance
x by w1 on the left as in (A). Then switch places and balance x by w2
on the right as in (B). The average x̄ = 1

2 (w1 + w2) gives an estimate
for x. Show that x̄ is greater than or equal to the true weight x.

w1

(A) (B)

a

w2x x

b a b

FIGURE 13

50. Find numbers x and y with sum 10 and product 24. Hint: Find a
quadratic polynomial satisfied by x.

51. Find a pair of numbers whose sum and product are both equal to 8.

52. Show that the parabola y = x2 consists of all points P such that

d1 = d2, where d1 is the distance from P to
(

0, 1
4

)
and d2 is the dis-

tance from P to the line y = − 1
4 (Figure 14).

d1

d2

P = (x, x2)

y = x2

1
4

1
4

−

x

y

FIGURE 14
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Further Insights and Challenges
53. Show that if f (x) and g(x) are linear, then so is f (x) + g(x). Is
the same true of f (x)g(x)?

54. Show that if f (x) and g(x) are linear functions such that
f (0) = g(0) and f (1) = g(1), then f (x) = g(x).

55. Show that �y/�x for the function f (x) = x2 over the interval
[x1, x2] is not a constant, but depends on the interval. Determine the
exact dependence of �y/�x on x1 and x2.

56. Use Eq. (2) to derive the quadratic formula for the roots of
ax2 + bx + c = 0.

57. Let a, c �= 0. Show that the roots of

ax2 + bx + c = 0 and cx2 + bx + a = 0

are reciprocals of each other.

58. Show, by completing the square, that the parabola

y = ax2 + bx + c

is congruent to y = ax2 by a vertical and horizontal translation.

59. Prove Viète’s Formulas: The quadratic polynomial with α and β

as roots is x2 + bx + c, where b = −α − β and c = αβ.

1.3 The Basic Classes of Functions
It would be impossible (and useless) to describe all possible functions f (x). Since the
values of a function can be assigned arbitrarily, a function chosen at random would likely
be so complicated that we could neither graph it nor describe it in any reasonable way.
However, calculus makes no attempt to deal with all functions. The techniques of calculus,
powerful and general as they are, apply only to functions that are sufficiently “well-
behaved” (we will see what well-behaved means when we study the derivative in Chapter
3). Fortunately, such functions are adequate for a vast range of applications.

Most of the functions considered in this text are constructed from the following
familiar classes of well-behaved functions:

polynomials rational functions algebraic functions

exponential functions trigonometric functions

logarithmic functions inverse trigonometric functions

We shall refer to these as the basic functions.

• Polynomials: For any real number m, f (x) = xm is called the power function
with exponent m. A polynomial is a sum of multiples of power functions with
whole-number exponents (Figure 1):

5

2−2 −1 1
x

y

FIGURE 1 The polynomial
y = x5 − 5x3 + 4x.

f (x) = x5 − 5x3 + 4x, g(t) = 7t6 + t3 − 3t − 1

Thus, the function f (x) = x + x−1 is not a polynomial because it includes a power
function x−1 with a negative exponent. The general polynomial in the variable x

may be written

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

– The numbers a0, a1, . . . , an are called coefficients.
– The degree of P(x) is n (assuming that an �= 0).
– The coefficient an is called the leading coefficient.
– The domain of P(x) is R.

• A rational function is a quotient of two polynomials (Figure 2):

5

−3

−2 1
x

y

FIGURE 2 The rational function

f (x) = x + 1

x3 − 3x + 2
. f (x) = P(x)

Q(x)
[P(x) and Q(x) polynomials]
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The domain of f (x) is the set of numbers x such that Q(x) �= 0. For example,

f (x) = 1

x2
domain {x : x �= 0}

h(t) = 7t6 + t3 − 3t − 1

t2 − 1
domain {t : t �= ±1}

Every polynomial is also a rational function [with Q(x) = 1].
• An algebraic function is produced by taking sums, products, and quotients of roots

of polynomials and rational functions (Figure 3):

2−2
x

y

FIGURE 3 The algebraic function

f (x) =
√

1 + 3x2 − x4.

f (x) =
√

1 + 3x2 − x4, g(t) = (
√

t − 2)−2, h(z) = z + z−5/3

5z3 − √
z

A number x belongs to the domain of f if each term in the formula is defined and
the result does not involve division by zero. For example, g(t) is defined if t ≥ 0
and

√
t �= 2, so the domain of g(t) is D = {t : t ≥ 0 and t �= 4}. More generally,

algebraic functions are defined by polynomial equations between x and y. In this
case, we say that y is implicitly defined as a function of x. For example, the equation
y4 + 2x2y + x4 = 1 defines y implicitly as a function of x.

• Exponential functions: The function f (x) = bx , where b > 0, is called the expo-
nential function with base b. Some examples are

f (x) = 2x, g(t) = 10t , h(x) =
(

1

3

)x

, p(t) = (
√

5)t

Exponential functions and their inverses, the logarithmic functions, are treated in
greater detail in Section 1.6.

• Trigonometric functions are functions built from sin x and cos x. These functions

Any function that is not algebraic is called
transcendental. Exponential and
trigonometric functions are examples, as
are the Bessel and gamma functions that
appear in engineering and statistics. The
term “transcendental” goes back to the
1670s, when it was used by Gottfried
Wilhelm Leibniz (1646–1716) to describe
functions of this type. and their inverses are discussed in the next two sections.

Constructing New Functions
Given functions f and g, we can construct new functions by forming the sum, difference,
product, and quotient functions:

(f + g)(x) = f (x) + g(x), (f − g)(x) = f (x) − g(x)

(fg)(x) = f (x) g(x),

(
f

g

)
(x) = f (x)

g(x)
(where g(x) �= 0)

For example, if f (x) = x2 and g(x) = sin x, then

(f + g)(x) = x2 + sin x, (f − g)(x) = x2 − sin x

(fg)(x) = x2 sin x,

(
f

g

)
(x) = x2

sin x

We can also multiply functions by constants. A function of the form

c1f (x) + c2g(x) (c1, c2 constants)

is called a linear combination of f (x) and g(x).
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Composition is another important way of constructing new functions. The compo-
sition of f and g is the function f ◦ g defined by (f ◦ g)(x) = f (g(x)). The domain of
f ◦ g is the set of values of x in the domain of g such that g(x) lies in the domain of f .

EXAMPLE 1 Compute the composite functions f ◦ g and g ◦ f and discuss their
domains, where

f (x) = √
x, g(x) = 1 − x

Solution We haveExample 1 shows that the composition of
functions is not commutative: The
functions f ◦ g and g ◦ f may be (and
usually are) different.

(f ◦ g)(x) = f (g(x)) = f (1 − x) = √
1 − x

The square root
√

1 − x is defined if 1 − x ≥ 0 or x ≤ 1, so the domain of f ◦ g is
{x : x ≤ 1}. On the other hand,

(g ◦ f )(x) = g(f (x)) = g(
√

x) = 1 − √
x

The domain of g ◦ f is {x : x ≥ 0}.

Elementary Functions
As noted above, we can produce new functions by applying the operations of addition,Inverse functions are discussed in Section

1.5. subtraction, multiplication, division, and composition. It is convenient to refer to a function
constructed in this way from the basic functions listed above as an elementary function.
The following functions are elementary:

f (x) = √
2x + sin x, f (x) = 10

√
x, f (x) = 1 + x−1

1 + cos x

1.3 SUMMARY

• For m a real number, f (x) = xm is called the power function with exponent m. A
polynomial P(x) is a sum of multiples of power functions xm, where m is a whole number:

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

This polynomial has degree n (assuming that an �= 0) and an is called the leading coeffi-
cient.
• A rational function is a quotient P(x)/Q(x) of two polynomials.
• An algebraic function is produced by taking sums, products, and nth roots of polynomials
and rational functions.
• Exponential function: f (x) = bx , where b > 0 (b is called the base).
• The composite function f ◦ g is defined by (f ◦ g)(x) = f (g(x)). The domain of f ◦ g

is the set of x in the domain of g such that g(x) belongs to the domain of f .

1.3 EXERCISES

Preliminary Questions
1. Give an example of a rational function.

2. Is |x| a polynomial function? What about |x2 + 1|?
3. What is unusual about the domain of the composite function f ◦ g

for the functions f (x) = x1/2 and g(x) = −1 − |x|?
4. Is f (x) = ( 1

2

)x increasing or decreasing?

5. Give an example of a transcendental function.
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Exercises
In Exercises 1–12, determine the domain of the function.

1. f (x) = x1/4 2. g(t) = t2/3

3. f (x) = x3 + 3x − 4 4. h(z) = z3 + z−3

5. g(t) = 1

t + 2
6. f (x) = 1

x2 + 4

7. G(u) = 1

u2 − 4
8. f (x) =

√
x

x2 − 9

9. f (x) = x−4 + (x − 1)−3 10. F(s) = sin

(
s

s + 1

)

11. g(y) = 10
√

y+y−1
12. f (x) = x + x−1

(x − 3)(x + 4)

In Exercises 13–24, identify each of the following functions as polyno-
mial, rational, algebraic, or transcendental.

13. f (x) = 4x3 + 9x2 − 8 14. f (x) = x−4

15. f (x) = √
x 16. f (x) =

√
1 − x2

17. f (x) = x2

x + sin x
18. f (x) = 2x

19. f (x) = 2x3 + 3x

9 − 7x2
20. f (x) = 3x − 9x−1/2

9 − 7x2

21. f (x) = sin(x2) 22. f (x) = x√
x + 1

23. f (x) = x2 + 3x−1 24. f (x) = sin(3x)

25. Is f (x) = 2x2
a transcendental function?

26. Show that f (x) = x2 + 3x−1 and g(x) = 3x3 − 9x + x−2 are ra-
tional functions—that is, quotients of polynomials.

In Exercises 27–34, calculate the composite functions f ◦ g and g ◦ f ,
and determine their domains.

27. f (x) = √
x, g(x) = x + 1

28. f (x) = 1

x
, g(x) = x−4

29. f (x) = 2x , g(x) = x2

30. f (x) = |x|, g(θ) = sin θ

31. f (θ) = cos θ , g(x) = x3 + x2

32. f (x) = 1

x2 + 1
, g(x) = x−2

33. f (t) = 1√
t

, g(t) = −t2

34. f (t) = √
t , g(t) = 1 − t3

35. The population (in millions) of a country as a function of time t

(years) is P(t) = 30.20.1t . Show that the population doubles every 10
years. Show more generally that for any positive constants a and k, the
function g(t) = a2kt doubles after 1/k years.

36. Find all values of c such that f (x) = x + 1

x2 + 2cx + 4
has domain R.

Further Insights and Challenges
In Exercises 37–43, we define the first difference δf of a function f (x)

by δf (x) = f (x + 1) − f (x).

37. Show that if f (x) = x2, then δf (x) = 2x + 1. Calculate δf for
f (x) = x and f (x) = x3.

38. Show that δ(10x) = 9 · 10x and, more generally, that δ(bx) =
(b − 1)bx .

39. Show that for any two functions f and g, δ(f + g) = δf + δg and
δ(cf ) = cδ(f ), where c is any constant.

40. Suppose we can find a function P(x) such that δP = (x + 1)k and
P(0) = 0. Prove that P(1) = 1k , P(2) = 1k + 2k , and, more gener-
ally, for every whole number n,

P(n) = 1k + 2k + · · · + nk 1

41. First show that

P(x) = x(x + 1)

2

satisfies δP = (x + 1). Then apply Exercise 40 to conclude that

1 + 2 + 3 + · · · + n = n(n + 1)

2

42. Calculate δ(x3), δ(x2), and δ(x). Then find a polynomial P(x)

of degree 3 such that δP = (x + 1)2 and P(0) = 0. Conclude that
P(n) = 12 + 22 + · · · + n2.

43. This exercise combined with Exercise 40 shows that for all whole
numbers k, there exists a polynomial P(x) satisfying Eq. (1). The so-
lution requires the Binomial Theorem and proof by induction (see Ap-
pendix C).

(a) Show that δ(xk+1) = (k + 1) xk + · · · , where the dots indicate
terms involving smaller powers of x.

(b) Show by induction that there exists a polynomial of degree k + 1
with leading coefficient 1/(k + 1):

P(x) = 1

k + 1
xk+1 + · · ·

such that δP = (x + 1)k and P(0) = 0.
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1.4 Trigonometric Functions
We begin our trigonometric review by recalling the two systems of angle measurement:
radians and degrees. They are best described using the relationship between angles and
rotation. As is customary, we often use the lowercase Greek letter θ (“theta”) to denote
angles and rotations.

1

(A) (B) (C) (D)

O
P

Q

P

Q

θ

1O
P = Q

θ = 2π θ =

1O

θ = −

P

Q

1
O

π

4

π

2

FIGURE 1 The radian measure θ of a counterclockwise rotation is the length along the unit circle of the arc traversed by P

as it rotates into Q.

Figure 1(A) shows a unit circle with radius OP rotating counterclockwise into radius

rO
θ

θr

FIGURE 2 On a circle of radius r , the arc
traversed by a counterclockwise rotation of
θ radians has length θr .

OQ. The radian measure of this rotation is the length θ of the circular arc traversed by
P as it rotates into Q. On a circle of radius r , the arc traversed by a counterclockwise
rotation of θ radians has length θr (Figure 2).

The unit circle has circumference 2π . Therefore, a rotation through a full circle has
radian measure θ = 2π [Figure 1(B)]. The radian measure of a rotation through one-
quarter of a circle is θ = 2π/4 = π/2 [Figure 1(C)] and, in general, the rotation through
one-nth of a circle has radian measure 2π/n (Table 1). A negative rotation (with θ < 0) is
a rotation in the clockwise direction [Figure 1(D)]. The unit circle has circumference 2π

(by definition of the number π ).
The radian measure of an angle such as � POQ in Figure 1(A) is defined as the radian

TABLE 1

Rotation through Radian measure

Two full circles 4π

Full circle 2π

Half circle π

Quarter circle 2π/4 = π/2
One-sixth circle 2π/6 = π/3

measure of a rotation that carries OP to OQ. Notice, however, that the radian measure
of an angle is not unique. The rotations through θ and θ + 2π both carry OP to OQ.
Therefore, θ and θ + 2π represent the same angle even though the rotation through θ + 2π

takes an extra trip around the circle. In general, two radian measures represent the same an-
gle if the corresponding rotations differ by an integer multiple of 2π . For example, π/4,
9π/4, and −15π/4 all represent the same angle because they differ by multiples of 2π :

π

4
= 9π

4
− 2π = −15π

4
+ 4π

Every angle has a unique radian measure satisfying 0 ≤ θ < 2π . With this choice,
the angle θ subtends an arc of length θr on a circle of radius r (Figure 2).

Degrees are defined by dividing the circle (not necessarily the unit circle) into 360
equal parts. A degree is 1

360 of a circle. A rotation through θ degrees (denoted θ◦) is
a rotation through the fraction θ/360 of the complete circle. For example, a rotation
through 90◦ is a rotation through the fraction 90

360 , or 1
4 , of a circle.

As with radians, the degree measure of an angle is not unique. Two degree measures
represent that same angle if they differ by an integer multiple of 360. For example, the
angles −45◦ and 675◦ coincide because 675 = −45 + 2(360). Every angle has a unique
degree measure θ with 0 ≤ θ < 360.

To convert between radians and degrees, remember that 2π rad is equal to 360◦.

Radians Degrees

0 0◦
π

6
30◦

π

4
45◦

π

3
60◦

π

2
90◦ Therefore, 1 rad equals 360/2π or 180/π degrees.

• To convert from radians to degrees, multiply by 180/π .
• To convert from degrees to radians, multiply by π/180.
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EXAMPLE 1 Convert (a) 55◦ to radians and (b) 0.5 rad to degrees.

Solution

(a) 55◦ × π

180
≈ 0.9599 rad (b) 0.5 rad × 180

π
≈ 28.648◦

Convention: Unless otherwise stated, we always measure angles in radians.

Radian measurement is usually the better
choice for mathematical purposes, but
there are good practical reasons for using
degrees. The number 360 has many
divisors (360 = 8 · 9 · 5), and
consequently, many fractional parts of the
circle can be expressed as an integer
number of degrees. For example, one-fifth
of the circle is 72◦, two-ninths is 80◦,
three-eighths is 135◦, etc. The trigonometric functions sin θ and cos θ can be defined in terms of right triangles.

Let θ be an acute angle in a right triangle, and let us label the sides as in Figure 3. Then

a

b
c

Hypotenuse

Adjacent

Opposite

θ

FIGURE 3

sin θ = b

c
= opposite

hypotenuse
, cos θ = a

c
= adjacent

hypotenuse

A disadvantage of this definition is that it makes sense only if θ lies between 0 and
π/2 (because an angle in a right triangle cannot exceed π/2). However, sine and cosine
can be defined for all angles in terms of the unit circle. Let P = (x, y) be the point on the
unit circle corresponding to the angle θ as in Figures 4(A) and (B), and define

cos θ = x-coordinate of P , sin θ = y-coordinate of P

This agrees with the right-triangle definition when 0 < θ < π
2 . On the circle of radius r

(centered at the origin), the point corresponding to the angle θ has coordinates

(r cos θ, r sin θ)

Furthermore, we see from Figure 4(C) that sin θ is an odd function and cos θ is an even
function:

sin(−θ) = − sin θ, cos(−θ) = cos θ

P = (cos θ, sin θ)

x

1
y

θ

(A)

P = (cos θ, sin θ)

x
y

θ

(B) (C)

(x, y)

(x, −y)

θ
−θ

FIGURE 4 The unit circle definition of sine
and cosine is valid for all angles θ .

Although we use a calculator to evaluate sine and cosine for general angles, the
standard values listed in Figure 5 and Table 2 appear often and should be memorized.

(0, 1)

π/6
π/2π/3π/4

(   )    , �3
2

1
2

(   )    , �2
2

�2
2

(   )    , �3
2

1
2

FIGURE 5 Four standard angles: The x- and
y-coordinates of the points are cos θ and
sin θ .
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TABLE 2

θ 0
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6
π

sin θ 0
1

2

√
2

2

√
3

2
1

√
3

2

√
2

2

1

2
0

cos θ 1

√
3

2

√
2

2

1

2
0 −1

2
−

√
2

2
−

√
3

2
−1

The graph of y = sin θ is the familiar “sine wave” shown in Figure 6. Observe how
the graph is generated by the y-coordinate of the point P = (cos θ, sin θ) moving around
the unit circle.

1

π 2π

1

y y

x
θ

θ
θ

P

FIGURE 6 The graph of y = sin θ is
generated as the point P = (cos θ, sin θ)

moves around the unit circle.

The graph of y = cos θ has the same shape but is shifted to the left π/2 units (Figure 7).
The signs of sin θ and cos θ vary as P = (cos θ, sin θ) changes quadrant.

1

y = sin θ

I II III IV

−1

Quadrant of unit circle

π 2π π 2π
θ θ

y = cos θ

I II III IV
y y

π

4
π

2
π

4
π

2
3π

4

5π

4
7π

4
3π

4
5π

4

3π

2
3π

2
7π

4

FIGURE 7 Graphs of y = sin θ and
y = cos θ over one period of length 2π .

A function f (x) is called periodic with period T if f (x + T ) = f (x) (for all x)
and T is the smallest positive number with this property. The sine and cosine functions
are periodic with period T = 2π (Figure 8) because the radian measures x and x + 2πkWe often write sin x and cos x, using x

instead of θ . Depending on the application,
we may think of x as an angle or simply as
a real number.

correspond to the same point on the unit circle for any integer k:

sin x = sin(x + 2πk), cos x = cos(x + 2πk)

y = sin x

2π−2π 4π

y = cos x

2π−2π 4π
xx

y
1

y

1

FIGURE 8 Sine and cosine have period 2π .
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There are four other standard trigonometric functions, each defined in terms of sin x

and cos x or as ratios of sides in a right triangle (Figure 9):

a
x

b
c

Hypotenuse

Adjacent

Opposite

FIGURE 9

Tangent: tan x = sin x

cos x
= b

a
, Cotangent: cot x = cos x

sin x
= a

b

Secant: sec x = 1

cos x
= c

a
, Cosecant: csc x = 1

sin x
= c

b

These functions are periodic (Figure 10): y = tan x andy = cot x have period π ; y = sec x

and y = csc x have period 2π (see Exercise 55).

x

−1

y = csc xy = sec x

1 1

−1
xx

yy

−1

y = tan x

1

π 2π 2π 2π 2ππ−−π −π π π−π −π
x

y

y = cot x

1

−1

x

y

π

2
−π

2
−π

2
π

2

−π

2
π

2
π

2
π

2

3π

2
3π

2
5π

2
3π

2

3π

2

5π

2

FIGURE 10 Graphs of the standard trigonometric functions.

EXAMPLE 2 Computing Values of Trigonometric Functions Find the values of the six
trigonometric functions at x = 4π/3.

Solution The point P on the unit circle corresponding to the angle x = 4π/3 lies opposite
the point with angle π/3 (Figure 11). Thus, we see that (refer to Table 2)

P = 

1

(−    −    )    , �3
2

1
2

(    ), �3
2

1
2

4π
3

π
3

FIGURE 11

sin
4π

3
= − sin

π

3
= −

√
3

2
, cos

4π

3
= − cos

π

3
= −1

2

The remaining values are

tan
4π

3
= sin 4π/3

cos 4π/3
= −√

3/2

−1/2
= √

3, cot
4π

3
= cos 4π/3

sin 4π/3
=

√
3

3

sec
4π

3
= 1

cos 4π/3
= 1

−1/2
= −2, csc

4π

3
= 1

sin 4π/3
= −2

√
3

3

EXAMPLE 3 Find the angles x such that sec x = 2.

Solution Because sec x = 1/ cos x, we must solve cos x = 1
2 . From Figure 12 we see

1
2

1−

π

3
π

3

FIGURE 12 cos x = 1
2 for x = ±π

3

that x = π/3 and x = −π/3 are solutions. We may add any integer multiple of 2π , so the
general solution is x = ±π/3 + 2πk for any integer k.

EXAMPLE 4 Trigonometric Equation Solve sin 4x + sin 2x = 0 for x ∈ [0, 2π).

Solution We must find the angles x such that sin 4x = − sin 2x. First, let’s determine
when angles θ1 and θ2 satisfy sin θ2 = − sin θ1. Figure 13 shows that this occurs if θ2 =
−θ1 or θ2 = θ1 + π . Because the sine function is periodic with period 2π ,

sin θ2 = − sin θ1 ⇔ θ2 = −θ1 + 2πk or θ2 = θ1 + π + 2πk

where k is an integer. Taking θ2 = 4x and θ1 = 2x, we see that

sin 4x = − sin 2x ⇔ 4x = −2x + 2πk or 4x = 2x + π + 2πk
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The first equation gives 6x = 2πk or x = (π/3)k and the second equation gives 2x =
π + 2πk or x = π/2 + πk. We obtain eight solutions in [0, 2π) (Figure 14):

x = 0,
π

3
,

2π

3
, π,

4π

3
,

5π

3
and x = π

2
,

3π

2

−sin θ1

sin θ1

θ1

θ1

θ2 = −θ1θ2 = θ1 + π 

FIGURE 13 sin θ2 = − sin θ1 when
θ2 = −θ1 or θ2 = θ1 + π .

−1

1

y = sin 4x + sin 2x 

0
2ππ

x

y

5π
3

3π
2

4π
3

2π
3

π
2

π
3

FIGURE 14 Solutions of sin 4x + sin 2x = 0.

EXAMPLE 5 Sketch the graph of f (x) = 3 cos
(
2
(
x + π

2

))
over [0, 2π ].

Solution The graph is obtained by scaling and shifting the graph of y = cos x in threeCAUTION To shift the graph of y = cos 2x

to the left π/2 units, we must replace x by
x + π

2 to obtain cos
(
2
(
x + π

2

))
. It is

incorrect to take cos
(
2x + π

2

)
.

steps (Figure 15):

• Compress horizontally by a factor of 2: y = cos 2x

• Shift to the left π/2 units: y = cos
(

2
(
x + π

2

))
• Expand vertically by a factor of 3: y = 3 cos

(
2
(
x + π

2

))

Shift left
π/2 units

Compress
horizontally by

a factor of 2

Expand
vertically by
a factor of 3

(B) y = cos 2x
(periodic with period π)

(C) y = cos 2(x + 

2ππ 2ππ

1

3

−1

−3

2ππ
xxx

y

1

3

−1

−3

y

1

3

−1

−3

y

(A) y = cos x

2ππ
x

1

3

−1

−3

y

) π

2
π

2
(D) y = 3 cos 2(x + )

π

2
π

2

π

2

FIGURE 15

Trigonometric Identities
A key feature of trigonometric functions is that they satisfy a large number of identities.
First and foremost, sine and cosine satisfy a fundamental identity, which is equivalent to
the Pythagorean Theorem:The expression (sin x)k is usually denoted

sink x. For example, sin2 x is the square of
sin x. We use similar notation for the other
trigonometric functions.

sin2 x + cos2 x = 1 1

Equivalent versions are obtained by dividing Eq. (1) by cos2 x or sin2 x:

tan2 x + 1 = sec2 x, 1 + cot2 x = csc2 x 2
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Here is a list of some other commonly used identities. The identities for complementary
angles are justified by Figure 16.

Basic Trigonometric Identities

Complementary angles: sin
(π

2
− x

)
= cos x, cos

(π

2
− x

)
= sin x

Addition formulas: sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Double-angle formulas: sin2 x = 1

2
(1 − cos 2x), cos2 x = 1

2
(1 + cos 2x)

cos 2x = cos2 x − sin2 x, sin 2x = 2 sin x cos x

Shift formulas: sin
(
x + π

2

)
= cos x, cos

(
x + π

2

)
= − sin x

EXAMPLE 6 Suppose that cos θ = 2
5 . Calculate tan θ in the following two cases:

(a) 0 < θ < π
2 and (b) π < θ < 2π .

a

b
c

θ

π
2

− θ

FIGURE 16 For complementary angles, the
sine of one is equal to the cosine of the
other.

Solution First, using the identity cos2 θ + sin2 θ = 1, we obtain

sin θ = ±
√

1 − cos2 θ = ±
√

1 − 4

25
= ±

√
21

5

(a) If 0 < θ < π
2 , then sin θ is positive and we take the positive square root:

Opposite
Hypotenuse

5

Adjacent 2

θ

�21

FIGURE 17

tan θ = sin θ

cos θ
=

√
21/5

2/5
=

√
21

2

To visualize this computation, draw a right triangle with angle θ such that cos θ = 2
5 as

in Figure 17. The opposite side then has length
√

21 = √
52 − 22 by the Pythagorean

Theorem.

(b) If π < θ < 2π , then sin θ is negative and tan θ = −
√

21
2 .

We conclude this section by quoting the Law of Cosines (Figure 18), which is a

a

b

c

θ

FIGURE 18

generalization of the Pythagorean Theorem (see Exercise 58).

THEOREM 1 Law of Cosines If a triangle has sides a, b, and c, and θ is the angle
opposite side c, then

c2 = a2 + b2 − 2ab cos θ

If θ = 90◦, then cos θ = 0 and the Law of Cosines reduces to the Pythagorean Theorem.

1.4 SUMMARY

• An angle of θ radians subtends an arc of length θr on a circle of radius r .
• To convert from radians to degrees, multiply by 180/π .
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• To convert from degrees to radians, multiply by π/180.
• Unless otherwise stated, all angles in this text are given in radians.
• The functions cos θ and sin θ are defined in terms of right triangles for acute angles and
as coordinates of a point on the unit circle for general angles (Figure 19):

1

(cos θ, sin θ)

a

c
b

θ

θ

FIGURE 19

sin θ = b

c
= opposite

hypotenuse
, cos θ = a

c
= adjacent

hypotenuse

• Basic properties of sine and cosine:

– Periodicity: sin(θ + 2π) = sin θ , cos(θ + 2π) = cos θ

– Parity: sin(−θ) = − sin θ , cos(−θ) = cos θ

– Basic identity: sin2 θ + cos2 θ = 1

• The four additional trigonometric functions:

tan θ = sin θ

cos θ
, cot θ = cos θ

sin θ
, sec θ = 1

cos θ
, csc θ = 1

sin θ

1.4 EXERCISES

Preliminary Questions
1. How is it possible for two different rotations to define the same

angle?

2. Give two different positive rotations that define the angle π/4.

3. Give a negative rotation that defines the angle π/3.

4. The definition of cos θ using right triangles applies when (choose
the correct answer):

(a) 0 < θ <
π

2
(b) 0 < θ < π (c) 0 < θ < 2π

5. What is the unit circle definition of sin θ?

6. How does the periodicity of sin θ and cos θ follow from the unit
circle definition?

Exercises
1. Find the angle between 0 and 2π equivalent to 13π/4.

2. Describe θ = π/6 by an angle of negative radian measure.

3. Convert from radians to degrees:

(a) 1 (b)
π

3
(c)

5

12
(d) −3π

4

4. Convert from degrees to radians:

(a) 1◦ (b) 30◦ (c) 25◦ (d) 120◦

5. Find the lengths of the arcs subtended by the angles θ and φ radians
in Figure 20.

6. Calculate the values of the six standard trigonometric functions for
the angle θ in Figure 21.

4
θ = 0.9

φ = 2

FIGURE 20 Circle of
radius 4.

15

8
17

θ

FIGURE 21

7. Fill in the remaining values of (cos θ, sin θ) for the points in
Figure 22.

π

11π
67π

45π
33π

2

4π
3

7π
6

5π
4

5π
6

3π
4

2π
3

π
4

π
3

π
2

(   )  , �2
2

�2
2

π
6 (   ), �3

2
1
2

(   )    , �3
2

1
2

0 (0, 0)

FIGURE 22

8. Find the values of the six standard trigonometric functions at
θ = 11π/6.

In Exercises 9–14, use Figure 22 to find all angles between 0 and 2π

satisfying the given condition.

9. cos θ = 1

2
10. tan θ = 1
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11. tan θ = −1 12. csc θ = 2

13. sin x =
√

3

2
14. sec t = 2

15. Fill in the following table of values:

θ
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6
tan θ

sec θ

16. Complete the following table of signs:

θ sin θ cos θ tan θ cot θ sec θ csc θ

0 < θ <
π

2
+ +

π

2
< θ < π

π < θ <
3π

2

3π

2
< θ < 2π

17. Show that if tan θ = c and 0 ≤ θ < π/2, then cos θ = 1/
√

1 + c2.
Hint: Draw a right triangle whose opposite and adjacent sides have
lengths c and 1.

18. Suppose that cos θ = 1
3 .

(a) Show that if 0 ≤ θ < π/2, then sin θ = 2
√

2/3 and tan θ = 2
√

2.

(b) Find sin θ and tan θ if 3π/2 ≤ θ < 2π .

In Exercises 19–24, assume that 0 ≤ θ < π/2.

19. Find sin θ and tan θ if cos θ = 5
13 .

20. Find cos θ and tan θ if sin θ = 3
5 .

21. Find sin θ , sec θ , and cot θ if tan θ = 2
7 .

22. Find sin θ , cos θ , and sec θ if cot θ = 4.

23. Find cos 2θ if sin θ = 1
5 .

24. Find sin 2θ and cos 2θ if tan θ = √
2.

25. Find cos θ and tan θ if sin θ = 0.4 and π/2 ≤ θ < π .

26. Find cos θ and sin θ if tan θ = 4 and π ≤ θ < 3π/2.

27. Find cos θ if cot θ = 4
3 and sin θ < 0.

28. Find tan θ if sec θ = √
5 and sin θ < 0.

29. Find the values of sin θ , cos θ , and tan θ for the angles correspond-
ing to the eight points in Figure 23(A) and (B).

(0.3965, 0.918)

(A) (B)

(0.3965, 0.918)

FIGURE 23

30. Refer to Figure 24(A). Express the functions sin θ , tan θ , and csc θ

in terms of c.

31. Refer to Figure 24(B). Compute cos ψ , sin ψ , cot ψ , and csc ψ .

c
1 1

0.3

(B)(A)

θ ψ

FIGURE 24

32. Express cos
(
θ + π

2

)
and sin

(
θ + π

2

)
in terms of cos θ and sin θ .

Hint: Find the relation between the coordinates (a, b) and (c, d) in
Figure 25.

(c, d)

(a, b)

1

θ

FIGURE 25

33. Use the addition formula to compute cos
(
π
3 + π

4

)
exactly.

34. Use the addition formula to compute sin
(
π
3 − π

4

)
exactly.

In Exercises 35–38, sketch the graph over [0, 2π ].
35. 2 sin 4θ 36. cos

(
2
(
θ − π

2

))
37. cos

(
2θ − π

2

)
38. sin

(
2
(
θ − π

2

)
+ π

)
+ 2

39. How many points lie on the intersection of the horizontal line y = c

and the graph of y = sin x for 0 ≤ x < 2π? Hint: The answer depends
on c.

40. How many points lie on the intersection of the horizontal line y = c

and the graph of y = tan x for 0 ≤ x < 2π?
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In Exercises 41–44, solve for 0 ≤ θ < 2π (see Example 4).

41. sin 2θ + sin 3θ = 0 42. sin θ = sin 2θ

43. cos 4θ + cos 2θ = 0 44. sin θ = cos 2θ

In Exercises 45–54, derive the identity using the identities listed in this
section.

45. cos 2θ = 2 cos2 θ − 1 46. cos2 θ

2
= 1 + cos θ

2

47. sin
θ

2
=
√

1 − cos θ

2
48. sin(θ + π) = − sin θ

49. cos(θ + π) = − cos θ 50. tan x = cot
(π

2
− x

)
51. tan(π − θ) = − tan θ 52. tan 2x = 2 tan x

1 − tan2 x

53. tan x = sin 2x

1 + cos 2x

54. sin2 x cos2 x = 1 − cos 4x

8

55. Use Exercises 48 and 49 to show that tan θ and cot θ are periodic
with period π .

56. Use trigonometric identities to compute cos π
15 , noting that π

15 =
1
2

(
π
3 − π

5

)
.

57. Use the Law of Cosines to find the distance from P to Q in Fig-
ure 26.

8

10

P

Q

7π/9

FIGURE 26

Further Insights and Challenges
58. Use Figure 27 to derive the Law of Cosines from the Pythagorean
Theorem.

a

θ

b c

a − b cos θ

FIGURE 27

59. Use the addition formula to prove

cos 3θ = 4 cos3 θ − 3 cos θ

60. Use the addition formulas for sine and cosine to prove

tan(a + b) = tan a + tan b

1 − tan a tan b

cot(a − b) = cot a cot b + 1

cot b − cot a

61. Let θ be the angle between the line y = mx + b and the x-axis
[Figure 28(A)]. Prove that m = tan θ .

y = mx + b

θ
x

r

s

(A)

y

θ
x

(B)

y L2

L1

FIGURE 28

62. Let L1 and L2 be the lines of slopem1 and m2 [Figure 28(B)]. Show

that the angle θ between L1 and L2 satisfies cot θ = m2m1 + 1

m2 − m1
.

63. Perpendicular Lines Use Exercise 62 to prove that two lines
with nonzero slopes m1 and m2 are perpendicular if and only if
m2 = −1/m1.

64. Apply the double-angle formula to prove:

(a) cos
π

8
= 1

2

√
2 + √

2

(b) cos
π

16
= 1

2

√
2 +

√
2 + √

2

Guess the values of cos
π

32
and of cos

π

2n
for all n.

1.5 Inverse Functions
Many important functions, such as logarithms and the arcsine, are defined as inverse

D

f

f −1

R

FIGURE 1 A function and its inverse.

functions. In this section, we review inverse functions and their graphs, and we discuss
the inverse trigonometric functions.

The inverse of f (x), denoted f −1(x), is the function that reverses the effect of f (x)

(Figure 1). For example, the inverse of f (x) = x3 is the cube root function f −1(x) = x1/3.
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Given a table of function values for f (x), we obtain a table for f −1(x) by interchanging
the x and y columns:

Function

x y = x3

−2 −8
−1 −1

0 0
1 1
2 8
3 27

(Interchange columns)
�⇒

Inverse

x y = x1/3

−8 −2
−1 −1

0 0
1 1
8 2

27 3

If we apply both f and f −1 to a number x in either order, we get back x. For instance,

Apply f and then f −1: 2
(Apply x3)−→ 8

(Apply x1/3)−→ 2

Apply f −1 and then f : 8
(Apply x1/3)−→ 2

(Apply x3)−→ 8

This property is used in the formal definition of the inverse function.

REMINDER The “domain” is the set of
numbers x such that f (x) is defined (the
set of allowable inputs), and the “range” is
the set of all values f (x) (the set of
outputs).

DEFINITION Inverse Let f (x) have domain D and range R. If there is a function
g(x) with domain R such that

g
(
f (x)

) = x for x ∈ D and f
(
g(x)

) = x for x ∈ R

then f (x) is said to be invertible. The function g(x) is called the inverse function and
is denoted f −1(x).

EXAMPLE 1 Show that f (x) = 2x − 18 is invertible. What are the domain and range
of f −1(x)?

Solution We show that f (x) is invertible by computing the inverse function in two steps.

Step 1. Solve the equation y = f (x) for x in terms of y.

y = 2x − 18

y + 18 = 2x

x = 1

2
y + 9

This gives us the inverse as a function of the variable y: f −1(y) = 1
2y + 9.

Step 2. Interchange variables.
We usually prefer to write the inverse as a function of x, so we interchange the roles
of x and y (Figure 2):

x

y

y = f (x) = 2x − 18

−18

−18

y = f −1(x) = x + 91
2

FIGURE 2

f −1(x) = 1

2
x + 9

To check our calculation, let’s verify that f −1(f (x)) = x and f (f −1(x)) = x:

f −1(f (x)
) = f −1(2x − 18) = 1

2
(2x − 18) + 9 = (x − 9) + 9 = x

f
(
f −1(x)

) = f

(
1

2
x + 9

)
= 2

(
1

2
x + 9

)
− 18 = (x + 18) − 18 = x

Because f −1 is a linear function, its domain and range are R.
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The inverse function, if it exists, is unique. However, some functions do not have
an inverse. Consider f (x) = x2. When we interchange the columns in a table of values
(which should give us a table of values for f −1), the resulting table does not define a
function:

Function

x y = x2

−2 4
−1 1

0 0
1 1
2 4

(Interchange columns)
�⇒

Inverse (?)

x y

4 −2
1 −1
0 0
1 1
4 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

f −1(1) has two
values: 1 and −1.

The problem is that every positive number occurs twice as an output of f (x) = x2. For
example, 1 occurs twice as an output in the first table and therefore occurs twice as an
input in the second table. So the second table gives us two possible values for f −1(1),
namely f −1(1) = 1 and f −1(1) = −1. Neither value satisfies the inverse property. For
instance, if we set f −1(1) = 1, then f −1(f (−1)) = f −1(1) = 1, but an inverse would
have to satisfy f −1(f (−1)) = −1.

So when does a function f (x) have an inverse? The answer is: If f (x) is one-to-one,
which means that f (x) takes on each value at most once (Figure 3). Here is the formal
definition:

Another standard term for one-to-one is
injective.

DEFINITION One-to-One Function A function f (x) is one-to-one on a domain D

if, for every value c, the equation f (x) = c has at most one solution for x ∈ D. Or,
equivalently, if for all a, b ∈ D,

f (a) �= f (b) unless a = b

f (x) = c  has at most one solution for all c

a c a

One-to-one

f (x) = c  has two solutions: x = a and x = a´

a´ c

Not one-to-one

FIGURE 3 A one-to-one function takes on
each value at most once.

When f (x) is one-to-one on its domain D, the inverse function f −1(x) exists andThink of a function as a device for
“labeling” members of the range by
members of the domain. When f is
one-to-one, this labeling is unique and
f −1 maps each number in the range
back to its label.

its domain is equal to the range R of f (Figure 4). Indeed, for every c ∈ R, there is
precisely one element a ∈ D such that f (a) = c and we may define f −1(c) = a. With
this definition, f (f −1(c)) = f (a) = c and f −1(f (a)) = f −1(c) = a. This proves the
following theorem.

a cDomain of f = range of f −1

f −1

f

Range of f = domain of f −1

FIGURE 4 In passing from f to f −1, the
domain and range are interchanged.
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THEOREM 1 Existence of Inverses The inverse function f −1(x) exists if and only
if f (x) is one-to-one on its domain D. Furthermore,

• Domain of f = range of f −1.
• Range of f = domain of f −1.

EXAMPLE 2 Show that f (x) = 3x + 2

5x − 1
is invertible. Determine the domain and

range of f and f −1.

Solution The domain of f (x) is D =
{
x : x �= 1

5

}
(Figure 5). Assume that x ∈ D, and

let’s solve y = f (x) for x in terms of y:
3
5

1
5

x

y

FIGURE 5 Graph of f (x) = 3x + 2

5x − 1
.

y = 3x + 2

5x − 1

y(5x − 1) = 3x + 2

5xy − y = 3x + 2

5xy − 3x = y + 2 (gather terms involving x)

x(5y − 3) = y + 2 (factor out x in order to solve for x) 1

x = y + 2

5y − 3
(divide by 5y − 3) 2

The last step is valid if 5y − 3 �= 0—that is, if y �= 3
5 . But note that y = 3

5 is not in theOften, it is impossible to find a formula for
the inverse because we cannot solve for x

explicitly in the equation y = f (x). For
example, the function f (x) = x + ex has
an inverse, but we must make do without
an explicit formula for it.

range of f (x). For if it were, Eq. (1) would yield the false equation 0 = 3
5 + 2. Now

Eq. (2) shows that for all y �= 3
5 there is a unique value x such that f (x) = y. There-

fore, f (x) is one-to-one on its domain. By Theorem 1, f (x) is invertible. The range of

f (x) is R =
{
x : x �= 3

5

}
and

f −1(x) = x + 2

5x − 3
.

The inverse function has domain R and range D.

We can tell whether f (x) is one-to-one from its graph. The horizontal line y = c

intersects the graph of f (x) at points (a, f (a)), where f (a) = c (Figure 6). There is at

x

y

(a, f (a))

y = f (x)

y = c

a

FIGURE 6 The line y = c intersects the
graph at points where f (a) = c.

most one such point if f (x) = c has at most one solution. This gives us the

Horizontal Line Test A function f (x) is one-to-one if and only if every horizontal
line intersects the graph of f (x) in at most one point.

In Figure 7, we see that f (x) = x3 passes the Horizontal Line Test and therefore is
one-to-one, whereas f (x) = x2 fails the test and is not one-to-one.

EXAMPLE 3 Increasing Functions Are One-to-One Show that increasing functions are
one-to-one. Then show that f (x) = x5 + 4x + 3 is one-to-one.

Solution An increasing function satisfies f (a) < f (b) if a < b. Therefore f cannot take
on any value more than once, and thus f is one-to-one. Note similarly that decreasing
functions are one-to-one.
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y y

x

x

b

b1/3
b

(A)  f (x) = x3 is one-to-one. (B)  f (x) = x2 is not one-to-one.

 −�b �b

FIGURE 7

Now observe that

• If n odd and c > 0, then cxn is increasing.
• A sum of increasing functions is increasing.

Thusx5, 4x, and hence the sum x5 + 4x are increasing. It follows that f (x) = x5 + 4x + 3
is increasing and therefore one-to-one (Figure 8).

We can make a function one-to-one by restricting its domain suitably.

f (x) = x5 + 4x + 3
x

y

2

30

−2

FIGURE 8 The increasing function
f (x) = x5 + 4x + 3 satisfies the
Horizontal Line Test.

EXAMPLE 4 Restricting the Domain Find a domain on which f (x) = x2 is one-to-
one and determine its inverse on this domain.

Solution The function f (x) = x2 is one-to-one on the domain D = {x : x ≥ 0}, for if

One-to-one for x ≥ 0

x

y

2

2

4

1−2 −1

FIGURE 9 f (x) = x2 satisfies the
Horizontal Line Test on the domain
{x : x ≥ 0}.

a2 = b2 where a and b are both nonnegative, then a = b (Figure 9). The inverse of f (x)

on D is the positive square root f −1(x) = √
x. Alternatively, we may restrict f (x) to the

domain {x : x ≤ 0}, on which the inverse function is f −1(x) = −√
x.

Next we describe the graph of the inverse function. The reflection of a point (a, b)

through the line y = x is, by definition, the point (b, a) (Figure 10). Note that if the x-
and y-axes are drawn to the same scale, then (a, b) and (b, a) are equidistant from the
line y = x and the segment joining them is perpendicular to y = x.

The graph of f −1 is the reflection of the graph of f through y = x (Figure 11). To
check this, note that (a, b) lies on the graph of f if f (a) = b. But f (a) = b if and only
if f −1(b) = a, and in this case, (b, a) lies on the graph of f −1.

y = x

x

y

(a, b)

(b, a)

FIGURE 10 The reflection (a, b) through the
line y = x is the point (b, a).

x

y

y = x(b, a)

(a, b)

f −1(x)

f (x)

FIGURE 11 The graph of f −1(x) is the
reflection of the graph of f (x) through the
line y = x.



38 C H A P T E R 1 PRECALCULUS REVIEW

EXAMPLE 5 Sketching the Graph of the Inverse Sketch the graph of the inverse of
f (x) = √

4 − x.

Solution Let g(x) = f −1(x). Observe that f (x) has domain {x : x ≤ 4} and range
{x : x ≥ 0}. We do not need a formula for g(x) to draw its graph. We simply reflect the
graph of f through the line y = x as in Figure 12. If desired, however, we can easily solve
y = √

4 − x to obtain x = 4 − y2 and thus g(x) = 4 − x2 with domain {x : x ≥ 0}.
x

y g(x) = f −1(x) = 4 − x2

2 4−2

4

2 f (x) = �4 − x

y = x

FIGURE 12 Graph of the inverse g(x) of
f (x) = √

4 − x.

Inverse Trigonometric Functions

We have seen that the inverse function f −1(x) exists if and only if f (x) is one-to-one on
its domain. Because the trigonometric functions are not one-to-one, we must restrict their
domains to define their inverses.

First consider the sine function. Figure 13 shows that f (θ) = sin θ is one-to-one onDo not confuse the inverse sin−1 x with the
reciprocal

(sin x)−1 = 1

sin x
= csc x

The inverse functions sin−1 x, cos−1 x, . . .

are often denoted arcsin x, arccos x, etc.

[−π
2 , π

2

]
. With this interval as domain, the inverse is called the arcsine function and is

denoted θ = sin−1 x or θ = arcsin x. By definition,

θ = sin−1 x is the unique angle in

[
−π

2
,
π

2

]
such that sin θ = x

−
θ

f (θ) = sin θ
1

−1

1

−1

sin θ with
restricted domain

θ

θ

θ = sin−1 x

1
x

−1π

2
−π

2
π

2
π

2

−π

2

π

2
y y

FIGURE 13

The range of sin x is [−1, 1], so sin−1 x has domain [−1, 1]. A table of values for the

Summary of inverse relation between the
sine and arcsine functions:

sin(sin−1 x) = x for −1 ≤ x ≤ 1

sin−1(sin θ) = θ for −π

2
≤ θ ≤ π

2

arcsine (Table 1) is obtained by reversing the columns in a table of values for sin x.

TABLE 1

x −1 −
√

3
2 −

√
2

2 − 1
2 0 1

2

√
2

2

√
3

2 1

θ = sin−1 x −π
2 −π

3 −π
4 −π

6 0 π
6

π
4

π
3

π
2

EXAMPLE 6 (a) Show that sin−1 (sin
(

π
4

)) = π
4 .

(b) Explain why sin−1 (sin
( 5π

4

)) �= 5π
4 .

Solution The equation sin−1(sin θ) = θ is valid only if θ lies in
[−π

2 , π
2

]
.

(a) Because π
4 lies in the required interval, sin−1 (sin

(
π
4

)) = π
4 .

(b) Let θ = sin−1 (sin
( 5π

4

))
. By definition, θ is the angle in

[−π
2 , π

2

]
such that sin θ =

sin
( 5π

4

)
. By the identity sin θ = sin(π − θ) (Figure 14),

−

y

x
5π

4
π

4

FIGURE 14 sin
( 5π

4

) = sin
(−π

4

)
.
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sin

(
5π

4

)
= sin

(
π − 5π

4

)
= sin

(
−π

4

)
The angle −π

4 lies in the required interval, so θ = sin−1 (sin
( 5π

4

)) = −π
4 .

The cosine function is one-to-one on [0, π ] rather than
[−π

2 , π
2

]
(Figure 15). With

this domain, the inverse is called the arccosine function and is denoted θ = cos−1 x or
θ = arccos x. It has domain [−1, 1]. By definition,

Summary of inverse relation between the
cosine and arccosine:

cos(cos−1 x) = x for −1 ≤ x ≤ 1

cos−1(cos θ) = θ for 0 ≤ θ ≤ π
θ = cos−1 x is the unique angle in [0, π ] such that cos θ = x

cos θ with
restricted domain

θ
2ππ

1

−1

θ

θ
π

1

−1

1

π

θ = cos−1 x

x
−1

f (θ) = cos θ

FIGURE 15

When we study the calculus of inverse trigonometric functions in Section 3.8, we will
need to simplify composite expressions such as cos(sin−1 x) and tan(sin−1 x). This can be
done in two ways: by referring to the appropriate right triangle or by using trigonometric
identities.

EXAMPLE 7 Simplify cos(sin−1 x) and tan(sin−1 x).

Solution This problem asks for the values of cos θ and tan θ at the angle θ = sin−1 x.
Consider a right triangle with hypotenuse of length 1 and angle θ such that sin θ = x, as
in Figure 16. By the Pythagorean Theorem, the adjacent side has length

√
1 − x2. Now

θ

1 x

�1 − x2

FIGURE 16 Right triangle constructed such
that sin θ = x.

we can read off the values from Figure 16:

cos(sin−1 x) = cos θ = adjacent

hypotenuse
=
√

1 − x2

tan(sin−1 x) = tan θ = opposite

adjacent
= x√

1 − x2

Alternatively, we may argue using trigonometric identities. Because sin θ = x,

cos(sin−1 x) = cos θ =
√

1 − sin2 θ =
√

1 − x2

We are justified in taking the positive square root because θ = sin−1 x lies in
[−π

2 , π
2

]
and cos θ is positive in this interval.

We now address the remaining trigonometric functions. The function f (θ) = tan θ

is one-to-one on
(−π

2 , π
2

)
, and f (θ) = cot θ is one-to-one on (0, π) [see Figure 10 in

Section 1.4]. We define their inverses by restricting them to these domains:

θ = tan−1 x is the unique angle in
(
−π

2
,
π

2

)
such that tan θ = x

θ = cot−1 x is the unique angle in (0, π) such that cot θ = x
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The range of both tan θ and cot θ is the set of all real numbers R. Therefore, θ = tan−1 x

and θ = cot−1 x have domain R (Figure 17).

y = cot−1 x

x

y

π

y = tan−1 x

y

x

−π

2

π

2

π

2

FIGURE 17

The function f (θ) = sec θ is not defined at θ = π
2 , but we see in Figure 18 that it is

one-to-one on both
[
0, π

2

)
and

(
π
2 , π

]
. Similarly, f (θ) = csc θ is not defined at θ = 0,

but it is one-to-one on
[−π

2 , 0
)

and
(
0, π

2

]
. We define the inverse functions as follows:

θ = sec−1 x is the unique angle in
[
0,

π

2

)
∪
(π

2
, π

]
such that sec θ = x

θ = csc−1 x is the unique angle in
[
−π

2
, 0
)

∪
(

0,
π

2

]
such that csc θ = x

Figure 18 shows that the range of f (θ) = sec θ is the set of real numbers x such
that |x| ≥ 1. The same is true of f (θ) = csc θ . It follows that both θ = sec−1 x and
θ = csc−1 x have domain {x : |x| ≥ 1}.

π

π

x

θ = sec−1 x

f (θ) = sec θ

θ
−

1

1−1

−1

θ

π

2

−π

2

π

2π

2

FIGURE 18 f (θ) = sec θ is one-to-one on
the interval [0, π ] with π

2 removed.

1.5 SUMMARY

• A function f (x) is one-to-one on a domain D if for every value c, the equation f (x) = c

has at most one solution for x ∈ D, or, equivalently, if for all a, b ∈ D, f (a) �= f (b) unless
a = b.
• Let f (x) have domain D and range R. The inverse f −1(x) (if it exists) is the unique
function with domain R and range D satisfying f (f −1(x)) = x and f −1(f (x)) = x.
• The inverse of f (x) exists if and only if f (x) is one-to-one on its domain.
• To find the inverse function, solve y = f (x) for x in terms of y to obtain x = g(y). The
inverse is the function g(x).
• Horizontal Line Test: f (x) is one-to-one if and only if every horizontal line intersects
the graph of f (x) in at most one point.
• The graph of f −1(x) is obtained by reflecting the graph of f (x) through the line y = x.
• The arcsine and arccosine are defined for −1 ≤ x ≤ 1:

θ = sin−1 x is the unique angle in
[
−π

2
,
π

2

]
such that sin θ = x.

θ = cos−1 x is the unique angle in [0, π ] such that cos θ = x.
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• tan−1 x and cot−1 x are defined for all x:

θ = tan−1 x is the unique angle in
(
−π

2
,
π

2

)
such that tan θ = x.

θ = cot−1 x is the unique angle in (0, π) such that cot θ = x.

• sec−1 x and csc−1 x are defined for |x| ≥ 1:

θ = sec−1 x is the unique angle in
[
0,

π

2

)
∪
(π

2
, π

]
such that sec θ = x.

θ = csc−1 x is the unique angle in
[
−π

2
, 0
)

∪
(

0,
π

2

]
such that csc θ = x.

1.5 EXERCISES

Preliminary Questions
1. Which of the following satisfy f −1(x) = f (x)?

(a) f (x) = x (b) f (x) = 1 − x

(c) f (x) = 1 (d) f (x) = √
x

(e) f (x) = |x| (f) f (x) = x−1

2. The graph of a function looks like the track of a roller coaster. Is
the function one-to-one?

3. The function f maps teenagers in the United States to their last
names. Explain why the inverse function f −1 does not exist.

4. The following fragment of a train schedule for the New Jersey Tran-
sit System defines a function f from towns to times. Is f one-to-one?
What is f −1(6:27)?

Trenton 6:21

Hamilton Township 6:27

Princeton Junction 6:34

New Brunswick 6:38

5. A homework problem asks for a sketch of the graph of the inverse
of f (x) = x + cos x. Frank, after trying but failing to find a formula
for f −1(x), says it’s impossible to graph the inverse. Bianca hands in
an accurate sketch without solving for f −1. How did Bianca complete
the problem?

6. Which of the following quantities is undefined?

(a) sin−1(− 1
2

)
(b) cos−1(2)

(c) csc−1( 1
2

)
(d) csc−1(2)

7. Give an example of an angle θ such that cos−1(cos θ) �= θ . Does
this contradict the definition of inverse function?

Exercises
1. Show that f (x) = 7x − 4 is invertible and find its inverse.

2. Is f (x) = x2 + 2 one-to-one? If not, describe a domain on which
it is one-to-one.

3. What is the largest interval containing zero on which f (x) = sin x

is one-to-one?

4. Show that f (x) = x − 2

x + 3
is invertible and find its inverse.

(a) What is the domain of f (x)? The range of f −1(x)?

(b) What is the domain of f −1(x)? The range of f (x)?

5. Verify that f (x) = x3 + 3 and g(x) = (x − 3)1/3 are inverses by
showing that f (g(x)) = x and g(f (x)) = x.

6. Repeat Exercise 5 for f (t) = t + 1

t − 1
and g(t) = t + 1

t − 1
.

7. The escape velocity from a planet of radius R is v(R) =
√

2GM

R
,

where G is the universal gravitational constant and M is the mass. Find
the inverse of v(R) expressing R in terms of v.

In Exercises 8–15, find a domain on which f is one-to-one and a for-
mula for the inverse of f restricted to this domain. Sketch the graphs
of f and f −1.

8. f (x) = 3x − 2 9. f (x) = 4 − x
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10. f (x) = 1

x + 1
11. f (x) = 1

7x − 3

12. f (s) = 1

s2
13. f (x) = 1√

x2 + 1

14. f (z) = z3 15. f (x) =
√

x3 + 9

16. For each function shown in Figure 19, sketch the graph of the
inverse (restrict the function’s domain if necessary).

x

(A)

y

x

(F)

y

x
(B)

y

x

(D)

y

x
(C)

y

x

(E)

y

FIGURE 19

17. Which of the graphs in Figure 20 is the graph of a function satis-
fying f −1 = f ?

(A)
x

(B)

y

x
(D)

y

(C)

x

y

x

y

FIGURE 20

18. Let n be a nonzero integer. Find a domain on which f (x) =
(1 − xn)1/n coincides with its inverse. Hint: The answer depends on
whether n is even or odd.

19. Let f (x) = x7 + x + 1.

(a) Show that f −1 exists (but do not attempt to find it). Hint: Show
that f is increasing.

(b) What is the domain of f −1?

(c) Find f −1(3).

20. Show that f (x) = (x2 + 1)−1 is one-to-one on (−∞, 0], and find
a formula for f −1 for this domain of f .

21. Let f (x) = x2 − 2x. Determine a domain on which f −1 exists,
and find a formula for f −1 for this domain of f .

22. Show that f (x) = x + x−1 is one-to-one on [1, ∞), and find the
corresponding inverse f −1. What is the domain of f −1?

In Exercises 23–28, evaluate without using a calculator.

23. cos−1 1 24. sin−1 1

2

25. cot−1 1 26. sec−1 2√
3

27. tan−1
√

3 28. sin−1(−1)

In Exercises 29–38, compute without using a calculator.

29. sin−1
(

sin
π

3

)
30. sin−1

(
sin

4π

3

)

31. cos−1
(

cos
3π

2

)
32. sin−1

(
sin

(
−5π

6

))

33. tan−1
(

tan
3π

4

)
34. tan−1(tan π)

35. sec−1(sec 3π) 36. sec−1
(

sec
3π

2

)

37. csc−1(csc(−π)
)

38. cot−1
(

cot
(
−π

4

))
In Exercises 39–42, simplify by referring to the appropriate triangle or
trigonometric identity.

39. tan(cos−1 x) 40. cos(tan−1 x)

41. cot(sec−1 x) 42. cot(sin−1 x)

In Exercises 43–50, refer to the appropriate triangle or trigonometric
identity to compute the given value.

43. cos
(
sin−1 2

3

)
44. tan

(
cos−1 2

3

)
45. tan

(
sin−1 0.8

)
46. cos

(
cot−1 1

)
47. cot

(
csc−1 2

)
48. tan

(
sec−1(−2)

)
49. cot

(
tan−1 20

)
50. sin

(
csc−1 20

)
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Further Insights and Challenges
51. Show that if f (x) is odd and f −1(x) exists, then f −1(x) is odd.
Show, on the other hand, that an even function does not have an inverse.

52. A cylindrical tank of radius R and length L lying horizontally as
in Figure 21 is filled with oil to height h. Show that the volume V (h)

of oil in the tank as a function of height h is

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)
h

L

R

FIGURE 21 Oil in the tank has level h.

1.6 Exponential and Logarithmic Functions
An exponential function is a function of the form f (x) = bx , where b > 0 and b �= 1.
The number b is called the base. Some examples are 2x , (1.4)x , and 10x . The case b = 1
is excluded because f (x) = 1x is a constant function. Calculators give good decimal
approximations to values of exponential functions:

24 = 16, 2−3 = 0.125, (1.4)0.8 ≈ 1.309, 104.6 ≈ 39,810.717

Three properties of exponential functions should be singled out from the start (see Figure 1
for the case b = 2):Gordon Moore (1929– ). Moore, who later

became chairman of Intel Corporation,
predicted that in the decades following
1965, the number of transistors per
integrated circuit would grow
“exponentially.” This prediction has held
up for nearly five decades and may well
continue for several more years. Moore has
said, “Moore’s Law is a term that got
applied to a curve I plotted in the
mid-sixties showing the increase in
complexity of integrated circuits versus
time. It’s been expanded to include a lot
more than that, and I’m happy to take
credit for all of it.”

• Exponential functions are positive: bx > 0 for all x.
• The range of f (x) = bx is the set of all positive real numbers.
• f (x) = bx is increasing if b > 1 and decreasing if 0 < b < 1.

x

y

21−2 −1

4

1

x

y

21−2 −1

4

1

y = 2x is increasing y = ( )x
 is decreasing

y = 2x

1
2

y = ( )x1
2

FIGURE 1

If b > 1, the exponential function f (x) = bx is not merely increasing but is, in a
certain sense, rapidly increasing. Although the term “rapid increase” is perhaps subjective,
the following precise statement is true: f (x) = bx increases more rapidly than the power
function xn for all n (we will prove this in Section 4.5). For example, Figure 2 shows
that f (x) = 3x eventually overtakes and increases faster than the power functions x3, x4,
and x5. Table 1 compares 3x and x5.

We now review the laws of exponents. The most important law is

bxby = bx+y

In other words, under multiplication, the exponents add, provided that the bases are the
same. This law does not apply to a product such as 32 · 54.
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x x x

y y y
3x 3x 3x

x3

x4 x5

150,000 150,000 150,000

10 10 10

FIGURE 2 Comparison of 3x and power functions.

Laws of Exponents (b > 0)

Rule Example

Exponent zero b0 = 1

Products bxby = bx+y 25 · 23 = 25+3 = 28

Quotients
bx

by
= bx−y 47

42
= 47−2 = 45

Negative exponents b−x = 1

bx
3−4 = 1

34
= 1

81

Power to a power
(
bx
)y = bxy

(
32
)4 = 32(4) = 38

Roots b1/n = n
√

b 51/2 = √
5

EXAMPLE 1 Rewrite as a whole number or fraction:

TABLE 1

x x5 3x

1 1 3
5 3125 243

10 100,000 59,049
15 759,375 14,348,907
25 9,765,625 847,288,609,443

Be sure you are familiar with the laws of
exponents. They are used throughout this
text.

(a) 16−1/2 (b) 272/3 (c) 416 · 4−18 (d)
93

37

Solution

(a) 16−1/2 = 1

161/2
= 1√

16
= 1

4
(b) 272/3 = (

271/3
)2 = 32 = 9

(c) 416 · 4−18 = 4−2 = 1

42
= 1

16
(d)

93

37 =
(
32
)3

37 = 36

37 = 3−1 = 1

3

In the next example, we use the fact that f (x) = bx is one-to-one. In other words, if
bx = by , then x = y.

EXAMPLE 2 Solve for the unknown:

(a) 23x+1 = 25 (b) b3 = 56 (c) 7t+1 =
(

1

7

)2t

Solution
(a) If 23x+1 = 25, then 3x + 1 = 5 and thus x = 4

3 .

(b) Raise both sides of b3 = 56 to the 1
3 power. By the “power to a power” rule,

b = (
b3)1/3 = (

56)1/3 = 56/3 = 52 = 25

(c) Since 1
7 = 7−1, the right-hand side of the equation is

( 1
7

)2t = (7−1)2t = 7−2t . The
equation becomes 7t+1 = 7−2t . Therefore, t + 1 = −2t , or t = − 1

3 .
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The Number e

In Chapter 3, we will use calculus to study exponential functions. One of the surprisingAlthough written references to the number
π go back more than 4000 years,
mathematicians first became aware of the
special role played by e in the seventeenth
century. The notation e was introduced by
Leonhard Euler, who discovered many
fundamental properties of this important
number.

insights of calculus is that the most convenient or “natural” base for an exponential function
is not b = 10 or b = 2, as one might think at first, but rather a certain irrational number,
denoted by e, whose value is approximately e ≈ 2.718. A calculator is used to evaluate
specific values of f (x) = ex . For example,

e3 ≈ 20.0855, e−1/4 ≈ 0.7788

In calculus, when we speak of the exponential function, it is understood that the base is e.
Another common notation for the exponential function ex is exp(x).

How is e defined? There are many different definitions, but they all rely on the calculus
concept of a limit. We shall discuss one way of defining e in Section 3.2.Another definition
is described in Example 4 of Section 1.7. For now, we mention the following two graphical
descriptions.

• Using Figure 3(A): Among all exponential functions y = bx , b = e is the unique
base for which the slope of the tangent line to the graph at (0, 1) is equal to 1.

• Using Figure 3(B): The number e is the unique number such that the area of the
region under the hyperbola y = 1/x for 1 ≤ x ≤ e is equal to 1.

(0, 1)

(A) (B)

y = x + 1

y = ex

Region has area 1

Tangent line
has slope 1

1 2
x

2 41 e 3
x

4

3

2

y

4

3

2

1

y

y = 1
x

FIGURE 3

From these descriptions it is not clear why e is important. As we will learn, however,
the exponential function ex plays a fundamental role because it behaves in a particularly
simple way with respect to the basic operations of calculus: differentiation and integration.

Logarithms
Logarithmic functions are inverses of exponential functions. More precisely, if b > 0 and

Renato Solidum, director of the Philippine
Institute of Volcanology and Seismology,
checks the intensity of the October 8, 2004,
Manila earthquake, which registered 6.2 on
the Richter scale. The Richter scale is
based on the logarithm (to base 10) of the
amplitude of seismic waves. Each
whole-number increase in Richter
magnitude corresponds to a 10-fold
increase in amplitude and approximately
31.6 times more energy.

b �= 1, then the logarithm to the base b, denoted logb x, is the inverse of f (x) = bx . By
definition, y = logb x if by = x, so we have

blogb x = x and logb(b
x) = x

In other words, logb x is the number to which b must be raised in order to get x. For
example,

log2(8) = 3 because 23 = 8

log10(1) = 0 because 100 = 1

log3

(
1

9

)
= −2 because 3−2 = 1

32
= 1

9
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The logarithm to the base e, denoted ln x, plays a special role and is called the natural
logarithm. We use a calculator to evaluate logarithms numerically. For example,

In this text, the natural logarithm is
denoted ln x. Other common notations are
log x and Log x.

ln 17 ≈ 2.83321 because e2.83321 ≈ 17

Recall that the domain of bx is R and its range is the set of positive real numbers
{x : x > 0}. Since the domain and range are reversed in the inverse function,

• The domain of logb x is {x : x > 0}.
• The range of logb x is the set of all real numbers R.

If b > 1, then logb x is positive for x > 1 and negative for 0 < x < 1. Figure 4 illustrates
these facts for the base b = e. Keep in mind that the logarithm of a negative number does
not exist. For example, log10(−2) does not exist because 10y = −2 has no solution.

x

y y = ex

y = ln x

y = x

1

1

FIGURE 4 y = ln x is the inverse of y = ex .

For each law of exponents, there is a corresponding law for logarithms. The rule
bx+y = bxby corresponds to the rule

logb(xy) = logb x + logb y

In words: The log of a product is the sum of the logs. To verify this rule, observe that

blogb(xy) = xy = blogb x · blogb y

= blogb x+logb y

The exponents logb(xy) and logb x + logb y are equal as claimed because f (x) = bx is
one-to-one. The remaining logarithm laws are collected in the following table.

Laws of Logarithms

Law Example

Log of 1 logb(1) = 0
Log of b logb(b) = 1
Products logb(xy) = logb x + logb y log5(2 · 3) = log5 2 + log5 3

Quotients logb

(
x

y

)
= logb x − logb y log2

(
3

7

)
= log2 3 − log2 7

Reciprocals logb

(
1

x

)
= − logb x log2

(
1

7

)
= − log2 7

Powers (any n) logb(xn) = n logb x log10(82) = 2 · log10 8

We note also that all logarithmic functions are proportional. More precisely, the fol-
lowing change-of-base formula holds (see Exercise 49):

logb x = loga x

loga b
, logb x = ln x

ln b
1
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EXAMPLE 3 Using the Logarithm Laws Evaluate:

(a) log6 9 + log6 4 (b) ln

(
1√
e

)
(c) 10 logb(b

3) − 4 logb(
√

b)

Solution

(a) log6 9 + log6 4 = log6(9 · 4) = log6(36) = log6(6
2) = 2

(b) ln

(
1√
e

)
= ln(e−1/2) = −1

2
ln(e) = −1

2

(c) 10 logb(b
3) − 4 logb(

√
b) = 10(3) − 4 logb(b

1/2) = 30 − 4

(
1

2

)
= 28

EXAMPLE 4 Solving an Exponential Equation The bacteria population in a bottle at
time t (in hours) has size P(t) = 1000e0.35t . After how many hours will there be 5000
bacteria?

Solution We must solve P(t) = 1000e0.35t = 5000 for t (Figure 5):

1 4.62 3 4

Bacteria population P

t (h)
1000

2000

3000

4000

5000

6000

FIGURE 5 Bacteria population as a function
of time.

e0.35t = 5000

1000
= 5

ln(e0.35t ) = ln 5 (take logarithm of both sides)

0.35t = ln 5 ≈ 1.609 [because ln(ea) = a]

t ≈ 1.609

0.35
≈ 4.6 hours

FIGURE 6 The St. Louis Arch has the shape
of an inverted hyperbolic cosine.

Hyperbolic Functions

The hyperbolic functions are certain special combinations of ex and e−x that play a role
in engineering and physics (see Figure 6 for a real-life example). The hyperbolic sine and
cosine, often called “cinch” and “cosh,” are defined as follows:

sinh x = ex − e−x

2
, cosh x = ex + e−x

2

As the terminology suggests, there are similarities between the hyperbolic and trigono-
metric functions. Here are some examples:

• Parity: The trigonometric functions and their hyperbolic analogs have the same
parity. Thus, sin x and sinh x are both odd, and cos x and cosh x are both even
(Figure 7):

sinh(−x) = − sinh x, cosh(−x) = cosh x

• Identities: The basic trigonometric identity sin2 x + cos2 x = 1 has a hyperbolic
analog:

cosh2 x − sinh2 x = 1 2
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The addition formulas satisfied by sin θ and cos θ also have hyperbolic analogs:

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

• Hyperbola instead of the circle: Because of the identity sinh2 t − cosh2 t = 1, the

x

y

y = sinh x

321−3 −2 −1

1

2

−1

−2

y

x

y = cosh x

321−3 −2 −1

2

4

3

FIGURE 7 y = sinh x is an odd function;
y = cosh x is an even function.

point (cosh t, sinh t) lies on the hyperbola x2 − y2 = 1, just as (cos t, sin t) lies on
the unit circle x2 + y2 = 1 (Figure 8).

x

y

(cosh t, sinh t)

32−3 −2

1

2

3

−1

−2

−3

(cos t, sin t)

x

y

1−1

x2 − y2 = 1 x2 + y2 = 1

FIGURE 8

• Other hyperbolic functions: The hyperbolic tangent, cotangent, secant, and co-
secant functions (see Figures 9 and 10) are defined like their trigonometric coun-
terparts:

x

y

2

−2

2

−2

y = csch x

x

y

2 4−4 −2

1

y = sech x

FIGURE 9 The hyperbolic secant and
cosecant.

tanh x = sinh x

cosh x
= ex − e−x

ex + e−x
, sech x = 1

cosh x
= 2

ex + e−x

coth x = cosh x

sinh x
= ex + e−x

ex − e−x
, csch x = 1

sinh x
= 2

ex − e−x

y

y = tanh x

−2

y = coth x

x

y

2−2
x

2

1

−1

1

−1

FIGURE 10 The hyperbolic tangent and cotangent.

EXAMPLE 5 Verifying the Basic Identity Verify Eq. (2): cosh2 x − sinh2 x = 1.

Solution Because cosh x = 1

2
(ex + e−x) and cosh y = 1

2
(ex − e−x), we have

cosh x + sinh x = ex, cosh x − sinh x = e−x

We obtain Eq. (2) by multiplying these two equations together:

cosh2 x − sinh2 x = (cosh x + sinh x)(cosh x − sinh x) = ex · e−x = 1
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Inverse Hyperbolic Functions
Each of the hyperbolic functions, except y = cosh x and y = sech x, is one-to-one on its
domain and therefore has a well-defined inverse. The functions y = cosh x and y = sech x

are one-to-one on the restricted domain {x : x ≥ 0}. We let cosh−1 x and sech−1 x denote
the corresponding inverses.

Inverse hyperbolic functions

Function Domain

y = sinh−1 x all x

y = cosh−1 x x ≥ 1

y = tanh−1 x |x| < 1

y = coth−1 x |x| > 1

y = sech−1 x 0 < x ≤ 1

y = csch−1 x x �= 0

Einstein’s Law of Velocity Addition
The inverse hyperbolic tangent plays a role in the Special Theory of Relativity, developed

u = 200,000,000 m/s

FIGURE 11 What is the missile’s velocity
relative to the earth?

byAlbert Einstein in 1905. One consequence of this theory is that no object can travel faster
than the speed of light, c ≈ 3 × 108 m/s. Einstein realized that this contradicts a law stated
by Galileo more than 250 years earlier, namely that velocities add. Imagine a train traveling
at u = 50 m/s and a man walking down the aisle in the train at v = 2 m/s. According to
Galileo, the man’s velocity relative to the ground is u + v = 52 m/s. This agrees with
our everyday experience. But now imagine an (unrealistic) rocket traveling away from
the earth at u = 2 × 108 m/s, and suppose that the rocket fires a missile with velocity
v = 1.5 × 108 m/s (relative to the rocket). If Galileo’s Law were correct, the velocity of
the missile relative to the earth would be u + v = 3.5 × 108 m/s, which exceeds Einstein’s
maximum speed limit of c ≈ 3 × 108 m/s.

However, Einstein’s theory replaces Galileo’s Law with a new law stating that the

Einstein’s Law of Velocity Addition [Eq. (3)]
reduces to Galileo’s Law, w = u + v, when
u and v are small relative to the velocity of
light c. See Exercise 50 for another way of
expressing Eq. (3).

inverse hyperbolic tangents of velocities add. More precisely, if u is the rocket’s velocity
relative to the earth and v is the missile’s velocity relative to the rocket, then the velocity
of the missile relative to the earth (Figure 11) is w, where

tanh−1
(w

c

)
= tanh−1

(u

c

)
+ tanh−1

(v

c

)
3

EXAMPLE 6 A rocket travels away from the earth at a velocity of 2 × 108 m/s. A
missile is fired at a velocity of 1.5 × 108 m/s (relative to the rocket) away from the earth.
Use Einstein’s Law to find the velocity w of the missile relative to the earth.

Solution According to Eq. (3),

tanh−1
(w

c

)
= tanh−1

(
2 × 108

3 × 108

)
+ tanh−1

(
1.5 × 108

3 × 108

)
≈ 0.805 + 0.549 ≈ 1.354

Therefore, w/c ≈ tanh(1.354) ≈ 0.875, and w ≈ 0.875c ≈ 2.6 × 108 m/s. This value
obeys the Einstein speed limit of 3 × 108 m/s.

EXAMPLE 7 Low Velocities A plane traveling at 300 m/s fires a missile at a velocity
of 200 m/s. Calculate the missile’s velocity w relative to the earth using both Einstein’s
Law and Galileo’s Law.

Solution According to Einstein’s Law,

tanh−1
(w

c

)
= tanh−1

(
300

c

)
+ tanh−1

(
200

c

)

w = c · tanh

(
tanh−1

(
300

c

)
+ tanh−1

(
200

c

))
≈ 499.99999999967 m/s

This is practically indistinguishable from the value w = 300 + 200 = 500 m/s obtained
using Galileo’s Law.
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1.6 SUMMARY

• f (x) = bx is the exponential function with base b (where b > 0 and b �= 1).
• f (x) = bx is increasing if b > 1 and decreasing if b < 1.
• The number e ≈ 2.718.
• For b > 0 with b �= 1, the logarithmic function logb x is the inverse of bx ;

y = logb x ⇔ x = by

• The natural logarithm is the logarithm with base e and is denoted ln x.
• Important logarithm laws:

(i) logb(xy) = logb x + logb y (ii) logb

(
x

y

)
= logb x − logb y

(iii) logb(x
n) = n logb x (iv) logb 1 = 0 and logb b = 1

• The hyperbolic sine and cosine:

sinh x = ex − e−x

2
(odd function), cosh x = ex + e−x

2
(even function)

The remaining hyperbolic functions:

tanh x = sinh x

cosh x
, coth x = cosh x

sinh x
, sech x = 1

cosh x
, csch x = 1

sinh x

• Basic identity: cosh2 x − sinh2 x = 1.
• The inverse hyperbolic functions and their domains:

sinh−1 x, for all x coth−1 x, for |x| > 1

cosh−1 x, for x ≥ 1 sech−1 x, for 0 < x ≤ 1

tanh−1 x, for |x| < 1 csch−1 x, for x �= 0

1.6 EXERCISES

Preliminary Questions
1. Which of the following equations is incorrect?

(a) 32 · 35 = 37 (b) (
√

5)4/3 = 52/3

(c) 32 · 23 = 1 (d) (2−2)−2 = 16

2. Compute logb2(b
4).

3. When is ln x negative?

4. What is ln(−3)? Explain.

5. Explain the phrase “The logarithm converts multiplication into
addition.”

6. What are the domain and range of ln x?

7. Which hyperbolic functions take on only positive values?

8. Which hyperbolic functions are increasing on their domains?

9. Describe three properties of hyperbolic functions that have trigo-
nometric analogs.

Exercises
1. Rewrite as a whole number (without using a calculator):

(a) 70 (b) 102(2−2 + 5−2)

(c)

(
43)5(
45
)3

(d) 274/3

(e) 8−1/3 · 85/3 (f) 3 · 41/4 − 12 · 2−3/2

In Exercises 2–10, solve for the unknown variable.

2. 92x = 98 3. e2x = ex+1

4. et2 = e4t−3 5. 3x = ( 1
3

)x+1

6. (
√

5)x = 125 7. 4−x = 2x+1

8. b4 = 1012 9. k3/2 = 27

10.
(
b2)x+1 = b−6
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In Exercises 11–26, calculate without using a calculator.

11. log3 27 12. log5
1
25

13. ln 1 14. log5(54)

15. log2(25/3) 16. log2(85/3)

17. log64 4 18. log7(492)

19. log8 2 + log4 2 20. log25 30 + log25
5
6

21. log4 48 − log4 12 22. ln(
√

e · e7/5)

23. ln(e3) + ln(e4) 24. log2
4
3 + log2 24

25. 7log7(29) 26. 83 log8(2)

27. Write as the natural log of a single expression:

(a) 2 ln 5 + 3 ln 4 (b) 5 ln(x1/2) + ln(9x)

28. Solve for x: ln(x2 + 1) − 3 ln x = ln(2).

In Exercises 29–34, solve for the unknown.

29. 7e5t = 100 30. 6e−4t = 2

31. 2x2−2x = 8 32. e2t+1 = 9e1−t

33. ln(x4) − ln(x2) = 2 34. log3 y + 3 log3(y2) = 14

35. Use a calculator to compute sinh x and cosh x for x = −3, 0, 5.

36. Compute sinh(ln 5) and tanh(3 ln 5) without using a calculator.

37. Show, by producing a counterexample, that ln(ab) is not equal to
(ln a)(ln b).

38. For which values of x are y = sinh x and y = cosh x increasing
and decreasing?

39. Show that y = tanh x is an odd function.

40. The population of a city (in millions) at time t (years) is
P(t) = 2.4e0.06t , where t = 0 is the year 2000. When will the pop-
ulation double from its size at t = 0?

41. The Gutenberg–Richter Law states that the number N of earth-
quakes per year worldwide of Richter magnitude at least M satisfies
an approximate relation log10 N = a − M for some constant a. Find
a, assuming that there is one earthquake of magnitude M ≥ 8 per year.
How many earthquakes of magnitude M ≥ 5 occur per year?

42. The energy E (in joules) radiated as seismic waves from
an earthquake of Richter magnitude M is given by the formula
log10 E = 4.8 + 1.5M .

(a) Express E as a function of M .

(b) Show that when M increases by 1, the energy increases by a factor
of approximately 31.6.

43. Refer to the graphs to explain why the equation sinh x = t

has a unique solution for every t and why cosh x = t has two solutions
for every t > 1.

44. Compute cosh x and tanh x, assuming that sinh x = 0.8.

45. Prove the addition formula for cosh x.

46. Use the addition formulas to prove

sinh(2x) = 2 cosh x sinh x

cosh(2x) = cosh2 x + sinh2 x

47. An (imaginary) train moves along a track at velocity v. Bionica
walks down the aisle of the train with velocity u in the direction of
the train’s motion. Compute the velocity w of Bionica relative to the
ground using the laws of both Galileo and Einstein in the following
cases.

(a) v = 500 m/s and u = 10 m/s. Is your calculator accurate enough
to detect the difference between the two laws?

(b) v = 107 m/s and u = 106 m/s.

Further Insights and Challenges
48. Show that loga b logb a = 1.

49. Verify the formula logb x = loga x

loga b
for a, b > 0.

50. (a) Use the addition formulas for sinh x and cosh x to prove

tanh(u + v) = tanh u + tanh v

1 + tanh u tanh v

(b) Use (a) to show that Einstein’s Law of Velocity Addition [Eq. (3)]
is equivalent to

w = u + v

1 + uv

c2

51. Prove that every function f (x) can be written as a sum f (x) =
f+(x) + f−(x) of an even function f+(x) and an odd function f−(x).
Express f (x) = 5ex + 8e−x in terms of cosh x and sinh x.

1.7 Technology: Calculators and Computers
Computer technology has vastly extended our ability to calculate and visualize mathemat-
ical relationships. In applied settings, computers are indispensable for solving complex
systems of equations and analyzing data, as in weather prediction and medical imaging.
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FIGURE 1 Computer-generated image of
the Mandelbrot Set, which occurs in the
mathematical theory of chaos and
fractals.

FIGURE 2 Even greater complexity is
revealed when we zoom in on a portion
of the Mandelbrot Set.

Mathematicians use computers to study complex structures such as the Mandelbrot Set
(Figures 1 and 2). We take advantage of this technology to explore the ideas of calculus
visually and numerically.

When we plot a function with a graphing calculator or computer algebra system, the
graph is contained within a viewing rectangle, the region determined by the range of x-
and y-values in the plot. We write [a, b] × [c, d] to denote the rectangle where a ≤ x ≤ b

and c ≤ y ≤ d.
The appearance of the graph depends heavily on the choice of viewing rectangle.

Different choices may convey very different impressions which are sometimes misleading.
Compare the three viewing rectangles for the graph of f (x) = 12 − x − x2 in Figure 3.
Only (A) successfully displays the shape of the graph as a parabola. In (B), the graph is
cut off, and no graph at all appears in (C). Keep in mind that the scales along the axes
may change with the viewing rectangle. For example, the unit increment along the y-axis
is larger in (B) than in (A), so the graph in (B) is steeper.

18

−18

4

−4

1

−3

(A) [−6, 5] × [−18, 18] (B) [−6, 5] × [−4, 4] (C) [−1, 2] × [−3, 1]

−6 −65 5

−1 2

FIGURE 3 Viewing rectangles for the graph
of f (x) = 12 − x − x2.

There is no single “correct” viewing rectangle. The goal is to select the viewing
rectangle that displays the properties you wish to investigate. This usually requires exper-
imentation.

EXAMPLE 1 How Many Roots and Where? How many real roots does the function

Technology is indispensable but also has its
limitations. When shown the computer-
generated results of a complex calculation,
the Nobel prize–winning physicist Eugene
Wigner (1902–1995) is reported to have
said: It is nice to know that the computer
understands the problem, but I would like
to understand it too.

f (x) = x9 − 20x + 1 have? Find their approximate locations.

Solution We experiment with several viewing rectangles (Figure 4). Our first attempt
(A) displays a cut-off graph, so we try a viewing rectangle that includes a larger range of
y-values. Plot (B) shows that the roots of f (x) lie somewhere in the interval [−3, 3], but
it does not reveal how many real roots there are. Therefore, we try the viewing rectangle
in (C). Now we can see clearly that f (x) has three roots. A further zoom in (D) shows
that these roots are located near −1.5, 0.1, and 1.5. Further zooming would provide their
locations with greater accuracy.
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10

−10

(A) [−12, 12] × [−10, 10]

−12 12

10,000

−10,000

(B) [−12, 12] × [−10,000, 10,000]

−12 12

100

−100

(C) [−2, 2] × [−100, 100]

−2 2

25

−20

−1.5−1−.5 .1 .5 1 1.5

(D) [−2, 2] × [−20, 25]

−2 2

FIGURE 4 Graphs of f (x) = x9 − 20x + 1.

EXAMPLE 2 Does a Solution Exist? Does cos x = tan x have a solution? Describe
the set of all solutions.

Solution The solutions of cos x = tan x are the x-coordinates of the points where the
graphs of y = cos x and y = tan x intersect. Figure 5(A) shows that there are two solutions
in the interval [0, 2π ]. By zooming in on the graph as in (B), we see that the first positive
root lies between 0.6 and 0.7 and the second positive root lies between 2.4 and 2.5.
Further zooming shows that the first root is approximately 0.67 [Figure 5(C)]. Continuing
this process, we find that the first two roots are x ≈ 0.666 and x ≈ 2.475.

Since cos x and tan x are periodic, the picture repeats itself with period 2π . All
solutions are obtained by adding multiples of 2π to the two solutions in [0, 2π ]:

x ≈ 0.666 + 2πk and x ≈ 2.475 + 2πk (for any integer k)

2π 2π 4π

5

−5

(A) [−7, 13] × [−5, 5]

−7 13

5

−5

(B) [0, 3] × [−5, 5] (C) [0.5, 0.7] × [0.55, 0.85]

0 3

y = cos x

y = tan x

0.6 0.7
2.4 2.5

0.55 0.6 0.65 0.7

FIGURE 5 Graphs of y = cos x and y = tan x.

EXAMPLE 3 Functions with Asymptotes Plot the function f (x) = 1 − 3x

x − 2
and de-

scribe its asymptotic behavior.

Solution First, we plot f (x) in the viewing rectangle [−10, 20] × [−5, 5] as in Figure
6(A). The vertical line x = 2 is called a vertical asymptote. Many graphing calcula-
tors display this line, but it is not part of the graph (and it can usually be eliminated by
choosing a smaller range of y-values). We see that f (x) tends to ∞ as x approaches 2

(A)  [−10, 20] × [−5, 5]

20−10

5

−5

−3

2

2

(B)  [−10, 20] × [−10, 5]

20−10

5

−10

−3

FIGURE 6 Graphs of f (x) = 1 − 3x

x − 2
.
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from the left, and to −∞ as x approaches 2 from the right. To display the horizontal
asymptotic behavior of f (x), we use the viewing rectangle [−10, 20] × [−10, 5] [Fig-
ure 6(B)]. Here we see that the graph approaches the horizontal line y = −3, called a hori-
zontal asymptote (which we have added as a dashed horizontal line in the figure).

Calculators and computer algebra systems give us the freedom to experiment numer-
ically. For instance, we can explore the behavior of a function by constructing a table of
values. In the next example, we investigate a function related to exponential functions and
compound interest (see Section 5.8).

EXAMPLE 4 Investigating the Behavior of a Function How does f (n) = (1 + 1/n)n

behave for large whole-number values of n? Does f (n) tend to infinity as n gets larger?

Solution First, we make a table of values of f (n) for larger and larger values of n. Table 1
suggests that f (n) does not tend to infinity. Rather, as n grows larger, f (n) appears to get
closer to some value near 2.718 (a number resembling e). This is an example of limiting
behavior that we will discuss in Chapter 2. Next, replace n by the variable x and plot
the function f (x) = (1 + 1/x)x . The graphs in Figure 7 confirm that f (x) approaches a
limit of approximately 2.7. We will prove that f (n) approaches e as n tends to infinity in
Section 5.8.

TABLE 1

n

(
1 + 1

n

)n

10 2.59374
102 2.70481
103 2.71692
104 2.71815
105 2.71827
106 2.71828

(A)  [0, 10] × [0, 3]

100

3

0

(B)  [0, 1,000] × [0, 3]

5

2.7

1

1,0000

3

0
500

2.7

1

FIGURE 7 Graphs of f (x) =
(

1 + 1

x

)x

.

EXAMPLE 5 Bird Flight: Finding a Minimum Graphically According to one model of
bird flight, the power consumed by a pigeon flying at velocity v (in meters per second) is
P(v) = 17v−1 + 10−3v3 (in joules per second). Use a graph of P(v) to find the velocity
that minimizes power consumption.

Solution The velocity that minimizes power consumption corresponds to the lowest point
on the graph of P(v). We plot P(v) first in a large viewing rectangle (Figure 8). This figure
reveals the general shape of the graph and shows that P(v) takes on a minimum value for
v somewhere between v = 8 and v = 9. In the viewing rectangle [8, 9.2] × [2.6, 2.65],
we see that the minimum occurs at approximately v = 8.65 m/s.

(A)  [0, 20] × [0, 12]

200

12

P (J/s)
P (J/s)

v (m/s) v (m/s)
0

(B)  [8, 9.2] × [2.6, 2.65]

10 155

10

9.28

2.65

2.6

2.64

2.63

2.62

2.61

98.4 8.88.2 8.6

FIGURE 8 Power consumption P(v) as a
function of velocity v.
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Local linearity is an important concept in calculus that is based on the idea that
many functions are nearly linear over small intervals. Local linearity can be illustrated
effectively with a graphing calculator.

EXAMPLE 6 Illustrating Local Linearity Illustrate local linearity for the function
f (x) = xsin x at x = 1.

Solution First, we plot f (x) = xsin x in the viewing window of Figure 9(A). The graph
moves up and down and appears very wavy. However, as we zoom in, the graph straightens
out. Figures (B)–(D) show the result of zooming in on the point (1, f (1)). When viewed
up close, the graph looks like a straight line. This illustrates the local linearity of f (x) at
x = 1.

8

1

1

0

(A) (B) (C)

120

2

1

0.8 0.95 1.051 1.2

0

20

1.2 1.05

0.8 0.95

1.20.8

(D)

1.050.95

FIGURE 9 Zooming in on the graph of f (x) = xsin x near x = 1.

1.7 SUMMARY

• The appearance of a graph on a graphing calculator depends on the choice of viewing
rectangle. Experiment with different viewing rectangles until you find one that displays
the information you want. Keep in mind that the scales along the axes may change as you
vary the viewing rectangle.
• The following are some ways in which graphing calculators and computer algebra
systems can be used in calculus:

– Visualizing the behavior of a function

– Finding solutions graphically or numerically

– Conducting numerical or graphical experiments

– Illustrating theoretical ideas (such as local linearity)

1.7 EXERCISES

Preliminary Questions
1. Is there a definite way of choosing the optimal viewing rectangle,

or is it best to experiment until you find a viewing rectangle appropriate
to the problem at hand?

2. Describe the calculator screen produced when the function y =
3 + x2 is plotted with viewing rectangle:
(a) [−1, 1] × [0, 2] (b) [0, 1] × [0, 4]

3. According to the evidence in Example 4, it appears that f (n) =
(1 + 1/n)n never takes on a value greater than 3 for n > 0. Does this
evidence prove that f (n) ≤ 3 for n > 0?

4. How can a graphing calculator be used to find the minimum value
of a function?
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Exercises
The exercises in this section should be done using a graphing calculator
or computer algebra system.

1. Plot f (x) = 2x4 + 3x3 − 14x2 − 9x + 18 in the appropriate
viewing rectangles and determine its roots.

2. How many solutions does x3 − 4x + 8 = 0 have?

3. How many positive solutions does x3 − 12x + 8 = 0 have?

4. Does cos x + x = 0 have a solution? A positive solution?

5. Find all the solutions of sin x = √
x for x > 0.

6. How many solutions does cos x = x2 have?

7. Let f (x) = (x − 100)2 + 1000. What will the display show if you
graph f (x) in the viewing rectangle [−10, 10] by [−10, 10]? Find an
appropriate viewing rectangle.

8. Plot f (x) = 8x + 1

8x − 4
in an appropriate viewing rectangle. What are

the vertical and horizontal asymptotes?

9. Plot the graph of f (x) = x/(4 − x) in a viewing rectangle that
clearly displays the vertical and horizontal asymptotes.

10. Illustrate local linearity for f (x) = x2 by zooming in on the graph
at x = 0.5 (see Example 6).

11. Plot f (x) = cos(x2) sin x for 0 ≤ x ≤ 2π . Then illustrate local
linearity at x = 3.8 by choosing appropriate viewing rectangles.

12. If P0 dollars are deposited in a bank account paying 5% interest

compounded monthly, then the account has value P0

(
1 + 0.05

12

)N
af-

ter N months. Find, to the nearest integer N , the number of months
after which the account value doubles.

In Exercises 13–18, investigate the behavior of the function as n or x

grows large by making a table of function values and plotting a graph
(see Example 4). Describe the behavior in words.

13. f (n) = n1/n 14. f (n) = 4n + 1

6n − 5

15. f (n) =
(

1 + 1

n

)n2

16. f (x) =
(

x + 6

x − 4

)x

17. f (x) =
(

x tan
1

x

)x

18. f (x) =
(

x tan
1

x

)x2

19. The graph of f (θ) = A cos θ + B sin θ is a sinusoidal wave for
any constants A and B. Confirm this for (A, B) = (1, 1), (1, 2), and
(3, 4) by plotting f (θ).

20. Find the maximum value of f (θ) for the graphs produced in Ex-
ercise 19. Can you guess the formula for the maximum value in terms
of A and B?

21. Find the intervals on which f (x) = x(x + 2)(x − 3) is positive by
plotting a graph.

22. Find the set of solutions to the inequality (x2 − 4)(x2 − 1) < 0 by
plotting a graph.

Further Insights and Challenges
23. Let f1(x) = x and define a sequence of functions

by fn+1(x) = 1
2 (fn(x) + x/fn(x)). For example, f2(x) = 1

2 (x + 1).
Use a computer algebra system to compute fn(x) for n = 3, 4, 5 and
plot fn(x) together with

√
x for x ≥ 0. What do you notice?

24. Set P0(x) = 1 and P1(x) = x. The Chebyshev polynomials (use-
ful in approximation theory) are defined inductively by the formula
Pn+1(x) = 2xPn(x) − Pn−1(x).

(a) Show that P2(x) = 2x2 − 1.

(b) Compute Pn(x) for 3 ≤ n ≤ 6 using a computer algebra system or
by hand, and plot Pn(x) over [−1, 1].
(c) Check that your plots confirm two interesting properties: (a) Pn(x)

has n real roots in [−1, 1] and (b) for x ∈ [−1, 1], Pn(x) lies between
−1 and 1.

CHAPTER REVIEW EXERCISES

1. Express (4, 10) as a set {x : |x − a| < c} for suitable a and c.

2. Express as an interval:

(a) {x : |x − 5| < 4} (b) {x : |5x + 3| ≤ 2}
3. Express {x : 2 ≤ |x − 1| ≤ 6} as a union of two intervals.

4. Give an example of numbers x, y such that |x| + |y| = x − y.

5. Describe the pairs of numbers x, y such that |x + y| = x − y.

6. Sketch the graph of y = f (x + 2) − 1, where f (x) = x2 for
−2 ≤ x ≤ 2.

In Exercises 7–10, let f (x) be the function shown in Figure 1.

7. Sketch the graphs of y = f (x) + 2 and y = f (x + 2).

8. Sketch the graphs of y = 1
2f (x) and y = f

( 1
2x

)
.

9. Continue the graph of f (x) to the interval [−4, 4] as an even func-
tion.

10. Continue the graph of f (x) to the interval [−4, 4] as an odd func-
tion.
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1 2 3 4

1

2

0

3

x

y

FIGURE 1

In Exercises 11–14, find the domain and range of the function.

11. f (x) = √
x + 1 12. f (x) = 4

x4 + 1

13. f (x) = 2

3 − x
14. f (x) =

√
x2 − x + 5

15. Determine whether the function is increasing, decreasing, or nei-
ther:

(a) f (x) = 3−x (b) f (x) = 1

x2 + 1

(c) g(t) = t2 + t (d) g(t) = t3 + t

16. Determine whether the function is even, odd, or neither:

(a) f (x) = x4 − 3x2

(b) g(x) = sin(x + 1)

(c) f (x) = 2−x2

In Exercises 17–22, find the equation of the line.

17. Line passing through (−1, 4) and (2, 6)

18. Line passing through (−1, 4) and (−1, 6)

19. Line of slope 6 through (9, 1)

20. Line of slope − 3
2 through (4, −12)

21. Line through (2, 3) parallel to y = 4 − x

22. Horizontal line through (−3, 5)

23. Does the following table of market data suggest a linear relation-
ship between price and number of homes sold during a one-year period?
Explain.

Price (thousands of $) 180 195 220 240

No. of homes sold 127 118 103 91

24. Does the following table of revenue data for a computer manufac-
turer suggest a linear relation between revenue and time? Explain.

Year 2001 2005 2007 2010

Revenue (billions of $) 13 18 15 11

25. Find the roots of f (x) = x4 − 4x2 and sketch its graph. On which
intervals is f (x) decreasing?

26. Let h(z) = 2z2 + 12z + 3. Complete the square and find the min-
imum value of h(z).

27. Let f (x) be the square of the distance from the point (2, 1) to a
point (x, 3x + 2) on the line y = 3x + 2. Show that f (x) is a quadratic
function, and find its minimum value by completing the square.

28. Prove that x2 + 3x + 3 ≥ 0 for all x.

In Exercises 29–34, sketch the graph by hand.

29. y = t4 30. y = t5

31. y = sin
θ

2
32. y = 10−x

33. y = x1/3 34. y = 1

x2

35. Show that the graph of y = f
( 1

3x − b
)

is obtained by shifting the

graph of y = f
( 1

3x
)

to the right 3b units. Use this observation to sketch

the graph of y = ∣∣ 1
3x − 4

∣∣.
36. Let h(x) = cos x and g(x) = x−1. Compute the composite func-
tions h(g(x)) and g(h(x)), and find their domains.

37. Find functions f and g such that the function

f (g(t)) = (12t + 9)4

38. Sketch the points on the unit circle corresponding to the follow-
ing three angles, and find the values of the six standard trigonometric
functions at each angle:

(a)
2π

3
(b)

7π

4
(c)

7π

6

39. What is the period of the function g(θ) = sin 2θ + sin θ
2 ?

40. Assume that sin θ = 4
5 , where π/2 < θ < π . Find:

(a) tan θ (b) sin 2θ (c) csc
θ

2

41. Give an example of values a, b such that

(a) cos(a + b) �= cos a + cos b (b) cos
a

2
�= cos a

2

42. Let f (x) = cos x. Sketch the graph of y = 2f
(

1
3x − π

4

)
for

0 ≤ x ≤ 6π .

43. Solve sin 2x + cos x = 0 for 0 ≤ x < 2π .

44. How does h(n) = n2/2n behave for large whole-number values of

n? Does h(n) tend to infinity?

45. Use a graphing calculator to determine whether the equa-

tion cos x = 5x2 − 8x4 has any solutions.

46. Using a graphing calculator, find the number of real roots
and estimate the largest root to two decimal places:

(a) f (x) = 1.8x4 − x5 − x

(b) g(x) = 1.7x4 − x5 − x
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47. Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state
that no match exists.

(a) 2a3b (b)
2a

3b

(c) (2a)b (d) 2a−b3b−a

(i) 2ab (ii) 6a+b (iii)
( 2

3

)a−b

48. Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state
that no match exists.

(a) ln
(a

b

)
(b)

ln a

ln b

(c) eln a−ln b (d) (ln a)(ln b)

(i) ln a + ln b (ii) ln a − ln b (iii)
a

b

49. Find the inverse of f (x) =
√

x3 − 8 and determine its domain and
range.

50. Find the inverse of f (x) = x − 2

x − 1
and determine its domain and

range.

51. Find a domain on which h(t) = (t − 3)2 is one-to-one and deter-
mine the inverse on this domain.

52. Show that g(x) = x

x − 1
is equal to its inverse on the domain

{x : x �= 1}.
53. Suppose that g(x) is the inverse of f (x). Match the functions
(a)–(d) with their inverses (i)–(iv).

(a) f (x) + 1 (b) f (x + 1) (c) 4f (x) (d) f (4x)

(i) g(x)/4 (ii) g(x/4) (iii) g(x − 1) (iv) g(x) − 1

54. Plot f (x) = xe−x and use the zoom feature to find two
solutions of f (x) = 0.5.



This “strange attractor” represents limit

behavior that appeared first in weather models

studied by meteorologist E. Lorenz in 1963.

2 LIMITS

C alculus is usually divided into two branches, differential and integral, partly for his-
torical reasons. The subject grew out of efforts in the seventeenth century to solve two

important geometric problems: finding tangent lines to curves (differential calculus) and
computing areas under curves (integral calculus). However, calculus is a broad subject
with no clear boundaries. It includes other topics, such as the theory of infinite series,
and it has an extraordinarily wide range of applications. What makes these methods and
applications part of calculus is that they all rely on the concept of a limit. We will see
throughout the text how limits allow us to make computations and solve problems that
cannot be solved using algebra alone.

This chapter introduces the limit concept and sets the stage for our study of the
derivative in Chapter 3. The first section, intended as motivation, discusses how limits
arise in the study of rates of change and tangent lines.

2.1 Limits, Rates of Change, and Tangent Lines
Rates of change play a role whenever we study the relationship between two changing
quantities. Velocity is a familiar example (the rate of change of position with respect to
time), but there are many others, such as

• The infection rate of an epidemic (newly infected individuals per month)
• Inflation rate (change in consumer price index per year)
• Rate of change of atmospheric temperature with respect to altitude

Roughly speaking, if y and x are related quantities, the rate of change should tell us how
much y changes in response to a unit change in x. For example, if an automobile travels
at a velocity of 80 km/hr, then its position changes by 80 km for each unit change in time
(the unit being 1 hour). If the trip lasts only half an hour, its position changes by 40 km,
and in general, the change in position is 80t km, where t is the change in time (that is, the
time elapsed in hours). In other words,

Change in position = velocity × change in time

However, this simple formula is not valid or even meaningful if the velocity is not constant.
After all, if the automobile is accelerating or decelerating, which velocity would we use
in the formula?

The problem of extending this formula to account for changing velocity lies at the
heart of calculus. As we will learn, differential calculus uses the limit concept to define
instantaneous velocity, and integral calculus enables us to compute the change in position
in terms of instantaneous velocity. But these ideas are very general. They apply to all
rates of change, making calculus an indispensable tool for modeling an amazing range of
real-world phenomena.

In this section, we discuss velocity and other rates of change, emphasizing their
graphical interpretation in terms of tangent lines. Although at this stage, we cannot define
precisely what a tangent line is—this will have to wait until Chapter 3—you can think of
a tangent line as a line that skims a curve at a point, as in Figures 1(A) and (B) but not (C).

59



60 C H A P T E R 2 LIMITS

(A) (B) (C)
FIGURE 1 The line is tangent in (A) and (B)
but not in (C).

HISTORICAL
PERSPECTIVE

Philosophy is written in
this grand book—I
mean the universe—
which stands

continually open to our gaze, but it cannot be
understood unless one first learns to comprehend the
language … in which it is written. It is written in the
language of mathematics …

—Galileo Galilei, 1623

The scientific revolution of the sixteenth and
seventeenth centuries reached its high point in
the work of Isaac Newton (1643–1727), who
was the first scientist to show that the physical
world, despite its complexity and diversity, is
governed by a small number of universal laws.
One of Newton’s great insights was that the uni-
versal laws are dynamical, describing how the
world changes over time in response to forces,
rather than how the world actually is at any given
moment in time. These laws are expressed best
in the language of calculus, which is the mathe-
matics of change.

More than 50 years before the work
of Newton, the astronomer Johannes Kepler
(1571–1630) discovered his three laws of plan-
etary motion, the most famous of which states
that the path of a planet around the sun is an
ellipse. Kepler arrived at these laws through a
painstaking analysis of astronomical data, but he
could not explain why they were true. Accord-
ing to Newton, the motion of any object—planet
or pebble—is determined by the forces acting
on it. The planets, if left undisturbed, would
travel in straight lines. Since their paths are el-
liptical, some force—in this case, the gravita-
tional force of the sun—must be acting to make
them change direction continuously. In his mag-
num opus Principia Mathematica, published in
1687, Newton proved that Kepler’s laws follow
from Newton’s own universal laws of motion
and gravity.

For these discoveries, Newton gained
widespread fame in his lifetime. His fame con-
tinued to increase after his death, assuming a
nearly mythic dimension and his ideas had a pro-
found influence, not only in science but also in
the arts and literature, as expressed in the epi-
taph by British poet Alexander Pope: “Nature
and Nature’s Laws lay hid in Night. God said,
Let Newton be! and all was Light.”

This statue of Isaac Newton in Cambridge
University was described in The Prelude, a
poem by William Wordsworth
(1770–1850):

“Newton with his prism and silent face,
The marble index of a mind for ever
Voyaging through strange seas of Thought,

alone.”

Velocity
When we speak of velocity, we usually mean instantaneous velocity, which indicates theIn linear motion, velocity may be positive or

negative (indicating the direction of
motion). Speed, by definition, is the
absolute value of velocity and is always
positive.

speed and direction of an object at a particular moment. The idea of instantaneous velocity
makes intuitive sense, but care is required to define it precisely.

Consider an object traveling in a straight line (linear motion). The average velocity
over a given time interval has a straightforward definition as the ratio

Average velocity = change in position

length of time interval

For example, if an automobile travels 200 km in 4 hours, then its average velocity during
this 4-hour period is 200

4 = 50 km/h. At any given moment the automobile may be going
faster or slower than the average.
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We cannot define instantaneous velocity as a ratio because we would have to divide
by the length of the time interval (which is zero). However, we should be able to estimate
instantaneous velocity by computing average velocity over successively smaller time
intervals. The guiding principle is: Average velocity over a very small time interval is very
close to instantaneous velocity. To explore this idea further, we introduce some notation.

The Greek letter � (Delta) is commonly used to denote the change in a function or
variable. If s(t) is the position of an object (distance from the origin) at time t and [t0, t1]
is a time interval, we set

�s = s(t1) − s(t0) = change in position

�t = t1 − t0 = change in time (length of time interval)

The change in position �s is also called the displacement, or net change in position. For
t1 �= t0,

Average velocity over [t0, t1] = �s

�t
= s(t1) − s(t0)

t1 − t0

One motion we will study is the motion of an object falling to earth under the influence

t = 0 
t = 0.5

0

4.9

1.225

t = 1

FIGURE 2 Distance traveled by a falling
object after t seconds is s(t) = 4.9t2

meters.

of gravity (assuming no air resistance). Galileo discovered that if the object is released
at time t = 0 from a state of rest (Figure 2), then the distance traveled after t seconds is
given by the formula

s(t) = 4.9t2 m

EXAMPLE 1 A stone, released from a state of rest, falls to earth. Estimate the instan-
taneous velocity at t = 0.8 s.

Solution We use Galileo’s formula s(t) = 4.9t2 to compute the average velocity over theTABLE 1

Time intervals Average velocity

[0.8, 0.81] 7.889
[0.8, 0.805] 7.8645
[0.8, 0.8001] 7.8405
[0.8, 0.80005] 7.84024
[0.8, 0.800001] 7.840005

five short time intervals listed in Table 1. Consider the first interval [t0, t1] = [0.8, 0.81]:

�s = s(0.81) − s(0.8) = 4.9(0.81)2 − 4.9(0.8)2 ≈ 3.2149 − 3.1360 = 0.7889 m

�t = 0.81 − 0.8 = 0.01 s

The average velocity over [0.8, 0.81] is the ratio

�s

�t
= s(0.81) − s(0.8)

0.81 − 0.8
= 0.07889

0.01
= 7.889 m/s

Table 1 shows the results of similar calculations for intervals of successively shorterThere is nothing special about the
particular time intervals in Table 1. We are
looking for a trend, and we could have
chosen any intervals [0.8, t] for values of t

approaching 0.8. We could also have
chosen intervals [t, 0.8] for t < 0.8.

lengths. It looks like these average velocities are getting closer to 7.84 m/s as the length
of the time interval shrinks:

7.889, 7.8645, 7.8405, 7.84024, 7.840005

This suggests that 7.84 m/s is a good candidate for the instantaneous velocity at t = 0.8.

We express our conclusion in the previous example by saying that average velocity
converges to instantaneous velocity or that instantaneous velocity is the limit of average
velocity as the length of the time interval shrinks to zero.
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Graphical Interpretation of Velocity
The idea that average velocity converges to instantaneous velocity as we shorten the time
interval has a vivid interpretation in terms of secant lines. The term secant line refers to
a line through two points on a curve.

Consider the graph of position s(t) for an object traveling in a straight line (Figure 3).
The ratio defining average velocity over [t0, t1] is nothing more than the slope of the secant
line through the points (t0, s(t0)) and (t1, s(t1)). For t1 �= t0,

Average velocity = slope of secant line = �s

�t
= s(t1) − s(t0)

t1 − t0

Secant line

t (time)

s(t0)

s(t1)

�s = s(t1) − s(t0)

�t = t1 − t0

t1t0

s (position)

s(t0)

s(t1)

FIGURE 3 The average velocity over [t0, t1]
is equal to the slope of the secant line.

By interpreting average velocity as a slope, we can visualize what happens as the
time interval gets smaller. Figure 4 shows the graph of position for the falling stone of
Example 1, where s(t) = 4.9t2. As the time interval shrinks, the secant lines get closer
to—and seem to rotate into—the tangent line at t = 0.8.

Time Average
interval velocity

[0.8, 0.805] 7.8645
[0.8, 0.8001] 7.8405
[0.8, 0.80005] 7.84024

0.800050.8
0.8001

0.805

Tangent line at t = 0.8

Slopes of secants
7.8645

7.8405

7.84024
7.84  Slope of tangent

t (s)

s (m)

FIGURE 4 The secant lines “rotate into” the
tangent line as the time interval shrinks.
Note: The graph is not drawn to scale.

And since the secant lines approach the tangent line, the slopes of the secant lines get
closer and closer to the slope of the tangent line. In other words, the statement

As the time interval shrinks to zero, the average velocity approaches the
instantaneous velocity.

has the graphical interpretation

As the time interval shrinks to zero, the slope of the secant line approaches the slope
of the tangent line.
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We conclude that instantaneous velocity is equal to the slope of the tangent line to the
graph of position as a function of time. This conclusion and its generalization to other
rates of change are of fundamental importance in differential calculus.

Other Rates of Change
Velocity is only one of many examples of a rate of change. Our reasoning applies to any
quantity y that depends on a variable x—say, y = f (x). For any interval [x0, x1], we set

�f = f (x1) − f (x0), �x = x1 − x0

For x1 �= x0, the average rate of change of y with respect to x over [x0, x1] is the ratioSometimes, we write �y and �y/�x

instead of �f and �f /�x.

Average rate of change = �f

�x
= f (x1) − f (x0)

x1 − x0︸ ︷︷ ︸
Slope of secant line

The instantaneous rate of change at x = x0 is the limit of the average rates of change.The word “instantaneous” is often dropped.
When we use the term “rate of change,” it
is understood that the instantaneous rate is
intended.

We estimate it by computing the average rate over smaller and smaller intervals.
In Example 1 above, we considered only right-hand intervals [x0, x1]. In the next

example, we compute the average rate of change for intervals lying to both the left and
the right of x0.

EXAMPLE 2 Speed of Sound in Air The formula v = 20
√

T provides a good ap-
proximation to the speed of sound v in dry air (in m/s) as a function of air temperature
T (in kelvins). Estimate the instantaneous rate of change of v with respect to T when
T = 273 K. What are the units of this rate?

Solution To estimate the instantaneous rate of change at T = 273, we compute the av-
erage rate for several intervals lying to the left and right of T = 273. For example, the
average rate of change over [272.5, 273] is

v(273) − v(272.5)

273 − 272.5
= 20

√
273 − 20

√
272.5

0.5
≈ 0.60550

Tables 2 and 3 suggest that the instantaneous rate is approximately 0.605. This is the rate
of increase in speed per degree increase in temperature, so it has units of m/s-K, or meters
per second per kelvin. The secant lines corresponding to the values in the tables are shown
in Figures 5 and 6.

TABLE 2 Left-Hand Intervals

Temperature Average rate
interval of change

[272.5, 273] 0.60550
[272.8, 273] 0.60534
[272.9, 273] 0.60528
[272.99, 273] 0.60523

TABLE 3 Right-Hand
Intervals

Temperature Average rate
interval of change

[273, 273.5] 0.60495
[273, 273.2] 0.60512
[273, 273.1] 0.60517
[273, 273.01] 0.60522

273272.5

Tangent line

Slopes of secants
0.60550
0.60534
0.60523

T  (K)

v (m/s)

FIGURE 5 Secant lines for intervals lying to
the left of T = 273.

Slopes of secants

273 273.5
T  (K)

Tangent line 0.60517
0.60495

0.60522
v (m/s)

FIGURE 6 Secant lines for intervals lying to
the right of T = 273.
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To conclude this section, we recall an important point discussed in Section 1.2: For
any linear function f (x) = mx + b, the average rate of change over every interval is
equal to the slope m (Figure 7). We verify as follows:

�f

�x
= f (x1) − f (x0)

x1 − x0
= (mx1 + b) − (mx0 + b)

x1 − x0
= m(x1 − x0)

x1 − x0
= m

The instantaneous rate of change at x = x0, which is the limit of these average rates, is

�x

�f

�x

�f

x

y

FIGURE 7 For a linear function
f (x) = mx + b, the ratio �f/�x is equal
to the slope m for every interval.

also equal to m. This makes sense graphically because all secant lines and all tangent lines
to the graph of f (x) coincide with the graph itself.

2.1 SUMMARY

• The average rate of change of y = f (x) over an interval [x0, x1]:

Average rate of change = �f

�x
= f (x1) − f (x0)

x1 − x0
(x1 �= x0)

• The instantaneous rate of change is the limit of the average rates of change.
• Graphical interpretation:

– Average rate of change is the slope of the secant line through the points (x0, f (x0))

and (x1, f (x1)) on the graph of f (x).
– Instantaneous rate of change is the slope of the tangent line at x0.

• To estimate the instantaneous rate of change at x = x0, compute the average rate of
change over several intervals [x0, x1] (or [x1, x0]) for x1 close to x0.
• The velocity of an object in linear motion is the rate of change of position s(t).
• Linear function f (x) = mx + b: The average rate of change over every interval and the
instantaneous rate of change at every point are equal to the slope m.

2.1 EXERCISES

Preliminary Questions
1. Average velocity is equal to the slope of a secant line through two

points on a graph. Which graph?

2. Can instantaneous velocity be defined as a ratio? If not, how is
instantaneous velocity computed?

3. What is the graphical interpretation of instantaneous velocity at a
moment t = t0?

4. What is the graphical interpretation of the following statement? The
average rate of change approaches the instantaneous rate of change as
the interval [x0, x1] shrinks to x0.

5. The rate of change of atmospheric temperature with respect to al-
titude is equal to the slope of the tangent line to a graph. Which graph?
What are possible units for this rate?

Exercises
1. A ball dropped from a state of rest at time t = 0 travels a distance

s(t) = 4.9t2 m in t seconds.

(a) How far does the ball travel during the time interval [2, 2.5]?
(b) Compute the average velocity over [2, 2.5].
(c) Compute the average velocity for the time intervals in the table and
estimate the ball’s instantaneous velocity at t = 2.

Interval [2, 2.01] [2, 2.005] [2, 2.001] [2, 2.00001]
Average
velocity

2. A wrench released from a state of rest at time t = 0 travels a dis-
tance s(t) = 4.9t2 m in t seconds. Estimate the instantaneous velocity
at t = 3.
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3. Let v = 20
√

T as in Example 2. Estimate the instantaneous rate of
change of v with respect to T when T = 300 K.

4. Compute �y/�x for the interval [2, 5], where y = 4x − 9. What
is the instantaneous rate of change of y with respect to x at x = 2?

In Exercises 5–6, a stone is tossed vertically into the air from ground
level with an initial velocity of 15 m/s. Its height at time t is h(t) =
15t − 4.9t2 m.

5. Compute the stone’s average velocity over the time interval
[0.5, 2.5] and indicate the corresponding secant line on a sketch of
the graph of h(t).

6. Compute the stone’s average velocity over the time intervals
[1, 1.01], [1, 1.001], [1, 1.0001] and [0.99, 1], [0.999, 1], [0.9999, 1],
and then estimate the instantaneous velocity at t = 1.

7. With an initial deposit of $100, the balance in a bank account after
t years is f (t) = 100(1.08)t dollars.

(a) What are the units of the rate of change of f (t)?

(b) Find the average rate of change over [0, 0.5] and [0, 1].
(c) Estimate the instantaneous rate of change at t = 0.5 by computing
the average rate of change over intervals to the left and right of t = 0.5.

8. The position of a particle at time t is s(t) = t3 + t . Compute the
average velocity over the time interval [1, 4] and estimate the instanta-
neous velocity at t = 1.

9. Figure 8 shows the estimated number N of Internet users
in Chile, based on data from the United Nations Statistics Division.

(a) Estimate the rate of change of N at t = 2003.5.

(b) Does the rate of change increase or decrease as t increases? Explain
graphically.

(c) Let R be the average rate of change over [2001, 2005]. Com-
pute R.

(d) Is the rate of change at t = 2002 greater than or less than the aver-
age rate R? Explain graphically.

2001 2002 2003 2004 2005

3.5

4.0

4.5

N (Internet users in Chile in millions)

t (years)

FIGURE 8

10. The atmospheric temperature T (in ◦C) at altitude h meters above
a certain point on earth is T = 15 − 0.0065h for h ≤ 12,000 m. What
are the average and instantaneous rates of change of T with respect to
h? Why are they the same? Sketch the graph of T for h ≤ 12,000.

In Exercises 11–18, estimate the instantaneous rate of change at the
point indicated.

11. P(x) = 3x2 − 5; x = 2 12. f (t) = 12t − 7; t = −4

13. y(x) = 1

x + 2
; x = 2 14. y(t) = √

3t + 1; t = 1

15. f (x) = ex ; x = 0 16. f (x) = ex ; x = e

17. f (x) = ln x; x = 3 18. f (x) = tan−1 x; x = π

4

19. The height (in centimeters) at time t (in seconds) of a small mass
oscillating at the end of a spring is h(t) = 8 cos(12πt).

(a) Calculate the mass’s average velocity over the time intervals
[0, 0.1] and [3, 3.5].
(b) Estimate its instantaneous velocity at t = 3.

20. The number P(t) of E. coli cells at time t (hours) in a petri dish is
plotted in Figure 9.

(a) Calculate the average rate of change of P(t) over the time interval
[1, 3] and draw the corresponding secant line.

(b) Estimate the slope m of the line in Figure 9. What does m represent?

t (h)
321

10,000

8000

6000

4000

2000
1000

P (t)

FIGURE 9 Number of E. coli cells at time t .

21. Assume that the period T (in seconds) of a pendulum (the

time required for a complete back-and-forth cycle) is T = 3
2

√
L, where

L is the pendulum’s length (in meters).

(a) What are the units for the rate of change of T with respect to L?
Explain what this rate measures.

(b) Which quantities are represented by the slopes of lines A and B in
Figure 10?

(c) Estimate the instantaneous rate of change of T with respect to L

when L = 3 m.

Period (s)

Length (m)
1 3

AB

2

FIGURE 10 The period T is the time required for a pendulum to swing
back and forth.

22. The graphs in Figure 11 represent the positions of moving particles
as functions of time.
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(a) Do the instantaneous velocities at times t1, t2, t3 in (A) form an
increasing or a decreasing sequence?

(b) Is the particle speeding up or slowing down in (A)?

(c) Is the particle speeding up or slowing down in (B)?

Distance Distance

t2 t3t1

(A)

Time Time

(B)

FIGURE 11

23. An advertising campaign boosted sales of Crunchy Crust
frozen pizza to a peak level of S0 dollars per month. A marketing study
showed that after t months, monthly sales declined to

S(t) = S0g(t), where g(t) = 1√
1 + t

.

Do sales decline more slowly or more rapidly as time increases? An-
swer by referring to a sketch the graph of g(t) together with several
tangent lines.

24. The fraction of a city’s population infected by a flu virus is plotted
as a function of time (in weeks) in Figure 12.

(a) Which quantities are represented by the slopes of lines A and B?
Estimate these slopes.

(b) Is the flu spreading more rapidly at t = 1, 2, or 3?

(c) Is the flu spreading more rapidly at t = 4, 5, or 6?

Fraction infected

Weeks

B

A

1 2 3 4 5 6

0.3

0.2

0.1

FIGURE 12

25. The graphs in Figure 13 represent the positions s of moving par-
ticles as functions of time t . Match each graph with a description:

(a) Speeding up

(b) Speeding up and then slowing down

(c) Slowing down

(d) Slowing down and then speeding up

(B)(A)

(D)(C)

t

s

t

s

t

s

t

s

FIGURE 13

26. An epidemiologist finds that the percentage N(t) of susceptible
children who were infected on day t during the first three weeks of a
measles outbreak is given, to a reasonable approximation, by the for-
mula (Figure 14)

N(t) = 100t2

t3 + 5t2 − 100t + 380

Percent infected

Time (days)
2 6 10 14 184 8 12 16 20

20

15

10

5

FIGURE 14 Graph of N(t).

(a) Draw the secant line whose slope is the average rate of change in
infected children over the intervals [4, 6] and [12, 14]. Then compute
these average rates (in units of percent per day).
(b) Is the rate of decline greater at t = 8 or t = 16?
(c) Estimate the rate of change of N(t) on day 12.

27. The fungus Fusarium exosporium infects a field of flax plants
through the roots and causes the plants to wilt. Eventually, the entire
field is infected. The percentage f (t) of infected plants as a function
of time t (in days) since planting is shown in Figure 15.

(a) What are the units of the rate of change of f (t) with respect to t?
What does this rate measure?
(b) Use the graph to rank (from smallest to largest) the average infec-
tion rates over the intervals [0, 12], [20, 32], and [40, 52].
(c) Use the following table to compute the average rates of infection
over the intervals [30, 40], [40, 50], [30, 50].

Days 0 10 20 30 40 50 60
Percent infected 0 18 56 82 91 96 98

(d) Draw the tangent line at t = 40 and estimate its slope.
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Percent infected

Days after planting
10 20 30 40 50 60

100

80

60

40

20

FIGURE 15

28. Let v = 20
√

T as in Example 2. Is the rate of change of
v with respect to T greater at low temperatures or high temperatures?
Explain in terms of the graph.

29. If an object in linear motion (but with changing veloc-
ity) covers �s meters in �t seconds, then its average velocity is
v0 = �s/�t m/s. Show that it would cover the same distance if it trav-
eled at constant velocity v0 over the same time interval. This justifies
our calling �s/�t the average velocity.

30. Sketch the graph of f (x) = x(1 − x) over [0, 1]. Refer to
the graph and, without making any computations, find:

(a) The average rate of change over [0, 1]
(b) The (instantaneous) rate of change at x = 1

2

(c) The values of x at which the rate of change is positive

31. Which graph in Figure 16 has the following property: For
all x, the average rate of change over [0, x] is greater than the instan-
taneous rate of change at x. Explain.

(B)

x

y

(A)

x

y

FIGURE 16

Further Insights and Challenges
32. The height of a projectile fired in the air vertically with initial ve-
locity 25 m/s is

h(t) = 25t − 4.9t2 m.

(a) Compute h(1). Show that h(t) − h(1) can be factored with (t − 1)

as a factor.
(b) Using part (a), show that the average velocity over the interval
[1, t] is 20.1 − 4.9t .
(c) Use this formula to find the average velocity over several intervals
[1, t] with t close to 1. Then estimate the instantaneous velocity at time
t = 1.

33. Let Q(t) = t2. As in the previous exercise, find a formula for the
average rate of change of Q over the interval [1, t] and use it to estimate
the instantaneous rate of change at t = 1. Repeat for the interval [2, t]
and estimate the rate of change at t = 2.

34. Show that the average rate of change of f (x) = x3 over [1, x] is
equal to

x2 + x + 1.

Use this to estimate the instantaneous rate of change of f (x) at x = 1.

35. Find a formula for the average rate of change of f (x) = x3 over
[2, x] and use it to estimate the instantaneous rate of change at x = 2.

36. Let T = 3
2

√
L as in Exercise 21. The numbers in the sec-

ond column of Table 4 are increasing, and those in the last column are
decreasing. Explain why in terms of the graph of T as a function of L.
Also, explain graphically why the instantaneous rate of change at L = 3
lies between 0.4329 and 0.4331.

TABLE 4 Average Rates of Change of T with Respect to L

Average rate Average rate
Interval of change Interval of change

[3, 3.2] 0.42603 [2.8, 3] 0.44048
[3, 3.1] 0.42946 [2.9, 3] 0.43668
[3, 3.001] 0.43298 [2.999, 3] 0.43305
[3, 3.0005] 0.43299 [2.9995, 3] 0.43303

2.2 Limits: A Numerical and Graphical Approach
The goal in this section is to define limits and study them using numerical and graphical
techniques. We begin with the following question: How do the values of a function f (x)

behave when x approaches a number c, whether or not f (c) is defined?
To explore this question, we’ll experiment with the function

f (x) = sin x

x
(x in radians)
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Notice that f (0) is not defined. In fact, when we set x = 0 inThe undefined expression 0/0 is referred to
as an “indeterminate form.”

f (x) = sin x

x

we obtain the undefined expression 0/0 because sin 0 = 0. Nevertheless, we can compute
f (x) for values of x close to 0. When we do this, a clear trend emerges.

To describe the trend, we use the phrase “x approaches 0” or “x tends to 0” to indicate
that x takes on values (both positive and negative) that get closer and closer to 0. The
notation for this is x → 0, and more specifically we write

• x → 0+ if x approaches 0 from the right (through positive values).
• x → 0− if x approaches 0 from the left (through negative values).

Now consider the values listed in Table 1. The table gives the unmistakable impression
that f (x) gets closer and closer to 1 as x → 0+ and as x → 0−.

This conclusion is supported by the graph of f (x) in Figure 1. The point (0, 1) is
missing from the graph because f (x) is not defined at x = 0, but the graph approaches
this missing point as x approaches 0 from the left and right. We say that the limit of f (x)

as x → 0 is equal to 1, and we write

lim
x→0

f (x) = 1

We also say that f (x) approaches or converges to 1 as x → 0.

TABLE 1

x
sin x

x
x

sin x

x

1 0.841470985 −1 0.841470985
0.5 0.958851077 −0.5 0.958851077
0.1 0.998334166 −0.1 0.998334166
0.05 0.999583385 −0.05 0.999583385
0.01 0.999983333 −0.01 0.999983333
0.005 0.999995833 −0.005 0.999995833
0.001 0.999999833 −0.001 0.999999833

x → 0+ f (x) → 1 x → 0− f (x) → 1

2π 3π

1

−π−2π−3π π
x

y

FIGURE 1 Graph of f (x) = sin x

x
.

CONCEPTUAL INSIGHT The numerical and graphical evidence may convince us that

f (x) = sin x

x
converges to 1 as x → 0, but since f (0) yields the undefined expres-

sion 0/0, could we not arrive at this conclusion more simply by saying that 0/0 is
equal to 1? The answer is no. Algebra does not allow us to divide by 0 under any
circumstances, and it is not correct to say that 0/0 equals 1 or any other number.

What we have learned, however, is that a function f (x) may approach a limit as
x → c even if the formula for f (c) produces the undefined expression 0/0. The limit of

f (x) = sin x

x
turns out to be 1. We will encounter other examples where f (x) produces

0/0 but the limit is a number other than 1 (or the limit does not exist).

Definition of a Limit
To define limits, let us recall that the distance between two numbers a and b is the absolute
value |a − b|, so we can express the idea that f (x) is close to L by saying that |f (x) − L|
is small.
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DEFINITION Limit Assume thatf (x) is defined for all x in an open interval containing
c, but not necessarily at c itself. We say that

the limit of f (x) as x approaches c is equal to L

if |f (x) − L| becomes arbitrarily small when x is any number sufficiently close (but
not equal) to c. In this case, we write

lim
x→c

f (x) = L

We also say thatf (x)approaches or converges toL asx → c (and we writef (x) → L).

If the values of f (x) do not converge to any limit as x → c, we say that lim
x→c

f (x) does

The limit concept was not fully clarified
until the nineteenth century. The French
mathematician Augustin-Louis Cauchy
(1789–1857, pronounced Koh-shee) gave
the following verbal definition: “When the
values successively attributed to the same
variable approach a fixed value indefinitely,
in such a way as to end up differing from it
by as little as one could wish, this last
value is called the limit of all the others.
So, for example, an irrational number is the
limit of the various fractions which provide
values that approximate it more and more
closely.” (Translated by J. Grabiner)

not exist. It is important to note that the value f (c) itself, which may or may not be
defined, plays no role in the limit. All that matters are the values of f (x) for x close to c.
Furthermore, if f (x) approaches a limit as x → c, then the limiting value L is unique.

EXAMPLE 1 Use the definition above to verify the following limits:

(a) lim
x→7

5 = 5 (b) lim
x→4

(3x + 1) = 13

Solution

(a) Let f (x) = 5. To show that lim
x→7

f (x) = 5, we must show that |f (x) − 5| becomes

arbitrarily small when x is sufficiently close (but not equal) to 7. But observe that
|f (x) − 5| = |5 − 5| = 0 for all x, so what we are required to show is automatic (and it
is not necessary to take x close to 7).
(b) Let f (x) = 3x + 1. To show that lim

x→4
(3x + 1) = 13, we must show that |f (x) − 13|

becomes arbitrarily small when x is sufficiently close (but not equal) to 4. We have

|f (x) − 13| = |(3x + 1) − 13| = |3x − 12| = 3|x − 4|
Because |f (x) − 13| is a multiple of |x − 4|, we can make |f (x) − 13| arbitrarily small
by taking x sufficiently close to 4.

Reasoning as in Example 1 but with arbitrary constants, we obtain the following
simple but important results:

THEOREM 1 For any constants k and c, (a) lim
x→c

k = k, (b) lim
x→c

x = c.

To deal with more complicated limits and especially, to provide mathematically rig-Here is one version of the rigorous
definition of a limit: lim

x→c
f (x) = L if, for

every number n, we can find a value of m

such that |f (x) − L| < 10−n for all x

such that 0 < |x − c| < 10−m.

orous proofs, a more precise version of the above limit definition is needed. This more
precise version is discussed in Section 2.9, where inequalities are used to pin down the
exact meaning of the phrases “arbitrarily small” and “sufficiently close.”

Graphical and Numerical Investigation
Our goal in the rest of this section is to develop a better intuitive understanding of limits
by investigating them graphically and numerically.

Graphical Investigation Use a graphing utility to produce a graph of f (x). The graph
should give a visual impression of whether or not a limit exists. It can often be used to
estimate the value of the limit.
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Numerical Investigation We write x → c− to indicate that x approaches c through
values less than c, and we write x → c+ to indicate that x approaches c through values
greater than c. To investigate lim

x→c
f (x),

(i) Make a table of values of f (x) for x close to but less than c—that is, as x → c−.

(ii) Make a second table of values of f (x) for x close to but greater than c—that is, as
x → c+.

(iii) If both tables indicate convergence to the same number L, we take L to be an estimate
for the limit.

The tables should contain enough values to reveal a clear trend of convergence to a value L.Keep in mind that graphical and numerical
investigations provide evidence for a limit,
but they do not prove that the limit exists
or has a given value. This is done using the
Limit Laws established in the following
sections.

If f (x) approaches a limit, the successive values of f (x) will generally agree to more and
more decimal places as x is taken closer to c. If no pattern emerges, then the limit may
not exist.

EXAMPLE 2 Investigate lim
x→9

x − 9√
x − 3

graphically and numerically.

Solution The function f (x) = x − 9√
x − 3

is undefined at x = 9 because the formula for

f (9) leads to the undefined expression 0/0. Therefore, the graph in Figure 9 has a gap at
x = 6. However, the graph suggests that f (x) approaches 6 as x → 9.

For numerical evidence, we consider a table of values of f (x) for x approaching 9
from both the left and the right. Table 2 confirms our impression that

lim
x→9

x − 9√
x − 3

= 6

3 6 9 12

3

6

9

x

y

FIGURE 2 Graph of f (x) = x − 9√
x − 3

.

TABLE 2

x → 9− x − 9√
x − 3

x → 9+ x − 9√
x − 3

8.9 5.98329 9.1 6.01662
8.99 5.99833 9.01 6.001666
8.999 5.99983 9.001 6.000167
8.9999 5.9999833 9.0001 6.0000167

EXAMPLE 3 Limit Equals Function Value Investigate lim
x→4

x2.

Solution Figure 3 and Table 3 both suggest that lim
x→4

x2 = 16. But f (x) = x2 is defined

at x = 4 and f (4) = 16, so in this case, the limit is equal to the function value. This
pleasant conclusion is valid whenever f (x) is a continuous function, a concept treated in
Section 2.4.
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16

2 4 6
x

y

FIGURE 3 Graph of f (x) = x2. The limit
is equal to the function value f (4) = 16.

TABLE 3

x → 4− x2 x → 4+ x2

3.9 15.21 4.1 16.81
3.99 15.9201 4.01 16.0801
3.999 15.992001 4.001 16.008001
3.9999 15.99920001 4.0001 16.00080001

EXAMPLE 4 Defining Property of e Verify numerically that lim
h→0

eh − 1

h
= 1.

Solution The function f (h) = (eh − 1)/h is undefined at h = 0, but both Figure 4 and
Table 4 suggest that lim

h→0
(eh − 1)/h = 1.

2

y

1−1 2−2
h

1

y =
h

eh − 1

FIGURE 4

TABLE 4

h → 0− eh − 1

h
h → 0+ eh − 1

h

−0.02 0.990 0.02 1.0101
−0.005 0.99750 0.005 1.00250
−0.001 0.999500 0.001 1.000500
−0.0001 0.99995000 0.0001 1.00005000

EXAMPLE 5 A Limit That Does Not Exist Investigate lim
x→0

sin
π

x
graphically and nu-CAUTION Numerical investigations are often

suggestive, but may be misleading in some
cases. If, in Example 5, we had chosen to

evaluate f (x) = sin
π

x
at the values

x = 0.1, 0.01, 0.001, . . . , we might have
concluded incorrectly that f (x)

approaches the limit 0 as x → 0. The
problem is that f (10−n) = sin(10nπ) = 0
for every whole number n, but f (x) itself
does not approach any limit.

merically.

Solution The function f (x) = sin π
x

is not defined at x = 0, but Figure 5 suggests that
it oscillates between +1 and −1 infinitely often as x → 0. It appears, therefore, that
lim
x→0

sin π
x

does not exist. This impression is confirmed by Table 5, which shows that the

values of f (x) bounce around and do not tend toward any limit L as x → 0.

−2

y

x
−1

1 21
2

1
3

1
4

1
3

1
2

−

−

FIGURE 5 Graph of f (x) = sin π
x .

TABLE 5 The Function f (x) = sin π
x Does Not

Approach a Limit as x → 0

x → 0− sin
π

x
x → 0+ sin

π

x

−0.1 0 0.1 0
−0.03 0.866 0.03 −0.866
−0.007 −0.434 0.007 0.434
−0.0009 0.342 0.0009 −0.342
−0.00065 −0.935 0.00065 0.935
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One-Sided Limits
The limits discussed so far are two-sided. To show that lim

x→c
f (x) = L, it is necessary to

check that f (x) converges to L as x approaches c through values both larger and smaller
than c. In some instances, f (x) may approach L from one side of c without necessarily
approaching it from the other side, or f (x) may be defined on only one side of c. For this
reason, we define the one-sided limits

lim
x→c− f (x) (left-hand limit), lim

x→c+ f (x) (right-hand limit)

The limit itself exists if both one-sided limits exist and are equal.

EXAMPLE 6 Left- and Right-Hand Limits Not Equal Investigate the one-sided limits

of f (x) = x

|x| as x → 0. Does lim
x→0

f (x) exist?1

−1
−3 −2 −1 321

x

y

FIGURE 6 Graph of f (x) = x

|x| .

Solution Figure 6 shows what is going on. For x < 0,

f (x) = x

|x| = x

−x
= −1

Therefore, the left-hand limit is lim
x→0− f (x) = −1. But for x > 0,

f (x) = x

|x| = x

x
= 1

Therefore, lim
x→0+ f (x) = 1. These one-sided limits are not equal, so lim

x→0
f (x) does not

exist.

EXAMPLE 7 The function f (x) in Figure 7 is not defined at c = 0, 2, 4. Investigate
the one- and two-sided limits at these points.3

1

−1

−1

4321
x

y

2

FIGURE 7

Solution

• c = 0: The left-hand limit lim
x→0− f (x) does not seem to exist because f (x) appears

to oscillate infinitely often to the left of x = 0. On the other hand, lim
x→0+ f (x) = 2.

• c = 2: The one-sided limits exist but are not equal:

lim
x→2− f (x) = 3 and lim

x→2+ f (x) = 1

Therefore, lim
x→2

f (x) does not exist.

• c = 4: The one-sided limits exist and both have the value 2. Therefore, the two-sided
limit exists and lim

x→4
f (x) = 2.

Infinite Limits
Some functions f (x) tend to ∞ or −∞ as x approaches a value c. If so, lim

x→c
f (x) does

not exist, but we say that f (x) has an infinite limit. More precisely, we write

• lim
x→c

f (x) = ∞ if f (x) increases without bound as x → c.
• lim

x→c
f (x) = −∞ if f (x) decreases without bound as x → c.

Here, “decrease without bound” means that f (x) becomes negative and |f (x)| → ∞.
One-sided infinite limits are defined similarly. When using this notation, keep in mind that
∞ and −∞ are not numbers.

When f (x) approaches ∞ or −∞ as x approaches c from one or both sides, the line
x = c is called a vertical asymptote. In Figure 8, the line x = 2 is a vertical asymptote
in (A), and x = 0 is a vertical asymptote in both (B) and (C).
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In the next example, the notation x → c± is used to indicate that the left- and right-
hand limits are to be considered separately.

EXAMPLE 8 Investigate the one-sided limits graphically:

(a) lim
x→2±

1

x − 2
(b) lim

x→0±
1

x2
(c) lim

x→0+ ln x

Solution

(a) Figure 8(A) suggests that

lim
x→2−

1

x − 2
= −∞, lim

x→2+
1

x − 2
= ∞

The vertical line x = 2 is a vertical asymptote. Why are the one-sided limits different?

Because f (x) = 1

x − 2
is negative for x < 2 (so the limit from the left is −∞) and f (x)

is positive for x > 2 (so the limit from the right is ∞).

(b) Figure 8(B) suggests that lim
x→0

1

x2
= ∞. Indeed, f (x) = 1

x2
is positive for all x �= 0

and becomes arbitrarily large as x → 0 from either side. The line x = 0 is a vertical
asymptote.
(c) Figure 8(C) suggests that lim

x→0+ ln x = −∞ because f (x) = ln x is negative for

0 < x < 1 and tends to −∞ as x → 0+. The line x = 0 is a vertical asymptote.

2

4 x − 2
1

(A)

f (x) = 
x2
1f (x) = 

(B)

2 4 6

−2

−2

−4

x

y

2

2 4

−2

−2−4

−4

x

y

Asymptote
x = 2

Asymptote
x = 0

(C)

f (x) = ln x

x
21 3 4

y

4

2

−4

−2

Asymptote
x = 0

FIGURE 8

CONCEPTUAL INSIGHT You should not think of an infinite limit as a true limit. The
notation lim

x→c
f (x) = ∞ is merely a shorthand way of saying that f (x) increases beyond

all bounds as x approaches c. The limit itself does not exist. We must be careful when
using this notation because ∞ and −∞ are not numbers, and contradictions can arise
if we try to manipulate them as numbers. For example, if ∞ were a number, it would
be larger than any finite number, and presumably, ∞ + 1 = ∞. But then

∞ + 1 = ∞
(∞ + 1) − ∞ = ∞ − ∞

1 = 0 (contradiction!)

To avoid errors, keep in mind the ∞ is not a number but rather a convenient shorthand
notation.
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2.2 SUMMARY

• By definition, lim
x→c

f (x) = L if |f (x) − L| becomes arbitrarily small when x is any

number sufficiently close (but not equal) to c. We say that

– The limit of f (x) as x approaches c is L, or
– f (x) approaches (or converges) to L as x approaches c.

• If f (x) approaches a limit as x → c, then the limit value L is unique.
• If f (x) does not approach a limit as x → c, we say that lim

x→c
f (x) does not exist.

• The limit may exist even if f (c) is not defined.
• One-sided limits:

– lim
x→c− f (x) = L if f (x) converges to L as x approaches c through values less than c.

– lim
x→c+ f (x) = L if f (x) converges to L as x approaches c through values greater

than c.

• The limit exists if and only if both one-sided limits exist and are equal.
• Infinite limits: lim

x→c
f (x) = ∞ if f (x) increases beyond bound as x approaches c, and

lim
x→c

f (x) = −∞ if f (x) becomes arbitrarily large (in absolute value) but negative as x

approaches c.
• In the case of a one- or two-sided infinite limit, the vertical line x = c is called a vertical
asymptote.

2.2 EXERCISES

Preliminary Questions
1. What is the limit of f (x) = 1 as x → π?

2. What is the limit of g(t) = t as t → π?

3. Is lim
x→10

20 equal to 10 or 20?

4. Can f (x) approach a limit as x → c if f (c) is undefined? If so, give
an example.

5. What does the following table suggest about lim
x→1− f (x) and

lim
x→1+ f (x)?

x 0.9 0.99 0.999 1.1 1.01 1.001

f (x) 7 25 4317 3.0126 3.0047 3.00011

6. Can you tell whether lim
x→5

f (x) exists from a plot of f (x) for x > 5?

Explain.

7. If you know in advance that lim
x→5

f (x) exists, can you determine its

value from a plot of f (x) for all x > 5?

Exercises
In Exercises 1–4, fill in the tables and guess the value of the limit.

1. lim
x→1

f (x), where f (x) = x3 − 1

x2 − 1
.

x f (x) x f (x)

1.002 0.998

1.001 0.999

1.0005 0.9995

1.00001 0.99999

2. lim
t→0

h(t), where h(t) = cos t − 1

t2
. Note that h(t) is even; that is,

h(t) = h(−t).

t ±0.002 ±0.0001 ±0.00005 ±0.00001

h(t)

3. lim
y→2

f (y), where f (y) = y2 − y − 2

y2 + y − 6
.
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y f (y) y f (y)

2.002 1.998

2.001 1.999

2.0001 1.9999

4. lim
x→0+ f (x), where f (x) = x ln x.

x 1 0.5 0.1 0.05 0.01 0.005 0.001

f (x)

5. Determine lim
x→0.5

f (x) for f (x) as in Figure 9.

6. Determine lim
x→0.5

g(x) for g(x) as in Figure 10.

0.5

1.5

x

y

1
f (x)

FIGURE 9

0.5

1.5

x

y

1 g(x)

FIGURE 10

In Exercises 7–8, evaluate the limit.

7. lim
x→21

x 8. lim
x→4.2

√
3

In Exercises 9–16, verify each limit using the limit definition. For ex-
ample, in Exercise 9, show that |3x − 12| can be made as small as
desired by taking x close to 4.

9. lim
x→4

3x = 12 10. lim
x→5

3 = 3

11. lim
x→3

(5x + 2) = 17 12. lim
x→2

(7x − 4) = 10

13. lim
x→0

x2 = 0 14. lim
x→0

(3x2 − 9) = −9

15. lim
x→0

(4x2 + 2x + 5) = 5 16. lim
x→0

(x3 + 12) = 12

In Exercises 17–36, estimate the limit numerically or state that the limit
does not exist. If infinite, state whether the one-sided limits are ∞ or
−∞.

17. lim
x→1

√
x − 1

x − 1
18. lim

x→−4

2x2 − 32

x + 4

19. lim
x→2

x2 + x − 6

x2 − x − 2
20. lim

x→3

x3 − 2x2 − 9

x2 − 2x − 3

21. lim
x→0

sin 2x

x
22. lim

x→0

sin 5x

x

23. lim
θ→0

cos θ − 1

θ
24. lim

x→0

sin x

x2

25. lim
x→4

1

(x − 4)3
26. lim

x→1−
3 − x

x − 1

27. lim
x→3+

x − 4

x2 − 9
28. lim

h→0

3h − 1

h

29. lim
h→0

sin h cos
1

h
30. lim

h→0
cos

1

h

31. lim
x→0

|x|x 32. lim
x→1+

sec−1 x√
x − 1

33. lim
t→e

t − e

ln t − 1
34. lim

r→0
(1 + r)1/r

35. lim
x→1−

tan−1 x

cos−1 x
36. lim

x→0

tan−1 x − x

sin−1 x − x

37. The greatest integer function is defined by [x] = n, where n is the
unique integer such that n ≤ x < n + 1. Sketch the graph of y = [x].
Calculate, for c an integer:

(a) lim
x→c−[x] (b) lim

x→c+[x]

38. Determine the one-sided limits at c = 1, 2, and 4 of the function
g(x) shown in Figure 11, and state whether the limit exists at these
points.

1 2 3 4 5

1

2

3

x

y

FIGURE 11

In Exercises 39–46, determine the one-sided limits numerically or
graphically. If infinite, state whether the one-sided limits are ∞ or −∞,
and describe the corresponding vertical asymptote. In Exercise 46, [x]
is the greatest integer function defined in Exercise 37.

39. lim
x→0±

sin x

|x| 40. lim
x→0± |x|1/x

41. lim
x→0±

x − sin |x|
x3

42. lim
x→4±

x + 1

x − 4

43. lim
x→−2±

4x2 + 7

x3 + 8
44. lim

x→−3±
x2

x2 − 9

45. lim
x→1±

x5 + x − 2

x2 + x − 2
46. lim

x→2± cos
(π

2
(x − [x])

)

47. Determine the one-sided limits at c = 2, 4 of the function f (x) in
Figure 12. What are the vertical asymptotes of f (x)?

48. Determine the infinite one- and two-sided limits in Figure 13.
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−5
42

15

5

10

x

y

FIGURE 12

x

y

−1 3 5

FIGURE 13

In Exercises 49–52, sketch the graph of a function with the given limits.

49. lim
x→1

f (x) = 2, lim
x→3− f (x) = 0, lim

x→3+ f (x) = 4

50. lim
x→1

f (x) = ∞, lim
x→3− f (x) = 0, lim

x→3+ f (x) = −∞

51. lim
x→2+ f (x) = f (2) = 3, lim

x→2− f (x) = −1,

lim
x→4

f (x) = 2 �= f (4)

52. lim
x→1+ f (x) = ∞, lim

x→1− f (x) = 3, lim
x→4

f (x) = −∞

53. Determine the one-sided limits of the function f (x) in Figure 14,
at the points c = 1, 3, 5, 6.

−1
−2
−3
−4

1
2
3
4
5

y

x
1 2 3 4 5 6 7 8

FIGURE 14 Graph of f (x)

54. Does either of the two oscillating functions in Figure 15 appear to
approach a limit as x → 0?

(A) (B)

xx

y
y

FIGURE 15

In Exercises 55–60, plot the function and use the graph to esti-
mate the value of the limit.

55. lim
θ→0

sin 5θ

sin 2θ
56. lim

x→0

12x − 1

4x − 1

57. lim
x→0

2x − cos x

x
58. lim

θ→0

sin2 4θ

cos θ − 1

59. lim
θ→0

cos 7θ − cos 5θ

θ2
60. lim

θ→0

sin2 2θ − θ sin 4θ

θ4

61. Let n be a positive integer. For which n are the two infinite one-
sided limits lim

x→0± 1/xn equal?

62. Let L(n) = lim
x→1

(
n

1 − xn
− 1

1 − x

)
for n a positive integer. In-

vestigate L(n) numerically for several values of n, and then guess the
value of of L(n) in general.

63. In some cases, numerical investigations can be misleading.
Plot f (x) = cos π

x .

(a) Does lim
x→0

f (x) exist?

(b) Show, by evaluating f (x) at x = 1
2 , 1

4 , 1
6 , . . . , that you might be

able to trick your friends into believing that the limit exists and is equal
to L = 1.

(c) Which sequence of evaluations might trick them into believing that
the limit is L = −1.

Further Insights and Challenges
64. Light waves of frequency λ passing through a slit of width a pro-
duce a Fraunhoferdiffraction pattern of light and dark fringes (Figure
16). The intensity as a function of the angle θ is

I (θ) = Im

(
sin(R sin θ)

R sin θ

)2

where R = πa/λ and Im is a constant. Show that the intensity function
is not defined at θ = 0. Then choose any two values for R and check
numerically that I (θ) approaches Im as θ → 0.

65. Investigate lim
θ→0

sin nθ

θ
numerically for several values of n. Then

guess the value in general.

a

Intensity
pattern

Viewing
screen

Slit

Incident 
light waves

θ

FIGURE 16 Fraunhofer diffraction pattern.
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66. Show numerically that lim
x→0

bx − 1

x
for b = 3, 5 appears to equal

ln 3, ln 5, where ln x is the natural logarithm. Then make a conjec-
ture (guess) for the value in general and test your conjecture for two
additional values of b.

67. Investigate lim
x→1

xn − 1

xm − 1
for (m, n) equal to (2, 1), (1, 2), (2, 3),

and (3, 2). Then guess the value of the limit in general and check your
guess for two additional pairs.

68. Find by numerical experimentation the positive integers k such that

lim
x→0

sin(sin2 x)

xk
exists.

69. Plot the graph of f (x) = 2x − 8

x − 3
.

(a) Zoom in on the graph to estimate L = lim
x→3

f (x).

(b) Explain why

f (2.99999) ≤ L ≤ f (3.00001)

Use this to determine L to three decimal places.

70. The function f (x) = 21/x − 2−1/x

21/x + 2−1/x
is defined for x �= 0.

(a) Investigate lim
x→0+ f (x) and lim

x→0− f (x) numerically.

(b) Plot the graph of f and describe its behavior near x = 0.

2.3 Basic Limit Laws
In Section 2.2 we relied on graphical and numerical approaches to investigate limits and
estimate their values. In the next four sections we go beyond this intuitive approach and
develop tools for computing limits in a precise way. The next theorem provides our first
set of tools.

The proof of Theorem 1 is discussed in
Section 2.9 and Appendix D. To illustrate
the underlying idea, consider two numbers
such as 2.99 and 5.001. Observe that 2.99
is close to 3 and 5.0001 is close to 5, so
certainly the sum 2.99 + 5.0001 is close to
3 + 5 and the product (2.99)(5.0001) is
close to (3)(5). In the same way, if f (x)

approaches L and g(x) approaches M as
x → c, then f (x) + g(x) approaches the
sum L + M, and f (x)g(x) approaches
the product LM. The other laws are
similar.

THEOREM 1 Basic Limit Laws If lim
x→c

f (x) and lim
x→c

g(x) exist, then

(i) Sum Law: lim
x→c

(
f (x) + g(x)

)
exists and

lim
x→c

(
f (x) + g(x)

) = lim
x→c

f (x) + lim
x→c

g(x)

(ii) Constant Multiple Law: For any number k, lim
x→c

kf (x) exists and

lim
x→c

kf (x) = k lim
x→c

f (x)

(iii) Product Law: lim
x→c

f (x)g(x) exists and

lim
x→c

f (x)g(x) =
(

lim
x→c

f (x)
) (

lim
x→c

g(x)
)

(iv) Quotient Law: If lim
x→c

g(x) �= 0, then lim
x→c

f (x)

g(x)
exists and

lim
x→c

f (x)

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)

(v) Powers and Roots: If p, q are integers with q �= 0, then lim
x→c

[f (x)]p/q exists and

lim
x→c

[f (x)]p/q =
(

lim
x→c

f (x)
)p/q

Assume that lim
x→c

f (x) ≥ 0 if q is even, and that lim
x→c

f (x) �= 0 if p/q < 0. In

particular, for n a positive integer,

lim
x→c

[f (x)]n =
(

lim
x→c

f (x)
)n

, lim
x→c

n
√

f (x) = n

√
lim
x→c

f (x)

In the second limit, assume that lim
x→c

f (x) ≥ 0 if n is even.
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Before proceeding to the examples, we make some useful remarks.

• The Sum and Product Laws are valid for any number of functions. For example,

lim
x→c

(
f1(x) + f2(x) + f3(x)

) = lim
x→c

f1(x) + lim
x→c

f2(x) + lim
x→c

f3(x)

• The Sum Law has a counterpart for differences:

lim
x→c

(
f (x) − g(x)

) = lim
x→c

f (x) − lim
x→c

g(x)

This follows from the Sum and Constant Multiple Laws (with k = −1):

lim
x→c

(
f (x) − g(x)

) = lim
x→c

f (x) + lim
x→c

( − g(x)
) = lim

x→c
f (x) − lim

x→c
g(x)

• Recall two basic limits from Theorem 1 in Section 2.2:

lim
x→c

k = k, lim
x→c

x = c

Applying Law (v) to f (x) = x, we obtain

lim
x→c

xp/q = cp/q 1

for integers p, q. Assume that c ≥ 0 if q is even and that c > 0 if p/q < 0.

EXAMPLE 1 Use the Basic Limit Laws to evaluate:

(a) lim
x→2

x3 (b) lim
x→2

(x3 + 5x + 7) (c) lim
x→2

√
x3 + 5x + 7

Solution

(a) By Eq. (1), lim
x→2

x3 = 23 = 8.

(b)

lim
x→2

(x3 + 5x + 7) = lim
x→2

x3 + lim
x→2

5x + lim
x→2

7 (Sum Law)

= lim
x→2

x3 + 5 lim
x→2

x + lim
x→2

7 (Constant Multiple Law)

= 8 + 5(2) + 7 = 25

(c) By Law (v) for roots and (b),

lim
x→2

√
x3 + 5x + 7 =

√
lim
x→2

(x3 + 5x + 7) = √
25 = 5

EXAMPLE 2 Evaluate (a) lim
t→−1

t + 6

2t4
and (b) lim

t→3
t−1/4(t + 5)1/3.

You may have noticed that each of the
limits in Examples 1 and 2 could have
been evaluated by a simple substitution.
For example, set t = −1 to evaluate

lim
t→−1

t + 6

2t4
= −1 + 6

2(−1)4
= 5

2

Substitution is valid when the function is
continuous, a concept we shall study in the
next section.

Solution

(a) Use the Quotient, Sum, and Constant Multiple Laws:

lim
t→−1

t + 6

2t4
=

lim
t→−1

(t + 6)

lim
t→−1

2t4
=

lim
t→−1

t + lim
t→−1

6

2 lim
t→−1

t4
= −1 + 6

2(−1)4
= 5

2
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(b) Use the Product, Powers, and Sum Laws:

lim
t→3

t−1/4(t + 5)1/3 =
(

lim
t→3

t−1/4
) (

lim
t→3

3
√

t + 5

)
=

(
3−1/4

) (
3
√

lim
t→3

t + 5

)

= 3−1/4 3
√

3 + 5 = 3−1/4(2) = 2

31/4

The next example reminds us that the Basic Limit Laws apply only when the limits
of both f (x) and g(x) exist.

EXAMPLE 3 Assumptions Matter Show that the Product Law cannot be applied to
lim
x→0

f (x)g(x) if f (x) = x and g(x) = x−1.

Solution For all x �= 0 we have f (x)g(x) = x · x−1 = 1, so the limit of the product
exists:

lim
x→0

f (x)g(x) = lim
x→0

1 = 1

However, lim
x→0

x−1 does not exist because g(x) = x−1 approaches ∞ as x → 0+ and

it approaches −∞ as x → 0−. Therefore, the Product Law cannot be applied and its
conclusion does not hold:(

lim
x→0

f (x)
) (

lim
x→0

g(x)
)

=
(

lim
x→0

x
) (

lim
x→0

x−1
)

︸ ︷︷ ︸
Does not exist

2.3 SUMMARY

• The Basic Limit Laws: If lim
x→c

f (x) and lim
x→c

g(x) both exist, then

(i) lim
x→c

(
f (x) + g(x)

) = lim
x→c

f (x) + lim
x→c

g(x)

(ii) lim
x→c

kf (x) = k lim
x→c

f (x)

(iii) lim
x→c

f (x) g(x) =
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)

(iv) If lim
x→c

g(x) �= 0, then lim
x→c

f (x)

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)

(v) If p, q are integers with q �= 0,

lim
x→c

[f (x)]p/q =
(

lim
x→c

f (x)
)p/q

For n a positive integer,

lim
x→c

[f (x)]n =
(

lim
x→c

f (x)
)n

, lim
x→c

n
√

f (x) = n

√
lim
x→c

f (x)

• If lim
x→c

f (x) or lim
x→c

g(x) does not exist, then the Basic Limit Laws cannot be applied.
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2.3 EXERCISES

Preliminary Questions
1. State the Sum Law and Quotient Law.

2. Which of the following is a verbal version of the Product Law (as-
suming the limits exist)?

(a) The product of two functions has a limit.

(b) The limit of the product is the product of the limits.

(c) The product of a limit is a product of functions.

(d) A limit produces a product of functions.

3. Which statement is correct? The Quotient Law does not hold if:

(a) The limit of the denominator is zero.

(b) The limit of the numerator is zero.

Exercises
In Exercises 1–24, evaluate the limit using the Basic Limit Laws and
the limits lim

x→c
xp/q = cp/q and lim

x→c
k = k.

1. lim
x→9

x 2. lim
x→−3

14

3. lim
x→ 1

2

x4 4. lim
z→27

z2/3

5. lim
t→2

t−1 6. lim
x→5

x−2

7. lim
x→0.2

(3x + 4) 8. lim
x→ 1

3

(3x3 + 2x2)

9. lim
x→−1

(3x4 − 2x3 + 4x) 10. lim
x→8

(3x2/3 − 16x−1)

11. lim
x→2

(x + 1)(3x2 − 9) 12. lim
x→ 1

2

(4x + 1)(6x − 1)

13. lim
t→4

3t − 14

t + 1
14. lim

z→9

√
z

z − 2

15. lim
y→ 1

4

(16y + 1)(2y1/2 + 1) 16. lim
x→2

x(x + 1)(x + 2)

17. lim
y→4

1√
6y + 1

18. lim
w→7

√
w + 2 + 1√
w − 3 − 1

19. lim
x→−1

x

x3 + 4x
20. lim

t→−1

t2 + 1

(t3 + 2)(t4 + 1)

21. lim
t→25

3
√

t − 1
5 t

(t − 20)2
22. lim

y→ 1
3

(18y2 − 4)4

23. lim
t→ 3

2

(4t2 + 8t − 5)3/2 24. lim
t→7

(t + 2)1/2

(t + 1)2/3

25. Use the Quotient Law to prove that if lim
x→c

f (x) exists and is

nonzero, then

lim
x→c

1

f (x)
= 1

lim
x→c

f (x)

26. Assuming that lim
x→6

f (x) = 4, compute:

(a) lim
x→6

f (x)2 (b) lim
x→6

1

f (x)
(c) lim

x→6
x
√

f (x)

In Exercises 27–30, evaluate the limit assuming that lim
x→−4

f (x) = 3

and lim
x→−4

g(x) = 1.

27. lim
x→−4

f (x)g(x) 28. lim
x→−4

(2f (x) + 3g(x))

29. lim
x→−4

g(x)

x2
30. lim

x→−4

f (x) + 1

3g(x) − 9

31. Can the Quotient Law be applied to evaluate lim
x→0

sin x

x
? Explain.

32. Show that the Product Law cannot be used to evaluate the limit
lim

x→π/2

(
x − π

2

)
tan x.

33. Give an example where lim
x→0

(f (x) + g(x)) exists but neither

lim
x→0

f (x) nor lim
x→0

g(x) exists.

Further Insights and Challenges
34. Show that if both lim

x→c
f (x) g(x) and lim

x→c
g(x) exist and

lim
x→c

g(x) �= 0, then lim
x→c

f (x) exists. Hint: Write f (x) = f (x) g(x)

g(x)
.

35. Suppose that lim
t→3

tg(t) = 12. Show that lim
t→3

g(t) exists and
equals 4.

36. Prove that if lim
t→3

h(t)
t = 5, then lim

t→3
h(t) = 15.

37. Assuming that lim
x→0

f (x)
x = 1, which of the following

statements is necessarily true? Why?

(a) f (0) = 0 (b) lim
x→0

f (x) = 0

38. Prove that if lim
x→c

f (x) = L �= 0 and lim
x→c

g(x) = 0, then the limit

lim
x→c

f (x)
g(x)

does not exist.

39. Suppose that lim
h→0

g(h) = L.

(a) Explain why lim
h→0

g(ah) = L for any constant a �= 0.

(b) If we assume instead that lim
h→1

g(h) = L, is it still necessarily true

that lim
h→1

g(ah) = L?

(c) Illustrate (a) and (b) with the function f (x) = x2.
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40. Assume that L(a) = lim
x→0

ax − 1

x
exists for all a > 0.Assume also

that lim
x→0

ax = 1.

(a) Prove that L(ab) = L(a) + L(b) for a, b > 0. Hint: (ab)x − 1 =

ax(bx − 1) + (ax − 1). This shows that L(a) “behaves” like a loga-
rithm. We will see that L(a) = ln a in Section 3.10.

(b) Verify numerically that L(12) = L(3) + L(4).

2.4 Limits and Continuity
In everyday speech, the word “continuous” means having no breaks or interruptions. In
calculus, continuity is used to describe functions whose graphs have no breaks. If we
imagine the graph of a function f as a wavy metal wire, then f is continuous if its graph
consists of a single piece of wire as in Figure 1. A break in the wire as in Figure 2 is called
a discontinuity.

Now observe in Figure 2 that the break in the graph occurs because the left- and
c

y = f (x)

f (c)

x

y

FIGURE 1 f (x) is continuous at x = c.
right-hand limits as x approaches c are not equal and thus lim

x→c
g(x) does not exist. By

contrast, in Figure 1, lim
x→c

f (x) exists and is equal to the function value f (c). This suggests

y = g(x)

c

g(c)

x

y

FIGURE 2 Discontinuity at x = c: The left-
and right-hand limits as x → c are not
equal.

the following definition of continuity in terms of limits.

DEFINITION Continuity at a Point Assume that f (x) is defined on an open interval
containing x = c. Then f is continuous at x = c if

lim
x→c

f (x) = f (c)

If the limit does not exist, or if it exists but is not equal to f (c), we say that f has a
discontinuity (or is discontinuous) at x = c.

A function f (x) may be continuous at some points and discontinuous at others. If f (x)

is continuous at all points in an interval I , then f (x) is said to be continuous on I .
If I is an interval [a, b] or [a, b) that includes a as a left endpoint, we require that
lim

x→a+ f (x) = f (a). Similarly, we require that lim
x→b− f (x) = f (b) if I includes b as a

right endpoint. If f (x) is continuous at all points in its domain, then f (x) is simply called
continuous.

EXAMPLE 1 Show that the following functions are continuous:

c

k

x

y

FIGURE 3 The function f (x) = k is
continuous.

(a) f (x) = k (k any constant) (b) g(x) = xn (n a whole number)

Solution

(a) We have lim
x→c

f (x) = lim
x→c

k = k and f (c) = k. The limit exists and is equal to the

function value for all c, so f (x) is continuous (Figure 3).

(b) By Eq. (1) in Section 2.3, lim
x→c

g(x) = lim
x→c

xn = cn for all c.Also g(c) = cn, so again,

c

c

x

y

FIGURE 4 The function g(x) = x is
continuous.

the limit exists and is equal to the function value. Therefore, g(x) is continuous. (Figure 4
illustrates the case n = 1).

Examples of Discontinuities
To understand continuity better, let’s consider some ways in which a function can fail to
be continuous. Keep in mind that continuity at a point x = c requires more than just the
existence of a limit. Three conditions must hold:

1. f (c) is defined. 2. lim
x→c

f (x) exists. 3. They are equal.
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If lim
x→c

f (x) exists but is not equal to f (c), we say that f has a removable discon-

tinuity at x = c. The function in Figure 5(A) has a removable discontinuity at c = 2
because

f (2) = 10 but lim
x→2

f (x) = 5︸ ︷︷ ︸
Limit exists but is not equal to function value

Removable discontinuities are “mild” in the following sense: We can make f contin-
uous at x = c by redefining f (c). In Figure 5(B), f (2) has been redefined as f (2) = 5,
and this makes f continuous at x = 2.

2

5

10

2

5

10

x

y

x

y

(A) Removable discontinuity at x = 2 (B) Function redefined at x = 2

FIGURE 5 Removable discontinuity: The
discontinuity can be removed by redefining
f (2).

A“worse” type of discontinuity is a jump discontinuity, which occurs if the one-sided
limits lim

x→c− f (x) and lim
x→c+ f (x) exist but are not equal. Figure 6 shows two functions

with jump discontinuities at c = 2. Unlike the removable case, we cannot make f (x)

continuous by redefining f (c).

(A) Left-continuous at x = 2

2

(B) Neither left- nor right-continuous at x = 2

2
x

y

x

y

FIGURE 6 Jump discontinuities.

In connection with jump discontinuities, it is convenient to define one-sided
continuity.

DEFINITION One-Sided Continuity A function f (x) is called:

• Left-continuous at x = c if lim
x→c− f (x) = f (c)

• Right-continuous at x = c if lim
x→c+ f (x) = f (c)

In Figure 6 above, the function in (A) is left-continuous but the function in (B) is
neither left- nor right-continuous. The next example explores one-sided continuity using a
piecewise-defined function—that is, a function defined by different formulas on different
intervals.

EXAMPLE 2 Piecewise-Defined Function Discuss the continuity of

F(x) =

⎧⎪⎨
⎪⎩

x for x < 1

3 for 1 ≤ x ≤ 3

x for x > 3
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Solution The functions f (x) = x and g(x) = 3 are continuous, so F(x) is also continu-

21 4 53

1

2

3

4

5

x

y

FIGURE 7 Piecewise-defined function F(x)

in Example 2.

ous, except possibly at the transition points x = 1 and x = 3, where the formula for F(x)

changes (Figure 7).

• At x = 1, the one-sided limits exist but are not equal:

lim
x→1− F(x) = lim

x→1− x = 1, lim
x→1+ F(x) = lim

x→1+ 3 = 3

Thus F(x) has a jump discontinuity at x = 1. However, the right-hand limit is equal
to the function value F(1) = 3, so F(x) is right-continuous at x = 1.

• At x = 3, the left- and right-hand limits exist and both are equal to F(3), so F(x)

is continuous at x = 3:

lim
x→3− F(x) = lim

x→3− 3 = 3, lim
x→3+ F(x) = lim

x→3+ x = 3

We say that f (x) has an infinite discontinuity at x = c if one or both of the one-
sided limits is infinite (even if f (x) itself is not defined at x = c). Figure 8 illustrates three
types of infinite discontinuities occurring at x = 2. Notice that x = 2 does not belong to
the domain of the function in cases (A) and (B).

2

1

2

(B) (C)(A)

2
x x x

y y y

FIGURE 8 Functions with an infinite
discontinuity at x = 2.

Finally, we note that some functions have more “severe” types of discontinuity than
those discussed above. For example, f (x) = sin 1

x
oscillates infinitely often between +1

and −1 as x → 0 (Figure 9). Neither the left- nor the right-hand limit exists at x = 0, so
this discontinuity is not a jump discontinuity. See Exercises 88 and 89 for even stranger
examples.Although of interest from a theoretical point of view, these discontinuities rarely
arise in practice.2 3−3 −2

x

y

1

−1

FIGURE 9 Graph of y = sin 1
x . The

discontinuity at x = 0 is not a jump,
removable, or infinite discontinuity.

Building Continuous Functions
Having studied some examples of discontinuities, we focus again on continuous functions.
How can we show that a function is continuous? One way is to use the Laws of Continuity,
which state, roughly speaking, that a function is continuous if it is built out of functions
that are known to be continuous.

THEOREM 1 Basic Laws of Continuity If f (x) and g(x) are continuous at x = c,
then the following functions are also continuous at x = c:

(i) f (x) + g(x) and f (x) − g(x)

(ii) kf (x) for any constant k

(iii) f (x) g(x)

(iv) f (x)/g(x) if g(c) �= 0

Proof These laws follow directly from the corresponding Basic Limit Laws (Theorem 1,
Section 2.3). We illustrate by proving the first part of (i) in detail. The remaining laws
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are proved similarly. By definition, we must show that lim
x→c

(f (x) + g(x)) = f (c) + g(c).

Because f (x) and g(x) are both continuous at x = c, we have

lim
x→c

f (x) = f (c), lim
x→c

g(x) = g(c)

The Sum Law for limits yields the desired result:

lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x) = f (c) + g(c)

In Section 2.3, we noted that the Basic Limit Laws for Sums and Products are
valid for an arbitrary number of functions. The same is true for continuity; that is, if
f1(x), . . . , fn(x) are continuous, then so are the functions

f1(x) + f2(x) + · · · + fn(x), f1(x) · f2(x) · · · fn(x)

The basic functions are continuous on their domains. Recall (Section 1.3) that the termWhen a function f (x) is defined and
continuous for all values of x, we say that
f (x) is continuous on the real line.

basic function refers to polynomials, rational functions, nth-root and algebraic functions,
trigonometric functions and their inverses, and exponential and logarithmic functions.

THEOREM 2 Continuity of Polynomial and Rational Functions Let P(x) and Q(x)

be polynomials. Then:

• P(x) is continuous on the real line.
• P(x)/Q(x) is continuous on its domain (at all values x = c such that Q(c) �= 0).

REMINDER A rational function is a
quotient of two polynomials P(x)/Q(x).

Proof The function xm is continuous for all whole numbers m by Example 1. By Conti-
nuity Law (ii), axm is continuous for every constant a. A polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

is a sum of continuous functions, so it too is continuous. By Continuity Law (iv), a quotient
P(x)/Q(x) is continuous at x = c, provided that Q(c) �= 0.

This result shows, for example, that f (x) = 3x4 − 2x3 + 8x is continuous for all x

and that

g(x) = x + 3

x2 − 1

is continuous forx �= ±1. Note that ifn is a positive integer, thenf (x) = x−n is continuous
for x �= 0 because f (x) = x−n = 1/xn is a rational function.

The continuity of the nth-root, trigonometric, exponential, and logarithmic functions
should not be surprising because their graphs have no visible breaks (Figure 10). However,
complete proofs of continuity are somewhat technical and are omitted.

REMINDER The domain of y = x1/n is
the real line if n is odd and the half-line
[0, ∞) if n is even.

THEOREM 3 Continuity of Some Basic Functions

• y = x1/n is continuous on its domain for n a natural number.
• y = sin x and y = cos x are continuous on the real line.
• y = bx is continuous on the real line (for b > 0, b �= 1).
• y = logb x is continuous for x > 0 (for b > 0, b �= 1).
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FIGURE 10 As the graphs suggest, these functions are continuous on their domains.

Because sin x and cos x are continuous, Continuity Law (iv) for Quotients implies
that the other standard trigonometric functions are continuous on their domains, consisting
of the values of x where their denominators are nonzero:

tan x = sin x

cos x
, cot x = cos x

sin x
, sec x = 1

cos x
, csc x = 1

sin x

They have infinite discontinuities at points where their denominators are zero. For example,−π
2

π
2

3π
2

x

y

FIGURE 11 Graph of y = tan x.

tan x has infinite discontinuities at the points (Figure 11)

x = ±π

2
, ±3π

2
, ±5π

2
, . . .

The next theorem states that the inverse f −1(x) of a continuous function f (x) is
continuous. This is to be expected because the graph of f −1(x) is the reflection of the
graph of f (x) through the line y = x. If the graph of f (x) has “no breaks,” the same
ought to be true of the graph of f −1(x) [see the proof of Theorem 6 in Appendix D].

THEOREM 4 Continuity of the Inverse Function If f (x) is continuous on an interval
I with range R, and if f −1(x) exists, then f −1(x) is continuous with domain R.

One consequence of this theorem is that the inverse trigonometric functions sin−1 x,
cos−1 x, tan−1 x, and so on are all continuous on their domains.

Finally, it is important to know that a composition of continuous functions is again
continuous. The following theorem is proved in Appendix D.

THEOREM 5 Continuity of Composite Functions If g is continuous at x = c, and f

is continuous at x = g(c), then the composite function F(x) = f (g(x)) is continuous
at x = c.

For example, F(x) = (x2 + 9)1/3 is continuous because it is the composite of the
continuous functions f (x) = x1/3 and g(x) = x2 + 9. Similarly, F(x) = cos(x−1) is con-
tinuous for all x �= 0, and F(x) = 2sin x is continuous for all x.

More generally, an elementary function is a function that is constructed out of
basic functions using the operations of addition, subtraction, multiplication, division, and
composition. Since the basic functions are continuous (on their domains), an elementary
function is also continuous on its domain by the laws of continuity. An example of an
elementary function is

F(x) = tan−1
(

x2 + cos(2x + 9)

x − 8

)
This function is continuous on its domain {x : x �= 8}.
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Substitution: Evaluating Limits Using Continuity
It is easy to evaluate a limit when the function in question is known to be continuous. In
this case, by definition, the limit is equal to the function value:

lim
x→c

f (x) = f (c)

We call this the Substitution Method because the limit is evaluated by “plugging in”
x = c.

EXAMPLE 3 Evaluate (a) lim
y→ π

3

sin y and (b) lim
x→−1

3x

√
x + 5

.

Solution

(a) We can use substitution because f (y) = sin y is continuous.

lim
y→ π

3

sin y = sin
π

3
=

√
3

2

(b) The function f (x) = 3x/
√

x + 5 is continuous at x = −1 because the numerator and
denominator are both continuous at x = −1 and the denominator

√
x + 5 is nonzero at

x = −1. Therefore, we can use substitution:

lim
x→−1

3x

√
x + 5

= 3−1

√−1 + 5
= 1

6

The greatest integer function [x] is the function defined by [x] = n, where n is the1

2

3

−3

1 32−2
x

y

FIGURE 12 Graph of f (x) = [x].

unique integer such that n ≤ x < n + 1 [Figure 12]. For example, [4.7] = 4.

EXAMPLE 4 Assumptions Matter Can we evaluate lim
x→2

[x] using substitution?

Solution Substitution cannot be applied because f (x) = [x] is not continuous at x = 2.
Although f (2) = 2, lim

x→2
[x] does not exist because the one-sided limits are not equal:

lim
x→2+[x] = 2 and lim

x→2−[x] = 1

CONCEPTUAL INSIGHT Real-World Modeling by Continuous Functions Continuous func-
tions are used often to represent physical quantities such as velocity, temperature, and
voltage. This reflects our everyday experience that change in the physical world tends
to occur continuously rather than through abrupt transitions. However, mathematical
models are at best approximations to reality, and it is important to be aware of their
limitations.

In Figure 13, atmospheric temperature is represented as a continuous function of al-
titude. This is justified for large-scale objects such as the earth’s atmosphere because the
reading on a thermometer appears to vary continuously as altitude changes. However,
temperature is a measure of the average kinetic energy of molecules. At the micro-
scopic level, it would not be meaningful to treat temperature as a quantity that varies
continuously from point to point.

Similarly, the size P(t) of a population is usually treated as a continuous function of
time t . Strictly speaking, P(t) is a whole number that changes by ±1 when an individual
is born or dies, so it is not continuous, but if the population is large, the effect of an
individual birth or death is small, and it is both reasonable and convenient to treat P(t)

as a continuous function.
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FIGURE 13 Atmospheric temperature and world population are represented by continuous graphs.

2.4 SUMMARY

• Definition: f (x) is continuous at x = c if lim
x→c

f (x) = f (c).
• If lim

x→c
f (x) does not exist, or if it exists but does not equal f (c), then f is discontinuous

at x = c.
• If f (x) is continuous at all points in its domain, f is simply called continuous.
• Right-continuous at x = c: lim

x→c+ f (x) = f (c).
• Left-continuous at x = c: lim

x→c− f (x) = f (c).

• Three common types of discontinuities: removable discontinuity
[

lim
x→c

f (x) exists but

does not equal f (c)
]
, jump discontinuity (the one-sided limits both exist but are not equal),

and infinite discontinuity (the limit is infinite as x approaches c from one or both sides).
• Laws of Continuity: Sums, products, multiples, inverses, and composites of continuous
functions are again continuous. The same holds for a quotient f (x)/g(x) at points where
g(x) �= 0.
• Basic functions: Polynomials, rational functions, nth-root and algebraic functions,
trigonometric functions and their inverses, exponential and logarithmic functions. Basic
functions are continuous on their domains.
• Substitution Method: If f (x) is known to be continuous at x = c, then the value of the
limit lim

x→c
f (x) is f (c).

2.4 EXERCISES

Preliminary Questions
1. Which property of f (x) = x3 allows us to conclude that
lim
x→2

x3 = 8?

2. What can be said about f (3) if f is continuous and
lim
x→3

f (x) = 1
2 ?

3. Suppose that f (x) < 0 if x is positive and f (x) > 1 if x is negative.
Can f be continuous at x = 0?

4. Is it possible to determine f (7) if f (x) = 3 for all x < 7 and f is
right-continuous at x = 7? What if f is left-continuous?

5. Are the following true or false? If false, state a correct version.

(a) f (x) is continuous at x = a if the left- and right-hand limits of
f (x) as x → a exist and are equal.
(b) f (x) is continuous at x = a if the left- and right-hand limits of
f (x) as x → a exist and equal f (a).
(c) If the left- and right-hand limits of f (x) as x → a exist, then f

has a removable discontinuity at x = a.
(d) If f (x) and g(x) are continuous at x = a, then f (x) + g(x) is
continuous at x = a.
(e) If f (x) and g(x) are continuous at x = a, then f (x)/g(x) is con-
tinuous at x = a.
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Exercises
1. Referring to Figure 14, state whether f (x) is left- or right-

continuous (or neither) at each point of discontinuity. Does f (x) have
any removable discontinuities?

Exercises 2–4 refer to the function g(x) in Figure 15.

2. State whether g(x) is left- or right-continuous (or neither) at each
of its points of discontinuity.

3. At which point c does g(x) have a removable discontinuity? How
should g(c) be redefined to make g continuous at x = c?

4. Find the point c1 at which g(x) has a jump discontinuity but is left-
continuous. How should g(c1) be redefined to make g right-continuous
at x = c1?

1 2 3 4 5 6
x

5

4

3

2

1

y

FIGURE 14 Graph of y = f (x)

1 2 3 4 5 6
x

5

4

3

2

1

y

FIGURE 15 Graph of y = g(x)

5. In Figure 16, determine the one-sided limits at the points of dis-
continuity. Which discontinuity is removable and how should f be
redefined to make it continuous at this point?

42−2

6

2

x

y

FIGURE 16

6. Suppose that f (x) = 2 for x < 3 and f (x) = −4 for x > 3.

(a) What is f (3) if f is left-continuous at x = 3?
(b) What is f (3) if f is right-continuous at x = 3?

In Exercises 7–16, use the Laws of Continuity and Theorems 2 and 3
to show that the function is continuous.

7. f (x) = x + sin x 8. f (x) = x sin x

9. f (x) = 3x + 4 sin x 10. f (x) = 3x3 + 8x2 − 20x

11. f (x) = 1

x2 + 1
12. f (x) = x2 − cos x

3 + cos x

13. f (x) = cos(x2) 14. f (x) = tan−1(4x)

15. f (x) = ex cos 3x 16. f (x) = ln(x4 + 1)

In Exercises 17–34, determine the points of discontinuity. State the
type of discontinuity (removable, jump, infinite, or none of these) and
whether the function is left- or right-continuous.

17. f (x) = 1

x
18. f (x) = |x|

19. f (x) = x − 2

|x − 1| 20. f (x) = [x]

21. f (x) =
[

1

2
x

]
22. g(t) = 1

t2 − 1

23. f (x) = x + 1

4x − 2
24. h(z) = 1 − 2z

z2 − z − 6

25. f (x) = 3x2/3 − 9x3 26. g(t) = 3t−2/3 − 9t3

27. f (x) =
⎧⎨
⎩

x − 2

|x − 2| x �= 2

−1 x = 2
28. f (x) =

{
cos

1

x
x �= 0

1 x = 0

29. g(t) = tan 2t 30. f (x) = csc(x2)

31. f (x) = tan(sin x) 32. f (x) = cos(π [x])

33. f (x) = 1

ex − e−x
34. f (x) = ln |x − 4|

In Exercises 35–48, determine the domain of the function and prove
that it is continuous on its domain using the Laws of Continuity and the
facts quoted in this section.

35. f (x) = 2 sin x + 3 cos x 36. f (x) =
√

x2 + 9

37. f (x) = √
x sin x 38. f (x) = x2

x + x1/4

39. f (x) = x2/32x 40. f (x) = x1/3 + x3/4

41. f (x) = x−4/3 42. f (x) = ln(9 − x2)

43. f (x) = tan2 x 44. f (x) = cos(2x)

45. f (x) = (x4 + 1)3/2 46. f (x) = e−x2

47. f (x) = cos(x2)

x2 − 1
48. f (x) = 9tan x

49. Show that the function

f (x) =

⎧⎪⎨
⎪⎩

x2 + 3 for x < 1

10 − x for 1 ≤ x ≤ 2

6x − x2 for x > 2

is continuous for x �= 1, 2. Then compute the right- and left-hand lim-
its at x = 1, 2, and determine whether f (x) is left-continuous, right-
continuous, or continuous at these points (Figure 17).

621

9

y = 10 − x

y = 6x − x2

y = x2 + 3
x

y

FIGURE 17
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50. Sawtooth Function Draw the graph of f (x) = x − [x]. At
which points is f discontinuous? Is it left- or right-continuous at those
points?

In Exercises 51–54, sketch the graph of f (x). At each point of discon-
tinuity, state whether f is left- or right-continuous.

51. f (x) =
{

x2 for x ≤ 1

2 − x for x > 1

52. f (x) =
⎧⎨
⎩

x + 1 for x < 1

1

x
for x ≥ 1

53. f (x) =
⎧⎨
⎩

x2 − 3x + 2

|x − 2| x �= 2

0 x = 2

54. f (x) =

⎧⎪⎨
⎪⎩

x3 + 1 for −∞ < x ≤ 0

−x + 1 for 0 < x < 2

−x2 + 10x − 15 for x ≥ 2

55. Show that the function

f (x) =
⎧⎨
⎩

x2 − 16

x − 4
x �= 4

10 x = 4

has a removable discontinuity at x = 4.

56. Define f (x) = x sin 1
x + 2 for x �= 0. Plot f (x). How

should f (0) be defined so that f is continuous at x = 0?

In Exercises 57–59, find the value of the constant (a, b, or c) that makes
the function continuous.

57. f (x) =
{

x2 − c for x < 5

4x + 2c for x ≥ 5

58. f (x) =
{

2x + 9x−1 for x ≤ 3

−4x + c for x > 3

59. f (x) =

⎧⎪⎨
⎪⎩

x−1 for x < −1

ax + b for − 1 ≤ x ≤ 1
2

x−1 for x > 1
2

60. Define

g(x) =

⎧⎪⎨
⎪⎩

x + 3 for x < −1

cx for − 1 ≤ x ≤ 2

x + 2 for x > 2

Find a value of c such that g(x) is

(a) left-continuous (b) right-continuous

In each case, sketch the graph of g(x).

61. Define g(t) = tan−1
(

1

t − 1

)
for t �= 1. Answer the following

questions, using a plot if necessary.

(a) Can g(1) be defined so that g(t) is continuous at t = 1?

(b) How should g(1) be defined so that g(t) is left-continuous at t = 1?

62. Each of the following statements is false. For each statement, sketch
the graph of a function that provides a counterexample.

(a) If lim
x→a

f (x) exists, then f (x) is continuous at x = a.

(b) If f (x) has a jump discontinuity at x = a, then f (a) is equal to
either lim

x→a− f (x) or lim
x→a+ f (x).

In Exercises 63–66, draw the graph of a function on [0, 5] with the
given properties.

63. f (x) is not continuous at x = 1, but lim
x→1+ f (x) and lim

x→1− f (x)

exist and are equal.

64. f (x) is left-continuous but not continuous at x = 2 and right-
continuous but not continuous at x = 3.

65. f (x) has a removable discontinuity at x = 1, a jump discontinuity
at x = 2, and

lim
x→3− f (x) = −∞, lim

x→3+ f (x) = 2

66. f (x) is right- but not left-continuous at x = 1, left- but not right-
continuous at x = 2, and neither left- nor right-continuous at x = 3.

In Exercises 67–80, evaluate using substitution.

67. lim
x→−1

(2x3 − 4) 68. lim
x→2

(5x − 12x−2)

69. lim
x→3

x + 2

x2 + 2x
70. lim

x→π
sin

(x

2
− π

)

71. lim
x→ π

4

tan(3x) 72. lim
x→π

1

cos x

73. lim
x→4

x−5/2 74. lim
x→2

√
x3 + 4x

75. lim
x→−1

(1 − 8x3)3/2 76. lim
x→2

(7x + 2

4 − x

)2/3

77. lim
x→3

10x2−2x 78. lim
x→− π

2

3sin x

79. lim
x→4

sin−1
(x

4

)
80. lim

x→0
tan−1(ex)

81. Suppose that f (x) and g(x) are discontinuous at x = c. Does it
follow that f (x) + g(x) is discontinuous at x = c? If not, give a coun-
terexample. Does this contradict Theorem 1 (i)?

82. Prove that f (x) = |x| is continuous for all x. Hint: To prove con-
tinuity at x = 0, consider the one-sided limits.

83. Use the result of Exercise 82 to prove that if g(x) is continuous,
then f (x) = |g(x)| is also continuous.
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84. Which of the following quantities would be represented by contin-
uous functions of time and which would have one or more discontinu-
ities?

(a) Velocity of an airplane during a flight

(b) Temperature in a room under ordinary conditions

(c) Value of a bank account with interest paid yearly

(d) The salary of a teacher

(e) The population of the world

85. In 2009, the federal income tax T (x) on income of x dol-
lars (up to $82,250) was determined by the formula

T (x) =

⎧⎪⎨
⎪⎩

0.10x for 0 ≤ x < 8350

0.15x − 417.50 for 8350 ≤ x < 33,950

0.25x − 3812.50 for 33,950 ≤ x < 82,250

Sketch the graph of T (x). Does T (x) have any discontinuities? Ex-
plain why, if T (x) had a jump discontinuity, it might be advantageous
in some situations to earn less money.

Further Insights and Challenges
86. If f (x) has a removable discontinuity at x = c, then it is
possible to redefine f (c) so that f (x) is continuous at x = c. Can this
be done in more than one way?

87. Give an example of functions f (x) and g(x) such that f (g(x)) is
continuous but g(x) has at least one discontinuity.

88. Continuous at Only One Point Show that the following func-
tion is continuous only at x = 0:

f (x) =
{

x for x rational

−x for x irrational

89. Show that f (x) is a discontinuous function for all x where f (x) is
defined as follows:

f (x) =
{

1 for x rational

−1 for x irrational

Show that f (x)2 is continuous for all x.

2.5 Evaluating Limits Algebraically
Substitution can be used to evaluate limits when the function in question is known to be
continuous. For example, f (x) = x−2 is continuous at x = 3, and therefore,

lim
x→3

x−2 = 3−2 = 1

9

When we study derivatives in Chapter 3, we will be faced with limits lim
x→c

f (x), where

f (c) is not defined. In such cases, substitution cannot be used directly. However, many of
these limits can be evaluated if we use algebra to rewrite the formula for f (x).

To illustrate, consider the limit (Figure 1).

4 8

4

8

12

x

y

FIGURE 1 Graph of f (x) = x2 − 16

x − 4
. This

function is undefined at x = 4, but the limit
as x → 4 exists.

lim
x→4

x2 − 16

x − 4

The function f (x) = x2 − 16

x − 4
is not defined at x = 4 because the formula for f (4) pro-

duces the undefined expression 0/0. However, the numerator of f (x) factors:

x2 − 16

x − 4
= (x + 4)(x − 4)

x − 4
= x + 4 (valid for x �= 4)

This shows that f (x) coincides with the continuous function x + 4 for all x �= 4. Since
the limit depends only on the values of f (x) for x �= 4, we have

lim
x→4

x2 − 16

x − 4
= lim

x→4
(x + 4) = 8︸ ︷︷ ︸

Evaluate by substitution
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We say that f (x) has an indeterminate form (or is indeterminate) at x = c if the
formula for f (c) yields an undefined expression of the type

Other indeterminate forms are 1∞, ∞0,
and 00. These are treated in Section 4.5.

0

0
,

∞
∞ , ∞ · 0, ∞ − ∞

Our strategy, when this occurs, is to transform f (x) algebraically, if possible, into a
new expression that is defined and continuous at x = c, and then evaluate the limit by
substitution (“plugging in”). As you study the following examples, notice that the critical
step is to cancel a common factor from the numerator and denominator at the appropriate
moment, thereby removing the indeterminacy.

EXAMPLE 1 Calculate lim
x→3

x2 − 4x + 3

x2 + x − 12
.

Solution The function has the indeterminate form 0/0 at x = 3 because

Numerator at x = 3: x2 − 4x + 3 = 32 − 4(3) + 3 = 0

Denominator at x = 3: x2 + x − 12 = 32 + 3 − 12 = 0

Step 1. Transform algebraically and cancel.

x2 − 4x + 3

x2 + x − 12
= (x − 3)(x − 1)

(x − 3)(x + 4)︸ ︷︷ ︸
Cancel common factor

= x − 1

x + 4︸ ︷︷ ︸
Continuous at x = 3

(if x �= 3) 1

Step 2. Substitute (evaluate using continuity).
Because the expression on the right in Eq. (1) is continuous at x = 3,

lim
x→3

x2 − 4x + 3

x2 + x − 12
= lim

x→3

x − 1

x + 4
= 2

7︸ ︷︷ ︸
Evaluate by substitution

EXAMPLE 2 The Form
∞
∞ Calculate lim

x→ π
2

tan x

sec x
.

Solution As we see in Figure 2, both tan x and sec x have infinite discontinuities at x = π
2 ,

so this limit has the indeterminate form ∞/∞ at x = π
2 .

1
−1

y = tan x

y = sec x

y

x
π

2

FIGURE 2

Step 1. Transform algebraically and cancel.

tan x

sec x
=

(sin x)

(
1

cos x

)
1

cos x

= sin x (if cos x �= 0)
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Step 2. Substitute (evaluate using continuity).
Because sin x is continuous,

lim
x→ π

2

tan x

sec x
= lim

x→ π
2

sin x = sin
π

2
= 1

The next example illustrates the algebraic technique of “multiplying by the conju-
gate,” which can be used to treat some indeterminate forms involving square roots.

EXAMPLE 3 Multiplying by the Conjugate Evaluate lim
x→4

√
x − 2

x − 4
.

Solution We check that f (x) =
√

x − 2

x − 4
has the indeterminate form 0/0 at x = 4:

Numerator at x = 4:
√

x − 2 = √
4 − 2 = 0

Denominator at x = 4: x − 4 = 4 − 4 = 0

Step 1. Multiply by the conjugate and cancel.
Note, in Step 1, that the conjugate of√

x − 2 is
√

x + 2, so
(
√

x − 2)(
√

x + 2) = x − 4.

(√
x − 2

x − 4

) (√
x + 2√
x + 2

)
= x − 4

(x − 4)(
√

x + 2)
= 1√

x + 2
(if x �= 4)

Step 2. Substitute (evaluate using continuity).
Because 1/(

√
x + 2) is continuous at x = 4,

lim
x→4

√
x − 2

x − 4
= lim

x→4

1√
x + 2

= 1

4

EXAMPLE 4 Evaluate lim
h→5

h − 5√
h + 4 − 3

.

Solution We note that f (h) = h − 5√
h + 4 − 3

yields 0/0 at h = 5:

Numerator at h = 5: h − 5 = 5 − 5 = 0

Denominator at h = 5:
√

h + 4 − 3 = √
5 + 4 − 3 = 0

The conjugate of
√

h + 4 − 3 is
√

h + 4 + 3, and

h − 5√
h + 4 − 3

=
(

h − 5√
h + 4 − 3

) (√
h + 4 + 3√
h + 4 + 3

)
= (h − 5)

(√
h + 4 + 3

)(√
h + 4 − 3

)(√
h + 4 + 3

)
The denominator is equal to(√

h + 4 − 3
)(√

h + 4 + 3
) = (√

h + 4
)2 − 9 = h − 5

Thus, for h �= 5,

f (h) = h − 5√
h + 4 − 3

= (h − 5)
(√

h + 4 + 3
)

h − 5
= √

h + 4 + 3

We obtain

lim
h→5

h − 5√
h + 4 − 3

= lim
h→5

(√
h + 4 + 3

) = √
9 + 3 = 6
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EXAMPLE 5 The Form ∞ − ∞ Calculate lim
x→1

(
1

x − 1
− 2

x2 − 1

)
.

Solution As we see in Figure 3,
1

x − 1
and

2

x2 − 1
both have infinite discontinuities at

x = 1, so this limit has the indeterminate form ∞ − ∞.
1

−2

−4

−6

2

4

6

x2 − 1
y = 2

x − 1
y = 1

y

x

FIGURE 3

Step 1. Transform algebraically and cancel.
Combine the fractions and simplify (for x �= 1):

1

x − 1
− 2

x2 − 1
= x + 1

x2 − 1
− 2

x2 − 1
= x − 1

x2 − 1
= x − 1

(x − 1)(x + 1)
= 1

x + 1

Step 2. Substitute (evaluate using continuity).

lim
x→1

(
1

x − 1
− 2

x2 − 1

)
= lim

x→1

1

x + 1
= 1

1 + 1
= 1

2

In the next example, the function has the undefined form a/0 with a nonzero. This is
not an indeterminate form (it is not of the form 0/0, ∞/∞, etc.).

EXAMPLE 6 Infinite But Not Indeterminate Evaluate lim
x→2

x2 − x + 5

x − 2
.

Solution The function f (x) = x2 − x + 5

x − 2
is undefined at x = 2 because the formula

for f (2) yields 7/0:

Numerator at x = 2: x2 − x + 5 = 22 − 2 + 5 = 7

Denominator at x = 2: x − 2 = 2 − 2 = 0

But f (x) is not indeterminate at x = 2 because 7/0 is not an indeterminate form. Figure
4 suggests that the one-sided limits are infinite:

−20

20

2
x

y

FIGURE 4 Graph of f (x) = x2 − x + 5

x − 2
.

lim
x→2−

x2 − x + 5

x − 2
= −∞, lim

x→2+
x2 − x + 5

x − 2
= ∞

The limit itself does not exist.

As preparation for the derivative in Chapter 3, we evaluate a limit involving a sym-
bolic constant.

EXAMPLE 7 Symbolic Constant Calculate lim
h→0

(h + a)2 − a2

h
, where a is a constant.

Solution We have the indeterminate form 0/0 at h = 0 because

Numerator at h = 0: (h + a)2 − a2 = (0 + a)2 − a2 = 0

Denominator at h = 0: h = 0

Expand the numerator and simplify (for h �= 0):

(h + a)2 − a2

h
= (h2 + 2ah + a2) − a2

h
= h2 + 2ah

h
= h(h + 2a)

h
= h + 2a

The function h + 2a is continuous (for any constant a), so

lim
h→0

(h + a)2 − a2

h
= lim

h→0
(h + 2a) = 2a
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2.5 SUMMARY

• When f (x) is known to be continuous at x = c, the limit can be evaluated by substitu-
tion: lim

x→c
f (x) = f (c).

• We say that f (x) is indeterminate (or has an indeterminate form) at x = c if the formula
for f (c) yields an undefined expression of the type

0

0
,

∞
∞ , ∞ · 0, ∞ − ∞

• If f (x) is indeterminate at x = c, try to transform f (x) algebraically into a new expres-
sion that is defined and continuous at x = c. Then evaluate by substitution.

2.5 EXERCISES

Preliminary Questions
1. Which of the following is indeterminate at x = 1?

x2 + 1

x − 1
,

x2 − 1

x + 2
,

x2 − 1√
x + 3 − 2

,
x2 + 1√
x + 3 − 2

2. Give counterexamples to show that these statements are false:

(a) If f (c) is indeterminate, then the right- and left-hand limits as
x → c are not equal.

(b) If lim
x→c

f (x) exists, then f (c) is not indeterminate.

(c) If f (x) is undefined at x = c, then f (x) has an indeterminate form
at x = c.

3. The method for evaluating limits discussed in this section is some-
times called “simplify and plug in.” Explain how it actually relies on
the property of continuity.

Exercises
In Exercises 1–4, show that the limit leads to an indeterminate form.
Then carry out the two-step procedure: Transform the function alge-
braically and evaluate using continuity.

1. lim
x→6

x2 − 36

x − 6
2. lim

h→3

9 − h2

h − 3

3. lim
x→−1

x2 + 2x + 1

x + 1
4. lim

t→9

2t − 18

5t − 45

In Exercises 5–34, evaluate the limit, if it exists. If not, determine
whether the one-sided limits exist (finite or infinite).

5. lim
x→7

x − 7

x2 − 49
6. lim

x→8

x2 − 64

x − 9

7. lim
x→−2

x2 + 3x + 2

x + 2
8. lim

x→8

x3 − 64x

x − 8

9. lim
x→5

2x2 − 9x − 5

x2 − 25
10. lim

h→0

(1 + h)3 − 1

h

11. lim
x→− 1

2

2x + 1

2x2 + 3x + 1
12. lim

x→3

x2 − x

x2 − 9

13. lim
x→2

3x2 − 4x − 4

2x2 − 8
14. lim

h→0

(3 + h)3 − 27

h

15. lim
t→0

42t − 1

4t − 1
16. lim

h→4

(h + 2)2 − 9h

h − 4

17. lim
x→16

√
x − 4

x − 16
18. lim

t→−2

2t + 4

12 − 3t2

19. lim
y→3

y2 + y − 12

y3 − 10y + 3
20. lim

h→0

1

(h + 2)2
− 1

4
h

21. lim
h→0

√
2 + h − 2

h
22. lim

x→8

√
x − 4 − 2

x − 8

23. lim
x→4

x − 4√
x − √

8 − x
24. lim

x→4

√
5 − x − 1

2 − √
x

25. lim
x→4

(
1√

x − 2
− 4

x − 4

)
26. lim

x→0+

(
1√
x

− 1√
x2 + x

)

27. lim
x→0

cot x

csc x
28. lim

θ→ π
2

cot θ

csc θ

29. lim
t→2

22t + 2t − 20

2t − 4
30. lim

x→1

(
1

1 − x
− 2

1 − x2

)

31. lim
x→ π

4

sin x − cos x

tan x − 1
32. lim

θ→ π
2

(
sec θ − tan θ

)

33. lim
θ→ π

4

(
1

tan θ − 1
− 2

tan2 θ − 1

)

34. lim
x→ π

3

2 cos2 x + 3 cos x − 2

2 cos x − 1



S E C T I O N 2.6 Trigonometric Limits 95

35. Use a plot of f (x) = x − 4√
x − √

8 − x
to estimate lim

x→4
f (x)

to two decimal places. Compare with the answer obtained algebraically
in Exercise 23.

36. Use a plot of f (x) = 1√
x − 2

− 4

x − 4
to estimate

lim
x→4

f (x) numerically. Compare with the answer obtained alge-

braically in Exercise 25.

In Exercises 37–42, evaluate using the identity

a3 − b3 = (a − b)(a2 + ab + b2)

37. lim
x→2

x3 − 8

x − 2
38. lim

x→3

x3 − 27

x2 − 9

39. lim
x→1

x2 − 5x + 4

x3 − 1
40. lim

x→−2

x3 + 8

x2 + 6x + 8

41. lim
x→1

x4 − 1

x3 − 1
42. lim

x→27

x − 27

x1/3 − 3

43. Evaluate lim
h→0

4√1 + h − 1

h
. Hint: Set x = 4√1 + h and rewrite as

a limit as x → 1.

44. Evaluate lim
h→0

3√1 + h − 1
2√1 + h − 1

. Hint: Set x = 6√1 + h and rewrite as

a limit as x → 1.

In Exercises 45–54, evaluate in terms of the constant a.

45. lim
x→0

(2a + x) 46. lim
h→−2

(4ah + 7a)

47. lim
t→−1

(4t − 2at + 3a) 48. lim
h→0

(3a + h)2 − 9a2

h

49. lim
h→0

2(a + h)2 − 2a2

h
50. lim

x→a

(x + a)2 − 4x2

x − a

51. lim
x→a

√
x − √

a

x − a
52. lim

h→0

√
a + 2h − √

a

h

53. lim
x→0

(x + a)3 − a3

x
54. lim

h→a

1

h
− 1

a

h − a

Further Insights and Challenges
In Exercises 55–58, find all values of c such that the limit exists.

55. lim
x→c

x2 − 5x − 6

x − c
56. lim

x→1

x2 + 3x + c

x − 1

57. lim
x→1

(
1

x − 1
− c

x3 − 1

)
58. lim

x→0

1 + cx2 −
√

1 + x2

x4

59. For which sign ± does the following limit exist?

lim
x→0

(
1

x
± 1

x(x − 1)

)

2.6 Trigonometric Limits
In our study of the derivative, we will need to evaluate certain limits involving transcen-
dental functions such as sine and cosine. The algebraic techniques of the previous section
are often ineffective for such functions, and other tools are required. In this section, we
discuss one such tool—the Squeeze Theorem—and use it to evaluate the trigonometric
limits needed in Section 3.6.

The Squeeze Theorem
Consider a function f (x) that is “trapped” between two functions l(x) and u(x) on an

u(x)

f (x)

l (x)

c
x

y

FIGURE 1 f (x) is trapped between l(x) and
u(x) (but not squeezed at x = c).

interval I . In other words,

l(x) ≤ f (x) ≤ u(x) for all x ∈ I

Thus, the graph of f (x) lies between the graphs of l(x) and u(x) (Figure 1).
The Squeeze Theorem applies when f (x) is not just trapped but squeezed at a point

x = c (Figure 2). By this we mean that for all x �= c in some open interval containing c,

u(x)

f (x)

l (x)

c

L

x

y

FIGURE 2 f (x) is squeezed by l(x) and
u(x) at x = c.

l(x) ≤ f (x) ≤ u(x) and lim
x→c

l(x) = lim
x→c

u(x) = L

We do not require that f (x) be defined at x = c, but it is clear graphically that f (x) must
approach the limit L, as stated in the next theorem. See Appendix D for a proof.
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THEOREM 1 Squeeze Theorem Assume that for x �= c (in some open interval con-
taining c),

l(x) ≤ f (x) ≤ u(x) and lim
x→c

l(x) = lim
x→c

u(x) = L

Then lim
x→c

f (x) exists and lim
x→c

f (x) = L.

EXAMPLE 1 Show that lim
x→0

x sin 1
x

= 0.

Solution Although f (x) = x sin 1
x

is a product of two functions, we cannot use the Prod-
uct Law because lim

x→0
sin 1

x
does not exist. However, the sine function takes on values

between 1 and −1, and therefore
∣∣sin 1

x

∣∣ ≤ 1 for all x �= 0. Multiplying by |x|, we obtain∣∣x sin 1
x

∣∣ ≤ |x| and conclude that (Figure 3)

−|x| ≤ x sin
1

x
≤ |x|

Because

y = x sin 1
x

−0.4

−0.1

 0.4

 0.1

y = −|x|

y = |x|

x

y

FIGURE 3
lim
x→0

|x| = 0 and lim
x→0

(−|x|) = − lim
x→0

|x| = 0

we can apply the Squeeze Theorem to conclude that lim
x→0

x sin 1
x

= 0.

In Section 2.2, we found numerical and graphical evidence suggesting that the limit

lim
θ→0

sin θ

θ
is equal to 1. The Squeeze Theorem will allow us to prove this fact.

THEOREM 2 Important Trigonometric Limits

lim
θ→0

sin θ

θ
= 1, lim

θ→0

1 − cos θ

θ
= 0

To apply the Squeeze Theorem, we must find functions that squeeze
sin θ

θ
at θ = 0.

Note that both sin θ
θ

and cos θ−1
θ

are
indeterminate at θ = 0, so Theorem 2
cannot be proved by substitution.

These are provided by the next theorem (Figure 4).

THEOREM 3

cos θ ≤ sin θ

θ
≤ 1 for −π

2
< θ <

π

2
, θ �= 0 1

−

−1

1
y = 1

y = cos θ

y = sin θ
θ

−π ππ
2

θ

y

π
2

FIGURE 4 Graph illustrating the inequalities
of Theorem 3.
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O A

B = (cos θ, sin θ)

Area of triangle = sin θ Area of triangle =Area of sector =

tan θ

θ

O A11 1

C

B

θ

O A

B

θ xxx

y y y

1
2

tan θθ

11

1
2

1
2

FIGURE 5

Proof Assume first that 0 < θ < π
2 . Our proof is based on the following relation between

the areas in Figure 5:

Area of �OAB < area of sector BOA < area of �OAC 2

Let’s compute these three areas. First, �OAB has base 1 and height sin θ , so its area isREMINDER Let’s recall why a sector of
angle θ in a circle of radius r has area
1
2 r2θ . A sector of angle θ represents a
fraction θ

2π
of the entire circle. The circle

has area πr2, so the sector has area(
θ

2π

)
πr2 = 1

2 r2θ . In the unit circle

(r = 1), the sector has area 1
2 θ .

1
2 sin θ . Next, recall that a sector of angle θ has area 1

2θ . Finally, to compute the area of
�OAC, we observe that

tan θ = opposite side

adjacent side
= AC

OA
= AC

1
= AC

Thus, �OAC has base 1, height tan θ , and area 1
2 tan θ . We have shown, therefore, that

Note: Our proof of Theorem 3 uses the
formula 1

2 θ for the area of a sector, but this
formula is based on the formula πr2 for
the area of a circle, a complete proof of
which requires integral calculus.

1

2
sin θ︸ ︷︷ ︸

Area �OAB

≤ 1

2
θ︸︷︷︸

Area of sector

≤ 1

2

sin θ

cos θ︸ ︷︷ ︸
Area �OAC

3

The first inequality yields sin θ ≤ θ , and because θ > 0, we obtain

sin θ

θ
≤ 1 4

Next, multiply the second inequality in (3) by
2 cos θ

θ
to obtain

cos θ ≤ sin θ

θ
5

The combination of (4) and (5) gives us (1) when 0 < θ < π
2 . However, the functions

in (1) do not change when θ is replaced by −θ because both cos θ and
sin θ

θ
are even

functions. Indeed, cos(−θ) = cos θ and

sin(−θ)

−θ
= − sin θ

−θ
= sin θ

θ

Therefore, (1) holds for −π
2 < θ < 0 as well. This completes the proof of Theorem 3.

Proof of Theorem 2 According to Theorem 3,

cos θ ≤ sin θ

θ
≤ 1

Since lim
θ→0

cos θ = cos 0 = 1 and lim
θ→0

1 = 1, the Squeeze Theorem yields lim
θ→0

sin θ

θ
= 1,

as required. For a proof that lim
θ→0

1 − cos θ

θ
= 0, see Exercises 51 and 58.
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In the next example, we evaluate another trigonometric limit. The key idea is to
rewrite the function of h in terms of the new variable θ = 4h.

EXAMPLE 2 Evaluating a Limit by Changing Variables Investigate lim
h→0

sin 4h

hnumerically and then evaluate it exactly.

Solution The table of values at the left suggests that the limit is equal to 4. To evaluate
h

sin 4h

h

±1.0 −0.75680
±0.5 1.81859
±0.2 3.58678
±0.1 3.8 9 418
±0.05 3.9 7 339
±0.01 3.99 893
±0.005 3.999 73

the limit exactly, we rewrite it in terms of the limit of
sin θ

θ
so that Theorem 2 can be

applied. Thus, we set θ = 4h and write

sin 4h

h
= 4

( sin 4h

4h

)
= 4

sin θ

θ

The new variable θ tends to zero as h → 0 because θ is a multiple of h. Therefore, we
may change the limit as h → 0 into a limit as θ → 0 to obtain

lim
h→0

sin 4h

h
= lim

θ→0
4

sin θ

θ
= 4

(
lim
θ→0

sin θ

θ

)
= 4(1) = 4 6

2.6 SUMMARY

• We say that f (x) is squeezed at x = c if there exist functions l(x) and u(x) such that
l(x) ≤ f (x) ≤ u(x) for all x �= c in an open interval I containing c, and

lim
x→c

l(x) = lim
x→c

u(x) = L

The Squeeze Theorem states that in this case, lim
x→c

f (x) = L.
• Two important trigonometric limits:

lim
θ→0

sin θ

θ
= 1, lim

θ→0

1 − cos θ

θ
= 0

2.6 EXERCISES

Preliminary Questions
1. Assume that −x4 ≤ f (x) ≤ x2. What is lim

x→0
f (x)? Is there

enough information to evaluate lim
x→ 1

2

f (x)? Explain.

2. State the Squeeze Theorem carefully.

3. If you want to evaluate lim
h→0

sin 5h

3h
, it is a good idea to rewrite the

limit in terms of the variable (choose one):

(a) θ = 5h (b) θ = 3h (c) θ = 5h

3

Exercises
1. State precisely the hypothesis and conclusions of the Squeeze The-

orem for the situation in Figure 6.

1 2

2

u(x)

l(x)

f (x)

x

y

FIGURE 6

2. In Figure 7, is f (x) squeezed by u(x) and l(x) at x = 3? At x = 2?

1 2 3 4

1.5

x

l(x)

f (x)

u(x)
y

FIGURE 7
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3. What does the Squeeze Theorem say about lim
x→7

f (x) if

lim
x→7

l(x) = lim
x→7

u(x) = 6 and f (x), u(x), and l(x) are related as in

Figure 8? The inequality f (x) ≤ u(x) is not satisfied for all x. Does
this affect the validity of your conclusion?

7

6

x

u(x)

f (x)

l(x)

y

FIGURE 8

4. Determine lim
x→0

f (x) assuming that cos x ≤ f (x) ≤ 1.

5. State whether the inequality provides sufficient information to de-
termine lim

x→1
f (x), and if so, find the limit.

(a) 4x − 5 ≤ f (x) ≤ x2

(b) 2x − 1 ≤ f (x) ≤ x2

(c) 4x − x2 ≤ f (x) ≤ x2 + 2

6. Plot the graphs of u(x) = 1 + ∣∣x − π
2

∣∣ and l(x) = sin x on
the same set of axes. What can you say about lim

x→ π
2

f (x) if f (x) is
squeezed by l(x) and u(x) at x = π

2 ?

In Exercises 7–16, evaluate using the Squeeze Theorem.

7. lim
x→0

x2 cos
1

x
8. lim

x→0
x sin

1

x2

9. lim
x→1

(x − 1) sin
π

x − 1
10. lim

x→3
(x2 − 9)

x − 3

|x − 3|

11. lim
t→0

(2t − 1) cos
1

t
12. lim

x→0+
√

x ecos(π/x)

13. lim
t→2

(t2 − 4) cos
1

t − 2
14. lim

x→0
tan x cos

(
sin

1

x

)

15. lim
θ→ π

2

cos θ cos(tan θ) 16. lim
t→0+ sin t tan−1(ln t)

In Exercises 17–26, evaluate using Theorem 2 as necessary.

17. lim
x→0

tan x

x
18. lim

x→0

sin x sec x

x

19. lim
t→0

√
t3 + 9 sin t

t
20. lim

t→0

sin2 t

t

21. lim
x→0

x2

sin2 x
22. lim

t→ π
2

1 − cos t

t

23. lim
θ→0

sec θ − 1

θ
24. lim

θ→0

1 − cos θ

sin θ

25. lim
t→ π

4

sin t

t
26. lim

t→0

cos t − cos2 t

t

27. Let L = lim
x→0

sin 14x

x
.

(a) Show, by letting θ = 14x, that L = lim
θ→0

14
sin θ

θ
.

(b) Compute L.

28. Evaluate lim
h→0

sin 9h

sin 7h
. Hint:

sin 9h

sin 7h
=

(
9

7

) (
sin 9h

9h

) (
7h

sin 7h

)
.

In Exercises 29–48, evaluate the limit.

29. lim
h→0

sin 9h

h
30. lim

h→0

sin 4h

4h

31. lim
h→0

sin h

5h
32. lim

x→ π
6

x

sin 3x

33. lim
θ→0

sin 7θ

sin 3θ
34. lim

x→0

tan 4x

9x

35. lim
x→0

x csc 25x 36. lim
t→0

tan 4t

t sec t

37. lim
h→0

sin 2h sin 3h

h2
38. lim

z→0

sin(z/3)

sin z

39. lim
θ→0

sin(−3θ)

sin(4θ)
40. lim

x→0

tan 4x

tan 9x

41. lim
t→0

csc 8t

csc 4t
42. lim

x→0

sin 5x sin 2x

sin 3x sin 5x

43. lim
x→0

sin 3x sin 2x

x sin 5x
44. lim

h→0

1 − cos 2h

h

45. lim
h→0

sin(2h)(1 − cos h)

h2
46. lim

t→0

1 − cos 2t

sin2 3t

47. lim
θ→0

cos 2θ − cos θ

θ
48. lim

h→ π
2

1 − cos 3h

h

49. Calculate lim
x→0−

sin x

|x| .

50. Use the identity sin 3θ = 3 sin θ − 4 sin3 θ to evaluate the limit

lim
θ→0

sin 3θ − 3 sin θ

θ3
.

51. Prove the following result stated in Theorem 2:

lim
θ→0

1 − cos θ

θ
= 0 7

Hint:
1 − cos θ

θ
= 1

1 + cos θ
· 1 − cos2 θ

θ
.

52. Investigate lim
h→0

1 − cos h

h2
numerically (and graphically if

you have a graphing utility). Then prove that the limit is equal to 1
2 .

Hint: See the hint for Exercise 51.
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In Exercises 53–55, evaluate using the result of Exercise 52.

53. lim
h→0

cos 3h − 1

h2
54. lim

h→0

cos 3h − 1

cos 2h − 1

55. lim
t→0

√
1 − cos t

t

56. Use the Squeeze Theorem to prove that if lim
x→c

|f (x)| = 0, then

lim
x→c

f (x) = 0.

Further Insights and Challenges
57. Use the result of Exercise 52 to prove that for m �= 0,

lim
x→0

cos mx − 1

x2
= −m2

2

58. Using a diagram of the unit circle and the Pythagorean Theorem,
show that

sin2 θ ≤ (1 − cos θ)2 + sin2 θ ≤ θ2

Conclude that sin2 θ ≤ 2(1 − cos θ) ≤ θ2 and use this to give an alter-
native proof of Eq. (7) in Exercise 51. Then give an alternative proof
of the result in Exercise 52.

59. (a) Investigate lim
x→c

sin x − sin c

x − c
numerically for the five values

c = 0, π
6 , π

4 , π
3 , π

2 .

(b) Can you guess the answer for general c?

(c) Check that your answer to (b) works for two other values of c.

2.7 Limits at Infinity

5 10 15 20 25

283.00
283.05
283.10
283.15
283.20
283.25

T (K)

t (years)

FIGURE 1 The earth’s average temperature
(according to a simple climate model) in
response to an 0.25% increase in solar
radiation. According to this model,
lim

t→∞ T (t) = 283.255.

So far we have considered limits as x approaches a number c. It is also important to
consider limits where x approaches ∞ or −∞, which we refer to as limits at infinity. In
applications, limits at infinity arise naturally when we describe the “long-term” behavior
of a system as in Figure 1.

The notation x → ∞ indicates that x increases without bound, and x → −∞ indi-
cates that x decreases (through negative values) without bound. We write

• lim
x→∞ f (x) = L if f (x) gets closer and closer to L as x → ∞.

• lim
x→−∞ f (x) = L if f (x) gets closer and closer to L as x → −∞.

As before, “closer and closer” means that |f (x) − L| becomes arbitrarily small. In either
case, the line y = L is called a horizontal asymptote. We use the notation x → ±∞ to
indicate that we are considering both infinite limits, as x → ∞ and as x → −∞.

Infinite limits describe the asymptotic behavior of a function, which is behavior of
the graph as we move out to the right or the left.

EXAMPLE 1 Discuss the asymptotic behavior in Figure 2.

Solution The function g(x) approaches L = 7 as we move to the right and it approaches
L = 3 as we move to left, so

lim
x→∞ g(x) = 7, lim

x→−∞ g(x) = 3

Accordingly, the lines y = 7 and y = 3 are horizontal asymptotes of g(x).

A function may approach an infinite limit as x → ±∞. We write

−400 −200 200 400

3

7

x

y
y = g(x)

FIGURE 2 The lines y = 7 and y = 3 are
horizontal asymptotes of g(x).

lim
x→∞ f (x) = ∞ or lim

x→−∞ f (x) = ∞

if f (x) becomes arbitrarily large as x → ∞ or −∞. Similar notation is used if f (x)

approaches −∞ as x → ±∞. For example, we see in Figure 3(A) that

lim
x→∞ ex = ∞, lim

x→−∞ ex = 0
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x

y

1

y

x

y = ex
y = sin x

(A) (B)

FIGURE 3

However, limits at infinity do not always exist. For example, f (x) = sin x oscillates
indefinitely [Figure 3(B)], so

lim
x→∞ sin x and lim

x→−∞ sin x

do not exist.
The limits at infinity of the power functions f (x) = xn are easily determined. If

n > 0, then xn certainly increases without bound as x → ∞, so (Figure 4)

lim
x→∞ xn = ∞ and lim

x→∞ x−n = lim
x→∞

1

xn
= 0

To describe the limits as x → −∞, assume that n is a whole number so that xn is defined
for x < 0. If n is even, then xn becomes large and positive as x → −∞, and if n is odd,
it becomes large and negative. In summary,

THEOREM 1 For all n > 0,

lim
x→∞ xn = ∞, lim

x→∞ x−n = lim
x→∞

1

xn
= 0

If n is a whole number,

lim
x→−∞ xn =

{∞ if n is even
−∞ if n is odd

and lim
x→−∞ x−n = lim

x→−∞
1

xn
= 0

x

y

y = x2

y = x4

x

y

y = x3

y = x5

(B) n odd:  lim xn = ∞,   lim xn = −∞

x

y

y = 1
x

x→∞ x→−∞(A) n even:  lim xn =  lim  xn = ∞
x→∞ x→−∞ (C)  lim = 0 =   lim 

x→∞ x→−∞
1
x

1
x

FIGURE 4

The Basic Limit Laws (Theorem 1 in Section 2.3) are valid for limits at infinity. For
example, the Sum and Constant Multiple Laws yield:

lim
x→∞

(
3 − 4x−3 + 5x−5

)
= lim

x→∞ 3 − 4 lim
x→∞ x−3 + 5 lim

x→∞ x−5

= 3 + 0 + 0 = 3
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EXAMPLE 2 Calculate lim
x→±∞

20x2 − 3x

3x5 − 4x2 + 5
.

Solution It would be nice if we could apply the Quotient Law directly, but this law is
valid only if the denominator has a finite, nonzero limit. Our limit has the indeterminate
form ∞/∞ because

lim
x→∞ (20x2 − 3x) = ∞ and lim

x→∞ (3x5 − 4x2 + 5) = ∞

The way around this difficulty is to divide the numerator and denominator by x5 (the
highest power of x in the denominator):

20x2 − 3x

3x5 − 4x2 + 5
= x−5(20x2 − 3x)

x−5(3x5 − 4x2 + 5)
= 20x−3 − 3x−4

3 − 4x−3 + 5x−5

Now we can use the Quotient Law:

lim
x→±∞

20x2 − 3x

3x5 − 4x2 + 5
=

lim
x→±∞

(
20x−3 − 3x−4

)
lim

x→±∞
(
3 − 4x−3 + 5x−5

) = 0

3
= 0

In general, if

f (x) = anx
n + an−1x

n−1 + · · · + a0

bmxm + bm−1xm−1 + · · · + b0

where an �= 0 and bm �= 0, divide the numerator and denominator by xm:

f (x) = anx
n−m + an−1x

n−1−m + · · · + a0x
−m

bm + bm−1x−1 + · · · + b0x−m

= xn−m

(
an + an−1x

−1 + · · · + a0x
−n

bm + bm−1x−1 + · · · + b0x−m

)
The quotient in parenthesis approaches the finite limit an/bm because

lim
x→∞(an + an−1x

−1 + · · · + a0x
−n) = an

lim
x→∞(bm + bm−1x

−1 + · · · + b0x
−m) = bm

Therefore,

lim
x→±∞ f (x) = lim

x→±∞ xn−m lim
x→±∞

an + an−1x
−1 + · · · + a0x

−n

bm + bm−1x−1 + · · · + b0x−m
= an

bm

lim
x→±∞ xn−m

THEOREM 2 Limits at Infinity of a Rational Function The asymptotic behavior of a
rational function depends only on the leading terms of its numerator and denominator.
If an, bm �= 0, then

lim
x→±∞

anx
n + an−1x

n−1 + · · · + a0

bmxm + bm−1xm−1 + · · · + b0
= an

bm

lim
x→±∞ xn−m

Here are some examples:

• n = m: lim
x→∞

3x4 − 7x + 9

7x4 − 4
= 3

7
lim

x→∞ x0 = 3

7
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• n < m: lim
x→∞

3x3 − 7x + 9

7x4 − 4
= 3

7
lim

x→∞ x−1 = 0

• n > m, n − m odd: lim
x→−∞

3x8 − 7x + 9

7x3 − 4
= 3

7
lim

x→−∞ x5 = −∞

• n > m, n − m even: lim
x→−∞

3x7 − 7x + 9

7x3 − 4
= 3

7
lim

x→−∞ x4 = ∞
Our method can be adapted to noninteger exponents and algebraic functions.

EXAMPLE 3 Calculate the limits (a) lim
x→∞

3x7/2 + 7x−1/2

x2 − x1/2
(b) lim

x→∞
x2

√
x3 + 1

Solution

(a) As before, divide the numerator and denominator by x2, which is the highest powerThe Quotient Law is valid if lim
x→c

f (x) = ∞
and lim

x→c
g(x) = L, where L �= 0:

lim
x→c

f (x)

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)
=

{∞ if L > 0
−∞ if L < 0

of x occurring in the denominator (this means: multiply by x−2):

3x7/2 + 7x−1/2

x2 − x1/2
=

(
x−2

x−2

)
3x7/2 + 7x−1/2

x2 − x1/2
= 3x3/2 + 7x−5/2

1 − x−3/2

lim
x→∞

3x7/2 + 7x−1/2

x2 − x1/2
=

lim
x→∞(3x3/2 + 7x−5/2)

lim
x→∞(1 − x−3/2)

= ∞
1

= ∞

(b) The key is to observe that the denominator of
x2

√
x3 + 1

“behaves” like x3/2:

√
x3 + 1 =

√
x3(1 + x−3) = x3/2

√
1 + x−3 (for x > 0)

This suggests that we divide the numerator and denominator by x3/2:

x2

√
x3 + 1

=
(

x−3/2

x−3/2

)
x2

x3/2
√

1 + x−3
= x1/2

√
1 + x−3

Then apply Quotient Law:

lim
x→∞

x2

√
x3 + 1

= lim
x→∞

x1/2

√
1 + x−3

=
lim

x→∞ x1/2

lim
x→∞

√
1 + x−3

= ∞
1

= ∞

EXAMPLE 4 Calculate the limits at infinity of f (x) = 12x + 25√
16x2 + 100x + 500

.

Solution Divide numerator and denominator by x (multiply by x−1), but notice the dif-
ference between x positive and x negative. For x > 0,

x−1
√

16x2 + 100x + 500 =
√

x−2
√

16x2 + 100x + 500 =
√

16 + 100

x
+ 500

x2

lim
x→∞

12x + 25√
16x2 + 100x + 500

=
lim

x→∞
(

12 + 25
x

)
lim

x→∞
√

16 + 100
x

+ 500
x2

= 12√
16

= 3
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However, if x < 0, then x = −√
x2 and

x−1
√

16x2 + 100x + 500 = −
√

x−2
√

16x2 + 100x + 500 = −
√

16 + 100

x
+ 500

x2

So the limit as x → −∞ is −3 instead of 3 (Figure 5):
25 50−25−50

−3

3

x

y

FIGURE 5 Graph of

f (x) = 12x + 25√
16x2 + 100x + 500

.

lim
x→−∞

12x + 25√
16x2 + 100x + 500

=
lim

x→−∞
(

12 + 25
x

)
− lim

x→−∞
√

16 + 100
x

+ 500
x2

= 12

−√
16

= −3

2.7 SUMMARY

• Limits as infinity:

– lim
x→∞ f (x) = L if |f (x) − L| becomes arbitrarily small as x increases without bound

– lim
x→−∞ f (x) = L if |f (x) − L| becomes arbitrarily small as x decreases without

bound.

• A horizontal line y = L is a horizontal asymptote if

lim
x→∞ f (x) = L and/or lim

x→−∞ f (x) = L

• If n > 0, then lim
x→∞ xn = ∞ and lim

x→±∞ x−n = 0. If n > 0 is a whole number, then

lim
x→−∞ xn =

{∞ if n is even
−∞ if n is odd

and lim
x→−∞ x−n = 0

• If f (x) = anx
n + an−1x

n−1 + · · · + a0

bmxm + bm−1xm−1 + · · · + b0
with an, bm �= 0, then

lim
x→±∞ f (x) = an

bm

lim
x→±∞ xn−m

2.7 EXERCISES

Preliminary Questions
1. Assume that

lim
x→∞ f (x) = L and lim

x→L
g(x) = ∞

Which of the following statements are correct?

(a) x = L is a vertical asymptote of g(x).
(b) y = L is a horizontal asymptote of g(x).
(c) x = L is a vertical asymptote of f (x).
(d) y = L is a horizontal asymptote of f (x).

2. What are the following limits?

(a) lim
x→∞ x3 (b) lim

x→−∞ x3 (c) lim
x→−∞ x4

3. Sketch the graph of a function that approaches a limit as x → ∞
but does not approach a limit (either finite or infinite) as x → −∞.

4. What is the sign of a if f (x) = ax3 + x + 1 satisfies
lim

x→−∞ f (x) = ∞?

5. What is the sign of the leading coefficient a7 if f (x) is a polynomial
of degree 7 such that lim

x→−∞ f (x) = ∞?

6. Explain why lim
x→∞ sin 1

x exists but lim
x→0

sin 1
x does not exist. What

is lim
x→∞ sin 1

x ?
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Exercises
1. What are the horizontal asymptotes of the function in Figure 6?

−20 20 40 60 80
x

1

2

y

y = f (x)

FIGURE 6

2. Sketch the graph of a function f (x) that has both y = −1 and
y = 5 as horizontal asymptotes.

3. Sketch the graph of a function f (x) with a single horizontal asymp-
tote y = 3.

4. Sketch the graphs of two functions f (x) and g(x) that have both
y = −2 and y = 4 as horizontal asymptotes but
lim

x→∞ f (x) �= lim
x→∞ g(x).

5. Investigate the asymptotic behavior of f (x) = x3

x3 + x
numerically and graphically:

(a) Make a table of values of f (x) for x = ±50, ±100, ±500,
±1000.

(b) Plot the graph of f (x).

(c) What are the horizontal asymptotes of f (x)?

6. Investigate lim
x→±∞

12x + 1√
4x2 + 9

numerically and graphi-

cally:

(a) Make a table of values of f (x) = 12x + 1√
4x2 + 9

for x = ±100,

±500, ±1000, ±10,000.

(b) Plot the graph of f (x).

(c) What are the horizontal asymptotes of f (x)?

In Exercises 7–16, evaluate the limit.

7. lim
x→∞

x

x + 9
8. lim

x→∞
3x2 + 20x

4x2 + 9

9. lim
x→∞

3x2 + 20x

2x4 + 3x3 − 29
10. lim

x→∞
4

x + 5

11. lim
x→∞

7x − 9

4x + 3
12. lim

x→∞
9x2 − 2

6 − 29x

13. lim
x→−∞

7x2 − 9

4x + 3
14. lim

x→−∞
5x − 9

4x3 + 2x + 7

15. lim
x→−∞

3x3 − 10

x + 4
16. lim

x→−∞
2x5 + 3x4 − 31x

8x4 − 31x2 + 12

In Exercises 17–22, find the horizontal asymptotes.

17. f (x) = 2x2 − 3x

8x2 + 8
18. f (x) = 8x3 − x2

7 + 11x − 4x4

19. f (x) =
√

36x2 + 7

9x + 4
20. f (x) =

√
36x4 + 7

9x2 + 4

21. f (t) = et

1 + e−t
22. f (t) = t1/3

(64t2 + 9)1/6

In Exercises 23–30, evaluate the limit.

23. lim
x→∞

√
9x4 + 3x + 2

4x3 + 1
24. lim

x→∞

√
x3 + 20x

10x − 2

25. lim
x→−∞

8x2 + 7x1/3√
16x4 + 6

26. lim
x→−∞

4x − 3√
25x2 + 4x

27. lim
t→∞

t4/3 + t1/3

(4t2/3 + 1)2
28. lim

t→∞
t4/3 − 9t1/3

(8t4 + 2)1/3

29. lim
x→−∞

|x| + x

x + 1
30. lim

t→−∞
4 + 6e2t

5 − 9e3t

31. Determine lim
x→∞ tan−1 x. Explain geometrically.

32. Show that lim
x→∞(

√
x2 + 1 − x) = 0. Hint: Observe that

√
x2 + 1 − x = 1√

x2 + 1 + x

33. According to the Michaelis–Menten equation (Figure 7), when
an enzyme is combined with a substrate of concentration s (in millimo-
lars), the reaction rate (in micromolars/min) is

R(s) = As

K + s
(A, K constants)

(a) Show, by computing lim
s→∞ R(s), that A is the limiting reaction rate

as the concentration s approaches ∞.
(b) Show that the reaction rate R(s) attains one-half of the limiting
value A when s = K .
(c) For a certain reaction, K = 1.25 mM and A = 0.1. For which con-
centration s is R(s) equal to 75% of its limiting value?

Leonor Michaelis
1875−1949

Maud Menten
1879−1960

FIGURE 7 Canadian-born biochemist Maud Menten is best known for
her fundamental work on enzyme kinetics with German scientist
Leonor Michaelis. She was also an accomplished painter, clarinetist,
mountain climber, and master of numerous languages.
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34. Suppose that the average temperature of the earth is T (t) =
283 + 3(1 − e−0.03t ) kelvins, where t is the number of years since
2000.

(a) Calculate the long-term average L = lim
t→∞ T (t).

(b) At what time is T (t) within one-half a degree of its limiting value?

In Exercises 35–42, calculate the limit.

35. lim
x→∞(

√
4x4 + 9x − 2x2) 36. lim

x→∞(
√

9x3 + x − x3/2)

37. lim
x→∞(2

√
x − √

x + 2) 38. lim
x→∞

(
1

x
− 1

x + 2

)

39. lim
x→∞ (ln(3x + 1) − ln(2x + 1))

40. lim
x→∞

(
ln(

√
5x2 + 2) − ln x

)

41. lim
x→∞ tan−1

(
x2 + 9

9 − x

)
42. lim

x→∞ tan−1
(

1 + x

1 − x

)

43. Let P(n) be the perimeter of an n-gon inscribed in a unit
circle (Figure 8).

(a) Explain, intuitively, why P(n) approaches 2π as n → ∞.

(b) Show that P(n) = 2n sin
(
π
n

)
.

(c) Combine (a) and (b) to conclude that lim
n→∞

n
π sin

(
π
n

) = 1.

(d) Use this to give another argument that lim
θ→0

sin θ

θ
= 1.

n = 6 n = 9 n = 12

FIGURE 8

44. Physicists have observed that Einstein’s theory of special relativ-
ity reduces to Newtonian mechanics in the limit as c → ∞, where c

is the speed of light. This is illustrated by a stone tossed up vertically
from ground level so that it returns to earth one second later. Using
Newton’s Laws, we find that the stone’s maximum height is h = g/8
meters (g = 9.8 m/s2). According to special relativity, the stone’s mass
depends on its velocity divided by c, and the maximum height is

h(c) = c

√
c2/g2 + 1/4 − c2/g

Prove that lim
c→∞ h(c) = g/8.

Further Insights and Challenges
45. Every limit as x → ∞ can be rewritten as a one-sided limit as
t → 0+, where t = x−1. Setting g(t) = f (t−1), we have

lim
x→∞ f (x) = lim

t→0+ g(t)

Show that lim
x→∞

3x2 − x

2x2 + 5
= lim

t→0+
3 − t

2 + 5t2
, and evaluate using the

Quotient Law.

46. Rewrite the following as one-sided limits as in Exercise 45 and
evaluate.

(a) lim
x→∞

3 − 12x3

4x3 + 3x + 1
(b) lim

x→∞ e1/x

(c) lim
x→∞ x sin

1

x
(d) lim

x→∞ ln

(
x + 1

x − 1

)

47. Let G(b) = lim
x→∞(1 + bx)1/x for b ≥ 0. Investigate G(b) numer-

ically and graphically for b = 0.2, 0.8, 2, 3, 5 (and additional values if
necessary). Then make a conjecture for the value of G(b) as a function
of b. Draw a graph of y = G(b). Does G(b) appear to be continu-
ous? We will evaluate G(b) using L’Hôpital’s Rule in Section 4.5 (see
Exercise 69 in Section 4.5).

2.8 Intermediate Value Theorem
The Intermediate Value Theorem (IVT) says, roughly speaking, that a continuous func-
tion cannot skip values. Consider a plane that takes off and climbs from 0 to 10,000 meters
in 20 minutes. The plane must reach every altitude between 0 and 10,000 meters during
this 20-minute interval. Thus, at some moment, the plane’s altitude must have been exactly
8371 meters. Of course, this assumes that the plane’s motion is continuous, so its altitude
cannot jump abruptly from, say, 8000 to 9000 meters.

To state this conclusion formally, let A(t) be the plane’s altitude at time t . The IVT
asserts that for every altitude M between 0 and 10,000, there is a time t0 between 0 and
20 such that A(t0) = M . In other words, the graph of A(t) must intersect the horizontal
line y = M [Figure 1(A)].

By contrast, a discontinuous function can skip values. The greatest integer function
f (x) = [x] in Figure 1(B) satisfies [1] = 1 and [2] = 2, but it does not take on the value
1.5 (or any other value between 1 and 2).A proof of the IVT is given in Appendix B.
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−1 1 2 3

1

2

3

4

20t0
Time (min)

(A) Altitude of plane A(t) (B) Graph of f (x) = [x]

Altitude (m)

5000

10,000

M

x

y

FIGURE 1

THEOREM 1 Intermediate Value Theorem If f (x) is continuous on a closed interval
[a, b] and f (a) �= f (b), then for every value M between f (a) and f (b), there exists
at least one value c ∈ (a, b) such that f (c) = M .

EXAMPLE 1 Prove that the equation sin x = 0.3 has at least one solution.

0.3

1
y = sin x

y = 0.3

c π
2

x

y

FIGURE 2

Solution We may apply the IVT because sin x is continuous. We choose an interval where
we suspect that a solution exists. The desired value 0.3 lies between the two function values

sin 0 = 0 and sin
π

2
= 1

so the interval
[
0, π

2

]
will work (Figure 2). The IVT tells us that sin x = 0.3 has at least

one solution in
(
0, π

2

)
.

The IVT can be used to show the existence of zeros of functions. If f (x) is continuousA zero or root of a function is a value c

such that f (c) = 0. Sometimes the word
“root” is reserved to refer specifically to the
zero of a polynomial.

and takes on both positive and negative values—say, f (a) < 0 and f (b) > 0—then the
IVT guarantees that f (c) = 0 for some c between a and b.

COROLLARY 2 Existence of Zeros If f (x) is continuous on [a, b] and if f (a) and
f (b) are nonzero and have opposite signs, then f (x) has a zero in (a, b).

We can locate zeros of functions to arbitrary accuracy using the Bisection Method,
as illustrated in the next example.

EXAMPLE 2 The Bisection Method Show that f (x) = cos2 x − 2 sin x
4 has a zero in

(0, 2). Then locate the zero more accurately using the Bisection Method.

1
2

1

−1

1

0
2

x

y

f (x) > 0

f (x) < 0

Zero of f (x)

3
4

FIGURE 3 Graph of
f (x) = cos2 x − 2 sin x

4 .

Solution Using a calculator, we find that f (0) and f (2) have opposite signs:

f (0) = 1 > 0, f (2) ≈ −0.786 < 0

Corollary 2 guarantees that f (x) = 0 has a solution in (0, 2) (Figure 3).
To locate a zero more accurately, divide [0, 2] into two intervals [0, 1] and [1, 2]. AtComputer algebra systems have built-in

commands for finding roots of a function or
solving an equation numerically. These
systems use a variety of methods, including
more sophisticated versions of the
Bisection Method. Notice that to use the
Bisection Method, we must first find an
interval containing a root.

least one of these intervals must contain a zero of f (x). To determine which, evaluate
f (x) at the midpoint m = 1. A calculator gives f (1) ≈ −0.203 < 0, and since f (0) = 1,
we see that

f (x) takes on opposite signs at the endpoints of [0, 1]
Therefore, (0, 1) must contain a zero. We discard [1, 2] because both f (1) and f (2) are
negative.

The Bisection Method consists of continuing this process until we narrow down the
location of the zero to any desired accuracy. In the following table, the process is carried
out three times:
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Interval
Midpoint
of interval Function values Conclusion

[0, 1] 1
2 f

( 1
2

) ≈ 0.521

f (1) ≈ −0.203

Zero lies in
( 1

2 , 1
)

[ 1
2 , 1

] 3
4 f

( 3
4

) ≈ 0.163

f (1) ≈ −0.203

Zero lies in
( 3

4 , 1
)

[ 3
4 , 1

] 7
8 f

( 7
8

) ≈ −0.0231

f
( 3

4

) ≈ 0.163

Zero lies in
( 3

4 , 7
8

)

We conclude that f (x) has a zero c satisfying 0.75 < c < 0.875.

CONCEPTUAL INSIGHT The IVT seems to state the obvious, namely that a continuous
function cannot skip values. Yet its proof (given in Appendix B) is subtle because
it depends on the completeness property of real numbers. To highlight the subtlety,
observe that the IVT is false for functions defined only on the rational numbers. For
example, f (x) = x2 is continuous, but it does not have the intermediate value property
if we restrict its domain to the rational numbers. Indeed, f (0) = 0 and f (2) = 4, but
f (c) = 2 has no solution for c rational. The solution c = √

2 is “missing” from the set
of rational numbers because it is irrational. No doubt the IVT was always regarded as
obvious, but it was not possible to give a correct proof until the completeness property
was clarified in the second half of the nineteenth century.

2.8 SUMMARY

• The Intermediate Value Theorem (IVT) says that a continuous function cannot skip
values.
• More precisely, if f (x) is continuous on [a, b] with f (a) �= f (b), and if M is a number
between f (a) and f (b), then f (c) = M for some c ∈ (a, b).
• Existence of zeros: If f (x) is continuous on [a, b] and if f (a) and f (b) take opposite
signs (one is positive and the other negative), then f (c) = 0 for some c ∈ (a, b).
• Bisection Method: Assume f is continuous and that f (a) and f (b) have opposite signs,
so that f has a zero in (a, b). Then f has a zero in [a, m] or [m, b], where m = (a + b)/2
is the midpoint of [a, b]. A zero lies in (a, m) if f (a) and f (m) have opposite signs and
in (m, b) if f (m) and f (b) have opposite signs. Continuing the process, we can locate a
zero with arbitrary accuracy.

2.8 EXERCISES

Preliminary Questions
1. Prove that f (x) = x2 takes on the value 0.5 in the interval [0, 1].

2. The temperature in Vancouver was 8◦C at 6 am and rose to 20◦C at
noon. Which assumption about temperature allows us to conclude that
the temperature was 15◦C at some moment of time between 6 am and
noon?

3. What is the graphical interpretation of the IVT?

4. Show that the following statement is false by drawing a graph that
provides a counterexample:

If f (x) is continuous and has a root in [a, b], then f (a) and f (b) have
opposite signs.

5. Assume that f (t) is continuous on [1, 5] and that f (1) = 20,
f (5) = 100. Determine whether each of the following statements is
always true, never true, or sometimes true.
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(a) f (c) = 3 has a solution with c ∈ [1, 5].
(b) f (c) = 75 has a solution with c ∈ [1, 5].

(c) f (c) = 50 has no solution with c ∈ [1, 5].
(d) f (c) = 30 has exactly one solution with c ∈ [1, 5].

Exercises
1. Use the IVT to show that f (x) = x3 + x takes on the value 9 for

some x in [1, 2].
2. Show that g(t) = t

t + 1
takes on the value 0.499 for some t in

[0, 1].
3. Show that g(t) = t2 tan t takes on the value 1

2 for some t in
[
0, π

4

]
.

4. Show that f (x) = x2

x7 + 1
takes on the value 0.4.

5. Show that cos x = x has a solution in the interval [0, 1]. Hint:
Show that f (x) = x − cos x has a zero in [0, 1].

6. Use the IVT to find an interval of length 1
2 containing a root of

f (x) = x3 + 2x + 1.

In Exercises 7–16, prove using the IVT.

7.
√

c + √
c + 2 = 3 has a solution.

8. For all integers n, sin nx = cos x for some x ∈ [0, π ].
9.

√
2 exists. Hint: Consider f (x) = x2.

10. A positive number c has an nth root for all positive integers n.

11. For all positive integers k, cos x = xk has a solution.

12. 2x = bx has a solution if b > 2.

13. 2x + 3x = 4x has a solution.

14. cos x = cos−1 x has a solution in (0, 1).

15. ex + ln x = 0 has a solution.

16. tan−1 x = cos−1 x has a solution.

17. Carry out three steps of the Bisection Method for f (x) = 2x − x3

as follows:

(a) Show that f (x) has a zero in [1, 1.5].
(b) Show that f (x) has a zero in [1.25, 1.5].
(c) Determine whether [1.25, 1.375] or [1.375, 1.5] contains a zero.

18. Figure 4 shows that f (x) = x3 − 8x − 1 has a root in the inter-
val [2.75, 3]. Apply the Bisection Method twice to find an interval of
length 1

16 containing this root.

19. Find an interval of length 1
4 in [1, 2] containing a root of the equa-

tion x7 + 3x − 10 = 0.

20. Show that tan3 θ − 8 tan2 θ + 17 tan θ − 8 = 0 has a root in
[0.5, 0.6]. Apply the Bisection Method twice to find an interval of
length 0.025 containing this root.

In Exercises 21–24, draw the graph of a function f (x) on [0, 4] with
the given property.

21. Jump discontinuity at x = 2 and does not satisfy the conclusion of
the IVT.

22. Jump discontinuity at x = 2 and satisfies the conclusion of the IVT
on [0, 4].
23. Infinite one-sided limits at x = 2 and does not satisfy the conclu-
sion of the IVT.

24. Infinite one-sided limits at x = 2 and satisfies the conclusion of
the IVT on [0, 4].

25. Can Corollary 2 be applied to f (x) = x−1 on [−1, 1]?
Does f (x) have any roots?

Further Insights and Challenges
26. Take any map and draw a circle on it anywhere (Figure 5). Prove
that at any moment in time there exists a pair of diametrically opposite
points A and B on that circle corresponding to locations where the tem-

peratures at that moment are equal. Hint: Let θ be an angular coordinate
along the circle and let f (θ) be the difference in temperatures at the
locations corresponding to θ and θ + π .

1 2 3
x

y

FIGURE 4 Graph of y = x3 − 8x − 1.

θ

B

A

FIGURE 5 f (θ) is the difference between the
temperatures at A and B.
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27. Show that if f (x) is continuous and 0 ≤ f (x) ≤ 1 for
0 ≤ x ≤ 1, then f (c) = c for some c in [0, 1] (Figure 6).

1

1

y = f (x)

y = x

c
x

y

FIGURE 6 A function satisfying 0 ≤ f (x) ≤ 1 for 0 ≤ x ≤ 1.

28. Use the IVT to show that if f (x) is continuous and one-to-one
on an interval [a, b], then f (x) is either an increasing or a decreasing
function.

29. Ham Sandwich Theorem Figure 7(A) shows a slice of
ham. Prove that for any angle θ (0 ≤ θ ≤ π ), it is possible to cut the
slice in half with a cut of incline θ . Hint: The lines of inclination θ

are given by the equations y = (tan θ)x + b, where b varies from −∞
to ∞. Each such line divides the slice into two pieces (one of which
may be empty). Let A(b) be the amount of ham to the left of the line
minus the amount to the right, and let A be the total area of the ham.
Show that A(b) = −A if b is sufficiently large and A(b) = A if b is
sufficiently negative. Then use the IVT. This works if θ �= 0 or π

2 . If
θ = 0, define A(b) as the amount of ham above the line y = b minus

the amount below. How can you modify the argument to work when
θ = π

2 (in which case tan θ = ∞)?

30. Figure 7(B) shows a slice of ham on a piece of bread.
Prove that it is possible to slice this open-faced sandwich so that each
part has equal amounts of ham and bread. Hint: By Exercise 29, for
all 0 ≤ θ ≤ π there is a line L(θ) of incline θ (which we assume is
unique) that divides the ham into two equal pieces. Let B(θ) denote
the amount of bread to the left of (or above) L(θ) minus the amount
to the right (or below). Notice that L(π) and L(0) are the same line,
but B(π) = −B(0) since left and right get interchanged as the angle
moves from 0 to π . Assume that B(θ) is continuous and apply the IVT.
(By a further extension of this argument, one can prove the full “Ham
Sandwich Theorem,” which states that if you allow the knife to cut at a
slant, then it is possible to cut a sandwich consisting of a slice of ham
and two slices of bread so that all three layers are divided in half.)

L (0) = L(π)

L(θ)L ( )π

2

θ

(A) Cutting a slice of ham
at an angle θ

(B) A slice of ham on top
of a slice of bread

x

y

x

y

FIGURE 7

2.9 The Formal Definition of a Limit
In this section, we reexamine the definition of a limit in order to state it in a more rigorousA “rigorous proof” in mathematics is a

proof based on a complete chain of logic
without any gaps or ambiguity. The formal
limit definition is a key ingredient of
rigorous proofs in calculus. A few such
proofs are included in Appendix D. More
complete developments can be found in
textbooks on the branch of mathematics
called “analysis.”

and precise fashion. Why is this necessary? In Section 2.2, we defined limits by saying
that lim

x→c
f (x) = L if |f (x) − L| becomes arbitrarily small when x is sufficiently close

(but not equal) to c. The problem with this definition lies in the phrases “arbitrarily small”
and “sufficiently close.” We must find a way to specify just how close is sufficiently close.

The Size of the Gap
Recall that the distance from f (x) to L is |f (x) − L|. It is convenient to refer to the
quantity |f (x) − L| as the gap between the value f (x) and the limit L.

Let’s reexamine the trigonometric limit

lim
x→0

sin x

x
= 1 1

In this example, f (x) = sin x

x
and L = 1, so Eq. (1) tells us that the gap |f (x) − 1| gets

arbitrarily small when x is sufficiently close, but not equal, to 0 [Figure 1(A)].
Suppose we want the gap |f (x) − 1| to be less than 0.2. How close to 0 must x be?

Figure 1(B) shows that f (x) lies within 0.2 of L = 1 for all values of x in the interval
[−1, 1]. In other words, the following statement is true:∣∣∣∣ sin x

x
− 1

∣∣∣∣ < 0.2 if 0 < |x| < 1
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The gap | f (x) − 1|
is less than 0.004

The gap | f (x) − 1|
is less than 0.2

The interval |x| < 1

2π 3π

1

−π−2π 00

0.8

1

1

−1 1−3π π

(A) (B)

The interval |x| < 0.15

0.150−0.15

(C)

0.996

Enlarged view of
graph near x = 0

x

y

x x

y

y

0.5

FIGURE 1 Graphs of y = sin x

x
. To shrink the gap from 0.2 to 0.004, we require that x lie within 0.15 of 0.

If we insist instead that the gap be smaller than 0.004, we can check by zooming in on the
graph, as in Figure 1(C), that

∣∣∣∣ sin x

x
− 1

∣∣∣∣ < 0.004 if 0 < |x| < 0.15

It would seem that this process can be continued: By zooming in on the graph, we can
find a small interval around c = 0 where the gap |f (x) − 1| is smaller than any prescribed
positive number.

To express this in a precise fashion, we follow time-honored tradition in using the
Greek letters ε (epsilon) and δ (delta) to denote small numbers specifying the sizes of
the gap and the quantity |x − c|, respectively. In our case, c = 0 and |x − c| = |x|. The
precise meaning of Eq. (1) is that for every choice of ε > 0, there exists some δ (depending
on ε) such that

∣∣∣∣ sin x

x
− 1

∣∣∣∣ < ε if 0 < |x| < δ

The number δ pins down just how close is “sufficiently close” for a given ε. With this
motivation, we are ready to state the formal definition of the limit.

The formal definition of a limit is often
called the ε-δ definition. The tradition of
using the symbols ε and δ originated in the
writings of Augustin-Louis Cauchy on
calculus and analysis in the 1820s.

FORMAL DEFINITION OF A LIMIT Suppose that f (x) is defined for all x in an open
interval containing c (but not necessarily at x = c). Then

lim
x→c

f (x) = L

if for all ε > 0, there exists δ > 0 such that

|f (x) − L| < ε if 0 < |x − c| < δ

The condition 0 < |x − c| < δ in this definition excludes x = c. In other words, the limit

If the symbols ε and δ seem to make this
definition too abstract, keep in mind that
we can take ε = 10−n and δ = 10−m.
Thus, lim

x→c
f (x) = L if, for any n, there

exist m > 0 such that |f (x) − L| < 10−n,
provided that 0 < |x − c| < 10−m.

depends only on values of f (x) near c but not on f (c) itself. As we have seen in previous
sections, the limit may exist even when f (c) is not defined.
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EXAMPLE 1 Let f (x) = 8x + 3.

(a) Prove that lim
x→3

f (x) = 27 using the formal definition of the limit.

(b) Find values of δ that work for ε = 0.2 and 0.001.

Solution

(a) We break the proof into two steps.

Step 1. Relate the gap to |x − c|.
We must find a relation between two absolute values: |f (x) − L| for L = 27 and |x − c|
for c = 3. Observe that

|f (x) − 27|︸ ︷︷ ︸
Size of gap

= |(8x + 3) − 27| = |8x − 24| = 8|x − 3|

Thus, the gap is 8 times as large as |x − 3|.
Step 2. Choose δ (in terms of ε).

We can now see how to make the gap small: If |x − 3| < ε
8 , then the gap is less than

8
(

ε
8

) = ε. Therefore, for any ε > 0, we choose δ = ε
8 . With this choice, the following

statement holds:

|f (x) − 27| < ε if 0 < |x − 3| < δ, where δ = ε

8

Since we have specified δ for all ε > 0, we have fulfilled the requirements of the formal
definition, thus proving rigorously that lim

x→3
(8x + 3) = 27.

(b) For the particular choice ε = 0.2, we may take δ = ε
8 = 0.2

8 = 0.025:

|f (x) − 27| < 0.2 if 0 < |x − 3| < 0.025

This statement is illustrated in Figure 2. But note that any positive δ smaller than 0.025

27

27.2

26.8

3 3.0252.975

y = 8x + 3

x

y

FIGURE 2 To make the gap less than 0.2, we
may take δ = 0.025 (not drawn to scale).

will also work. For example, the following statement is also true, although it places an
unnecessary restriction on x:

|f (x) − 27| < 0.2 if 0 < |x − 3| < 0.019

Similarly, to make the gap less than ε = 0.001, we may take

δ = ε

8
= 0.001

8
= 0.000125

The difficulty in applying the limit definition lies in trying to relate |f (x) − L| to
|x − c|. The next two examples illustrate how this can be done in special cases.

EXAMPLE 2 Prove that lim
x→2

x2 = 4.

Solution Let f (x) = x2.

Step 1. Relate the gap to |x − c|.
In this case, we must relate the gap |f (x) − 4| = |x2 − 4| to the quantity |x − 2|
(Figure 3). This is more difficult than in the previous example because the gap is not a
constant multiple of |x − 2|. To proceed, consider the factorization

|x2 − 4| = |x + 2| |x − 2|
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Because we are going to require that |x − 2| be small, we may as well assume from the
outset that |x − 2| < 1, which means that 1 < x < 3. In this case, |x + 2| is less than
5 and the gap satisfies

|x2 − 4| = |x + 2| |x − 2| < 5 |x − 2| if |x − 2| < 1 2

22 − δ

4 − ε

4 + ε

2 + δ

4
Function values

within ε of 4

x

y

FIGURE 3 Graph of f (x) = x2. We may
choose δ so that f (x) lies within ε of 4 for
all x in [2 − δ, 2 + δ].

Step 2. Choose δ (in terms of ε).
We see from Eq. (2) that if |x − 2| is smaller than both ε

5 and 1, then the gap satisfies

|x2 − 4| < 5|x − 2| < 5
(ε

5

)
= ε

Therefore, the following statement holds for all ε > 0:

|x2 − 4| < ε if 0 < |x − 2| < δ, where δ is the smaller of ε
5 and 1

We have specified δ for all ε > 0, so we have fulfilled the requirements of the formal
limit definition, thus proving that lim

x→2
x2 = 4.

EXAMPLE 3 Prove that lim
x→3

1

x
= 1

3
.

Solution

Step 1. Relate the gap to |x − c|.
The gap is equal to ∣∣∣∣ 1

x
− 1

3

∣∣∣∣ =
∣∣∣∣3 − x

3x

∣∣∣∣ = |x − 3|
∣∣∣∣ 1

3x

∣∣∣∣
Because we are going to require that |x − 3| be small, we may as well assume from
the outset that |x − 3| < 1—that is, that 2 < x < 4. Now observe that if x > 2, then
3x > 6 and 1

3x
< 1

6 , so the following inequality is valid if |x − 3| < 1:

REMINDER If a > b > 0, then 1
a

< 1
b
.

Thus, if 3x > 6, then 1
3x

< 1
6 .

∣∣∣∣f (x) − 1

3

∣∣∣∣ =
∣∣∣∣3 − x

3x

∣∣∣∣ =
∣∣∣∣ 1

3x

∣∣∣∣ |x − 3| <
1

6
|x − 3| 3

Step 2. Choose δ (in terms of ε).
By Eq. (3), if |x − 3| < 1 and |x − 3| < 6ε, then∣∣∣∣ 1

x
− 1

3

∣∣∣∣ <
1

6
|x − 3| <

1

6
(6ε) = ε
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Therefore, given any ε > 0, we let δ be the smaller of the numbers 6ε and 1. Then

∣∣∣∣ 1

x
− 1

3

∣∣∣∣ < ε if 0 < |x − 3| < δ, where δ is the smaller of 6ε and 1

Again, we have fulfilled the requirements of the formal limit definition, thus proving
rigorously that lim

x→3

1
x

= 1
3 .

GRAPHICAL INSIGHT Keep the graphical interpretation of limits in mind. In Figure 4(A),
f (x) approaches L as x → c because for any ε > 0, we can make the gap less than
ε by taking δ sufficiently small. By contrast, the function in Figure 4(B) has a jump
discontinuity at x = c. The gap cannot be made small, no matter how small δ is taken.
Therefore, the limit does not exist.

c − δ c + δ

L

L  + ε

L  − ε

The function is continuous at x  = c.
By taking δ sufficiently small, we
can make the gap smaller than ε.

(A) (B) The function is not continuous at x  = c.
The gap is always larger than (b − a)/2,
no matter how small δ is.

Width 2ε

Width at
least b − a

c c − δ c + δc

b

a

x x

y y

FIGURE 4

Proving Limit Theorems
In practice, the formal limit definition is rarely used to evaluate limits. Most limits are
evaluated using the Basic Limit Laws or other techniques such as the Squeeze Theorem.
However, the formal definition allows us to prove these laws in a rigorous fashion and
thereby ensure that calculus is built on a solid foundation. We illustrate by proving the
Sum Law. Other proofs are given in Appendix D.

Proof of the Sum Law Assume that

lim
x→c

f (x) = L and lim
x→c

g(x) = M

We must prove that lim
x→c

(f (x) + g(x)) = L + M .

Apply the Triangle Inequality (see margin) with a = f (x) − L and b = g(x) − M:REMINDER The Triangle Inequality
[Eq. (1) in Section 1.1] states

|a + b| ≤ |a| + |b|
for all a and b.

|(f (x) + g(x)) − (L + M)| ≤ |f (x) − L| + |g(x) − M| 4

Each term on the right in (4) can be made small by the limit definition. More precisely, given
ε > 0, we can choose δ such that |f (x) − L| < ε

2 and |g(x) − M| < ε
2 if 0 < |x − c| < δ

(in principle, we might choose different δ’s for f and g, but we may then use the smaller
of the two δ’s). Thus, Eq. (4) gives

|f (x) + g(x) − (L + M)| <
ε

2
+ ε

2
= ε if 0 < |x − c| < δ 5
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This proves that

lim
x→c

(
f (x) + g(x)

) = L + M = lim
x→c

f (x) + lim
x→c

g(x)

2.9 SUMMARY

• Informally speaking, the statement lim
x→c

f (x) = L means that the gap |f (x) − L| tends

to 0 as x approaches c.
• The formal definition (called the ε-δ definition): lim

x→c
f (x) = L if, for all ε > 0, there

exists a δ > 0 such that

|f (x) − L| < ε if 0 < |x − c| < δ

2.9 EXERCISES

Preliminary Questions
1. Given that lim

x→0
cos x = 1, which of the following statements is true?

(a) If |cos x − 1| is very small, then x is close to 0.
(b) There is an ε > 0 such that |x| < 10−5 if 0 < |cos x − 1| < ε.
(c) There is a δ > 0 such that |cos x − 1| < 10−5 if 0 < |x| < δ.
(d) There is a δ > 0 such that |cos x| < 10−5 if 0 < |x − 1| < δ.

2. Suppose it is known that for a given ε and δ, |f (x) − 2| < ε if
0 < |x − 3| < δ. Which of the following statements must also be true?

(a) |f (x) − 2| < ε if 0 < |x − 3| < 2δ

(b) |f (x) − 2| < 2ε if 0 < |x − 3| < δ

(c) |f (x) − 2| <
ε

2
if 0 < |x − 3| <

δ

2

(d) |f (x) − 2| < ε if 0 < |x − 3| <
δ

2

Exercises
1. Based on the information conveyed in Figure 5(A), find values of

L, ε, and δ > 0 such that the following statement holds: |f (x) − L| < ε

if |x| < δ.

2. Based on the information conveyed in Figure 5(B), find values of c,
L, ε, and δ > 0 such that the following statement holds: |f (x) − L| < ε

if |x − c| < δ.

3 3.12.9

10
10.4

9.8

x

y

y  = f (x) y  = f (x)

(A) (B)

0.1−0.1

4

4.8

3.5

x

y

FIGURE 5

3. Consider lim
x→4

f (x), where f (x) = 8x + 3.

(a) Show that |f (x) − 35| = 8|x − 4|.
(b) Show that for any ε > 0, |f (x) − 35| < ε if |x − 4| < δ, where
δ = ε

8 . Explain how this proves rigorously that lim
x→4

f (x) = 35.

4. Consider lim
x→2

f (x), where f (x) = 4x − 1.

(a) Show that |f (x) − 7| < 4δ if |x − 2| < δ.

(b) Find a δ such that

|f (x) − 7| < 0.01 if |x − 2| < δ

(c) Prove rigorously that lim
x→2

f (x) = 7.

5. Consider lim
x→2

x2 = 4 (refer to Example 2).

(a) Show that |x2 − 4| < 0.05 if 0 < |x − 2| < 0.01.

(b) Show that |x2 − 4| < 0.0009 if 0 < |x − 2| < 0.0002.

(c) Find a value of δ such that |x2 − 4| is less than 10−4 if
0 < |x − 2| < δ.

6. With regard to the limit lim
x→5

x2 = 25,

(a) Show that |x2 − 25| < 11|x − 5| if 4 < x < 6. Hint: Write
|x2 − 25| = |x + 5| · |x − 5|.
(b) Find a δ such that |x2 − 25| < 10−3 if |x − 5| < δ.

(c) Give a rigorous proof of the limit by showing that |x2 − 25| < ε

if 0 < |x − 5| < δ, where δ is the smaller of ε
11 and 1.

7. Refer to Example 3 to find a value of δ > 0 such that∣∣∣∣ 1

x
− 1

3

∣∣∣∣ < 10−4 if 0 < |x − 3| < δ
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8. Use Figure 6 to find a value of δ > 0 such that the following state-
ment holds:

∣∣1/x2 − 1
4

∣∣ < ε if |x − 2| < δ for ε = 0.03. Then find a
value of δ that works for ε = 0.01.

0.05

0.10

0.15

0.20

0.25

0.30

1.9 2.0 2.1

y

x

1
x2

y =

FIGURE 6

9. Plot f (x) = √
2x − 1 together with the horizontal lines

y = 2.9 and y = 3.1. Use this plot to find a value of δ > 0 such that
|√2x − 1 − 3| < 0.1 if |x − 5| < δ.

10. Plot f (x) = tan x together with the horizontal lines y =
0.99 and y = 1.01. Use this plot to find a value of δ > 0 such that
|tan x − 1| < 0.01 if

∣∣x − π
4

∣∣ < δ.

11. The number e has the following property: lim
x→0

ex − 1

x
= 1.

Use a plot of f (x) = ex − 1

x
to find a value of δ > 0 such that

|f (x) − 1| < 0.01 if |x − 1| < δ.

12. Let f (x) = 4

x2 + 1
and ε = 0.5. Using a plot of f (x), find

a value of δ > 0 such that
∣∣∣f (x) − 16

5

∣∣∣ < ε for
∣∣∣x − 1

2

∣∣∣ < δ. Repeat

for ε = 0.2 and 0.1.

13. Consider lim
x→2

1

x
.

(a) Show that if |x − 2| < 1, then∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
|x − 2|

(b) Let δ be the smaller of 1 and 2ε. Prove:∣∣∣∣ 1

x
− 1

2

∣∣∣∣ < ε if 0 < |x − 2| < δ

(c) Find a δ > 0 such that
∣∣∣ 1
x − 1

2

∣∣∣ < 0.01 if |x − 2| < δ.

(d) Prove rigorously that lim
x→2

1

x
= 1

2
.

14. Consider lim
x→1

√
x + 3.

(a) Show that |√x + 3 − 2| < 1
2 |x − 1| if |x − 1| < 4. Hint: Multiply

the inequality by |√x + 3 + 2| and observe that |√x + 3 + 2| > 2.

(b) Find δ > 0 such that |√x + 3 − 2| < 10−4 for |x − 1| < δ.

(c) Prove rigorously that the limit is equal to 2.

15. Let f (x) = sin x. Using a calculator, we find:

f
(π

4
− 0.1

)
≈ 0.633, f

(π

4

)
≈ 0.707, f

(π

4
+ 0.1

)
≈ 0.774

Use these values and the fact that f (x) is increasing on
[
0, π

2

]
to justify

the statement∣∣∣f (x) − f
(π

4

)∣∣∣ < 0.08 if
∣∣∣x − π

4

∣∣∣ < 0.1

Then draw a figure like Figure 3 to illustrate this statement.

16. Adapt the argument in Example 1 to prove rigorously that
lim
x→c

(ax + b) = ac + b, where a, b, c are arbitrary.

17. Adapt the argument in Example 2 to prove rigorously that
lim
x→c

x2 = c2 for all c.

18. Adapt the argument in Example 3 to prove rigorously that
lim
x→c

x−1 = 1
c for all c �= 0.

In Exercises 19–24, use the formal definition of the limit to prove the
statement rigorously.

19. lim
x→4

√
x = 2 20. lim

x→1
(3x2 + x) = 4

21. lim
x→1

x3 = 1 22. lim
x→0

(x2 + x3) = 0

23. lim
x→2

x−2 = 1

4
24. lim

x→0
x sin

1

x
= 0

25. Let f (x) = x

|x| . Prove rigorously that lim
x→0

f (x) does not exist.

Hint: Show that for any L, there always exists some x such that |x| < δ

but |f (x) − L| ≥ 1
2 , no matter how small δ is taken.

26. Prove rigorously that lim
x→0

|x| = 0.

27. Let f (x) = min(x, x2), where min(a, b) is the minimum of a and
b. Prove rigorously that lim

x→1
f (x) = 1.

28. Prove rigorously that lim
x→0

sin 1
x does not exist.

29. First, use the identity

sin x + sin y = 2 sin

(
x + y

2

)
cos

(
x − y

2

)

to verify the relation

sin(a + h) − sin a = h
sin(h/2)

h/2
cos

(
a + h

2

)
6

Then use the inequality

∣∣∣∣ sin x

x

∣∣∣∣ ≤ 1 for x �= 0 to show that

|sin(a + h) − sin a| < |h| for all a. Finally, prove rigorously that
lim
x→a

sin x = sin a.
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Further Insights and Challenges
30. Uniqueness of the Limit Prove that a function converges to at
most one limiting value. In other words, use the limit definition to prove
that if lim

x→c
f (x) = L1 and lim

x→c
f (x) = L2, then L1 = L2.

In Exercises 31–33, prove the statement using the formal limit defini-
tion.

31. The Constant Multiple Law [Theorem 1, part (ii) in Section 2.3,
p. 77]

32. The Squeeze Theorem. (Theorem 1 in Section 2.6, p. 96)

33. The Product Law [Theorem 1, part (iii) in Section 2.3, p. 77]. Hint:
Use the identity

f (x)g(x) − LM = (f (x) − L) g(x) + L(g(x) − M)

34. Let f (x) = 1 if x is rational and f (x) = 0 if x is irrational. Prove
that lim

x→c
f (x) does not exist for any c.

35. Here is a function with strange continuity properties:

f (x) =

⎧⎪⎨
⎪⎩

1

q

if x is the rational number p/q in
lowest terms

0 if x is an irrational number

(a) Show that f (x) is discontinuous at c if c is rational. Hint: There
exist irrational numbers arbitrarily close to c.

(b) Show that f (x) is continuous at c if c is irrational. Hint: Let I be
the interval {x : |x − c| < 1}. Show that for any Q > 0, I contains at
most finitely many fractions p/q with q < Q. Conclude that there is a
δ such that all fractions in {x : |x − c| < δ} have a denominator larger
than Q.

CHAPTER REVIEW EXERCISES

1. The position of a particle at time t (s) is s(t) =
√

t2 + 1 m. Com-
pute its average velocity over [2, 5] and estimate its instantaneous ve-
locity at t = 2.

2. The “wellhead” price p of natural gas in the United States (in dol-
lars per 1000 ft3) on the first day of each month in 2008 is listed in the
table below.

J F M A M J

6.99 7.55 8.29 8.94 9.81 10.82

J A S O N D

10.62 8.32 7.27 6.36 5.97 5.87

Compute the average rate of change of p (in dollars per 1000 ft3 per
month) over the quarterly periods January–March, April–June, and
July–September.

3. For a whole number n, let P(n) be the number of partitions of n,
that is, the number of ways of writing n as a sum of one or more whole
numbers. For example, P(4) = 5 since the number 4 can be partitioned
in five different ways: 4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1.
Treating P(n) as a continuous function, use Figure 1 to estimate the
rate of change of P(n) at n = 12.

n

P(n)

14121086420
0

40

80

120

160

FIGURE 1 Graph of P(n).

4. The average velocity v (m/s) of an oxygen molecule in the air
at temperature T (◦C) is v = 25.7

√
273.15 + T . What is the average

speed at T = 25◦ (room temperature)? Estimate the rate of change of
average velocity with respect to temperature at T = 25◦. What are the
units of this rate?

In Exercises 5–10, estimate the limit numerically to two decimal places
or state that the limit does not exist.

5. lim
x→0

1 − cos3(x)

x2
6. lim

x→1
x1/(x−1)

7. lim
x→2

xx − 4

x2 − 4
8. lim

x→2

x − 2

ln(3x − 5)

9. lim
x→1

(
7

1 − x7 − 3

1 − x3

)
10. lim

x→2

3x − 9

5x − 25

In Exercises 11–50, evaluate the limit if it exists. If not, determine
whether the one-sided limits exist (finite or infinite).

11. lim
x→4

(3 + x1/2) 12. lim
x→1

5 − x2

4x + 7

13. lim
x→−2

4

x3
14. lim

x→−1

3x2 + 4x + 1

x + 1

15. lim
t→9

√
t − 3

t − 9
16. lim

x→3

√
x + 1 − 2

x − 3

17. lim
x→1

x3 − x

x − 1
18. lim

h→0

2(a + h)2 − 2a2

h

19. lim
t→9

t − 6√
t − 3

20. lim
s→0

1 −
√

s2 + 1

s2

21. lim
x→−1+

1

x + 1
22. lim

y→ 1
3

3y2 + 5y − 2

6y2 − 5y + 1
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23. lim
x→1

x3 − 2x

x − 1
24. lim

a→b

a2 − 3ab + 2b2

a − b

25. lim
x→0

e3x − ex

ex − 1
26. lim

θ→0

sin 5θ

θ

27. lim
x→1.5

[x]
x

28. lim
θ→ π

4

sec θ

29. lim
z→−3

z + 3

z2 + 4z + 3
30. lim

x→1

x3 − ax2 + ax − 1

x − 1

31. lim
x→b

x3 − b3

x − b
32. lim

x→0

sin 4x

sin 3x

33. lim
x→0

(
1

3x
− 1

x(x + 3)

)
34. lim

θ→ 1
4

3tan(πθ)

35. lim
x→0−

[x]
x

36. lim
x→0+

[x]
x

37. lim
θ→ π

2

θ sec θ 38. lim
y→2

ln

(
sin

π

y

)

39. lim
θ→0

cos θ − 2

θ
40. lim

x→4.3

1

x − [x]

41. lim
x→2−

x − 3

x − 2
42. lim

t→0

sin2 t

t3

43. lim
x→1+

(
1√

x − 1
− 1√

x2 − 1

)
44. lim

t→e

√
t(ln t − 1)

45. lim
x→ π

2

tan x 46. lim
t→0

cos
1

t

47. lim
t→0+

√
t cos

1

t
48. lim

x→5+
x2 − 24

x2 − 25

49. lim
x→0

cos x − 1

sin x
50. lim

θ→0

tan θ − sin θ

sin3 θ

51. Find the left- and right-hand limits of the function f (x) in Figure 2
at x = 0, 2, 4. State whether f (x) is left- or right-continuous (or both)
at these points.

x

y

1 3 52 4

1

2

FIGURE 2

52. Sketch the graph of a function f (x) such that

(a) lim
x→2− f (x) = 1, lim

x→2+ f (x) = 3

(b) lim
x→4

f (x) exists but does not equal f (4).

53. Graph h(x) and describe the discontinuity:

h(x) =
{

ex for x ≤ 0

ln x for x > 0

Is h(x) left- or right-continuous?

54. Sketch the graph of a function g(x) such that

lim
x→−3− g(x) = ∞, lim

x→−3+ g(x) = −∞, lim
x→4

g(x) = ∞

55. Find the points of discontinuity of

g(x) =

⎧⎪⎨
⎪⎩

cos
(πx

2

)
for |x| < 1

|x − 1| for |x| ≥ 1

Determine the type of discontinuity and whether g(x) is left- or right-
continuous.

56. Show that f (x) = xesin x is continuous on its domain.

57. Find a constant b such that h(x) is continuous at x = 2, where

h(x) =
{

x + 1 for |x| < 2

b − x2 for |x| ≥ 2

With this choice of b, find all points of discontinuity.

In Exercises 58–63, find the horizontal asymptotes of the function by
computing the limits at infinity.

58. f (x) = 9x2 − 4

2x2 − x
59. f (x) = x2 − 3x4

x − 1

60. f (u) = 8u − 3√
16u2 + 6

61. f (u) = 2u2 − 1√
6 + u4

62. f (x) = 3x2/3 + 9x3/7

7x4/5 − 4x−1/3
63. f (t) = t1/3 − t−1/3

(t − t−1)1/3

64. Calculate (a)–(d), assuming that

lim
x→3

f (x) = 6, lim
x→3

g(x) = 4

(a) lim
x→3

(f (x) − 2g(x)) (b) lim
x→3

x2f (x)

(c) lim
x→3

f (x)

g(x) + x
(d) lim

x→3
(2g(x)3 − g(x)3/2)

65. Assume that the following limits exist:

A = lim
x→a

f (x), B = lim
x→a

g(x), L = lim
x→a

f (x)

g(x)

Prove that if L = 1, then A = B. Hint: You cannot use the Quotient
Law if B = 0, so apply the Product Law to L and B instead.

66. Define g(t) = (1 + 21/t )−1 for t �= 0. How should g(0)

be defined to make g(t) left-continuous at t = 0?

67. In the notation of Exercise 65, give an example where L

exists but neither A nor B exists.
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68. True or false?

(a) If lim
x→3

f (x) exists, then lim
x→3

f (x) = f (3).

(b) If lim
x→0

f (x)

x
= 1, then f (0) = 0.

(c) If lim
x→−7

f (x) = 8, then lim
x→−7

1

f (x)
= 1

8
.

(d) If lim
x→5+ f (x) = 4 and lim

x→5− f (x) = 8, then lim
x→5

f (x) = 6.

(e) If lim
x→0

f (x)

x
= 1, then lim

x→0
f (x) = 0.

(f) If lim
x→5

f (x) = 2, then lim
x→5

f (x)3 = 8.

69. Let f (x) = x
[

1
x

]
, where [x] is the greatest integer func-

tion. Show that for x �= 0,

1

x
− 1 <

[
1

x

]
≤ 1

x

Then use the Squeeze Theorem to prove that

lim
x→0

x

[
1

x

]
= 1

Hint: Treat the one-sided limits separately.

70. Let r1 and r2 be the roots of f (x) = ax2 − 2x + 20. Observe that
f (x) “approaches” the linear function L(x) = −2x + 20 as a → 0.
Because r = 10 is the unique root of L(x), we might expect one of the
roots of f (x) to approach 10 as a → 0 (Figure 3). Prove that the roots
can be labeled so that lim

a→0
r1 = 10 and lim

a→0
r2 = ∞.

x

y

100 200

Root tends to ∞
as a → 0

Root
near 10

300 400

200

−200
y = −2x + 20

a = 0.002
a = 0.008

FIGURE 3 Graphs of f (x) = ax2 − 2x + 20.

71. Use the IVT to prove that the curves y = x2 and y = cos x inter-
sect.

72. Use the IVT to prove that f (x) = x3 − x2 + 2

cos x + 2
has a root in the

interval [0, 2].

73. Use the IVT to show that e−x2 = x has a solution on (0, 1).

74. Use the Bisection Method to locate a solution of x2 − 7 = 0 to
two decimal places.

75. Give an example of a (discontinuous) function that does
not satisfy the conclusion of the IVT on [−1, 1]. Then show that the
function

f (x) =
⎧⎨
⎩sin

1

x
x �= 0

0 x = 0

satisfies the conclusion of the IVT on every interval [−a, a], even
though f is discontinuous at x = 0.

76. Let f (x) = 1

x + 2
.

(a) Show that
∣∣∣f (x) − 1

4

∣∣∣ <
|x − 2|

12
if |x − 2| < 1. Hint: Observe

that |4(x + 2)| > 12 if |x − 2| < 1.

(b) Find δ > 0 such that
∣∣∣f (x) − 1

4

∣∣∣ < 0.01 for |x − 2| < δ.

(c) Prove rigorously that lim
x→2

f (x) = 1
4 .

77. Plot the function f (x) = x1/3. Use the zoom feature to find

a δ > 0 such that |x1/3 − 2| < 0.05 for |x − 8| < δ.

78. Use the fact that f (x) = 2x is increasing to find a value of δ such
that |2x − 8| < 0.001 if |x − 2| < δ. Hint: Find c1 and c2 such that
7.999 < f (c1) < f (c2) < 8.001.

79. Prove rigorously that lim
x→−1

(4 + 8x) = −4.

80. Prove rigorously that lim
x→3

(x2 − x) = 6.
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CHAPTER 2 LIMITS
PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided.

1. Let f (x) =
⎧⎨
⎩

x2 − 9

x − 3
, x �= 3

6, x = 3
. Which of the following is

true?

I lim
x→3

f (x) does not exist.

II f is continuous at x = 3.

III The line x = 3 is a vertical asymptote.

(A) I only

(B) II only

(C) III only

(D) I and II only

(E) I and III only

2. lim
x→∞

sin x

x
is

(A) 0

(B) 1

(C) −∞
(D) ∞
(E) nonexistent because sin(x) oscillates between −1

and 1.

3. lim
h→25

√
h − 5

h − 25
is

(A) 0
(B) 1

25

(C) 1
10

(D) 1
5

(E) nonexistent

4. C x −6 −4 −2 0 2 4 6
f (x) 9 3 1 5 8 15 31

Using the table of values of f (x), the average rate of change
of f on the interval [−2, 4] is
(A) 1

6

(B) 1
(C) 3

2

(D) 7
3

(E) 12

5. C Suppose lim
x→2

f (x) = 5, lim
x→2

g(x) = 6, and f (x) ≤
h(x) ≤ g(x) for all x. Which of the following must be true?

I f (2) = 5

II g(x) ≤ 6 for all x ≥ 2

III 5 ≤ lim
x→2

h(x) ≤ 6

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) None of the statements must be true.

AP2-1
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6. C If f is continuous on [2, 6], with f (2) = 20 and
f (6) = 10, then the Intermediate Value Theorem says
which of the following is true?

I f (x) = 25 does not have a solution on [2, 6].
II f (x) = 17 has a solution on [2, 6].

III f (x) = 0 has a solution on [2, 6].
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

7. lim
x→4−

x + 6

x2 − 6x + 8
is

(A) 0
(B) 1

24

(C) 3
4

(D) ∞
(E) −∞

8. lim
x→−∞

3x + 2√
x2 + 4

is

(A) −∞
(B) −3
(C) 0
(D) 3
(E) ∞

9. C If f is continuous for all x, the maximum number of
horizontal asymptotes that the graph of f can have is
(A) 0
(B) 1
(C) 2
(D) 3
(E) There is no maximum number.

10. C If f is continuous for all x, the maximum number of
vertical asymptotes that the graph of f can have is
(A) 0
(B) 1
(C) 2
(D) 3
(E) There is no maximum number.

11. lim
x→∞

√
x2 − 4x − x is

(A) −∞
(B) −4
(C) −2
(D) 0
(E) nonexistent

12. C If the graph of f has a tangent line for all x, with
f (1.99) = 4.988 and f (2.01) = 5.004, then which of the
following is the best approximation to the tangent line when
x = 2?

(A) y = 0.8x + 3.4

(B) y = 0.8x + 5

(C) y = 1.6x + 1.8

(D) y = 1.6x + 5

(E) y = 2.0x + 1

13. C

1

−2

1

2

3

y

x
2 3

The graph of a function f is shown above. Which of the
following is true?

I lim
x→2− f (x) = 1

II lim
x→2+ f (x) = −2

III lim
x→2

f (x) = −1

(A) I only

(B) II only

(C) III only

(D) I and II only

(E) I, II, and III

14. C

−1−2 1 2 3

−2

−1

1

2

3

4

y

x

The graph of f given above has a tangent line at every x in
(−2, 3) except x =
(A) −1

(B) 0

(C) 1

(D) 2

(E) The graph has a tangent line at each x.
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15. C If the domain of f is [1, ∞) with f (1) = 0, and the
line y = 3 is a horizontal asymptote for the graph of f ,
which of the following must be true?

I The graph of f never meets the line y = 3.
II lim

x→∞ f (x) = 3

III f is an increasing function.
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

16. lim
x→2−

x2 − 2x∣∣x2 − x − 2
∣∣ is

(A) −∞
(B) −2

3

(C) 0
(D) 2

3
(E) ∞

17. C x 1 3 5 8
f (x) −2 4 10 6

If f is continuous on [1, 8] and some values of f are given
in the table above, then which of the following must be true?

I f (x) = −3 has a solution in [1, 8].
II f (x) = 0 has a solution in [1, 8].

III f (x) = 9 has a solution in [1, 8].
(A) II only
(B) III only
(C) I and II only
(D) II and III only
(E) I, II, and III

18. lim
x→0+

cos(x)

x
is

(A) −∞
(B) −1

(C) 0

(D) 1

(E) ∞

19. If f (x) =
⎧⎨
⎩

4 − x, for x < 0
2, for x = 0
x + 1, for x > 0

⎫⎬
⎭, then lim

x→0
f (x) is

(A) 4

(B) 2

(C) 1

(D) 0

(E) nonexistent

20. lim
x→−∞(x + √

x2 + 6x + 9) is

(A) −∞
(B) −3

(C) 0

(D) 3

(E) ∞

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work.

1. Let f (x) = sin x

x
.

(a) What is the average rate of change of f on the interval[
π
2 , 3π

2

]
?

(b) What is lim
x→0

f (x)?

(c) Is the line x = 0 a vertical asymptote of f ? Justify your
answer using limits.

(d) Use the Squeeze Theorem to show the line y = 0 is a
horizontal asymptote of f .

2. Let f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 − 7x + 10

x2 − 25
, for x2 �= 25

A, for x = 5

B, for x = −5

(a) Are the lines x = 5 and x = −5 vertical asymptotes of
f ? Justify your answer.

(b) Identify all horizontal asymptotes of f . Justify your
answer.

(c) Is there a value of A that makes f continuous at x = 5?

(d) Is there a value of B that makes f continuous at
x = −5?



PREPARING FOR THE AP EXAM AP2-4

3. C Let f (x) be a function defined for all x, with −5 ≤
f (x) ≤ 10. Also, lim

x→0
f (x) does not exist but f (0) = 3.

(a) Let g(x) = xf (x). Show g is continuous at x = 0.

(b) Does the graph of g have a tangent line at (0, 0)?
Explain.

4. C Let f (x) =
{

3
√

2x, for − 2 ≤ x ≤ 4
6 − x, for 4 < x ≤ 6

.

(a) Use the definition to show f is continuous at x = 4.

(b) What is the average rate of change of f on the interval
[0, 0.004]?

(c) Is there an instantaneous rate of change of f when
x = 0? Explain.

Answers to odd-numbered questions can be found in the back of
the book.
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Calculus is the foundation for all of our

understanding of motion, including the

aerodynamic principles that made supersonic

flight possible.

3 DIFFERENTIATION

D ifferential calculus is the study of the derivative, and differentiation is the process of
computing derivatives. What is a derivative? There are three equally important an-

swers: A derivative is a rate of change, it is the slope of a tangent line, and (more formally),
it is the limit of a difference quotient, as we will explain shortly. In this chapter, we explore
all three facets of the derivative and develop the basic rules of differentiation. When you
master these techniques, you will possess one of the most useful and flexible tools that
mathematics has to offer.

3.1 Definition of the Derivative
We begin with two questions: What is the precise definition of a tangent line? And how can
we compute its slope? To answer these questions, let’s return to the relationship between
tangent and secant lines first mentioned in Section 2.1.

The secant line through distinct points P = (a, f (a)) and Q = (x, f (x)) on the graph
of a function f (x) has slope [Figure 1(A)]

REMINDER A secant line is any line
through two points on a curve or graph.

�f

�x
= f (x) − f (a)

x − a

where

�f = f (x) − f (a) and �x = x − a

The expression
f (x) − f (a)

x − a
is called the difference quotient.

xa

(A)

a

(B)

Tangent

y

x

y

x

P = (a, f (a))

Q = (x, f (x))

�x = x − a

Δ f = f (x) − f (a)
P = (a, f (a))

FIGURE 1 The secant line has slope
�f/�x. Our goal is to compute the slope
of the tangent line at (a, f (a)).

Now observe what happens as Q approaches P or, equivalently, as x approaches a.
Figure 2 suggests that the secant lines get progressively closer to the tangent line. If we
imagine Q moving toward P , then the secant line appears to rotate into the tangent line
as in (D). Therefore, we may expect the slopes of the secant lines to approach the slope
of the tangent line.

Based on this intuition, we define the derivative f ′(a) (which is read “f prime of
a”) as the limit

f ′(a) = lim
x→a

f (x) − f (a)

x − a︸ ︷︷ ︸
Limit of slopes of secant lines

120
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(C)(B)

P

xa

Q

a
(D)

y

x

y

x
xa

(A)

y

x
xa

y

x

P

Q

P
Q

P

x

Q

FIGURE 2 The secant lines approach the tangent line as Q approaches P .

There is another way of writing the difference quotient using a new variable h:

h = x − a

We have x = a + h and, for x �= a (Figure 3),

P

Q

y

x
a

h

f (a + h) − f (a)

x = a + h

FIGURE 3 The difference quotient can be
written in terms of h.

f (x) − f (a)

x − a
= f (a + h) − f (a)

h

The variable h approaches 0 as x → a, so we can rewrite the derivative as

f ′(a) = lim
h→0

f (a + h) − f (a)

h

Each way of writing the derivative is useful. The version using h is often more convenient
in computations.

DEFINITION The Derivative The derivative of f (x) at x = a is the limit of the dif-
ference quotients (if it exists):

f ′(a) = lim
h→0

f (a + h) − f (a)

h
1

When the limit exists, we say that f is differentiable at x = a. An equivalent definition
of the derivative is

f ′(a) = lim
x→a

f (x) − f (a)

x − a
2

We can now define the tangent line in a precise way, as the line of slope f ′(a) through
P = (a, f (a)).

DEFINITION Tangent Line Assume that f (x) is differentiable at x = a. The tangent
line to the graph of y = f (x) at P = (a, f (a)) is the line through P of slope f ′(a).
The equation of the tangent line in point-slope form is

y − f (a) = f ′(a)(x − a) 3

REMINDER The equation of the line
through P = (a, b) of slope m in
point-slope form:

y − b = m(x − a)
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EXAMPLE 1 Equation of a Tangent Line Find an equation of the tangent line to the
graph of f (x) = x2 at x = 5.

y = 10x − 25

y = x2

3 5 7

(5, 25)

75

50

25

x

y

FIGURE 4 Tangent line to y = x2 at x = 5.

Solution First, we must compute f ′(5). We are free to use either Eq. (1) or Eq. (2). Using
Eq. (2), we have

f ′(5) = lim
x→5

f (x) − f (5)

x − 5
= lim

x→5

x2 − 25

x − 5
= lim

x→5

(x − 5)(x + 5)

x − 5

= lim
x→5

(x + 5) = 10

Next, we apply Eq. (3) with a = 5. Because f (5) = 25, an equation of the tangent line is
y − 25 = 10(x − 5), or, in slope-intercept form: y = 10x − 25 (Figure 4).

The next two examples illustrate differentiation (the process of computing the deriva-
tive) using Eq. (1). For clarity, we break up the computations into three steps.Isaac Newton referred to calculus as the

“method of fluxions” (from the Latin word
for “flow”), but the term “differential
calculus”, introduced in its Latin form
“calculus differentialis” by Gottfried
Wilhelm Leibniz, eventually won out and
was adopted universally.

EXAMPLE 2 Compute f ′(3), where f (x) = x2 − 8x.

Solution Using Eq. (1), we write the difference quotient at a = 3 as

f (a + h) − f (a)

h
= f (3 + h) − f (3)

h
(h �= 0)

Step 1. Write out the numerator of the difference quotient.

f (3 + h) − f (3) = (
(3 + h)2 − 8(3 + h)

) − (
32 − 8(3)

)
= (

(9 + 6h + h2) − (24 + 8h)
) − (9 − 24)

= h2 − 2h

Step 2. Divide by h and simplify.

f (3 + h) − f (3)

h
= h2 − 2h

h
= h(h − 2)

h
= h − 2︸ ︷︷ ︸

Cancel h

Step 3. Compute the limit.

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0
(h − 2) = −2

EXAMPLE 3 Sketch the graph of f (x) = 1

x
and the tangent line at x = 2.

(a) Based on the sketch, do you expect f ′(2) to be positive or negative?
(b) Find an equation of the tangent line at x = 2.

Solution The graph and tangent line at x = 2 are shown in Figure 5.

54321

3

2

1

x

y

FIGURE 5 Graph of f (x) = 1
x . The tangent

line at x = 2 has equation y = − 1
4x + 1.

(a) We see that the tangent line has negative slope, so f ′(2) must be negative.
(b) We compute f ′(2) in three steps as before.

Step 1. Write out the numerator of the difference quotient.

f (2 + h) − f (2) = 1

2 + h
− 1

2
= 2

2(2 + h)
− 2 + h

2(2 + h)
= − h

2(2 + h)

Step 2. Divide by h and simplify.

f (2 + h) − f (2)

h
= 1

h
·
(

− h

2(2 + h)

)
= − 1

2(2 + h)
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Step 3. Compute the limit.

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

−1

2(2 + h)
= −1

4

The function value is f (2) = 1
2 , so the tangent line passes through

(
2, 1

2

)
and has equation

y − 1

2
= −1

4
(x − 2)

In slope-intercept form, y = − 1
4x + 1.

The graph of a linear function f (x) = mx + b (where m and b are constants) is a line
of slope m. The tangent line at any point coincides with the line itself (Figure 6), so we
should expect that f ′(a) = m for all a. Let’s check this by computing the derivative:

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

(m(a + h) + b) − (ma + b)

h

= lim
h→0

mh

h
= lim

h→0
m = m

If m = 0, then f (x) = b is constant and f ′(a) = 0 (Figure 7). In summary,

4

2

42

f (x) = mx + b

−1

y

x

FIGURE 6 The derivative of
f (x) = mx + b is f ′(a) = m for all a.

4

2

42
x

y

f (x) = b

FIGURE 7 The derivative of a constant
function f (x) = b is f ′(a) = 0 for all a.

THEOREM 1 Derivative of Linear and Constant Functions

• If f (x) = mx + b is a linear function, then f ′(a) = m for all a.
• If f (x) = b is a constant function, then f ′(a) = 0 for all a.

EXAMPLE 4 Find the derivative of f (x) = 9x − 5 at x = 2 and x = 5.

Solution We have f ′(a) = 9 for all a. Hence, f ′(2) = f ′(5) = 9.

Estimating the Derivative

Approximations to the derivative are useful in situations where we cannot evaluate f ′(a)

exactly. Since the derivative is the limit of difference quotients, the difference quotient
should give a good numerical approximation when h is sufficiently small:

f ′(a) ≈ f (a + h) − f (a)

h
if h is small

Graphically, this says that for small h, the slope of the secant line is nearly equal to the
slope of the tangent line (Figure 8).

a + ha

y

x

P
Q

Tangent

Secant

FIGURE 8 When h is small, the secant line
has nearly the same slope as the tangent
line.

EXAMPLE 5 Estimate the derivative of f (x) = sin x at x = π
6 .

Solution We calculate the difference quotient for several small values of h:

sin
(

π
6 + h

) − sin π
6

h
= sin

(
π
6 + h

) − 0.5

h

Table 1 on the next page suggests that the limit has a decimal expansion beginning 0.866.
In other words, f ′(π

6

) ≈ 0.866.
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TABLE 1 Values of the Difference Quotient for Small h

h > 0
sin

(
π
6 + h

) − 0.5

h
h < 0

sin
(
π
6 + h

) − 0.5

h

0.01 0.863511 −0.01 0.868511
0.001 0.865775 −0.001 0.866275
0.0001 0.8660 00 −0.0001 0.866 050
0.00001 0.8660 229 −0.00001 0.8660 279

In the next example, we use graphical reasoning to determine the accuracy of the
estimates obtained in Example 5.

EXAMPLE 6 Determining Accuracy Graphically Let f (x) = sin x. Show that
the approximation f ′ (π

6

) ≈ 0.8660 is accurate to four decimal places.

π

6

Tangent

Secant (h > 0)

y = sin x

Secant (h < 0)

x

y

FIGURE 9 The tangent line is squeezed in
between the secant lines with h > 0 and
h < 0.

Solution Observe in Figure 9 that the position of the secant line relative to the tangent
line depends on whether h is positive or negative. When h > 0, the slope of the secant
line is smaller than the slope of the tangent line, but it is larger when h < 0. This tells us
that the difference quotients in the second column of Table 1 are smaller than f ′(π

6

)
and

those in the fourth column are greater than f ′(π
6

)
. From the last line in Table 1 we may

conclude that

This technique of estimating an unknown
quantity by showing that it lies between
two known values (“squeezing it”) is used
frequently in calculus.

0.866022 ≤ f ′ (π

6

)
≤ 0.866028

It follows that the estimate f ′(π
6

) ≈ 0.8660 is accurate to four decimal places. In Sec-
tion 3.6, we will see that the exact value is f ′(π

6

) = cos
(

π
6

) = √
3/2 ≈ 0.8660254, just

about midway between 0.866022 and 0.866028.

CONCEPTUAL INSIGHT Are Limits Really Necessary? It is natural to ask whether limits
are really necessary. The tangent line is easy to visualize. Is there perhaps a better or
simpler way to find its equation? History gives one answer: The methods of calculus
based on limits have stood the test of time and are used more widely today than ever
before.

History aside, we can see directly why limits play such a crucial role. The slope of
a line can be computed if the coordinates of two points P = (x1, y1) and Q = (x2, y2)

on the line are known:

Slope of line = y2 − y1

x2 − x1

This formula cannot be applied to the tangent line because we know only that it passes
through the single point P = (a, f (a)). Limits provide an ingenious way around this
obstacle. We choose a point Q = (a + h, f (a + h)) on the graph near P and form the
secant line. The slope of this secant line is just an approximation to the slope of the
tangent line:

Slope of secant line = f (a + h) − f (a)

h
≈ slope of tangent line

But this approximation improves as h → 0, and by taking the limit, we convert our
approximations into the exact slope.
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3.1 SUMMARY

• The difference quotient:

f (a + h) − f (a)

h

The difference quotient is the slope of the secant line through the points P = (a, f (a))

and Q = (a + h, f (a + h)) on the graph of f (x).
• The derivative f ′(a) is defined by the following equivalent limits:

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

x→a

f (x) − f (a)

x − a

If the limit exists, we say that f is differentiable at x = a.
• By definition, the tangent line at P = (a, f (a)) is the line through P with slope f ′(a)

[assuming that f ′(a) exists].
• Equation of the tangent line in point-slope form:

y − f (a) = f ′(a)(x − a)

• To calculate f ′(a) using the limit definition:

Step 1. Write out the numerator of the difference quotient.

Step 2. Divide by h and simplify.

Step 3. Compute the derivative by taking the limit.

• For small values of h, we have the estimate f ′(a) ≈ f (a + h) − f (a)

h
.

3.1 EXERCISES

Preliminary Questions
1. Which of the lines in Figure 10 are tangent to the curve?

A

B
C

D

FIGURE 10

2. What are the two ways of writing the difference quotient?

3. Find a and h such that
f (a + h) − f (a)

h
is equal to the slope of

the secant line between (3, f (3)) and (5, f (5)).

4. Which derivative is approximated by
tan

(
π
4 + 0.0001

) − 1

0.0001
?

5. What do the following quantities represent in terms of the graph
of f (x) = sin x?

(a) sin 1.3 − sin 0.9 (b)
sin 1.3 − sin 0.9

0.4
(c) f ′(0.9)

Exercises
1. Let f (x) = 5x2. Show that f (3 + h) = 5h2 + 30h + 45. Then

show that

f (3 + h) − f (3)

h
= 5h + 30

and compute f ′(3) by taking the limit as h → 0.

2. Let f (x) = 2x2 − 3x − 5. Show that the secant line through
(2, f (2)) and (2 + h, f (2 + h)) has slope 2h + 5. Then use this for-
mula to compute the slope of:

(a) The secant line through (2, f (2)) and (3, f (3))

(b) The tangent line at x = 2 (by taking a limit)

In Exercises 3–6, compute f ′(a) in two ways, using Eq. (1) and Eq. (2).

3. f (x) = x2 + 9x, a = 0

4. f (x) = x2 + 9x, a = 2

5. f (x) = 3x2 + 4x + 2, a = −1

6. f (x) = x3, a = 2
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In Exercises 7–10, refer to Figure 11.

7. Find the slope of the secant line through (2, f (2)) and
(2.5, f (2.5)). Is it larger or smaller than f ′(2)? Explain.

8. Estimate
f (2 + h) − f (2)

h
for h = −0.5. What does this

quantity represent? Is it larger or smaller than f ′(2)? Explain.

9. Estimate f ′(1) and f ′(2).

10. Find a value of h for which
f (2 + h) − f (2)

h
= 0.

0.5

1.0

1.5

2.0

2.5

3.0

f (x)

1.0 2.0 3.00.5 1.5 2.5
x

y

FIGURE 11

In Exercises 11–14, refer to Figure 12.

11. Determine f ′(a) for a = 1, 2, 4, 7.

12. For which values of x is f ′(x) < 0?

13. Which is larger, f ′(5.5) or f ′(6.5)?

14. Show that f ′(3) does not exist.

1

2

3

5

4

1 2 3 4 5 6 7 8 9
x

y

FIGURE 12 Graph of f (x).

In Exercises 15–18, use the limit definition to calculate the derivative
of the linear function.

15. f (x) = 7x − 9 16. f (x) = 12

17. g(t) = 8 − 3t 18. k(z) = 14z + 12

19. Find an equation of the tangent line at x = 3, assuming that
f (3) = 5 and f ′(3) = 2?

20. Find f (3) and f ′(3), assuming that the tangent line to y = f (x)

at a = 3 has equation y = 5x + 2.

21. Describe the tangent line at an arbitrary point on the “curve”
y = 2x + 8.

22. Suppose that f (2 + h) − f (2) = 3h2 + 5h. Calculate:

(a) The slope of the secant line through (2, f (2)) and (6, f (6))

(b) f ′(2)

23. Let f (x) = 1

x
. Does f (−2 + h) equal

1

−2 + h
or

1

−2
+ 1

h
?

Compute the difference quotient at a = −2 with h = 0.5.

24. Let f (x) = √
x. Does f (5 + h) equal

√
5 + h or

√
5 + √

h?
Compute the difference quotient at a = 5 with h = 1.

25. Let f (x) = 1/
√

x. Compute f ′(5) by showing that

f (5 + h) − f (5)

h
= − 1√

5
√

5 + h(
√

5 + h + √
5)

26. Find an equation of the tangent line to the graph of f (x) = 1/
√

x

at x = 9.

In Exercises 27–44, use the limit definition to compute f ′(a) and find
an equation of the tangent line.

27. f (x) = 2x2 + 10x, a = 3 28. f (x) = 4 − x2, a = −1

29. f (t) = t − 2t2, a = 3 30. f (x) = 8x3, a = 1

31. f (x) = x3 + x, a = 0 32. f (t) = 2t3 + 4t , a = 4

33. f (x) = x−1, a = 8 34. f (x) = x + x−1, a = 4

35. f (x) = 1

x + 3
, a = −2 36. f (t) = 2

1 − t
, a = −1

37. f (x) = √
x + 4, a = 1 38. f (t) = √

3t + 5, a = −1

39. f (x) = 1√
x

, a = 4 40. f (x) = 1√
2x + 1

, a = 4

41. f (t) =
√

t2 + 1, a = 3 42. f (x) = x−2, a = −1

43. f (x) = 1

x2 + 1
, a = 0 44. f (t) = t−3, a = 1

45. Figure 13 displays data collected by the biologist Julian Huxley
(1887–1975) on the average antler weight W of male red deer as a
function of age t . Estimate the derivative at t = 4. For which values of
t is the slope of the tangent line equal to zero? For which values is it
negative?

2 40 6 8 10 12 14
t

Age (years)

Antler weight W (kg)

0
1
2
3
4
5
6
7
8

FIGURE 13

46. Figure 14(A) shows the graph of f (x) = √
x. The close-up in Fig-

ure 14(B) shows that the graph is nearly a straight line near x = 16.
Estimate the slope of this line and take it as an estimate for f ′(16).
Then compute f ′(16) and compare with your estimate.
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3.9

4.1

(B) Zoom view near (16, 4)

x

y

1
2

5
4
3

2 4 6 8 10 12 14 16 18
x

y

(A) Graph of y = �x

16.1

15.9

FIGURE 14

47. Let f (x) = 4

1 + 2x
.

(a) Plot f (x) over [−2, 2]. Then zoom in near x = 0 until the graph
appears straight, and estimate the slope f ′(0).

(b) Use (a) to find an approximate equation to the tangent line at x = 0.
Plot this line and f (x) on the same set of axes.

48. Let f (x) = cot x. Estimate f ′(π
2

)
graphically by zooming

in on a plot of f (x) near x = π
2 .

49. Determine the intervals along the x-axis on which the derivative
in Figure 15 is positive.

1.0 1.5 2.0 2.5 3.0 3.5 4.00.5

1.0
0.5

1.5
2.0
2.5
3.0
3.5
4.0

x

y

FIGURE 15

50. Sketch the graph of f (x) = sin x on [0, π ] and guess the value of
f ′(π

2

)
. Then calculate the difference quotient at x = π

2 for two small
positive and negative values of h.Are these calculations consistent with
your guess?

In Exercises 51–56, each limit represents a derivative f ′(a). Find f (x)

and a.

51. lim
h→0

(5 + h)3 − 125

h
52. lim

x→5

x3 − 125

x − 5

53. lim
h→0

sin
(
π
6 + h

) − 0.5

h
54. lim

x→ 1
4

x−1 − 4

x − 1
4

55. lim
h→0

52+h − 25

h
56. lim

h→0

5h − 1

h

57. Apply the method of Example 6 to f (x) = sin x to determine
f ′ (π

4

)
accurately to four decimal places.

58. Apply the method of Example 6 to f (x) = cos x to deter-
mine f ′(π

5

)
accurately to four decimal places. Use a graph of f (x) to

explain how the method works in this case.

59. For each graph in Figure 16, determine whether f ′(1) is
larger or smaller than the slope of the secant line between x = 1 and
x = 1 + h for h > 0. Explain.

1 1

(A) (B)

y

x

y

x

y = f (x)
y = f (x)

FIGURE 16

60. Refer to the graph of f (x) = 2x in Figure 17.

(a) Explain graphically why, for h > 0,

f (−h) − f (0)

−h
≤ f ′(0) ≤ f (h) − f (0)

h

(b) Use (a) to show that 0.69314 ≤ f ′(0) ≤ 0.69315.

(c) Similarly, compute f ′(x) to four decimal places for x = 1, 2, 3, 4.

(d) Now compute the ratios f ′(x)/f ′(0) for x = 1, 2, 3, 4. Can you
guess an approximate formula for f ′(x)?

321−1

1
x

y

FIGURE 17 Graph of f (x) = 2x .

61. Sketch the graph of f (x) = x5/2 on [0, 6].
(a) Use the sketch to justify the inequalities for h > 0:

f (4) − f (4 − h)

h
≤ f ′(4) ≤ f (4 + h) − f (4)

h

(b) Use (a) to compute f ′(4) to four decimal places.

(c) Use a graphing utility to plot f (x) and the tangent line at x = 4,
using your estimate for f ′(4).

62. Verify that P = (
1, 1

2

)
lies on the graphs of both

f (x) = 1/(1 + x2) and L(x) = 1
2 + m(x − 1) for every slope m. Plot

f (x) and L(x) on the same axes for several values of m until you find
a value of m for which y = L(x) appears tangent to the graph of f (x).
What is your estimate for f ′(1)?

63. Use a plot of f (x) = xx to estimate the value c such that
f ′(c) = 0. Find c to sufficient accuracy so that∣∣∣∣f (c + h) − f (c)

h

∣∣∣∣ ≤ 0.006 for h = ±0.001
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64. Plot f (x) = xx and y = 2x + a on the same set of axes for
several values of a until the line becomes tangent to the graph. Then
estimate the value c such that f ′(c) = 2.

In Exercises 65–71, estimate derivatives using the symmetric differ-
ence quotient (SDQ), defined as the average of the difference quotients
at h and −h:

1

2

(
f (a + h) − f (a)

h
+ f (a − h) − f (a)

−h

)

= f (a + h) − f (a − h)

2h
4

The SDQ usually gives a better approximation to the derivative than
the difference quotient.

65. The vapor pressure of water at temperature T (in kelvins) is the
atmospheric pressure P at which no net evaporation takes place. Use
the following table to estimate P ′(T ) for T = 303, 313, 323, 333, 343
by computing the SDQ given by Eq. (4) with h = 10.

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754

66. Use the SDQ with h = 1 year to estimate P ′(T ) in the years
2000, 2002, 2004, 2006, where P(T ) is the U.S. ethanol production
(Figure 18). Express your answer in the correct units.

1.10 1.20 1.35 1.40
1.10 1.30 1.40 1.47

2.12

3.40
4.00

6.20

19
93

19
92

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

1.63 1.77

2.81

4.89

P (billions of gallons)

FIGURE 18 U.S. Ethanol Production

In Exercises 67–68, traffic speed S along a certain road (in km/h)
varies as a function of traffic density q (number of cars per
km of road). Use the following data to answer the questions:

q (density) 60 70 80 90 100

S (speed) 72.5 67.5 63.5 60 56

67. Estimate S′(80).

68. Explain why V = qS, called traffic volume, is equal to
the number of cars passing a point per hour. Use the data to estimate
V ′(80).

Exercises 69–71: The current (in amperes) at time t (in seconds) flowing
in the circuit in Figure 19 is given by Kirchhoff’s Law:

i(t) = Cv′(t) + R−1v(t)

where v(t) is the voltage (in volts), C the capacitance (in farads), and
R the resistance (in ohms, �).

+

−
v

R

i

C

FIGURE 19

69. Calculate the current at t = 3 if

v(t) = 0.5t + 4 V

where C = 0.01 F and R = 100 �.

70. Use the following data to estimate v′(10) (by an SDQ). Then esti-
mate i(10), assuming C = 0.03 and R = 1,000.

t 9.8 9.9 10 10.1 10.2

v(t) 256.52 257.32 258.11 258.9 259.69

71. Assume that R = 200 � but C is unknown. Use the following data
to estimate v′(4) (by an SDQ) and deduce an approximate value for the
capacitance C.

t 3.8 3.9 4 4.1 4.2

v(t) 388.8 404.2 420 436.2 452.8

i(t) 32.34 33.22 34.1 34.98 35.86

Further Insights and Challenges
72. The SDQ usually approximates the derivative much more closely
than does the ordinary difference quotient. Let f (x) = 2x and a = 0.
Compute the SDQ with h = 0.001 and the ordinary difference quo-
tients with h = ±0.001. Compare with the actual value, which is
f ′(0) = ln 2.

73. Explain how the symmetric difference quotient defined by Eq. (4)
can be interpreted as the slope of a secant line.

74. Which of the two functions in Figure 20 satisfies the inequality

f (a + h) − f (a − h)

2h
≤ f (a + h) − f (a)

h

for h > 0? Explain in terms of secant lines.
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a
x

y

a
x

y

(A) (B)

FIGURE 20

75. Show that if f (x) is a quadratic polynomial, then the SDQ
at x = a (for any h �= 0) is equal to f ′(a). Explain the graphical mean-
ing of this result.

76. Let f (x) = x−2. Compute f ′(1) by taking the limit of the SDQs
(with a = 1) as h → 0.

3.2 The Derivative as a Function
In the previous section, we computed the derivative f ′(a) for specific values of a. It is
also useful to view the derivative as a function f ′(x) whose value at x = a is f ′(a).
The function f ′(x) is still defined as a limit, but the fixed number a is replaced by the
variable x:

f ′(x) = lim
h→0

f (x + h) − f (x)

h
1

If y = f (x), we also write y′ or y′(x) for f ′(x).
The domain of f ′(x) consists of all values of x in the domain of f (x) for which theOften, the domain of f ′(x) is clear from

the context. If so, we usually do not
mention the domain explicitly.

limit in Eq. (1) exists. We say that f (x) is differentiable on (a, b) if f ′(x) exists for all x

in (a, b). When f ′(x) exists for all x in the interval or intervals on which f (x) is defined,
we say simply that f (x) is differentiable.

EXAMPLE 1 Prove that f (x) = x3 − 12x is differentiable. Compute f ′(x) and find
an equation of the tangent line at x = −3.

Solution We compute f ′(x) in three steps as in the previous section.

Step 1. Write out the numerator of the difference quotient.

f (x + h) − f (x) = (
(x + h)3 − 12(x + h)

) − (
x3 − 12x

)
= (x3 + 3x2h + 3xh2 + h3 − 12x − 12h) − (x3 − 12x)

= 3x2h + 3xh2 + h3 − 12h

= h(3x2 + 3xh + h2 − 12) (factor out h)

Step 2. Divide by h and simplify.

f (x + h) − f (x)

h
= h(3x2 + 3xh + h2 − 12)

h
= 3x2 + 3xh + h2 − 12 (h �= 0)

Step 3. Compute the limit.

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0
(3x2 + 3xh + h2 − 12) = 3x2 − 12

In this limit, x is treated as a constant because it does not change as h → 0. We see
that the limit exists for all x, so f (x) is differentiable and f ′(x) = 3x2 − 12.

Now evaluate:

f (−3) = (−3)3 − 12(−3) = 9

f ′(−3) = 3(−3)2 − 12 = 15

An equation of the tangent line at x = −3 is y − 9 = 15(x + 3) (Figure 1).

20

x

y

y = 15x + 54

f (x) = x3 − 12x

(−3, 9)

−3 2

−20

FIGURE 1 Graph of f (x) = x3 − 12x.
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EXAMPLE 2 Prove that y = x−2 is differentiable and calculate y′.
Solution The domain of f (x) = x−2 is {x : x �= 0}, so assume that x �= 0. We compute
f ′(x) directly, without the separate steps of the previous example:

y′ = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1

(x + h)2
− 1

x2

h

= lim
h→0

x2 − (x + h)2

x2(x + h)2

h
= lim

h→0

1

h

(
x2 − (x + h)2

x2(x + h)2

)

= lim
h→0

1

h

(−h(2x + h)

x2(x + h)2

)
= lim

h→0
− 2x + h

x2(x + h)2
(cancel h)

= − 2x + 0

x2(x + 0)2
= −2x

x4
= −2x−3

The limit exists for all x �= 0, so y is differentiable and y′ = −2x−3.

Leibniz Notation

The “prime” notation y′ and f ′(x) was introduced by the French mathematician Joseph

FIGURE 2 Gottfried Wilhelm von Leibniz
(1646–1716), German philosopher and
scientist. Newton and Leibniz (pronounced
“Libe-nitz”) are often regarded as the
inventors of calculus (working
independently). It is more accurate to
credit them with developing calculus into a
general and fundamental discipline,
because many particular results of calculus
had been discovered previously by other
mathematicians.

Louis Lagrange (1736–1813). There is another standard notation for the derivative that
we owe to Leibniz (Figure 2):

df

dx
or

dy

dx

In Example 2, we showed that the derivative of y = x−2 is y′ = −2x−3. In Leibniz
notation, we would write

dy

dx
= −2x−3 or

d

dx
x−2 = −2x−3

To specify the value of the derivative for a fixed value of x, say, x = 4, we write

df

dx

∣∣∣∣
x=4

or
dy

dx

∣∣∣∣
x=4

You should not think of dy/dx as the fraction “dy divided by dx.” The expressions dy

and dx are called differentials. They play a role in some situations (in linear approximation
and in more advanced calculus). At this stage, we treat them merely as symbols with no
independent meaning.

CONCEPTUAL INSIGHT Leibniz notation is widely used for several reasons. First, it re-
minds us that the derivative df/dx, although not itself a ratio, is in fact a limit of ratios
�f /�x. Second, the notation specifies the independent variable. This is useful when
variables other than x are used. For example, if the independent variable is t , we write
df/dt . Third, we often think of d/dx as an “operator” that performs differentiation on
functions. In other words, we apply the operator d/dx to f to obtain the derivative
df/dx. We will see other advantages of Leibniz notation when we discuss the Chain
Rule in Section 3.7.

A main goal of this chapter is to develop the basic rules of differentiation. These rules
enable us to find derivatives without computing limits.
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THEOREM 1 The Power Rule For all exponents n,

d

dx
xn = nxn−1

Proof Assume that n is a whole number and let f (x) = xn. Then

The Power Rule is valid for all exponents.
We prove it here for a whole number n (see
Exercise 95 for a negative integer n and
p. 183 for arbitrary n).

f ′(a) = lim
x→a

xn − an

x − a

To simplify the difference quotient, we need to generalize the following identities:

x2 − a2 = (x − a)(x + a)

x3 − a3 = (
x − a

)(
x2 + xa + a2)

x4 − a4 = (
x − a

)(
x3 + x2a + xa2 + a3)

The generalization is

xn − an = (x − a)
(
xn−1 + xn−2a + xn−3a2 + · · · + xan−2 + an−1) 2

To verify Eq. (2), observe that the right-hand side is equal to

x
(
xn−1 + xn−2a + xn−3a2 + · · · + xan−2 + an−1)

− a
(
xn−1 + xn−2a + xn−3a2 + · · · + xan−2 + an−1)

When we carry out the multiplications, all terms cancel except the first and the last, so
only xn − an remains, as required.

Equation (2) gives us

xn − an

x − a
= xn−1 + xn−2a + xn−3a2 + · · · + xan−2 + an−1︸ ︷︷ ︸

n terms

(x �= a) 3

Therefore,

f ′(a) = lim
x→a

(
xn−1 + xn−2a + xn−3a2 + · · · + xan−2 + an−1)

= an−1 + an−2a + an−3a2 + · · · + aan−2 + an−1 (n terms)

= nan−1

This proves that f ′(a) = nan−1, which we may also write as f ′(x) = nxn−1.

We make a few remarks before proceeding:

• It may be helpful to remember the Power Rule in words: To differentiate xn, “bring
down the exponent and subtract one (from the exponent).”

d

dx
xexponent = (exponent) xexponent−1

• The Power Rule is valid for all exponents, whether negative, fractional, or irrational:

CAUTION The Power Rule applies only to
the power functions y = xn. It does not
apply to exponential functions such as
y = 2x . The derivative of y = 2x is not
x2x−1. We will study the derivatives of
exponential functions later in this section.

d

dx
x−3/5 = −3

5
x−8/5,

d

dx
x

√
2 = √

2 x
√

2−1
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• The Power Rule can be applied with any variable, not just x. For example,

d

dz
z2 = 2z,

d

dt
t20 = 20t19,

d

dr
r1/2 = 1

2
r−1/2

Next, we state the Linearity Rules for derivatives, which are analogous to the linearity
laws for limits.

THEOREM 2 Linearity Rules Assume that f and g are differentiable. Then

Sum and Difference Rules: f + g and f − g are differentiable, and

(f + g)′ = f ′ + g′, (f − g)′ = f ′ − g′

Constant Multiple Rule: For any constant c, cf is differentiable and

(cf )′ = cf ′

Proof To prove the Sum Rule, we use the definition

(f + g)′(x) = lim
h→0

(f (x + h) + g(x + h)) − (f (x) + g(x))

h

This difference quotient is equal to a sum (h �= 0):

(f (x + h) + g(x + h)) − (f (x) + g(x))

h
= f (x + h) − f (x)

h
+ g(x + h) − g(x)

h

Therefore, by the Sum Law for limits,

(f + g)′(x) = lim
h→0

f (x + h) − f (x)

h
+ lim

h→0

g(x + h) − g(x)

h

= f ′(x) + g′(x)

as claimed. The Difference and Constant Multiple Rules are proved similarly.

EXAMPLE 3 Find the points on the graph of f (t) = t3 − 12t + 4 where the tangent
line is horizontal (Figure 3).

42−2

−40

−4

40

t

f (t)

FIGURE 3 Graph of f (t) = t3 − 12t + 4.
Tangent lines at t = ±2 are horizontal.

Solution We calculate the derivative:

df

dt
= d

dt

(
t3 − 12t + 4

)
= d

dt
t3 − d

dt
(12t) + d

dt
4 (Sum and Difference Rules)

= d

dt
t3 − 12

d

dt
t + 0 (Constant Multiple Rule)

= 3t2 − 12 (Power Rule)

Note in the second line that the derivative of the constant 4 is zero. The tangent line is
horizontal at points where the slope f ′(t) is zero, so we solve

f ′(t) = 3t2 − 12 = 0 ⇒ t = ±2

Now f (2) = −12 and f (−2) = 20. Hence, the tangent lines are horizontal at (2, −12)

and (−2, 20).
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EXAMPLE 4 Calculate
dg

dt

∣∣∣∣
t=1

, where g(t) = t−3 + 2
√

t − t−4/5.

Solution We differentiate term-by-term using the Power Rule without justifying the in-
termediate steps. Writing

√
t as t1/2, we have

dg

dt
= d

dt

(
t−3 + 2t1/2 − t−4/5) = −3t−4 + 2

(
1

2

)
t−1/2 −

(
−4

5

)
t−9/5

= −3t−4 + t−1/2 + 4

5
t−9/5

dg

dt

∣∣∣∣
t=1

= −3 + 1 + 4

5
= −6

5

The derivative f ′(x) gives us important information about the graph of f (x). For
example, the sign of f ′(x) tells us whether the tangent line has positive or negative slope,
and the magnitude of f ′(x) reveals how steep the slope is.

EXAMPLE 5 Graphical Insight How is the graph of f (x) = x3 − 12x2 + 36x − 16
related to the derivative f ′(x) = 3x2 − 24x + 36?

y

x

f ´(x) > 0
f ´(x) < 0

(B) Graph of the derivative
       f ´(x) = 3x2 − 24x + 36

(A) Graph of f (x) = x3 − 12x2 + 36x − 16

f ´(x) > 0

y
Here tangent lines have

negative slope.

x

16

−16

2 4 6 8

16

2 4 6 8

FIGURE 4

Solution The derivative f ′(x) = 3x2 − 24x + 36 = 3(x − 6)(x − 2) is negative for
2 < x < 6 and positive elsewhere [Figure 4(B)]. The following table summarizes this
sign information [Figure 4(A)]:

Property of f ′(x) Property of the Graph of f (x)

f ′(x) < 0 for 2 < x < 6 Tangent line has negative slope for 2 < x < 6.
f ′(2) = f ′(6) = 0 Tangent line is horizontal at x = 2 and x = 6.
f ′(x) > 0 for x < 2 and x > 6 Tangent line has positive slope for x < 2 and x > 6.

Note also that f ′(x) → ∞ as |x| becomes large. This corresponds to the fact that the
tangent lines to the graph of f (x) get steeper as |x| grows large.

EXAMPLE 6 Identifying the Derivative The graph of f (x) is shown in Figure 5(A).
Which graph (B) or (C), is the graph of f ′(x)?

(B) (C)

741 741741
x

y

x

y

x

y

(A) Graph of f (x)

FIGURE 5

Solution In Figure 5(A) we see that the tangent lines to the graph have negative slope
on the intervals (0, 1) and (4, 7). Therefore f ′(x) is negative on these intervals. Similarly
(see the table in the margin), the tangent lines have positive slope (and f ′(x) is positive)
on the intervals (1, 4) and (7, ∞). Only (C) has these properties, so (C) is the graph of
f ′(x).

Slope of Tangent Line Where

Negative (0, 1) and (4, 7)

Zero x = 1, 4, 7
Positive (1, 4) and (7, ∞)
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The Derivative of ex

The number e was introduced informally in Section 1.6. Now that we have the derivative
in our arsenal, we can define e as follows: e is the unique number for which the exponential
function f (x) = ex is its own derivative. To justify this definition, we must prove that a
number with this property exists.

In some ways, the number e is
“complicated”: It is irrational and it cannot
be defined without using limits. However,
the elegant formula d

dx
ex = ex shows that

e is “simple” from the point of view of
calculus and that ex is simpler than the
seemingly more natural exponential
functions 2x and 10x .

THEOREM 3 The Number e There is a unique positive real number e with the property

d

dx
ex = ex 4

The number e is irrational, with approximate value e ≈ 2.718.

Proof We shall take for granted a few plausible facts whose proofs are somewhat tech-
nical. The first fact is that f (x) = bx is differentiable for all b > 0. Assuming this, let us
compute its derivative:

f (x + h) − f (x)

h
= bx+h − bx

h
= bxbh − bx

h
= bx(bh − 1)

h

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

bx(bh − 1)

h

= bx lim
h→0

(
bh − 1

h

)

Notice that we took the factor bx outside the limit. This is legitimate because bx does not
depend on h. Denote the value of the limit on the right by m(b):

m(b) = lim
h→0

(
bh − 1

h

)
5

What we have shown, then, is that the derivative of bx is proportional to bx :

d

dx
bx = m(b) bx 6

Before continuing, let’s investigate m(b) numerically using Eq. (5).

EXAMPLE 7 Estimate m(b) numerically for b = 2, 2.5, 3, and 10.

Solution We create a table of values of difference quotients to estimate m(b).

h
2h − 1

h

(2.5)h − 1

h

3h − 1

h

10h − 1

h

0.01 0.69556 0.92050 1.10467 2.32930
0.001 0.69339 0.91671 1.09921 2.30524
0.0001 0.69317 0.91633 1.09867 2.30285
0.00001 0.69315 0.916295 1.09861 2.30261

m(2) ≈ 0.69 m(2.5) ≈ 0.92 m(3) ≈ 1.10 m(10) ≈ 2.30
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Since m(2.5) ≈ 0.92 and m(3) ≈ 1.10, there must exist a number b between 2.5 andIn many books, ex is denoted exp(x).
Whenever we refer to the exponential
function without specifying the base, the
reference is to f (x) = ex . The number e

has been computed to an accuracy of more
than 100 billion digits. To 20 places,

e = 2.71828182845904523536 . . .

3 such that m(b) = 1. This follows from the Intermediate Value Theorem (if we assume
the fact that m(b) is a continuous function of b). If we also use the fact that m(b) is an
increasing function of b, we may conclude that there is precisely one number b such that
m(b) = 1. This is the number e.

Using infinite series (see Exercise 87 in Section 10.7), we can show that e is irrational

x

y

1−1

1

3x

2x
2.5x

ex

FIGURE 6 The tangent lines to y = bx at
x = 0 grow steeper as b increases.

and we can compute its value to any desired degree of accuracy. For most purposes, the
approximation e ≈ 2.718 is adequate.

GRAPHICAL INSIGHT The graph of f (x) = bx passes through (0, 1) because b0 = 1
(Figure 6). The number m(b) is simply the slope of the tangent line at (0, 1):

d

dx
bx

∣∣∣∣
x=0

= m(b) · b0 = m(b)

These tangent lines become steeper as b increases, and b = e is the unique value for
which the tangent line has slope 1. In Section 3.9, we will show more generally that
m(b) = ln b, the natural logarithm of b.

EXAMPLE 8 Find the tangent line to the graph of f (x) = 3ex − 5x2 at x = 2.

Solution We compute both f ′(2) and f (2):

y = 2.17x − 2.17

f (x) = 3ex − 5x2

1−1 2 43
x

y

3

4

2

1

FIGURE 7

f ′(x) = d

dx
(3ex − 5x2) = 3

d

dx
ex − 5

d

dx
x2 = 3ex − 10x

f ′(2) = 3e2 − 10(2) ≈ 2.17

f (2) = 3e2 − 5(22) ≈ 2.17

An equation of the tangent line is y = f (2) + f ′(2)(x − 2). Using these approximate
values, we write the equation as (Figure 7)

y = 2.17 + 2.17(x − 2) or y = 2.17x − 2.17

CONCEPTUAL INSIGHT What precisely do we mean by bx? We have taken for granted
that bx is meaningful for all real numbers x, but we never specified how bx is defined
when x is irrational. If n is a whole number, bn is simply the product b · b · · · b (n times),
and for any rational number x = m/n,

bx = bm/n = (
b1/n

)m = ( n
√

b
)m

When x is irrational, this definition does not apply and bx cannot be defined directly in
terms of roots and powers of b. However, it makes sense to view bm/n as an approx-
imation to bx when m/n is a rational number close to x. For example, 3

√
2 should be

approximately equal to 31.4142 ≈ 4.729 because 1.4142 is a good rational approxima-
tion to

√
2. Formally, then, we may define bx as a limit over rational numbers m/n

approaching x:

bx = lim
m/n→x

bm/n

We can show that this limit exists and that the function f (x) = bx thus defined is not
only continuous but also differentiable (see Exercise 80 in Section 5.7).
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Differentiability, Continuity, and Local Linearity
In the rest of this section, we examine the concept of differentiability more closely. We
begin by proving that a differentiable function is necessarily continuous. In particular, a
differentiable function cannot have any jumps. Figure 8 shows why: Although the secant
lines from the right approach the line L (which is tangent to the right half of the graph),
the secant lines from the left approach the vertical (and their slopes tend to ∞).

y

c

y = f (x)

L

x

FIGURE 8 Secant lines at a jump
discontinuity.

THEOREM 4 Differentiability Implies Continuity If f is differentiable at x = c, then
f is continuous at x = c.

Proof By definition, if f is differentiable at x = c, then the following limit exists:

f ′(c) = lim
x→c

f (x) − f (c)

x − c

We must prove that lim
x→c

f (x) = f (c), because this is the definition of continuity at x = c.

To relate the two limits, consider the equation (valid for x �= c)

f (x) − f (c) = (x − c)
f (x) − f (c)

x − c

Both factors on the right approach a limit as x → c, so

lim
x→c

(
f (x) − f (c)

) = lim
x→c

(
(x − c)

f (x) − f (c)

x − c

)

=
(

lim
x→c

(x − c)
) (

lim
x→c

f (x) − f (c)

x − c

)
= 0 · f ′(c) = 0

by the Product Law for limits. The Sum Law now yields the desired conclusion:

lim
x→c

f (x) = lim
x→c

(f (x) − f (c)) + lim
x→c

f (c) = 0 + f (c) = f (c)

Most of the functions encountered in this text are differentiable, but exceptions exist,
as the next example shows.

EXAMPLE 9 Continuous But Not Differentiable Show that f (x) = |x| is continuousAll differentiable functions are continuous
by Theorem 4, but Example 9 shows that
the converse is false. A continuous
function is not necessarily differentiable.

but not differentiable at x = 0.

Solution The function f (x) is continuous at x = 0 because lim
x→0

|x| = 0 = f (0). On the
other hand,

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h

This limit does not exist [and hence f (x) is not differentiable at x = 0] because

|h|
h

=
{

1 if h > 0

−1 if h < 0

and thus the one-sided limits are not equal:

lim
h→0+

|h|
h

= 1 and lim
h→0−

|h|
h

= −1
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GRAPHICAL INSIGHT Differentiability has an important graphical interpretation in terms
of local linearity. We say that f is locally linear at x = a if the graph looks more and
more like a straight line as we zoom in on the point (a, f (a)). In this context, the adjective
linear means “resembling a line,” and local indicates that we are concerned only with
the behavior of the graph near (a, f (a)). The graph of a locally linear function may
be very wavy or nonlinear, as in Figure 9. But as soon as we zoom in on a sufficiently
small piece of the graph, it begins to appear straight.

Not only does the graph look like a line as we zoom in on a point, but as Figure 9
suggests, the “zoom line” is the tangent line. Thus, the relation between differentiability
and local linearity can be expressed as follows:

If f ′(a) exists, then f is locally linear at x = a: As we zoom in on the point
(a, f (a)), the graph becomes nearly indistinguishable from its tangent line.

Tangent

y

x

FIGURE 9 Local linearity: The graph looks
more and more like the tangent line as we
zoom in on a point.

Local linearity gives us a graphical way to understand why f (x) = |x| is not differ-
entiable at x = 0 (as shown in Example 9). Figure 10 shows that the graph of f (x) = |x|
has a corner at x = 0, and this corner does not disappear, no matter how closely we
zoom in on the origin. Since the graph does not straighten out under zooming, f (x) is
not locally linear at x = 0, and we cannot expect f ′(0) to exist.

10.50.2 0.1 0.2
x

y

0.1

FIGURE 10 The graph of f (x) = |x| is not
locally linear at x = 0. The corner does not
disappear when we zoom in on the origin.

Another way that a continuous function can fail to be differentiable is if the tangent
line exists but is vertical (in which case the slope of the tangent line is undefined).

EXAMPLE 10 Vertical Tangents Show that f (x) = x1/3 is not differentiable at
x = 0.

Solution The limit defining f ′(0) is infinite:

lim
h→0

f (h) − f (0)

h
= lim

h→0

h1/3 − 0

h
= lim

h→0

h1/3

h
= lim

h→0

1

h2/3
= ∞

Therefore, f ′(0) does not exist (Figure 11).
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As a final remark, we mention that there are more complicated ways in which a

0.30.20.1−0.2−0.3 −0.1

1

0.5

−1

−0.5

y

x

FIGURE 11 The tangent line to the graph of
f (x) = x1/3 at the origin is the (vertical)
y-axis. The derivative f ′(0) does not exist.

continuous function can fail to be differentiable. Figure 12 shows the graph of f (x) =
x sin 1

x
. If we define f (0) = 0, then f is continuous but not differentiable at x = 0. The

secant lines keep oscillating and never settle down to a limiting position (see Exercise 97).

0.1

−0.1

0.30.2

0.1

−0.1

0.30.2

(A) Graph of f (x) = x sin (B) Secant lines do not settle
           down to a limiting position.

x
1

x

y

x

y

FIGURE 12

3.2 SUMMARY

• The derivative f ′(x) is the function whose value at x = a is the derivative f ′(a).
• We have several different notations for the derivative of y = f (x):

y′, y′(x), f ′(x),
dy

dx
,

df

dx

The value of the derivative at x = a is written

y′(a), f ′(a),
dy

dx

∣∣∣∣
x=a

,
df

dx

∣∣∣∣
x=a

• The Power Rule holds for all exponents n:

d

dx
xn = nxn−1

• The Linearity Rules allow us to differentiate term by term:

Sum Rule: (f + g)′ = f ′ + g′, Constant Multiple Rule: (cf )′ = cf ′

• The derivative of bx is proportional to bx :

d

dx
bx = m(b)bx, where m(b) = lim

h→0

bh − 1

h

• The number e ≈ 2.718 is defined by the property m(e) = 1, so that

d

dx
ex = ex

• Differentiability implies continuity: If f (x) is differentiable at x = a, then f (x) is
continuous at x = a. However, there exist continuous functions that are not differentiable.
• If f ′(a) exists, then f is locally linear in the following sense: As we zoom in on the
point (a, f (a)), the graph becomes nearly indistinguishable from its tangent line.
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3.2 EXERCISES

Preliminary Questions
1. What is the slope of the tangent line through the point (2, f (2)) if

f ′(x) = x3?

2. Evaluate (f − g)′(1) and (3f + 2g)′(1) assuming that f ′(1) = 3
and g′(1) = 5.

3. To which of the following does the Power Rule apply?

(a) f (x) = x2 (b) f (x) = 2e

(c) f (x) = xe (d) f (x) = ex

(e) f (x) = xx (f) f (x) = x−4/5

4. Choose (a) or (b). The derivative does not exist if the tangent line
is: (a) horizontal (b) vertical.

5. Which property distinguishes f (x) = ex from all other exponen-
tial functions g(x) = bx?

Exercises
In Exercises 1–6, compute f ′(x) using the limit definition.

1. f (x) = 3x − 7 2. f (x) = x2 + 3x

3. f (x) = x3 4. f (x) = 1 − x−1

5. f (x) = x − √
x 6. f (x) = x−1/2

In Exercises 7–14, use the Power Rule to compute the derivative.

7.
d

dx
x4

∣∣∣∣
x=−2

8.
d

dt
t−3

∣∣∣∣
t=4

9.
d

dt
t2/3

∣∣∣∣
t=8

10.
d

dt
t−2/5

∣∣∣∣
t=1

11.
d

dx
x0.35 12.

d

dx
x14/3

13.
d

dt
t

√
17 14.

d

dt
t−π2

In Exercises 15–18, compute f ′(x) and find an equation of the tangent
line to the graph at x = a.

15. f (x) = x4, a = 2 16. f (x) = x−2, a = 5

17. f (x) = 5x − 32
√

x, a = 4 18. f (x) = 3√x, a = 8

19. Calculate:

(a)
d

dx
12ex (b)

d

dt
(25t − 8et ) (c)

d

dt
et−3

Hint for (c): Write et−3 as e−3et .

20. Find an equation of the tangent line to y = 24ex at x = 2.

In Exercises 21–32, calculate the derivative.

21. f (x) = 2x3 − 3x2 + 5 22. f (x) = 2x3 − 3x2 + 2x

23. f (x) = 4x5/3 − 3x−2 − 12

24. f (x) = x5/4 + 4x−3/2 + 11x

25. g(z) = 7z−5/14 + z−5 + 9 26. h(t) = 6
√

t + 1√
t

27. f (s) = 4√s + 3√s 28. W(y) = 6y4 + 7y2/3

29. g(x) = e2 30. f (x) = 3ex − x3

31. h(t) = 5et−3

32. f (x) = 9 − 12x1/3 + 8ex

In Exercises 33–36, calculate the derivative by expanding or simplify-
ing the function.

33. P(s) = (4s − 3)2

34. Q(r) = (1 − 2r)(3r + 5)

35. g(x) = x2 + 4x1/2

x2
36. s(t) = 1 − 2t

t1/2

In Exercises 37–42, calculate the derivative indicated.

37.
dT

dC

∣∣∣
C=8

, T = 3C2/3 38.
dP

dV

∣∣∣
V =−2

, P = 7

V

39.
ds

dz

∣∣∣
z=2

, s = 4z − 16z2 40.
dR

dW

∣∣∣∣
W=1

, R = Wπ

41.
dr

dt

∣∣∣∣
t=4

, r = t − et 42.
dp

dh

∣∣∣∣
h=4

, p = 7eh−2

43. Match the functions in graphs (A)–(D) with their derivatives (I)–
(III) in Figure 13. Note that two of the functions have the same deriva-
tive. Explain why.

y

x

x

(A)

y

(I)

x

y

(II)

x

y

(III)

y

x

(B)

y

x

(C)

y

x

(D)

FIGURE 13
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44. Of the two functions f and g in Figure 14, which is the
derivative of the other? Justify your answer.

f (x)

g(x)

1−1

2

x

y

FIGURE 14

45. Assign the labels f (x), g(x), and h(x) to the graphs in Figure 15
in such a way that f ′(x) = g(x) and g′(x) = h(x).

y

x

y

x

y

x

(A) (B) (C)

FIGURE 15

46. According to the peak oil theory, first proposed in 1956 by geo-
physicist M. Hubbert, the total amount of crude oil Q(t) produced
worldwide up to time t has a graph like that in Figure 16.

(a) Sketch the derivative Q′(t) for 1900 ≤ t ≤ 2150. What does Q′(t)
represent?

(b) In which year (approximately) does Q′(t) take on its maximum
value?

(c) What is L = lim
t→∞ Q(t)? And what is its interpretation?

(d) What is the value of lim
t→∞ Q′(t)?

Q (trillions of barrels)

t (year)

1900 21501950 2000 2050 2100

0.5

1.0

2.0

2.3

1.5

FIGURE 16 Total oil production up to time t

47. Use the table of values of f (x) to determine which of (A)
or (B) in Figure 17 is the graph of f ′(x). Explain.

x 0 0.5 1 1.5 2 2.5 3 3.5 4

f (x) 10 55 98 139 177 210 237 257 268

x

y

x

y

(A) (B)

FIGURE 17 Which is the graph of f ′(x)?

48. Let R be a variable and r a constant. Compute the derivatives:

(a)
d

dR
R (b)

d

dR
r (c)

d

dR
r2R3

49. Compute the derivatives, where c is a constant.

(a)
d

dt
ct3 (b)

d

dz
(5z + 4cz2)

(c)
d

dy
(9c2y3 − 24c)

50. Find the points on the graph of f (x) = 12x − x3 where the tangent
line is horizontal.

51. Find the points on the graph of y = x2 + 3x − 7 at which the slope
of the tangent line is equal to 4.

52. Find the values of x where y = x3 and y = x2 + 5x have parallel
tangent lines.

53. Determine a and b such that p(x) = x2 + ax + b satisfies p(1) =
0 and p′(1) = 4.

54. Find all values of x such that the tangent line to y = 4x2 + 11x + 2
is steeper than the tangent line to y = x3.

55. Let f (x) = x3 − 3x + 1. Show that f ′(x) ≥ −3 for all x and that,
for every m > −3, there are precisely two points where f ′(x) = m. In-
dicate the position of these points and the corresponding tangent lines
for one value of m in a sketch of the graph of f (x).

56. Show that the tangent lines to y = 1
3x3 − x2 at x = a and at x = b

are parallel if a = b or a + b = 2.

57. Compute the derivative of f (x) = x3/2 using the limit definition.
Hint: Show that

f (x + h) − f (x)

h
= (x + h)3 − x3

h

(
1√

(x + h)3 +
√

x3

)

58. Use the limit definition of m(b) to approximate m(4). Then esti-
mate the slope of the tangent line to y = 4x at x = 0 and x = 2.

59. Let f (x) = xex . Use the limit definition to compute f ′(0), and
find the equation of the tangent line at x = 0.

60. The average speed (in meters per second) of a gas molecule is

vavg =
√

8RT

πM
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where T is the temperature (in kelvins), M is the molar mass (in kilo-
grams per mole), and R = 8.31. Calculate dvavg/dT at T = 300 K for
oxygen, which has a molar mass of 0.032 kg/mol.

61. Biologists have observed that the pulse rate P (in beats per minute)
in animals is related to body mass (in kilograms) by the approximate
formula P = 200m−1/4. This is one of many allometric scaling laws
prevalent in biology. Is |dP/dm| an increasing or decreasing function
of m? Find an equation of the tangent line at the points on the graph in
Figure 18 that represent goat (m = 33) and man (m = 68).

Mass (kg)
500400300200100

Cattle

200

100

Guinea pig

Goat

Man

Pulse (beats/min)

FIGURE 18

62. Some studies suggest that kidney mass K in mammals (in kilo-
grams) is related to body mass m (in kilograms) by the approximate
formula K = 0.007m0.85. Calculate dK/dm at m = 68. Then calcu-
late the derivative with respect to m of the relative kidney-to-mass ratio
K/m at m = 68.

63. The Clausius–Clapeyron Law relates the vapor pressure of water
P (in atmospheres) to the temperature T (in kelvins):

dP

dT
= k

P

T 2

where k is a constant. Estimate dP/dT for T = 303, 313, 323, 333,
343 using the data and the approximation

dP

dT
≈ P(T + 10) − P(T − 10)

20

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754

Do your estimates seem to confirm the Clausius–Clapeyron Law? What
is the approximate value of k?

64. Let L be the tangent line to the hyperbola xy = 1 at x = a, where
a > 0. Show that the area of the triangle bounded by L and the coordi-
nate axes does not depend on a.

65. In the setting of Exercise 64, show that the point of tangency is the
midpoint of the segment of L lying in the first quadrant.

66. Match functions (A)–(C) with their derivatives (I)–(III) in Fig-
ure 19.

(A) (I)

(B) (II)

(C) (III)

x

x

x

yy

x

y

x

y

y

x

y

FIGURE 19

67. Make a rough sketch of the graph of the derivative of the function
in Figure 20(A).

68. Graph the derivative of the function in Figure 20(B), omitting
points where the derivative is not defined.

(A) (B)

y = x2

434321 20 1−1

3

2

x

y

x

y

1
2

FIGURE 20

69. Sketch the graph of f (x) = x |x|. Then show that f ′(0) exists.

70. Determine the values of x at which the function in Figure 21 is: (a)
discontinuous, and (b) nondifferentiable.

4321
x

y

FIGURE 21
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In Exercises 71–76, find the points c (if any) such that f ′(c) does not
exist.

71. f (x) = |x − 1| 72. f (x) = [x]
73. f (x) = x2/3 74. f (x) = x3/2

75. f (x) = |x2 − 1| 76. f (x) = |x − 1|2

In Exercises 77–82, zoom in on a plot of f (x) at the point
(a, f (a)) and state whether or not f (x) appears to be differentiable at
x = a. If it is nondifferentiable, state whether the tangent line appears
to be vertical or does not exist.

77. f (x) = (x − 1)|x|, a = 0

78. f (x) = (x − 3)5/3, a = 3

79. f (x) = (x − 3)1/3, a = 3

80. f (x) = sin(x1/3), a = 0 81. f (x) = | sin x|, a = 0

82. f (x) = |x − sin x|, a = 0

83. Plot the derivative f ′(x) of f (x) = 2x3 − 10x−1 for x >

0 (set the bounds of the viewing box appropriately) and observe that
f ′(x) > 0. What does the positivity of f ′(x) tell us about the graph of
f (x) itself? Plot f (x) and confirm this conclusion.

84. Find the coordinates of the point P in Figure 22 at which the tangent
line passes through (5, 0).

9
y

Pf (x) = 9 − x2

−3 3 4 5
x

FIGURE 22 Graph of f (x) = 9 − x2.

Exercises 85–88 refer to Figure 23. Length QR is called the subtangent
at P , and length RT is called the subnormal.

85. Calculate the subtangent of

f (x) = x2 + 3x at x = 2

86. Show that the subtangent of f (x) = ex is everywhere equal to 1.

87. Prove in general that the subnormal at P is |f ′(x)f (x)|.

88. Show that PQ has length |f (x)|
√

1 + f ′(x)−2.

x

y

P = (x, f (x))

TR

y = f (x)

Q

Tangent line

FIGURE 23

89. Prove the following theorem of Apollonius of Perga (the Greek
mathematician born in 262 bce who gave the parabola, ellipse, and hy-
perbola their names): The subtangent of the parabola y = x2 at x = a

is equal to a/2.

90. Show that the subtangent to y = x3 at x = a is equal to 1
3a.

91. Formulate and prove a generalization of Exercise 90 for
y = xn.

Further Insights and Challenges
92. Two small arches have the shape of parabolas. The first is
given by f (x) = 1 − x2 for −1 ≤ x ≤ 1 and the second by g(x) =
4 − (x − 4)2 for 2 ≤ x ≤ 6. A board is placed on top of these arches
so it rests on both (Figure 24). What is the slope of the board? Hint:
Find the tangent line to y = f (x) that intersects y = g(x) in exactly
one point.

FIGURE 24

93. A vase is formed by rotating y = x2 around the y-axis. If we drop
in a marble, it will either touch the bottom point of the vase or be sus-
pended above the bottom by touching the sides (Figure 25). How small
must the marble be to touch the bottom?

FIGURE 25

94. Let f (x) be a differentiable function, and set g(x) =
f (x + c), where c is a constant. Use the limit definition to show that
g′(x) = f ′(x + c). Explain this result graphically, recalling that the
graph of g(x) is obtained by shifting the graph of f (x) c units to the
left (if c > 0) or right (if c < 0).

95. Negative Exponents Let n be a whole number. Use the Power
Rule for xn to calculate the derivative of f (x) = x−n by showing that

f (x + h) − f (x)

h
= −1

xn(x + h)n

(x + h)n − xn

h
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96. Verify the Power Rule for the exponent 1/n, where n is a positive
integer, using the following trick: Rewrite the difference quotient for
y = x1/n at x = b in terms of u = (b + h)1/n and a = b1/n.

97. Infinitely Rapid Oscillations Define

f (x) =

⎧⎪⎨
⎪⎩

x sin
1

x
x �= 0

0 x = 0

Show that f (x) is continuous at x = 0 but f ′(0) does not exist (see
Figure 12).

98. For which value of λ does the equation ex = λx have a unique
solution? For which values of λ does it have at least one solution? For
intuition, plot y = ex and the line y = λx.

3.3 Product and Quotient Rules
This section covers the Product Rule and Quotient Rule for computing derivatives.
These two rules, together with the Chain Rule and implicit differentiation (covered in
later sections), make up an extremely effective “differentiation toolkit.”

REMINDER The product function fg is
defined by (fg)(x) = f (x) g(x).

THEOREM 1 Product Rule If f and g are differentiable functions, then fg is differ-
entiable and

(fg)′(x) = f (x) g′(x) + g(x) f ′(x)

It may be helpful to remember the Product Rule in words: The derivative of a product
is equal to the first function times the derivative of the second function plus the second
function times the derivative of the first function:

First · (Second)′ + Second · (First)′

We prove the Product Rule after presenting three examples.

EXAMPLE 1 Find the derivative of h(x) = x2(9x + 2).

Solution This function is a product:

h(x) =
First︷︸︸︷
x2

Second︷ ︸︸ ︷
(9x + 2)

By the Product Rule (in Leibniz notation),

h′(x) =
First︷︸︸︷
x2

Second′︷ ︸︸ ︷
d

dx
(9x + 2) +

Second︷ ︸︸ ︷
(9x + 2)

First′︷ ︸︸ ︷
d

dx
(x2)

= (x2)(9) + (9x + 2)(2x) = 27x2 + 4x

EXAMPLE 2 Find the derivative of y = (2 + x−1)(x3/2 + 1).

Solution Use the Product Rule:

Note how the prime notation is used in the
solution to Example 2. We write (x3/2 + 1)′
to denote the derivative of x3/2 + 1, etc. y′=

First · (Second)′ + Second · (First)′︷ ︸︸ ︷(
2 + x−1)(x3/2 + 1

)′ + (
x3/2 + 1

)(
2 + x−1)′

= (
2 + x−1)( 3

2x1/2) + (
x3/2 + 1

)( − x−2) (compute the derivatives)

= 3x1/2 + 3
2x−1/2 − x−1/2 − x−2 = 3x1/2 + 1

2x−1/2 − x−2 (simplify)
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In the previous two examples, we could have avoided the Product Rule by expanding
the function. Thus, the result of Example 2 can be obtained as follows:

y = (
2 + x−1)(x3/2 + 1

) = 2x3/2 + 2 + x1/2 + x−1

y′ = d

dx

(
2x3/2 + 2 + x1/2 + x−1) = 3x1/2 + 1

2x−1/2 − x−2

In the next example, the function cannot be expanded, so we must use the Product Rule
(or go back to the limit definition of the derivative).

EXAMPLE 3 Calculate
d

dt
t2et .

Solution Use the Product Rule and the formula
d

dt
et = et :

d

dt
t2et =

First · (Second)′ + Second · (First)′︷ ︸︸ ︷
t2 d

dt
et + et d

dt
t2 = t2et + et (2t) = (t2 + 2t)et

Proof of the Product Rule According to the limit definition of the derivative,

f (x + h)(g(x + h) − g(x))

f (x)

g(
x)

f (x + h)

g(
x 

+  
h)

g(x)(f(x +
 h) −

 f(x))
FIGURE 1

(fg)′(x) = lim
h→0

f (x + h)g(x + h) − f (x)g(x)

h

We can interpret the numerator as the area of the shaded region in Figure 1: The area of the
larger rectangle f (x + h)g(x + h) minus the area of the smaller rectangle f (x)g(x). This
shaded region is the union of two rectangular strips, so we obtain the following identity
(which you can check directly):

f (x + h)g(x + h) − f (x)g(x) = f (x + h)
(
g(x + h) − g(x)

) + g(x)
(
f (x + h) − f (x)

)
Now use this identity to write (fg)′(x) as a sum of two limits:

(fg)′(x) = lim
h→0

f (x + h)
g(x + h) − g(x)

h︸ ︷︷ ︸
Show that this equals f (x)g′(x).

+ lim
h→0

g(x)
f (x + h) − f (x)

h︸ ︷︷ ︸
Show that this equals g(x)f ′(x).

1

The use of the Sum Law is valid, provided that each limit on the right exists. To check
that the first limit exists and to evaluate it, we note that f (x) is continuous (because it is
differentiable) and that g(x) is differentiable. Thus

lim
h→0

f (x + h)
g(x + h) − g(x)

h
= lim

h→0
f (x + h) lim

h→0

g(x + h) − g(x)

h

= f (x) g′(x) 2

The second limit is similar:

lim
h→0

g(x)
f (x + h) − f (x)

h
= g(x) lim

h→0

f (x + h) − f (x)

h
= g(x) f ′(x) 3

Using Eq. (2) and Eq. (3) in Eq. (1), we conclude that fg is differentiable and that
(fg)′(x) = f (x)g′(x) + g(x)f ′(x) as claimed.
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CONCEPTUAL INSIGHT The Product Rule was first stated by the 29-year-old Leibniz in
1675, the year he developed some of his major ideas on calculus. To document his
process of discovery for posterity, he recorded his thoughts and struggles, the moments
of inspiration as well as the mistakes. In a manuscript dated November 11, 1675, Leibniz
suggests incorrectly that (fg)′ equals f ′g′. He then catches his error by taking f (x) =
g(x) = x and noticing that

(fg)′(x) = (
x2)′ = 2x is not equal to f ′(x)g′(x) = 1 · 1 = 1

Ten days later, on November 21, Leibniz writes down the correct Product Rule and
comments “Now this is a really noteworthy theorem.”

With the benefit of hindsight, we can point out that Leibniz might have avoided
his error if he had paid attention to units. Suppose f (t) and g(t) represent distances
in meters, where t is time in seconds. Then (fg)′ has units of m2/s. This cannot equal
f ′g′, which has units of (m/s)(m/s) = m2/s2.

The next theorem states the rule for differentiating quotients. Note, in particular, that
(f/g)′ is not equal to the quotient f ′/g′.

REMINDER The quotient function f/g

is defined by(
f

g

)
(x) = f (x)

g(x)

THEOREM 2 Quotient Rule If f and g are differentiable functions, then f/g is dif-
ferentiable for all x such that g(x) �= 0, and

(
f

g

)′
(x) = g(x)f ′(x) − f (x)g′(x)

g(x)2

The numerator in the Quotient Rule is equal to the bottom times the derivative of the top
minus the top times the derivative of the bottom:

Bottom · (Top)′ − Top · (Bottom)′

Bottom2

The proof is similar to that of the Product Rule (see Exercises 58–60).

EXAMPLE 4 Compute the derivative of f (x) = x

1 + x2
.

Solution Apply the Quotient Rule:

f ′(x) =

Bottom︷ ︸︸ ︷
(1 + x2)

Top′︷︸︸︷
(x)′ −

Top︷︸︸︷
(x)

Bottom′︷ ︸︸ ︷
(1 + x2)′

(1 + x2)2
= (1 + x2)(1) − (x)(2x)

(1 + x2)2

= 1 + x2 − 2x2

(1 + x2)2
= 1 − x2

(1 + x2)2

EXAMPLE 5 Calculate
d

dt

et

et + t
.

Solution Use the Quotient Rule and the formula (et )′ = et :

d

dt

et

et + t
= (et + t)(et )′ − et (et + t)′

(et + t)2
= (et + t)et − et (et + 1)

(et + t)2
= (t − 1)et

(et + t)2
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EXAMPLE 6 Find the tangent line to the graph of f (x) = 3x2 + x − 2

4x3 + 1
at x = 1.

Solution

f ′(x) = d

dx

(
3x2 + x − 2

4x3 + 1

)
=

Bottom︷ ︸︸ ︷
(4x3 + 1)

Top′︷ ︸︸ ︷
(3x2 + x − 2)′ −

Top︷ ︸︸ ︷
(3x2 + x − 2)

Bottom′︷ ︸︸ ︷
(4x3 + 1)′

(4x3 + 1)2

= (4x3 + 1)(6x + 1) − (3x2 + x − 2)(12x2)

(4x3 + 1)2

= (24x4 + 4x3 + 6x + 1) − (36x4 + 12x3 − 24x2)

(4x3 + 1)2

= −12x4 − 8x3 + 24x2 + 6x + 1

(4x3 + 1)2

At x = 1,

f (1) = 3 + 1 − 2

4 + 1
= 2

5

f ′(1) = −12 − 8 + 24 + 6 + 1

52
= 11

25

An equation of the tangent line at
(
1, 2

5

)
is

y − 2

5
= 11

25
(x − 1) or y = 11

25
x − 1

25

EXAMPLE 7 Power Delivered by a Battery The power that a battery supplies to an

R

V

r

FIGURE 2 Apparatus of resistance R

attached to a battery of voltage V .

apparatus such as a laptop depends on the internal resistance of the battery. For a battery of
voltage V and internal resistance r , the total power delivered to an apparatus of resistance
R (Figure 2) is

P = V 2R

(R + r)2

(a) Calculate dP/dR, assuming that V and r are constants.
(b) Where, in the graph of P versus R, is the tangent line horizontal?

Solution

(a) Because V is a constant, we obtain (using the Quotient Rule)

dP

dR
= V 2 d

dR

(
R

(R + r)2

)
= V 2 (R + r)2 d

dRR − R d
dR (R + r)2

(R + r)4
4

We have d
dRR = 1, and d

dR r = 0 because r is a constant. Thus,

d

dR
(R + r)2 = d

dR
(R2 + 2rR + r2)

= d

dR
R2 + 2r

d

dR
R + d

dR
r2

= 2R + 2r + 0 = 2(R + r) 5

Using Eq. (5) in Eq. (4), we obtain

dP

dR
= V 2 (R + r)2 − 2R(R + r)

(R + r)4
= V 2 (R + r) − 2R

(R + r)3
= V 2 r − R

(R + r)3
6

(b) The tangent line is horizontal when the derivative is zero. We see from Eq. (6) that
the derivative is zero when r − R = 0—that is, when R = r .

r
R

P

FIGURE 3 Graph of power versus
resistance:

P = V 2R

(R + r)2
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GRAPHICAL INSIGHT Figure 3 shows that the point where the tangent line is horizontal
is the maximum point on the graph. This proves an important result in circuit design:
Maximum power is delivered when the resistance of the load (apparatus) is equal to the
internal resistance of the battery.

3.3 SUMMARY

• Two basic rules of differentiation:

Product Rule: (fg)′ = fg′ + gf ′

Quotient Rule:

(
f

g

)′
= gf ′ − fg′

g2

• Remember: The derivative of fg is not equal to f ′g′. Similarly, the derivative of f/g

is not equal to f ′/g′.

3.3 EXERCISES

Preliminary Questions
1. Are the following statements true or false? If false, state the correct

version.

(a) fg denotes the function whose value at x is f (g(x)).

(b) f/g denotes the function whose value at x is f (x)/g(x).

(c) The derivative of the product is the product of the derivatives.

(d)
d

dx
(fg)

∣∣∣∣
x=4

= f (4)g′(4) − g(4)f ′(4)

(e)
d

dx
(fg)

∣∣∣∣
x=0

= f (0)g′(0) + g(0)f ′(0)

2. Find (f/g)′(1) if f (1) = f ′(1) = g(1) = 2 and g′(1) = 4.

3. Find g(1) if f (1) = 0, f ′(1) = 2, and (fg)′(1) = 10.

Exercises
In Exercises 1–6, use the Product Rule to calculate the derivative.

1. f (x) = x3(2x2 + 1) 2. f (x) = (3x − 5)(2x2 − 3)

3. f (x) = x2ex 4. f (x) = (2x − 9)(4ex + 1)

5.
dh

ds

∣∣∣∣
s=4

, h(s) = (s−1/2 + 2s)(7 − s−1)

6.
dy

dt

∣∣∣∣
t=2

, y = (t − 8t−1)(et + t2)

In Exercises 7–12, use the Quotient Rule to calculate the derivative.

7. f (x) = x

x − 2
8. f (x) = x + 4

x2 + x + 1

9.
dg

dt

∣∣∣∣
t=−2

, g(t) = t2 + 1

t2 − 1
10.

dw

dz

∣∣∣∣
z=9

, w = z2
√

z + z

11. g(x) = 1

1 + ex
12. f (x) = ex

x2 + 1

In Exercises 13–16, calculate the derivative in two ways. First use the
Product or Quotient Rule; then rewrite the function algebraically and
apply the Power Rule directly.

13. f (t) = (2t + 1)(t2 − 2) 14. f (x) = x2(3 + x−1)

15. h(t) = t2 − 1

t − 1

16. g(x) = x3 + 2x2 + 3x−1

x

In Exercises 17–38, calculate the derivative.

17. f (x) = (x3 + 5)(x3 + x + 1)

18. f (x) = (4ex − x2)(x3 + 1)

19.
dy

dx

∣∣∣∣
x=3

, y = 1

x + 10
20.

dz

dx

∣∣∣∣
x=−2

, z = x

3x2 + 1

21. f (x) = (
√

x + 1)(
√

x − 1) 22. f (x) = 9x5/2 − 2

x
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23.
dy

dx

∣∣∣∣
x=2

, y = x4 − 4

x2 − 5
24. f (x) = x4 + ex

x + 1

25.
dz

dx

∣∣∣∣
x=1

, z = 1

x3 + 1
26. f (x) = 3x3 − x2 + 2√

x

27. h(t) = t

(t + 1)(t2 + 1)

28. f (x) = x3/2(
2x4 − 3x + x−1/2)

29. f (t) = 31/2 · 51/2 30. h(x) = π2(x − 1)

31. f (x) = (x + 3)(x − 1)(x − 5)

32. f (x) = ex(x2 + 1)(x + 4)

33. f (x) = ex

x + 1
34. g(x) = ex+1 + ex

e + 1

35. g(z) =
(

z2 − 4

z − 1

) (
z2 − 1

z + 2

)
Hint: Simplify first.

36.
d

dx

(
(ax + b)(abx2 + 1)

)
(a, b constants)

37.
d

dt

(
xt − 4

t2 − x

)
(x constant)

38.
d

dx

(
ax + b

cx + d

)
(a, b, c, d constants)

In Exercises 39–42, calculate the derivative using the values:

f (4) f ′(4) g(4) g′(4)

10 −2 5 −1

39. (fg)′(4) and (f/g)′(4).

40. F ′(4), where F(x) = x2f (x).

41. G′(4), where G(x) = g(x)2.

42. H ′(4), where H(x) = x

g(x)f (x)
.

43. Calculate F ′(0), where

F(x) = x9 + x8 + 4x5 − 7x

x4 − 3x2 + 2x + 1

Hint: Do not calculate F ′(x). Instead, write F(x) = f (x)/g(x) and
express F ′(0) directly in terms of f (0), f ′(0), g(0), g′(0).

44. Proceed as in Exercise 43 to calculate F ′(0), where

F(x) = (
1 + x + x4/3 + x5/3) 3x5 + 5x4 + 5x + 1

8x9 − 7x4 + 1

45. Use the Product Rule to calculate
d

dx
e2x .

46. Plot the derivative of f (x) = x/(x2 + 1) over [−4, 4]. Use
the graph to determine the intervals on which f ′(x) > 0 and f ′(x) < 0.
Then plot f (x) and describe how the sign of f ′(x) is reflected in the
graph of f (x).

47. Plot f (x) = x/(x2 − 1) (in a suitably bounded viewing
box). Use the plot to determine whether f ′(x) is positive or negative
on its domain {x : x �= ±1}. Then compute f ′(x) and confirm your
conclusion algebraically.

48. Let P = V 2R/(R + r)2 as in Example 7. Calculate dP/dr, assum-
ing that r is variable and R is constant.

49. Find a > 0 such that the tangent line to the graph of

f (x) = x2e−x at x = a

passes through the origin (Figure 4).

y

x
a

f (x) = x2e−x

FIGURE 4

50. Current I (amperes), voltage V (volts), and resistance R (ohms) in
a circuit are related by Ohm’s Law, I = V/R.

(a) Calculate
dI

dR

∣∣∣∣
R=6

if V is constant with value V = 24.

(b) Calculate
dV

dR

∣∣∣∣
R=6

if I is constant with value I = 4.

51. The revenue per month earned by the Couture clothing chain at
time t is R(t) = N(t)S(t), where N(t) is the number of stores and S(t)

is average revenue per store per month. Couture embarks on a two-part
campaign: (A) to build new stores at a rate of 5 stores per month, and
(B) to use advertising to increase average revenue per store at a rate of
$10,000 per month. Assume that N(0) = 50 and S(0) = $150,000.

(a) Show that total revenue will increase at the rate

dR

dt
= 5S(t) + 10,000N(t)

Note that the two terms in the Product Rule correspond to the separate
effects of increasing the number of stores on the one hand, and the
average revenue per store on the other.

(b) Calculate
dR

dt

∣∣∣∣
t=0

.

(c) If Couture can implement only one leg (A or B) of its expansion at
t = 0, which choice will grow revenue most rapidly?

52. The tip speed ratio of a turbine (Figure 5) is the ratio R = T/W ,
where T is the speed of the tip of a blade and W is the speed of the
wind. (Engineers have found empirically that a turbine with n blades
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extracts maximum power from the wind when R = 2π/n.) Calculate
dR/dt (t in minutes) if W = 35 km/h and W decreases at a rate of 4
km/h per minute, and the tip speed has constant value T = 150 km/h.

FIGURE 5 Turbines on a wind farm

53. The curve y = 1/(x2 + 1) is called the witch of Agnesi (Figure 6)
after the Italian mathematician Maria Agnesi (1718–1799), who wrote
one of the first books on calculus. This strange name is the result of
a mistranslation of the Italian word la versiera, meaning “that which
turns.” Find equations of the tangent lines at x = ±1.

321−2−3 −1

1

x

y

FIGURE 6 The witch of Agnesi.

54. Let f (x) = g(x) = x. Show that (f/g)′ �= f ′/g′.

55. Use the Product Rule to show that (f 2)′ = 2ff ′.

56. Show that (f 3)′ = 3f 2f ′.

Further Insights and Challenges
57. Let f , g, h be differentiable functions. Show that (fgh)′(x) is
equal to

f (x)g(x)h′(x) + f (x)g′(x)h(x) + f ′(x)g(x)h(x)

Hint: Write fgh as f (gh).

58. Prove the Quotient Rule using the limit definition of the derivative.

59. Derivative of the Reciprocal Use the limit definition to prove

d

dx

(
1

f (x)

)
= − f ′(x)

f 2(x)
7

Hint: Show that the difference quotient for 1/f (x) is equal to

f (x) − f (x + h)

hf (x)f (x + h)

60. Prove the Quotient Rule using Eq. (7) and the Product Rule.

61. Use the limit definition of the derivative to prove the following
special case of the Product Rule:

d

dx
(xf (x)) = xf ′(x) + f (x)

62. Carry out Maria Agnesi’s proof of the Quotient Rule from her book
on calculus, published in 1748: Assume that f , g, and h = f/g are dif-
ferentiable. Compute the derivative of hg = f using the Product Rule,
and solve for h′.
63. The Power Rule Revisited If you are familiar with proof by in-
duction, use induction to prove the Power Rule for all whole numbers n.
Show that the Power Rule holds for n = 1; then write xn as x · xn−1

and use the Product Rule.

Exercises 64 and 65: A basic fact of algebra states that c is a root of
a polynomial f (x) if and only if f (x) = (x − c)g(x) for some poly-
nomial g(x). We say that c is a multiple root if f (x) = (x − c)2h(x),
where h(x) is a polynomial.

64. Show that c is a multiple root of f (x) if and only if c is a root of
both f (x) and f ′(x).

65. Use Exercise 64 to determine whether c = −1 is a multiple root:

(a) x5 + 2x4 − 4x3 − 8x2 − x + 2

(b) x4 + x3 − 5x2 − 3x + 2

66. Figure 7 is the graph of a polynomial with roots at A, B,
and C. Which of these is a multiple root? Explain your reasoning using
Exercise 64.

x

y

B CA

FIGURE 7

67. According to Eq. (6) in Section 3.2, d
dx

bx = m(b) bx . Use the
Product Rule to show that m(ab) = m(a) + m(b).
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3.4 Rates of Change
Recall the notation for the average rate of change of a function y = f (x) over an interval
[x0, x1]:

�y = change in y = f (x1) − f (x0)

�x = change in x = x1 − x0

Average Rate of Change = �y

�x
= f (x1) − f (x0)

x1 − x0

In our prior discussion in Section 2.1, limits and derivatives had not yet been introduced.We usually omit the word “instantaneous”
and refer to the derivative simply as the
rate of change. This is shorter and also
more accurate when applied to general
rates, because the term “instantaneous”
would seem to refer only to rates with
respect to time.

Now that we have them at our disposal, we can define the instantaneous rate of change
of y with respect to x at x = x0:

Instantaneous Rate of Change = f ′(x0) = lim
�x→0

�y

�x
= lim

x1→x0

f (x1) − f (x0)

x1 − x0

Keep in mind the geometric interpretations: The average rate of change is the slope of the
secant line (Figure 1), and the instantaneous rate of change is the slope of the tangent line
(Figure 2).

(x0 , f (x0))

(x1 , f (x1))

�x

�y

x0 x1
x

y

FIGURE 1 The average rate of change over
[x0, x1] is the slope of the secant line.

(x0 , f (x0))

x0
x

y

FIGURE 2 The instantaneous rate of
change at x0 is the slope of the tangent
line.

Leibniz notation dy/dx is particularly convenient because it specifies that we are
considering the rate of change of y with respect to the independent variable x. The rate
dy/dx is measured in units ofy per unit ofx. For example, the rate of change of temperature
with respect to time has units such as degrees per minute, whereas the rate of change of
temperature with respect to altitude has units such as degrees per kilometer.

EXAMPLE 1 Table 1 contains data on the temperature T on the surface of Mars at
Martian time t , collected by the NASA Pathfinder space probe.

TABLE 1 Data from Mars
Pathfinder Mission, July
1997

Time Temperature (◦C)

5:42 −74.7
6:11 −71.6
6:40 −67.2
7:09 −63.7
7:38 −59.5
8:07 −53
8:36 −47.7
9:05 −44.3
9:34 −42

(a) Calculate the average rate of change of temperature T from 6:11 am to 9:05 am.

(b) Use Figure 3 to estimate the rate of change at t = 12:28 pm.

Solution

(a) The time interval [6:11, 9:05] has length 2 h, 54 min, or �t = 2.9 h. According to
Table 1, the change in temperature over this time interval is

�T = −44.3 − (−71.6) = 27.3◦C
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The average rate of change is the ratio

0:00 4:48 9:36 14:24 19:12 0:00
−80

−70

−60

−50

−40

−30

−20

−10

0
T (°C)

(12:28, −22.3)

A

t

FIGURE 3 Temperature variation on the
surface of Mars on July 6, 1997.

�T

�t
= 27.3

2.9
≈ 9.4◦C/h

(b) The rate of change is the derivative dT /dt , which is equal to the slope of the tangent
line through the point (12:28, −22.3) in Figure 3. To estimate the slope, we must choose
a second point on the tangent line. Let’s use the point labeled A, whose coordinates are
approximately (4:48, −51). The time interval from 4:48 am to 12:28 pm has length 7 h,
40 min, or �t = 7.67 h, and

dT

dt
= slope of tangent line ≈ −22.3 − (−51)

7.67
≈ 3.7◦C/h

EXAMPLE 2 Let A = πr2 be the area of a circle of radius r .

(a) Compute dA/dr at r = 2 and r = 5.
(b) Why is dA/dr larger at r = 5?

Solution The rate of change of area with respect to radius is the derivative

dA

dr
= d

dr
(πr2) = 2πr 1

(a) We haveBy Eq. (1), dA/dr is equal to the
circumference 2πr. We can explain this
intuitively as follows: Up to a small error,
the area �A of the band of width �r in
Figure 4 is equal to the circumference 2πr

times the width �r. Therefore,
�A ≈ 2πr�r and

dA

dr
= lim

�r→0

�A

�r
= 2πr

dA

dr

∣∣∣∣
r=2

= 2π(2) ≈ 12.57 and
dA

dr

∣∣∣∣
r=5

= 2π(5) ≈ 31.42

(b) The derivative dA/dr measures how the area of the circle changes when r increases.
Figure 4 shows that when the radius increases by �r , the area increases by a band of
thickness �r . The area of the band is greater at r = 5 than at r = 2. Therefore, the
derivative is larger (and the tangent line is steeper) at r = 5. In general, for a fixed �r ,
the change in area �A is greater when r is larger.

5

Tangent at r = 5

Tangent at r = 2

Area

2

r = 2

�r

�r

r = 5

rFIGURE 4 The pink bands represent the
change in area when r is increased by �r .

The Effect of a One-Unit Change
For small values of h, the difference quotient is close to the derivative itself:

f ′(x0) ≈ f (x0 + h) − f (x0)

h
2

This approximation generally improves as h gets smaller, but in some applications, the
approximation is already useful with h = 1. Setting h = 1 in Eq. (2) gives

f ′(x0) ≈ f (x0 + 1) − f (x0) 3

In other words, f ′(x0) is approximately equal to the change in f caused by a one-unit
change in x when x = x0.
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EXAMPLE 3 Stopping Distance For speeds s between 30 and 75 mph, the
stopping distance of an automobile after the brakes are applied is approximately F(s) =
1.1s + 0.05s2 ft. For s = 60 mph:

(a) Estimate the change in stopping distance if the speed is increased by 1 mph.

(b) Compare your estimate with the actual increase in stopping distance.

Solution

(a) We have

F ′(s) = d

ds
(1.1s + 0.05s2) = 1.1 + 0.1s ft/mph

F ′(60) = 1.1 + 6 = 7.1 ft/mph

Using Eq. (3), we estimate

F(61) − F(60)︸ ︷︷ ︸
Change in stopping distance

≈ F ′(60) = 7.1 ft

Thus, when you increase your speed from 60 to 61 mph, your stopping distance increases
by roughly 7 ft.

(b) The actual change in stopping distance is F(61) − F(60) = 253.15 − 246 = 7.15,
so the estimate in (a) is fairly accurate.

Marginal Cost in Economics
Let C(x) denote the dollar cost (including labor and parts) of producing x units of aAlthough C(x) is meaningful only when x

is a whole number, economists often treat
C(x) as a differentiable function of x so
that the techniques of calculus can be
applied.

particular product. The number x of units manufactured is called the production level.
To study the relation between costs and production, economists define the marginal cost
at production level x0 as the cost of producing one additional unit:

Marginal cost = C(x0 + 1) − C(x0)

In this setting, Eq. (3) usually gives a good approximation, so we take C′(x0) as an estimate
of the marginal cost.

EXAMPLE 4 Cost of an Air Flight Company data suggest that the total dollar cost
of a certain flight is approximately C(x) = 0.0005x3 − 0.38x2 + 120x, where x is the
number of passengers (Figure 5).

Total cost ($)

Number of passengers

10,000

15,000

5,000

25020015010050

FIGURE 5 Cost of an air flight. The slopes
of the tangent lines are decreasing, so
marginal cost is decreasing.

(a) Estimate the marginal cost of an additional passenger if the flight already has 150
passengers.

(b) Compare your estimate with the actual cost of an additional passenger.

(c) Is it more expensive to add a passenger when x = 150 or when x = 200?

Solution The derivative is C′(x) = 0.0015x2 − 0.76x + 120.

(a) We estimate the marginal cost at x = 150 by the derivative

C′(150) = 0.0015(150)2 − 0.76(150) + 120 = 39.75

Thus, it costs approximately $39.75 to add one additional passenger.

(b) The actual cost of adding one additional passenger is

C(151) − C(150) ≈ 11,177.10 − 11,137.50 = 39.60

Our estimate of $39.75 is close enough for practical purposes.
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(c) The marginal cost at x = 200 is approximately

C′(200) = 0.0015(200)2 − 0.76(200) + 120 = 28

Since 39.75 > 28, it is more expensive to add a passenger when x = 150.

Linear Motion
Recall that linear motion is motion along a straight line. This includes horizontal motion

In his famous textbook Lectures on
Physics, Nobel laureate Richard Feynman
(1918–1988) uses a dialogue to make a
point about instantaneous velocity:

Policeman: “My friend, you were going 75
miles an hour.”

Driver: “That’s impossible, sir, I was
traveling for only seven minutes.”

along a straight highway and vertical motion of a falling object. Let s(t) denote the position
or distance from the origin at time t . Velocity is the rate of change of position with respect
to time:

v(t) = velocity = ds

dt

The sign of v(t) indicates the direction of motion. For example, if s(t) is the height above
ground, then v(t) > 0 indicates that the object is rising. Speed is defined as the absolute
value of velocity |v(t)|.

Figure 6 shows the position of a car as a function of time. Remember that the height
of the graph represents the car’s distance from the point of origin. The slope of the tangent
line is the velocity. Here are some facts we can glean from the graph:

225

150

75

t (h)
54321

s (km)

FIGURE 6 Graph of distance versus time.

• Speeding up or slowing down? The tangent lines get steeper in the interval [0, 1],
so the car was speeding up during the first hour. They get flatter in the interval [1, 2],
so the car slowed down in the second hour.

• Standing still The graph is horizontal over [2, 3] (perhaps the driver stopped at
a restaurant for an hour).

• Returning to the same spot The graph rises and falls in the interval [3, 4], in-
dicating that the driver returned to the restaurant (perhaps she left her cell phone
there).

• Average velocity The graph rises more over [0, 2] than over [3, 5], so the average
velocity was greater over the first two hours than over the last two hours.

EXAMPLE 5 A truck enters the off-ramp of a highway at t = 0. Its position after t

seconds is s(t) = 25t − 0.3t3 m for 0 ≤ t ≤ 5.

(a) How fast is the truck going at the moment it enters the off-ramp?
(b) Is the truck speeding up or slowing down?

t (s)
1 2 3 4 5

10

20

30

v (m/s)

FIGURE 7 Graph of velocity
v(t) = 25 − 0.9t2.

Solution The truck’s velocity at time t is v(t) = d

dt
(25t − 0.3t3) = 25 − 0.9t2.

(a) The truck enters the off-ramp with velocity v(0) = 25 m/s.
(b) Since v(t) = 25 − 0.9t2 is decreasing (Figure 7), the truck is slowing down.

Motion Under the Influence of Gravity
Galileo discovered that the height s(t) and velocity v(t) at time t (seconds) of an object
tossed vertically in the air near the earth’s surface are given by the formulas

Galileo’s formulas are valid only when air
resistance is negligible. We assume this to
be the case in all examples.

s(t) = s0 + v0t − 1

2
gt2, v(t) = ds

dt
= v0 − gt 4

The constants s0 and v0 are the initial values:

• s0 = s(0), the position at time t = 0.
• v0 = v(0), the velocity at t = 0.
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• −g is the acceleration due to gravity on the surface of the earth (negative because
the up direction is positive), where

g ≈ 9.8 m/s2 or g ≈ 32 ft/s2

A simple observation enables us to find the object’s maximum height. Since velocity
is positive as the object rises and negative as it falls back to earth, the object reaches its
maximum height at the moment of transition, when it is no longer rising and has not yet
begun to fall. At that moment, its velocity is zero. In other words, the maximum height is
attained when v(t) = 0. At this moment, the tangent line to the graph of s(t) is horizontal
(Figure 8).

2 75.1 10
t (s)10

50

100

150
Maximum height

s (m)

FIGURE 8 Maximum height occurs when
s′(t) = v(t) = 0, where the tangent line is
horizontal. EXAMPLE 6 Finding the Maximum Height A stone is shot with a slingshot vertically

upward with an initial velocity of 50 m/s from an initial height of 10 m.

(a) Find the velocity at t = 2 and at t = 7. Explain the change in sign.Galileo’s formulas:

s(t) = s0 + v0t − 1

2
gt2

v(t) = ds

dt
= v0 − gt

(b) What is the stone’s maximum height and when does it reach that height?

Solution Apply Eq. (4) with s0 = 10, v0 = 50, and g = 9.8:

s(t) = 10 + 50t − 4.9t2, v(t) = 50 − 9.8t

(a) Therefore,

v(2) = 50 − 9.8(2) = 30.4 m/s, v(7) = 50 − 9.8(7) = −18.6 m/s

At t = 2, the stone is rising and its velocity v(2) is positive (Figure 8). At t = 7, the stone
is already on the way down and its velocity v(7) is negative.
(b) Maximum height is attained when the velocity is zero, so we solve

v(t) = 50 − 9.8t = 0 ⇒ t = 50

9.8
≈ 5.1

The stone reaches maximum height at t = 5.1 s. Its maximum height is

s(5.1) = 10 + 50(5.1) − 4.9(5.1)2 ≈ 137.6 m

In the previous example, we specified the initial values of position and velocity. In
the next example, the goal is to determine initial velocity.

EXAMPLE 7 Finding Initial Conditions What initial velocity v0 is required for a bullet,How important are units? In September
1999, the $125 million Mars Climate
Orbiter spacecraft burned up in the Martian
atmosphere before completing its scientific
mission. According to Arthur Stephenson,
NASA chairman of the Mars Climate
Orbiter Mission Failure Investigation Board,
1999, “The ‘root cause’ of the loss of the
spacecraft was the failed translation of
English units into metric units in a
segment of ground-based,
navigation-related mission software.”

fired vertically from ground level, to reach a maximum height of 2 km?

Solution We need a formula for maximum height as a function of initial velocity v0. The
initial height is s0 = 0, so the bullet’s height is s(t) = v0t − 1

2gt2 by Galileo’s formula.
Maximum height is attained when the velocity is zero:

v(t) = v0 − gt = 0 ⇒ t = v0

g

The maximum height is the value of s(t) at t = v0/g:

s

(
v0

g

)
= v0

(
v0

g

)
− 1

2
g

(
v0

g

)2

= v2
0

g
− 1

2

v2
0

g
= v2

0

2g

Now we can solve for v0 using the value g = 9.8 m/s2 (note that 2 km = 2000 m).

In Eq. (5), distance must be in meters
because our value of g has units of m/s2. Maximum height = v2

0

2g
= v2

0

2(9.8)
= 2000 m 5

This yields v0 = √
(2)(9.8)2000 ≈ 198 m/s. In reality, the initial velocity would have to

be considerably greater to overcome air resistance.
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HISTORICAL
PERSPECTIVE

Galileo Galilei
(1564–1642) dis-
covered the laws of
motion for falling
objects on the earth’s
surface around 1600.

This paved the way for Newton’s general laws
of motion. How did Galileo arrive at his formu-
las? The motion of a falling object is too rapid to
measure directly, without modern photographic
or electronic apparatus. To get around this dif-
ficulty, Galileo experimented with balls rolling
down an incline (Figure 9). For a sufficiently flat
incline, he was able to measure the motion with
a water clock and found that the velocity of the
rolling ball is proportional to time. He then rea-

soned that motion in free-fall is just a faster ver-
sion of motion down an incline and deduced the
formula v(t) = −gt for falling objects (assum-
ing zero initial velocity).

Prior to Galileo, it had been assumed incor-
rectly that heavy objects fall more rapidly than
lighter ones. Galileo realized that this was not
true (as long as air resistance is negligible), and
indeed, the formula v(t) = −gt shows that the
velocity depends on time but not on the weight
of the object. Interestingly, 300 years later, an-
other great physicist,Albert Einstein, was deeply
puzzled by Galileo’s discovery that all objects
fall at the same rate regardless of their weight.
He called this the Principle of Equivalence and
sought to understand why it was true. In 1916,
after a decade of intensive work, Einstein devel-
oped the General Theory of Relativity, which
finally gave a full explanation of the Principle of
Equivalence in terms of the geometry of space
and time.

3.4 SUMMARY

• The (instantaneous) rate of change of y = f (x) with respect to x at x = x0 is defined
as the derivative

FIGURE 9 Apparatus of the type used by
Galileo to study the motion of falling
objects.

f ′(x0) = lim
�x→0

�y

�x
= lim

x1→x0

f (x1) − f (x0)

x1 − x0

• The rate dy/dx is measured in units of y per unit of x.
• For linear motion, velocity v(t) is the rate of change of position s(t) with respect to
time—that is, v(t) = s′(t).
• In some applications, f ′(x0) provides a good estimate of the change in f due to a one-
unit increase in x when x = x0:

f ′(x0) ≈ f (x0 + 1) − f (x0)

• Marginal cost is the cost of producing one additional unit. If C(x) is the cost of producing
x units, then the marginal cost at production level x0 is C(x0 + 1) − C(x0). The derivative
C′(x0) is often a good estimate for marginal cost.
• Galileo’s formulas for an object rising or falling under the influence of gravity near the
earth’s surface (s0 = initial position, v0 = initial velocity):

s(t) = s0 + v0t − 1

2
gt2, v(t) = v0 − gt

where g ≈ 9.8 m/s2, or g ≈ 32 ft/s2. Maximum height is attained when v(t) = 0.

3.4 EXERCISES

Preliminary Questions
1. Which units might be used for each rate of change?

(a) Pressure (in atmospheres) in a water tank with respect to depth

(b) The rate of a chemical reaction (change in concentration with re-
spect to time with concentration in moles per liter)
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2. Two trains travel from New Orleans to Memphis in 4 hours. The
first train travels at a constant velocity of 90 mph, but the velocity of
the second train varies. What was the second train’s average velocity
during the trip?

3. Estimate f (26), assuming that f (25) = 43, f ′(25) = 0.75.

4. The population P(t) of Freedonia in 2009 was P(2009) = 5 mil-
lion.

(a) What is the meaning of P ′(2009)?

(b) Estimate P(2010) if P ′(2009) = 0.2.

Exercises
In Exercises 1–8, find the rate of change.

1. Area of a square with respect to its side s when s = 5.

2. Volume of a cube with respect to its side s when s = 5.

3. Cube root 3√x with respect to x when x = 1, 8, 27.

4. The reciprocal 1/x with respect to x when x = 1, 2, 3.

5. The diameter of a circle with respect to radius.

6. Surface area A of a sphere with respect to radius r (A = 4πr2).

7. Volume V of a cylinder with respect to radius if the height is equal
to the radius.

8. Speed of sound v (in m/s) with respect to air temperature T (in
kelvins), where v = 20

√
T .

In Exercises 9–11, refer to Figure 10, the graph of distance s(t) from
the origin as a function of time for a car trip.

9. Find the average velocity over each interval.

(a) [0, 0.5] (b) [0.5, 1] (c) [1, 1.5] (d) [1, 2]
10. At what time is velocity at a maximum?

11. Match the descriptions (i)–(iii) with the intervals (a)–(c).

(i) Velocity increasing

(ii) Velocity decreasing

(iii) Velocity negative

(a) [0, 0.5] (b) [2.5, 3] (c) [1.5, 2]

t (h)
3.02.52.01.51.00.5

Distance (km)

150

100

50

FIGURE 10 Distance from the origin versus time for a car trip.

12. Use the data from Table 1 in Example 1 to calculate the average
rate of change of Martian temperature T with respect to time t over the
interval from 8:36 am to 9:34 am.

13. Use Figure 3 from Example 1 to estimate the instantaneous rate of
change of Martian temperature with respect to time (in degrees Celsius
per hour) at t = 4 am.

14. The temperature (in ◦C) of an object at time t (in minutes) is
T (t) = 3

8 t2 − 15t + 180 for 0 ≤ t ≤ 20. At what rate is the object
cooling at t = 10? (Give correct units.)

15. The velocity (in cm/s) of blood molecules flowing through a cap-
illary of radius 0.008 cm is v = 6.4 × 10−8 − 0.001r2, where r is the
distance from the molecule to the center of the capillary. Find the rate
of change of velocity with respect to r when r = 0.004 cm.

16. Figure 11 displays the voltage V across a capacitor as a function of
time while the capacitor is being charged. Estimate the rate of change of
voltage at t = 20 s. Indicate the values in your calculation and include
proper units. Does voltage change more quickly or more slowly as time
goes on? Explain in terms of tangent lines.

t (s)
4010 20 30

4

3

2

1

5

V (volts)

FIGURE 11

17. Use Figure 12 to estimate dT /dh at h = 30 and 70, where T is
atmospheric temperature (in degrees Celsius) and h is altitude (in kilo-
meters). Where is dT /dh equal to zero?
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FIGURE 12 Atmospheric temperature versus altitude.

18. The earth exerts a gravitational force of F(r) = (2.99 × 1016)/r2

newtons on an object with a mass of 75 kg located r meters from the
center of the earth. Find the rate of change of force with respect to
distance r at the surface of the earth.

19. Calculate the rate of change of escape velocity vesc = (2.82 ×
107)r−1/2 m/s with respect to distance r from the center of the earth.
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20. The power delivered by a battery to an apparatus of resistance R

(in ohms) is P = 2.25R/(R + 0.5)2 watts. Find the rate of change of
power with respect to resistance for R = 3 � and R = 5 �.

21. The position of a particle moving in a straight line during a 5-s
trip is s(t) = t2 − t + 10 cm. Find a time t at which the instantaneous
velocity is equal to the average velocity for the entire trip.

22. The height (in meters) of a helicopter at time t (in minutes) is
s(t) = 600t − 3t3 for 0 ≤ t ≤ 12.

(a) Plot s(t) and velocity v(t).

(b) Find the velocity at t = 8 and t = 10.

(c) Find the maximum height of the helicopter.

23. A particle moving along a line has position s(t) = t4 − 18t2 m at
time t seconds. At which times does the particle pass through the ori-
gin? At which times is the particle instantaneously motionless (that is,
it has zero velocity)?

24. Plot the position of the particle in Exercise 23. What is the
farthest distance to the left of the origin attained by the particle?

25. Abullet is fired in the air vertically from ground level with an initial
velocity 200 m/s. Find the bullet’s maximum velocity and maximum
height.

26. Find the velocity of an object dropped from a height of 300 m at
the moment it hits the ground.

27. A ball tossed in the air vertically from ground level returns to earth
4 s later. Find the initial velocity and maximum height of the ball.

28. Olivia is gazing out a window from the tenth floor of a building
when a bucket (dropped by a window washer) passes by. She notes that
it hits the ground 1.5 s later. Determine the floor from which the bucket
was dropped if each floor is 5 m high and the window is in the middle
of the tenth floor. Neglect air friction.

29. Show that for an object falling according to Galileo’s formula, the
average velocity over any time interval [t1, t2] is equal to the average
of the instantaneous velocities at t1 and t2.

30. An object falls under the influence of gravity near the
earth’s surface. Which of the following statements is true? Explain.

(a) Distance traveled increases by equal amounts in equal time inter-
vals.

(b) Velocity increases by equal amounts in equal time intervals.

(c) The derivative of velocity increases with time.

31. By Faraday’s Law, if a conducting wire of length � meters moves
at velocity v m/s perpendicular to a magnetic field of strength B (in
teslas), a voltage of size V = −B�v is induced in the wire. Assume
that B = 2 and � = 0.5.

(a) Calculate dV/dv.

(b) Find the rate of change of V with respect to time t if v = 4t + 9.

32. The voltage V , current I , and resistance R in a circuit are related
by Ohm’s Law: V = IR, where the units are volts, amperes, and ohms.
Assume that voltage is constant with V = 12 volts. Calculate (specify-
ing units):

(a) The average rate of change of I with respect to R for the interval
from R = 8 to R = 8.1

(b) The rate of change of I with respect to R when R = 8

(c) The rate of change of R with respect to I when I = 1.5

33. Ethan finds that with h hours of tutoring, he is able to an-
swer correctly S(h) percent of the problems on a math exam. Which
would you expect to be larger: S′(3) or S′(30)? Explain.

34. Suppose θ(t) measures the angle between a clock’s minute and
hour hands. What is θ ′(t) at 3 o’clock?

35. To determine drug dosages, doctors estimate a person’s body
surface area (BSA) (in meters squared) using the formula BSA =√

hm/60, where h is the height in centimeters and m the mass in kilo-
grams. Calculate the rate of change of BSA with respect to mass for
a person of constant height h = 180. What is this rate at m = 70 and
m = 80? Express your result in the correct units. Does BSA increase
more rapidly with respect to mass at lower or higher body mass?

36. The atmospheric CO2 level A(t) at Mauna Loa, Hawaii at time t

(in parts per million by volume) is recorded by the Scripps Institution
of Oceanography. The values for the months January–December 2007
were

382.45, 383.68, 384.23, 386.26, 386.39, 385.87,
384.39, 381.78, 380.73, 380.81, 382.33, 383.69

(a) Assuming that the measurements were made on the first of each
month, estimate A′(t) on the 15th of the months January–November.

(b) In which months did A′(t) take on its largest and smallest values?

(c) In which month was the CO2 level most nearly constant?

37. The tangent lines to the graph of f (x) = x2 grow steeper as x

increases. At what rate do the slopes of the tangent lines increase?

38. Figure 13 shows the height y of a mass oscillating at the end of a
spring. through one cycle of the oscillation. Sketch the graph of velocity
as a function of time.

t

y

FIGURE 13

In Exercises 39–46, use Eq. (3) to estimate the unit change.

39. Estimate
√

2 − √
1 and

√
101 − √

100. Compare your estimates
with the actual values.

40. Estimate f (4) − f (3) if f ′(x) = 2−x . Then estimate f (4), as-
suming that f (3) = 12.

41. Let F(s) = 1.1s + 0.05s2 be the stopping distance as in Ex-
ample 3. Calculate F(65) and estimate the increase in stopping distance
if speed is increased from 65 to 66 mph. Compare your estimate with
the actual increase.
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42. According to Kleiber’s Law, the metabolic rate P (in kilocalo-
ries per day) and body mass m (in kilograms) of an animal are related
by a three-quarter-power law P = 73.3m3/4. Estimate the increase in
metabolic rate when body mass increases from 60 to 61 kg.

43. The dollar cost of producing x bagels is C(x) = 300 + 0.25x −
0.5(x/1000)3. Determine the cost of producing 2000 bagels and es-
timate the cost of the 2001st bagel. Compare your estimate with the
actual cost of the 2001st bagel.

44. Suppose the dollar cost of producing x video cameras is C(x) =
500x − 0.003x2 + 10−8x3.

(a) Estimate the marginal cost at production level x = 5000 and com-
pare it with the actual cost C(5001) − C(5000).
(b) Compare the marginal cost at x = 5000 with the average cost per
camera, defined as C(x)/x.

45. Demand for a commodity generally decreases as the price is raised.
Suppose that the demand for oil (per capita per year) is D(p) = 900/p

barrels, where p is the dollar price per barrel. Find the demand when
p = $40. Estimate the decrease in demand if p rises to $41 and the
increase if p declines to $39.

46. The reproduction rate f of the fruit fly Drosophila melanogaster,
grown in bottles in a laboratory, decreases with the number p of flies in
the bottle. A researcher has found the number of offspring per female
per day to be approximately f (p) = (34 − 0.612p)p−0.658.
(a) Calculate f (15) and f ′(15).
(b) Estimate the decrease in daily offspring per female when p is in-
creased from 15 to 16. Is this estimate larger or smaller than the actual
value f (16) − f (15)?

(c) Plot f (p) for 5 ≤ p ≤ 25 and verify that f (p) is a decreas-
ing function of p. Do you expect f ′(p) to be positive or negative? Plot
f ′(p) and confirm your expectation.

47. According to Stevens’ Law in psychology, the perceived
magnitude of a stimulus is proportional (approximately) to a power
of the actual intensity I of the stimulus. Experiments show that the
perceived brightness B of a light satisfies B = kI2/3, where I is the
light intensity, whereas the perceived heaviness H of a weight W sat-
isfies H = kW3/2 (k is a constant that is different in the two cases).
Compute dB/dI and dH/dW and state whether they are increasing or
decreasing functions. Then explain the following statements:

(a) A one-unit increase in light intensity is felt more strongly when I

is small than when I is large.

(b) Adding another pound to a load W is felt more strongly when W

is large than when W is small.

48. Let M(t) be the mass (in kilograms) of a plant as a function of time
(in years). Recent studies by Niklas and Enquist have suggested that a
remarkably wide range of plants (from algae and grass to palm trees)
obey a three-quarter-power growth law—that is, dM/dt = CM3/4 for
some constant C.

(a) If a tree has a growth rate of 6 kg/yr when M = 100 kg, what is its
growth rate when M = 125 kg?

(b) If M = 0.5 kg, how much more mass must the plant acquire to
double its growth rate?

Further Insights and Challenges
Exercises 49–51: The Lorenz curve y = F(r) is used by economists
to study income distribution in a given country (see Figure 14). By
definition, F(r) is the fraction of the total income that goes to the
bottom rth part of the population, where 0 ≤ r ≤ 1. For example, if
F(0.4) = 0.245, then the bottom 40% of households receive 24.5% of
the total income. Note that F(0) = 0 and F(1) = 1.

49. Our goal is to find an interpretation for F ′(r). The average
income for a group of households is the total income going to the group
divided by the number of households in the group. The national average
income is A = T/N , where N is the total number of households and
T is the total income earned by the entire population.

(a) Show that the average income among households in the bottom rth
part is equal to (F (r)/r)A.

(b) Show more generally that the average income of households be-
longing to an interval [r, r + �r] is equal to

(
F(r + �r) − F(r)

�r

)
A

(c) Let 0 ≤ r ≤ 1. A household belongs to the 100rth percentile if its
income is greater than or equal to the income of 100r % of all house-
holds. Pass to the limit as �r → 0 in (b) to derive the following inter-
pretation: A household in the 100rth percentile has income F ′(r)A. In

particular, a household in the 100rth percentile receives more than the
national average if F ′(r) > 1 and less if F ′(r) < 1.

(d) For the Lorenz curves L1 and L2 in Figure 14(B), what percentage
of households have above-average income?

50. The following table provides values of F(r) for Sweden in 2004.
Assume that the national average income was A = 30, 000 euros.

r 0 0.2 0.4 0.6 0.8 1
F(r) 0 0.01 0.245 0.423 0.642 1

(a) What was the average income in the lowest 40% of households?

(b) Show that the average income of the households belonging to the
interval [0.4, 0.6] was 26,700 euros.

(c) Estimate F ′(0.5). Estimate the income of households in the 50th
percentile? Was it greater or less than the national average?

51. Use Exercise 49 (c) to prove:

(a) F ′(r) is an increasing function of r .

(b) Income is distributed equally (all households have the same in-
come) if and only if F(r) = r for 0 ≤ r ≤ 1.
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0.2 0.4 0.6 0.8 1.0
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L2

L1

P

(A) Lorenz curve for Sweden in 2004

(B) Two Lorenz curves: The tangent
lines at P and Q have slope 1.

Q

FIGURE 14

52. Studies of Internet usage show that website popularity is
described quite well by Zipf’s Law, according to which the nth most
popular website receives roughly the fraction 1/n of all visits. Suppose
that on a particular day, the nth most popular site had approximately
V (n) = 106/n visitors (for n ≤ 15,000).

(a) Verify that the top 50 websites received nearly 45% of the visits.
Hint: Let T (N) denote the sum of V (n) for 1 ≤ n ≤ N . Use a computer
algebra system to compute T (45) and T (15,000).

(b) Verify, by numerical experimentation, that when Eq. (3) is used
to estimate V (n + 1) − V (n), the error in the estimate decreases as n

grows larger. Find (again, by experimentation) an N such that the error
is at most 10 for n ≥ N .

(c) Using Eq. (3), show that for n ≥ 100, the nth website received at
most 100 more visitors than the (n + 1)st website.

In Exercises 53 and 54, the average cost per unit at production level
x is defined as Cavg(x) = C(x)/x, where C(x) is the cost function.
Average cost is a measure of the efficiency of the production process.

53. Show that Cavg(x) is equal to the slope of the line through the
origin and the point (x, C(x)) on the graph of C(x). Using this inter-
pretation, determine whether average cost or marginal cost is greater at
points A, B, C, D in Figure 15.

C

x

Production level

A B C

D

FIGURE 15 Graph of C(x).

54. The cost in dollars of producing alarm clocks is C(x) = 50x3 −
750x2 + 3740x + 3750 where x is in units of 1000.

(a) Calculate the average cost at x = 4, 6, 8, and 10.

(b) Use the graphical interpretation of average cost to find the pro-
duction level x0 at which average cost is lowest. What is the relation
between average cost and marginal cost at x0 (see Figure 16)?

10,000

15,000

5,000

1 2 3 4 5 6 7 8 9 10

C (dollars)

x

FIGURE 16 Cost function C(x) = 50x3 − 750x2 + 3740x + 3750.

3.5 Higher Derivatives
Higher derivatives are obtained by repeatedly differentiating a function y = f (x). If f ′
is differentiable, then the second derivative, denoted f ′′ or y′′, is the derivative

f ′′(x) = d

dx

(
f ′(x)

)
The second derivative is the rate of change of f ′(x). The next example highlights the
difference between the first and second derivatives.
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EXAMPLE 1 Figure 1 and Table 1 describe the total household energy consumption

2002 2003 2004 2005 2006
t

136

137

138

139

140

141

142
E (106 kWh)

FIGURE 1 Household energy consumption
E(t) in Germany in million kilowatt-hours.

E(t) in Germany in year t . Discuss E′(t) and E′′(t).

TABLE 1 Household Energy Consumption in Germany

Year 2002 2003 2004 2005 2006

Consumption (106 kWh) 136.5 139.1 140.4 141.3 141.5
Yearly increase 2.6 1.3 0.9 0.2

Solution We will show that E′(t) is positive but E′′(t) is negative. According to Table 1,
the consumption each year was greater than the previous year, so the rate of change E′(t)
is certainly positive. However, the amount of increase declined from 2.6 million in 2003
to 0.2 in 2006. So although E′(t) is positive, E′(t) decreases from one year to the next,
and therefore its rate of change E′′(t) is negative. Figure 1 supports this conclusion: The
slopes of the segments in the graph are decreasing.

The process of differentiation can be continued, provided that the derivatives exist.
The third derivative, denoted f ′′′(x) or f (3)(x), is the derivative of f ′′(x). More generally,
the nth derivative f (n)(x) is the derivative of the (n − 1)st derivative. We call f (x) the
zeroeth derivative and f ′(x) the first derivative. In Leibniz notation, we write

• dy/dx has units of y per unit of x.
• d2y/dx2 has units of dy/dx per unit of

x or units of y per unit of x squared.

df

dx
,

d2f

dx2
,

d3f

dx3
,

d4f

dx4
, . . .

EXAMPLE 2 Calculate f ′′′(−1) for f (x) = 3x5 − 2x2 + 7x−2.

Solution We must calculate the first three derivatives:

f ′(x) = d

dx

(
3x5 − 2x2 + 7x−2) = 15x4 − 4x − 14x−3

f ′′(x) = d

dx

(
15x4 − 4x − 14x−3) = 60x3 − 4 + 42x−4

f ′′′(x) = d

dx

(
60x3 − 4 + 42x−4) = 180x2 − 168x−5

At x = −1, f ′′′(−1) = 180 + 168 = 348.

Polynomials have a special property: Their higher derivatives are eventually the zero
function. More precisely, if f (x) is a polynomial of degree k, then f (n)(x) is zero for
n > k. Table 2 illustrates this property for f (x) = x5. By contrast, the higher derivatives
of a nonpolynomial function are never the zero function (see Exercise 85, Section 4.9).

TABLE 2 Derivatives of x5

f (x) f ′(x) f ′′(x) f ′′′(x) f (4)(x) f (5)(x) f (6)(x)

x5 5x4 20x3 60x2 120x 120 0
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EXAMPLE 3 Calculate the first four derivatives of y = x−1. Then find the pattern and
determine a general formula for y(n).

Solution By the Power Rule,

y′(x) = −x−2, y′′ = 2x−3, y′′′ = −2(3)x−4, y(4) = 2(3)(4)x−5

We see that y(n)(x) is equal to ±n! x−n−1. Now observe that the sign alternates. Since theREMINDER n-factorial is the number

n! = n(n − 1)(n − 2) · · · (2)(1)

Thus

1! = 1, 2! = (2)(1) = 2

3! = (3)(2)(1) = 6

By convention, we set 0! = 1.

odd-order derivatives occur with a minus sign, the sign of y(n)(x) is (−1)n. In general,
therefore, y(n)(x) = (−1)nn! x−n−1.

EXAMPLE 4 Calculate the first three derivatives of f (x) = xex . Then determine a

It is not always possible to find a simple
formula for the higher derivatives of a
function. In most cases, they become
increasingly complicated.

general formula for f (n)(x).

Solution Use the Product Rule:

f ′(x) = d

dx
(xex) = xex + ex = (x + 1)ex

f ′′(x) = d

dx

(
(x + 1)ex

) = (x + 1)ex + ex = (x + 2)ex

f ′′′(x) = d

dx

(
(x + 2)ex

) = (x + 2)ex + ex = (x + 3)ex

We see that f n(x) = f n−1(x) + ex , which leads to the general formula

f (n)(x) = (x + n)ex

One familiar second derivative is acceleration. An object in linear motion with posi-
tion s(t) at time t has velocity v(t) = s′(t) and acceleration a(t) = v′(t) = s′′(t). Thus,
acceleration is the rate at which velocity changes and is measured in units of velocity per
unit of time or “distance per time squared” such as m/s2.

EXAMPLE 5 Acceleration Due to Gravity Find the acceleration a(t) of a ball tossed
vertically in the air from ground level with an initial velocity of 12 m/s. How does a(t)

describe the change in the ball’s velocity as it rises and falls?

Height (m)

7

1

(A)

(B)

2 2.45

Velocity (m/s)
12

−12

1
t (s)

2 2.45

t (s)

FIGURE 2 Height and velocity of a ball
tossed vertically with initial velocity
12 m/s.

Solution The ball’s height at time t is s(t) = s0 + v0t − 4.9t2 m by Galileo’s formula
[Figure 2(A)]. In our case, s0 = 0 and v0 = 12, so s(t) = 12t − 4.9t2 m. Therefore, v(t) =
s′(t) = 12 − 9.8t m/s and the ball’s acceleration is

a(t) = s′′(t) = d

dt
(12 − 9.8t) = −9.8 m/s2

As expected, the acceleration is constant with value −g = −9.8 m/s2. As the ball rises
and falls, its velocity decreases from 12 to −12 m/s at the constant rate −g [Figure 2(B)].

GRAPHICAL INSIGHT Can we visualize the rate represented by f ′′(x)? The second
derivative is the rate at which f ′(x) is changing, so f ′′(x) is large if the slopes of the
tangent lines change rapidly, as in Figure 3(A) on the next page. Similarly, f ′′(x) is
small if the slopes of the tangent lines change slowly—in this case, the curve is relatively
flat, as in Figure 3(B). If f is a linear function [Figure 3(C)], then the tangent line does
not change at all and f ′′(x) = 0. Thus, f ′′(x) measures the “bending” or concavity of
the graph.
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(A) Large second derivative:
      Tangent lines turn rapidly. 

(B) Smaller second derivative: 
     Tangent lines turn slowly.

(C) Second derivative is zero:
             Tangent line does not change.

FIGURE 3

EXAMPLE 6 Identify curves I and II in Figure 4(B) as the graphs of f ′(x) or f ′′(x)

for the function f (x) in Figure 4(A).

Solution The slopes of the tangent lines to the graph of f (x) are increasing on the interval
[a, b]. Therefore f ′(x) is an increasing function and its graph must be II. Since f ′′(x) is
the rate of change of f ′(x), f ′′(x) is positive and its graph must be I.

a b

a b

(A) Graph of f (x) (B) Graph of first two derivatives

Slopes of tangent
lines increasing

x

y

x

y

II
I

FIGURE 4

3.5 SUMMARY

• The higher derivatives f ′, f ′′, f ′′′, . . . are defined by successive differentiation:

f ′′(x) = d

dx
f ′(x), f ′′′(x) = d

dx
f ′′(x), . . .

The nth derivative is denoted f (n)(x).
• The second derivative plays an important role: It is the rate at which f ′ changes. Graph-
ically, f ′′ measures how fast the tangent lines change direction and thus measures the
“bending” of the graph.
• If s(t) is the position of an object at time t , then s′(t) is velocity and s′′(t) is acceleration.

3.5 EXERCISES

Preliminary Questions
1. On September 4, 2003, the Wall Street Journal printed the headline

“Stocks Go Higher, Though the Pace of Their Gains Slows.” Rephrase
this headline as a statement about the first and second time derivatives
of stock prices and sketch a possible graph.

2. True or false? The third derivative of position with respect to time

is zero for an object falling to earth under the influence of gravity.
Explain.

3. Which type of polynomial satisfies f ′′′(x) = 0 for all x?

4. What is the millionth derivative of f (x) = ex?

zxy34
放置图像
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Exercises
In Exercises 1–16, calculate y′′ and y′′′.

1. y = 14x2 2. y = 7 − 2x

3. y = x4 − 25x2 + 2x 4. y = 4t3 − 9t2 + 7

5. y = 4

3
πr3 6. y = √

x

7. y = 20t4/5 − 6t2/3 8. y = x−9/5

9. y = z − 4

z
10. y = 5t−3 + 7t−8/3

11. y = θ2(2θ + 7) 12. y = (x2 + x)(x3 + 1)

13. y = x − 4

x
14. y = 1

1 − x

15. y = x5ex 16. y = ex

x

In Exercises 17–26, calculate the derivative indicated.

17. f (4)(1), f (x) = x4 18. g′′′(−1), g(t) = −4t−5

19.
d2y

dt2

∣∣∣∣
t=1

, y = 4t−3 + 3t2

20.
d4f

dt4

∣∣∣∣
t=1

, f (t) = 6t9 − 2t5

21.
d4x

dt4

∣∣∣∣
t=16

, x = t−3/4 22. f ′′′(4), f (t) = 2t2 − t

23. f ′′′(−3), f (x) = 4ex − x3 24. f ′′(1), f (t) = t

t + 1

25. h′′(1), h(w) = √
wew 26. g′′(0), g(s) = es

s + 1

27. Calculate y(k)(0) for 0 ≤ k ≤ 5, where y = x4 + ax3 + bx2 +
cx + d (with a, b, c, d the constants).

28. Which of the following satisfy f (k)(x) = 0 for all k ≥ 6?

(a) f (x) = 7x4 + 4 + x−1 (b) f (x) = x3 − 2

(c) f (x) = √
x (d) f (x) = 1 − x6

(e) f (x) = x9/5 (f) f (x) = 2x2 + 3x5

29. Use the result in Example 3 to find
d6

dx6
x−1.

30. Calculate the first five derivatives of f (x) = √
x.

(a) Show that f (n)(x) is a multiple of x−n+1/2.

(b) Show that f (n)(x) alternates in sign as (−1)n−1 for n ≥ 1.

(c) Find a formula for f (n)(x) for n ≥ 2. Hint: Verify that the coeffi-

cient is ±1 · 3 · 5 · · · 2n − 3

2n
.

In Exercises 31–36, find a general formula for f (n)(x).

31. f (x) = x−2 32. f (x) = (x + 2)−1

33. f (x) = x−1/2 34. f (x) = x−3/2

35. f (x) = xe−x 36. f (x) = x2ex

37. (a) Find the acceleration at time t = 5 min of a helicopter whose
height is s(t) = 300t − 4t3 m.

(b) Plot the acceleration h′′(t) for 0 ≤ t ≤ 6. How does this graph
show that the helicopter is slowing down during this time interval?

38. Find an equation of the tangent to the graph of y = f ′(x) at x = 3,
where f (x) = x4.

39. Figure 5 shows f , f ′, and f ′′. Determine which is which.

(A) (B)

x

y

321
x

y

321
x

y

(C)

321

FIGURE 5

40. The second derivative f ′′ is shown in Figure 6. Which of (A) or
(B) is the graph of f and which is f ′?

x

y

x

y

x

y

(A) (B)f ´´(x)

FIGURE 6

41. Figure 7 shows the graph of the position s of an object as a function
of time t . Determine the intervals on which the acceleration is positive.

Time

40302010

Position

FIGURE 7

42. Find a polynomial f (x) that satisfies the equation xf ′′(x) +
f (x) = x2.

43. Find a value of n such that y = xnex satisfies the equation
xy′ = (x − 3)y.
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44. Which of the following descriptions could not apply to
Figure 8? Explain.

(a) Graph of acceleration when velocity is constant

(b) Graph of velocity when acceleration is constant

(c) Graph of position when acceleration is zero

Time

Position

FIGURE 8

45. According to one model that takes into account air resistance, the
acceleration a(t) (in m/s2) of a skydiver of mass m in free fall satisfies

a(t) = −9.8 + k

m
v(t)2

where v(t) is velocity (negative since the object is falling) and k is a
constant. Suppose that m = 75 kg and k = 14 kg/m.

(a) What is the object’s velocity when a(t) = −4.9?

(b) What is the object’s velocity when a(t) = 0? This velocity is the
object’s terminal velocity.

46. According to one model that attempts to account for air
resistance, the distance s(t) (in meters) traveled by a falling raindrop
satisfies

d2s

dt2
= g − 0.0005

D

(
ds

dt

)2

where D is the raindrop diameter and g = 9.8 m/s2. Terminal velocity
vterm is defined as the velocity at which the drop has zero acceleration
(one can show that velocity approaches vterm as time proceeds).

(a) Show that vterm = √
2000gD.

(b) Find vterm for drops of diameter 10−3 m and 10−4 m.

(c) In this model, do raindrops accelerate more rapidly at higher or
lower velocities?

47. A servomotor controls the vertical movement of a drill bit that will
drill a pattern of holes in sheet metal. The maximum vertical speed of
the drill bit is 4 in./s, and while drilling the hole, it must move no more
than 2.6 in./s to avoid warping the metal. During a cycle, the bit begins

and ends at rest, quickly approaches the sheet metal, and quickly returns
to its initial position after the hole is drilled. Sketch possible graphs of
the drill bit’s vertical velocity and acceleration. Label the point where
the bit enters the sheet metal.

In Exercises 48 and 49, refer to the following. In a 1997 study, Board-
man and Lave related the traffic speed S on a two-lane road to traffic
density Q (number of cars per mile of road) by the formula

S = 2882Q−1 − 0.052Q + 31.73

for 60 ≤ Q ≤ 400 (Figure 9).

48. Calculate dS/dQ and d2S/dQ2.

49. (a) Explain intuitively why we should expect that
dS/dQ < 0.

(b) Show that d2S/dQ2 > 0. Then use the fact that dS/dQ < 0 and
d2S/dQ2 > 0 to justify the following statement: A one-unit increase
in traffic density slows down traffic more when Q is small than when
Q is large.

(c) Plot dS/dQ. Which property of this graph shows that

d2S/dQ2 > 0?

Q
400300200100

S (mph)

10
20
30
40
50
60
70

FIGURE 9 Speed as a function of traffic density.

50. Use a computer algebra system to compute f (k)(x) for
k = 1, 2, 3 for the following functions.

(a) f (x) = (1 + x3)5/3 (b) f (x) = 1 − x4

1 − 5x − 6x2

51. Let f (x) = x + 2

x − 1
. Use a computer algebra system to

compute the f (k)(x) for 1 ≤ k ≤ 4. Can you find a general formula
for f (k)(x)?

Further Insights and Challenges
52. Find the 100th derivative of

p(x) = (x + x5 + x7)10(1 + x2)11(x3 + x5 + x7)

53. What is p(99)(x) for p(x) as in Exercise 52?

54. Use the Product Rule twice to find a formula for (fg)′′ in terms of
f and g and their first and second derivatives.

55. Use the Product Rule to find a formula for (fg)′′′ and compare
your result with the expansion of (a + b)3. Then try to guess the gen-
eral formula for (fg)(n).

56. Compute

�f (x) = lim
h→0

f (x + h) + f (x − h) − 2f (x)

h2

for the following functions:

(a) f (x) = x (b) f (x) = x2 (c) f (x) = x3

Based on these examples, what do you think the limit �f represents?
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3.6 Trigonometric Functions
We can use the rules developed so far to differentiate functions involving powers of x,
but we cannot yet handle the trigonometric functions. What is missing are the formulas
for the derivatives of sin x and cos x. Fortunately, their derivatives are simple—each is
the derivative of the other up to a sign.

Recall our convention: Angles are measured in radians, unless otherwise specified.

CAUTION In Theorem 1 we are
differentiating with respect to x measured
in radians. The derivatives of sine and
cosine with respect to degrees involves an
extra, unwieldy factor of π/180 (see
Example 7 in Section 3.7).

THEOREM 1 Derivative of Sine and Cosine The functions y = sin x and y = cos x

are differentiable and

d

dx
sin x = cos x and

d

dx
cos x = − sin x

Proof We must go back to the definition of the derivative:

d

dx
sin x = lim

h→0

sin(x + h) − sin x

h
1

We cannot cancel the h by rewriting the difference quotient, but we can use the additionREMINDER Addition formula for sin x:

sin(x + h) = sin x cos h + cos x sin h
formula (see marginal note) to write the numerator as a sum of two terms:

sin(x + h) − sin x = sin x cos h + cos x sin h − sin x (addition formula)

= (sin x cos h − sin x) + cos x sin h

= sin x(cos h − 1) + cos x sin h

This gives us

sin(x + h) − sin x

h
= sin x (cos h − 1)

h
+ cos x sin h

h

d sin x

dx
= lim

h→0

sin(x + h) − sin x

h
= lim

h→0

sin x (cos h − 1)

h
+ lim

h→0

cos x sin h

h

= (sin x) lim
h→0

cos h − 1

h︸ ︷︷ ︸
This equals 0.

+ (cos x) lim
h→0

sin h

h︸ ︷︷ ︸
This equals 1.

2

Here, we can take sin x and cos x outside the limits in Eq. (2) because they do not depend
on h. The two limits are given by Theorem 2 in Section 2.6,

lim
h→0

cos h − 1

h
= 0 and lim

h→0

sin h

h
= 1

Therefore, Eq. (2) reduces to the formula d
dx

sin x = cos x, as desired. The formula
d
dx

cos x = − sin x is proved similarly (see Exercise 53).

EXAMPLE 1 Calculate f ′′(x), where f (x) = x cos x.

Solution By the Product Rule,

f ′(x) = x
d

dx
cos x + cos x

d

dx
x = x(− sin x) + cos x = cos x − x sin x

f ′′(x) = (cos x − x sin x)′ = − sin x − (
x(sin x)′ + sin x

) = −2 sin x − x cos x
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GRAPHICAL INSIGHT The formula (sin x)′ = cos x is made plausible when we compare
the graphs in Figure 1. The tangent lines to the graph of y = sin x have positive slope
on the interval

( − π
2 , π

2

)
, and on this interval, the derivative y′ = cos x is positive.

Similarly, the tangent lines have negative slope on the interval
(

π
2 , 3π

2

)
, where y′ = cos x

is negative. The tangent lines are horizontal at x = −π
2 , π

2 , 3π
2 , where cos x = 0.

π

2
π

2
3π

2

y´ = cos x

y = sin x

−

x

x

y

FIGURE 1 Compare the graphs of y = sin x

and its derivative y′ = cos x.

The derivatives of the other standard trigonometric functions can be computedREMINDER The standard trigonometric
functions are defined in Section 1.4. using the Quotient Rule. We derive the formula for (tan x)′ in Example 2 and leave the

remaining formulas for the exercises (Exercises 35–37).

THEOREM 2 Derivatives of Standard Trigonometric Functions

d

dx
tan x = sec2 x,

d

dx
sec x = sec x tan x

d

dx
cot x = − csc2 x,

d

dx
csc x = − csc x cot x

EXAMPLE 2 Verify the formula
d

dx
tan x = sec2 x (Figure 2).

1

y = tan x

y´ = sec2 x

x

y

x

y

π

2
3π

2
π π

2
−

π

2
3π

2
π π

2
−

FIGURE 2 Graphs of y = tan x and its
derivative y′ = sec2 x.

Solution Use the Quotient Rule and the identity cos2 x + sin2 x = 1:

d

dx
tan x =

(
sin x

cos x

)′
= cos x · (sin x)′ − sin x · (cos x)′

cos2 x

= cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 x

cos2 x
= 1

cos2 x
= sec2 x

EXAMPLE 3 Find the tangent line to the graph of y = tan θ sec θ at θ = π
4 .

Solution By the Product Rule,

y′ = tan θ (sec θ)′ + sec θ (tan θ)′ = tan θ (sec θ tan θ) + sec θ sec2 θ

= tan2 θ sec θ + sec3 θ
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Now use the values sec π
4 = √

2 and tan π
4 = 1 to compute

y
(π

4

)
= tan

(π

4

)
sec

(π

4

)
= √

2

y′ (π

4

)
= tan2

(π

4

)
sec

(π

4

)
+ sec3

(π

4

)
= √

2 + 2
√

2 = 3
√

2

An equation of the tangent line (Figure 3) is y − √
2 = 3

√
2

(
θ − π

4

)
.

y
y = tan θ  sec θ

θ

5

π

2
π

4
π

2
−

π

4
−

FIGURE 3 Tangent line to y = tan θ sec θ at
θ = π

4 .

3.6 SUMMARY

• Basic trigonometric derivatives:

d

dx
sin x = cos x,

d

dx
cos x = − sin x

• Additional formulas:

d

dx
tan x = sec2 x,

d

dx
sec x = sec x tan x

d

dx
cot x = − csc2 x,

d

dx
csc x = − csc x cot x

3.6 EXERCISES

Preliminary Questions
1. Determine the sign (+ or −) that yields the correct formula for the

following:

(a)
d

dx
(sin x + cos x) = ± sin x ± cos x

(b)
d

dx
sec x = ± sec x tan x

(c)
d

dx
cot x = ± csc2 x

2. Which of the following functions can be differentiated using the
rules we have covered so far?

(a) y = 3 cos x cot x (b) y = cos(x2) (c) y = ex sin x

3. Compute d
dx

(sin2 x + cos2 x) without using the derivative formu-

las for sin x and cos x.

4. How is the addition formula used in deriving the formula (sin x)′ =
cos x?

Exercises
In Exercises 1–4, find an equation of the tangent line at the point indi-
cated.

1. y = sin x, x = π
4 2. y = cos x, x = π

3

3. y = tan x, x = π
4 4. y = sec x, x = π

6

In Exercises 5–24, compute the derivative.

5. f (x) = sin x cos x 6. f (x) = x2 cos x

7. f (x) = sin2 x 8. f (x) = 9 sec x + 12 cot x

9. H(t) = sin t sec2 t 10. h(t) = 9 csc t + t cot t

11. f (θ) = tan θ sec θ 12. k(θ) = θ2 sin2 θ

13. f (x) = (2x4 − 4x−1) sec x 14. f (z) = z tan z

15. y = sec θ

θ
16. G(z) = 1

tan z − cot z

17. R(y) = 3 cos y − 4

sin y
18. f (x) = x

sin x + 2

19. f (x) = 1 + tan x

1 − tan x
20. f (θ) = θ tan θ sec θ

21. f (x) = ex sin x 22. h(t) = et csc t

23. f (θ) = eθ (5 sin θ − 4 tan θ) 24. f (x) = xex cos x
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In Exercises 25–34, find an equation of the tangent line at the point
specified.

25. y = x3 + cos x, x = 0 26. y = tan θ , θ = π
6

27. y = sin x + 3 cos x, x = 0 28. y = sin t

1 + cos t
, t = π

3

29. y = 2(sin θ + cos θ), θ = π
3 30. y = csc x − cot x, x = π

4

31. y = ex cos x, x = 0 32. y = ex cos2 x, x = π
4

33. y = et (1 − cos t), t = π
2 34. y = eθ sec θ , θ = π

4

In Exercises 35–37, use Theorem 1 to verify the formula.

35.
d

dx
cot x = − csc2 x 36.

d

dx
sec x = sec x tan x

37.
d

dx
csc x = − csc x cot x

38. Show that both y = sin x and y = cos x satisfy y′′ = −y.

In Exercises 39–42, calculate the higher derivative.

39. f ′′(θ), f (θ) = θ sin θ 40.
d2

dt2
cos2 t

41. y′′, y′′′, y = tan x 42. y′′, y′′′, y = et sin t

43. Calculate the first five derivatives of f (x) = cos x. Then determine
f (8) and f (37).

44. Find y(157), where y = sin x.

45. Find the values of x between 0 and 2π where the tangent line to
the graph of y = sin x cos x is horizontal.

46. Plot the graph f (θ) = sec θ + csc θ over [0, 2π ] and deter-
mine the number of solutions to f ′(θ) = 0 in this interval graphically.
Then compute f ′(θ) and find the solutions.

47. Let g(t) = t − sin t .

(a) Plot the graph of g with a graphing utility for 0 ≤ t ≤ 4π .
(b) Show that the slope of the tangent line is nonnegative. Verify this
on your graph.

(c) For which values of t in the given range is the tangent line hori-
zontal?

48. Let f (x) = (sin x)/x for x �= 0 and f (0) = 1.

(a) Plot f (x) on [−3π, 3π ].
(b) Show that f ′(c) = 0 if c = tan c. Use the numerical root finder on
a computer algebra system to find a good approximation to the smallest
positive value c0 such that f ′(c0) = 0.

(c) Verify that the horizontal line y = f (c0) is tangent to the graph of
y = f (x) at x = c0 by plotting them on the same set of axes.

49. Show that no tangent line to the graph of f (x) = tan x has
zero slope. What is the least slope of a tangent line? Justify by sketching
the graph of (tan x)′.

50. The height at time t (in seconds) of a mass, oscillating at the end of
a spring, is s(t) = 300 + 40 sin t cm. Find the velocity and acceleration
at t = π

3 s.

51. The horizontal range R of a projectile launched from ground level
at an angle θ and initial velocity v0 m/s is R = (v2

0/9.8) sin θ cos θ .
Calculate dR/dθ . If θ = 7π/24, will the range increase or decrease
if the angle is increased slightly? Base your answer on the sign of the
derivative.

52. Show that if π
2 < θ < π , then the distance along the x-axis be-

tween θ and the point where the tangent line intersects the x-axis is
equal to |tan θ | (Figure 4).

π

2
π

y = sin x

θ
x

y

|tan θ|
FIGURE 4

Further Insights and Challenges
53. Use the limit definition of the derivative and the addition law for
the cosine function to prove that (cos x)′ = − sin x.

54. Use the addition formula for the tangent

tan(x + h) = tan x + tan h

1 + tan x tan h

to compute (tan x)′ directly as a limit of the difference quotients. You

will also need to show that lim
h→0

tan h

h
= 1.

55. Verify the following identity and use it to give another proof of the
formula (sin x)′ = cos x.

sin(x + h) − sin x = 2 cos
(
x + 1

2h
)

sin
(

1
2h

)

Hint: Use the addition formula to prove that sin(a + b) − sin(a − b) =
2 cos a sin b.

56. Show that a nonzero polynomial function y = f (x) can-
not satisfy the equation y′′ = −y. Use this to prove that neither sin x

nor cos x is a polynomial. Can you think of another way to reach this
conclusion by considering limits as x → ∞?

57. Let f (x) = x sin x and g(x) = x cos x.

(a) Show that f ′(x) = g(x) + sin x and g′(x) = −f (x) + cos x.

(b) Verify that f ′′(x) = −f (x) + 2 cos x and
g′′(x) = −g(x) − 2 sin x.
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(c) By further experimentation, try to find formulas for all higher
derivatives of f and g. Hint: The kth derivative depends on whether
k = 4n, 4n + 1, 4n + 2, or 4n + 3.

58. Figure 5 shows the geometry behind the derivative for-
mula (sin θ)′ = cos θ . Segments BA and BD are parallel to the x- and
y-axes. Let � sin θ = sin(θ + h) − sin θ . Verify the following state-
ments.
(a) � sin θ = BC

(b) � BDA = θ Hint: OA ⊥ AD.
(c) BD = (cos θ)AD

Now explain the following intuitive argument: If h is small, then
BC ≈ BD and AD ≈ h, so � sin θ ≈ (cos θ)h and (sin θ)′ = cos θ .

1

h

θ

B

C
A

O

D

x

y

FIGURE 5

3.7 The Chain Rule

The Chain Rule is used to differentiate composite functions such as y = cos(x3) and
y = √

x4 + 1.
Recall that a composite function is obtained by “plugging” one function into another.

The composite of f and g, denoted f ◦ g, is defined by

(f ◦ g)(x) = f
(
g(x)

)
For convenience, we call f the outside function and g the inside function. Often, we
write the composite function as f (u), where u = g(x). For example, y = cos(x3) is the
function y = cos u, where u = x3.

THEOREM 1 Chain Rule If f and g are differentiable, then the composite function
(f ◦ g)(x) = f (g(x)) is differentiable and

(
f (g(x))

)′ = f ′(g(x)
)
g′(x)

EXAMPLE 1 Calculate the derivative of y = cos(x3).

In verbal form, the Chain Rule says(
f (g(x))

)′ = outside′(inside) · inside′

A proof of the Chain Rule is given at the
end of this section.

Solution As noted above, y = cos(x3) is a composite f (g(x)) where

f (u) = cos u, u = g(x) = x3

f ′(u) = − sin u, g′(x) = 3x2

Note that f ′(g(x)) = − sin(x3), so by the Chain Rule,

d

dx
cos(x3) = − sin(x3)︸ ︷︷ ︸

f ′(g(x))

(3x2)︸ ︷︷ ︸
g′(x)

= −3x2 sin(x3)
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EXAMPLE 2 Calculate the derivative of y = √
x4 + 1.

Solution The function y = √
x4 + 1 is a composite f (g(x)) where

f (u) = u1/2, u = g(x) = x4 + 1

f ′(u) = 1

2
u−1/2, g′(x) = 4x3

Note that f ′(g(x)) = 1
2 (x4 + 1)−1/2, so by the Chain Rule,

d

dx

√
x4 + 1 = 1

2
(x4 + 1)−1/2︸ ︷︷ ︸

f ′(g(x))

(4x3)︸ ︷︷ ︸
g′(x)

= 4x3

2
√

x4 + 1

EXAMPLE 3 Calculate
dy

dx
for y = tan

(
x

x + 1

)
.

Solution The outside function is f (u) = tan u. Because f ′(u) = sec2 u, the Chain Rule
gives us

d

dx
tan

(
x

x + 1

)
= sec2

(
x

x + 1

)
d

dx

(
x

x + 1

)
︸ ︷︷ ︸

Derivative of
inside function

Now, by the Quotient Rule,

d

dx

(
x

x + 1

)
=

(x + 1)
d

dx
x − x

d

dx
(x + 1)

(x + 1)2
= 1

(x + 1)2

We obtain

d

dx
tan

(
x

x + 1

)
= sec2

(
x

x + 1

)
1

(x + 1)2
=

sec2
(

x

x + 1

)
(x + 1)2

It is instructive to write the Chain Rule in Leibniz notation. Let

y = f (u) = f (g(x))

Then, by the Chain Rule,

dy

dx
= f ′(u) g′(x) = df

du

du

dx

or

dy

dx
= dy

du

du

dx
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CONCEPTUAL INSIGHT In Leibniz notation, it appears as if we are multiplying fractions
and the Chain Rule is simply a matter of “canceling the du.” Since the symbolic expres-
sions dy/du and du/dx are not fractions, this does not make sense literally, but it does
suggest that derivatives behave as if they were fractions (this is reasonable because a
derivative is a limit of fractions, namely of the difference quotients). Leibniz’s form also
emphasizes a key aspect of the Chain Rule: Rates of change multiply. To illustrate, sup-
pose that (thanks to your knowledge of calculus) your salary increases twice as fast as
your friend’s. If your friend’s salary increases $4000 per year, your salary will increase
at the rate of 2 × 4000 or $8000 per year. In terms of derivatives,

d(your salary)

dt
= d(your salary)

d(friend’s salary)
×d(friend’s salary)

dt

$8000/yr = 2 × $4000/yr
Christiaan Huygens (1629–1695), one of
the greatest scientists of his age, was
Leibniz’s teacher in mathematics and
physics. He admired Isaac Newton greatly
but did not accept Newton’s theory of
gravitation. He referred to it as the
“improbable principle of attraction,”
because it did not explain how two masses
separated by a distance could influence
each other.

EXAMPLE 4 Imagine a sphere whose radius r increases at a rate of 3 cm/s. At what
rate is the volume V of the sphere increasing when r = 10 cm?

Solution Because we are asked to determine the rate at which V is increasing, we must
find dV /dt . What we are given is the rate dr/dt , namely dr/dt = 3 cm/s. The Chain
Rule allows us to express dV /dt in terms of dV /dr and dr/dt :

dV

dt︸︷︷︸
Rate of change of volume

with respect to time

= dV

dr︸︷︷︸
Rate of change of volume

with respect to radius

× dr

dt︸︷︷︸
Rate of change of radius

with respect to time

To compute dV /dr , we use the formula for the volume of a sphere, V = 4
3πr3:

dV

dr
= d

dr

(
4

3
πr3

)
= 4πr2

Because dr/dt = 3, we obtain

dV

dt
= dV

dr

dr

dt
= 4πr2(3) = 12πr2

For r = 10,

dV

dt

∣∣∣∣
r=10

= (12π)102 = 1200π ≈ 3770 cm3/s

We now discuss some important special cases of the Chain Rule.

THEOREM 2 General Power and Exponential Rules If g(x) is differentiable, then

• d

dx
g(x)n = n(g(x))n−1g′(x) (for any number n)

• d

dx
eg(x) = g′(x)eg(x)

Proof Let f (u) = un. Then g(x)n = f (g(x)), and the Chain Rule yields

d

dx
g(x)n = f ′(g(x))g′(x) = n(g(x))n−1g′(x)
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On the other hand, eg(x) = h(g(x)), where h(u) = eu. We obtain

d

dx
eg(x) = h′(g(x))g′(x) = eg(x)g′(x) = g′(x)eg(x)

EXAMPLE 5 General Power and Exponential Rules Find the derivatives of
(a) y = (x2 + 7x + 2)−1/3 and (b) y = ecos t .

Solution Apply
d

dx
g(x)n = ng(x)n−1g′(x) in (A) and

d

dx
eg(x) = g′(x)eg(x) in (B).

(a)
d

dx
(x2 + 7x + 2)−1/3 = −1

3
(x2 + 7x + 2)−4/3 d

dx
(x2 + 7x + 2)

= −1

3
(x2 + 7x + 2)−4/3(2x + 7)

(b)
d

dt
ecos t = ecos t d

dt
cos t = −(sin t)ecos t

The Chain Rule applied to f (kx + b) yields another important special case:

d

dx
f (kx + b) = f ′(kx + b)

d

dx
(kx + b) = kf ′(kx + b)

THEOREM 3 Shifting and Scaling Rule If f (x) is differentiable, then for any con-
stants k and b,

d

dx
f (kx + b) = kf ′(kx + b)

For example,

d

dx
sin

(
2x + π

4

)
= 2 cos

(
2x + π

4

)
d

dx
(9x − 2)5 = (9)(5)(9x − 2)4 = 45(9x − 2)4

d

dt
sin(−4t) = −4 cos(−4t)

d

dt
e7−5t = −5e7−5t

GRAPHICAL INSIGHT To understand Theorem 3 graphically, recall that the graphs of
f (kx + b) and f (x) are related by shifting and scaling (Section 1.1). For example, if
k > 1, then the graph of f (kx + b) is a compressed version of the graph of f (x) that is
steeper by a factor of k. Figure 1 illustrates a case with k = 2.

When the inside function is itself a composite function, we apply the Chain Rule more

y = f (x) = sin x

y = f (2x) = sin 2x

c

c/2 π 2π

π 2π

Slope f ´(c)

Slope 2f ´(c)

x

x

y

−1

1

−1

1

y

FIGURE 1 The derivative of f (2x) at
x = c/2 is twice the derivative of f (x) at
x = c. than once, as in the next example.
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EXAMPLE 6 Using the Chain Rule Twice Calculate
d

dx

√
1 +

√
x2 + 1.

Solution First apply the Chain Rule with inside function u = 1 + √
x2 + 1:

d

dx

(
1 + (x2 + 1)1/2

)1/2 = 1

2

(
1 + (x2 + 1)1/2

)−1/2 d

dx

(
1 + (x2 + 1)1/2

)

Then apply the Chain Rule again to the remaining derivative:

d

dx

(
1 + (x2 + 1)1/2

)1/2 = 1

2

(
1 + (x2 + 1)1/2)−1/2

(
1

2
(x2 + 1)−1/2(2x)

)

= 1

2
x(x2 + 1)−1/2

(
1 + (x2 + 1)1/2

)−1/2

According to our convention, sin x denotes the sine of x radians, and with this con-
vention, the formula (sin x)′ = cos x holds. In the next example, we derive a formula for
the derivative of the sine function when x is measured in degrees.

EXAMPLE 7 Trigonometric Derivatives in Degrees Calculate the derivative of the sine
function as a function of degrees rather than radians.

Solution To solve this problem, it is convenient to use an underline to indicate a function
of degrees rather than radians. For example,

sin x = sine of x degrees

The functions sin x and sin x are different, but they are related by

sin x = sin
( π

180
x
)

because x degrees corresponds to π
180x radians. By Theorem 3,

A similar calculation shows that the factor
π

180 appears in the formulas for the
derivatives of the other standard
trigonometric functions with respect to
degrees. For example,

d

dx
tan x =

( π

180

)
sec2 x

d

dx
sin x = d

dx
sin

( π

180
x
)

=
( π

180

)
cos

( π

180
x
)

=
( π

180

)
cos x

Proof of the Chain Rule The difference quotient for the composite f ◦ g is

f (g(x + h)) − f (g(x))

h
(h �= 0)

Our goal is to show that (f ◦ g)′ is the product of f ′(g(x)) and g′(x), so it makes sense
to write the difference quotient as a product:

f (g(x + h)) − f (g(x))

h
= f (g(x + h)) − f (g(x))

g(x + h) − g(x)
× g(x + h) − g(x)

h
1
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This is legitimate only if the denominator g(x + h) − g(x) is nonzero. Therefore, to
continue our proof, we make the extra assumption that g(x + h) − g(x) �= 0 for all h near
but not equal to 0. This assumption is not necessary, but without it, the argument is more
technical (see Exercise 105).

Under our assumption, we may use Eq. (1) to write (f ◦ g)′(x) as a product of two
limits:

(f ◦ g)′(x) = lim
h→0

f (g(x + h)) − f (g(x))

g(x + h) − g(x)︸ ︷︷ ︸
Show that this equals f ′(g(x)).

× lim
h→0

g(x + h) − g(x)

h︸ ︷︷ ︸
This is g′(x).

The second limit on the right is g′(x). The Chain Rule will follow if we show that the first
limit equals f ′(g(x)). To verify this, set

k = g(x + h) − g(x)

Then g(x + h) = g(x) + k and

f (g(x + h)) − f (g(x))

g(x + h) − g(x)
= f (g(x) + k) − f (g(x))

k

The function g(x) is continuous because it is differentiable. Therefore, g(x + h) tends to
g(x) and k = g(x + h) − g(x) tends to zero as h → 0. Thus, we may rewrite the limit in
terms of k to obtain the desired result:

lim
h→0

f (g(x + h)) − f (g(x))

g(x + h) − g(x)
= lim

k→0

f (g(x) + k) − f (g(x))

k
= f ′(g(x))

3.7 SUMMARY

• The Chain Rule expresses (f ◦ g)′ in terms of f ′ and g′:

(f (g(x)))′ = f ′(g(x)) g′(x)

• In Leibniz notation:
dy

dx
= dy

du

du

dx
, where y = f (u) and u = g(x)

• General Power Rule:
d

dx
g(x)n = n(g(x))n−1g′(x)

• General Exponential Rule:
d

dx
eg(x) = g′(x)eg(x)

• Shifting and Scaling Rule:
d

dx
f (kx + b) = kf ′(kx + b)
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3.7 EXERCISES

Preliminary Questions
1. Identify the outside and inside functions for each of these compos-

ite functions.

(a) y =
√

4x + 9x2 (b) y = tan(x2 + 1)

(c) y = sec5 x (d) y = (1 + ex)4

2. Which of the following can be differentiated easily without using
the Chain Rule?

(a) y = tan(7x2 + 2) (b) y = x

x + 1

(c) y = √
x · sec x (d) y = √

x cos x

(e) y = xex (f) y = esin x

3. Which is the derivative of f (5x)?

(a) 5f ′(x) (b) 5f ′(5x) (c) f ′(5x)

4. Suppose that f ′(4) = g(4) = g′(4) = 1. Do we have enough in-
formation to compute F ′(4), where F(x) = f (g(x))? If not, what is
missing?

Exercises
In Exercises 1–4, fill in a table of the following type:

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

1. f (u) = u3/2, g(x) = x4 + 1

2. f (u) = u3, g(x) = 3x + 5

3. f (u) = tan u, g(x) = x4

4. f (u) = u4 + u, g(x) = cos x

In Exercises 5 and 6, write the function as a composite f (g(x)) and
compute the derivative using the Chain Rule.

5. y = (x + sin x)4 6. y = cos(x3)

7. Calculate
d

dx
cos u for the following choices of u(x):

(a) u = 9 − x2 (b) u = x−1 (c) u = tan x

8. Calculate
d

dx
f (x2 + 1) for the following choices of f (u):

(a) f (u) = sin u (b) f (u) = 3u3/2 (c) f (u) = u2 − u

9. Compute
df

dx
if

df

du
= 2 and

du

dx
= 6.

10. Compute
df

dx

∣∣∣
x=2

if f (u) = u2, u(2) = −5, and u′(2) = −5.

In Exercises 11–22, use the General Power Rule or the Shifting and
Scaling Rule to compute the derivative.

11. y = (x4 + 5)3 12. y = (8x4 + 5)3

13. y = √
7x − 3 14. y = (4 − 2x − 3x2)5

15. y = (x2 + 9x)−2 16. y = (x3 + 3x + 9)−4/3

17. y = cos4 θ 18. y = cos(9θ + 41)

19. y = (2 cos θ + 5 sin θ)9 20. y = √
9 + x + sin x

21. y = ex−12 22. y = e8x+9

In Exercises 23–26, compute the derivative of f ◦ g.

23. f (u) = sin u, g(x) = 2x + 1

24. f (u) = 2u + 1, g(x) = sin x

25. f (u) = eu, g(x) = x + x−1

26. f (u) = u

u − 1
, g(x) = csc x

In Exercises 27 and 28, find the derivatives of f (g(x)) and g(f (x)).

27. f (u) = cos u, u = g(x) = x2 + 1

28. f (u) = u3, u = g(x) = 1

x + 1

In Exercises 29–42, use the Chain Rule to find the derivative.

29. y = sin(x2) 30. y = sin2 x

31. y =
√

t2 + 9 32. y = (t2 + 3t + 1)−5/2

33. y = (x4 − x3 − 1)2/3 34. y = (
√

x + 1 − 1)3/2

35. y =
(

x + 1

x − 1

)4
36. y = cos3(12θ)

37. y = sec
1

x
38. y = tan(θ2 − 4θ)

39. y = tan(θ + cos θ) 40. y = e2x2

41. y = e2−9t2
42. y = cos3(e4θ )

In Exercises 43–72, find the derivative using the appropriate rule or
combination of rules.

43. y = tan(x2 + 4x) 44. y = sin(x2 + 4x)

45. y = x cos(1 − 3x) 46. y = sin(x2) cos(x2)

47. y = (4t + 9)1/2 48. y = (z + 1)4(2z − 1)3

49. y = (x3 + cos x)−4 50. y = sin(cos(sin x))

51. y = √
sin x cos x 52. y = (9 − (5 − 2x4)7)3



176 C H A P T E R 3 DIFFERENTIATION

53. y = (cos 6x + sin x2)1/2 54. y = (x + 1)1/2

x + 2

55. y = tan3 x + tan(x3) 56. y = √
4 − 3 cos x

57. y =
√

z + 1

z − 1

58. y = (cos3 x + 3 cos x + 7)9

59. y = cos(1 + x)

1 + cos x
60. y = sec(

√
t2 − 9)

61. y = cot7(x5) 62. y = cos(1/x)

1 + x2

63. y =
(

1 + cot5(x4 + 1)
)9

64. y = 4e−x + 7e−2x

65. y = (2e3x + 3e−2x)4 66. y = cos(te−2t )

67. y = e(x2+2x+3)2
68. y = eex

69. y =
√

1 +
√

1 + √
x 70. y =

√√
x + 1 + 1

71. y = (kx + b)−1/3; k and b any constants

72. y = 1√
kt4 + b

; k, b constants, not both zero

In Exercises 73–76, compute the higher derivative.

73.
d2

dx2
sin(x2) 74.

d2

dx2
(x2 + 9)5

75.
d3

dx3
(9 − x)8 76.

d3

dx3
sin(2x)

77. The average molecular velocity v of a gas in a certain container
is given by v = 29

√
T m/s, where T is the temperature in kelvins. The

temperature is related to the pressure (in atmospheres) by T = 200P .

Find
dv

dP

∣∣∣∣
P=1.5

.

78. The power P in a circuit is P = Ri2, where R is the resistance

and i is the current. Find dP/dt at t = 1
3 if R = 1000 � and i varies

according to i = sin(4πt) (time in seconds).

79. An expanding sphere has radius r = 0.4t cm at time t (in sec-
onds). Let V be the sphere’s volume. Find dV /dt when (a) r = 3 and
(b) t = 3.

80. A 2005 study by the Fisheries Research Services in Aberdeen,
Scotland, suggests that the average length of the species Clupea haren-
gus (Atlantic herring) as a function of age t (in years) can be modeled
by L(t) = 32(1 − e−0.37t ) cm for 0 ≤ t ≤ 13. See Figure 2.

(a) How fast is the length changing at age t = 6 years?
(b) At what age is the length changing at a rate of 5 cm/yr?

2 4 6 8 10 12

10

20

30
32

t (year)

L (cm)

FIGURE 2 Average length of the species Clupea harengus

81. A 1999 study by Starkey and Scarnecchia developed the follow-
ing model for the average weight (in kilograms) at age t (in years) of
channel catfish in the Lower Yellowstone River (Figure 3):

W(t) = (3.46293 − 3.32173e−0.03456t )3.4026

Find the rate at which weight is changing at age t = 10.

5 10 15 20

1
2
3
4
5
6
7
8

t (year)

W (kg)

Lower Yellowstone River

FIGURE 3 Average weight of channel catfish at age t

82. The functions in Exercises 80 and 81 are examples of the von
Bertalanffy growth function

M(t) = (
a + (b − a)ekmt

)1/m
(m �= 0)

introduced in the 1930s by Austrian-born biologist Karl Ludwig von
Bertalanffy. Calculate M ′(0) in terms of the constants a, b, k and m.

83. With notation as in Example 7, calculate

(a)
d

dθ
sin θ

∣∣∣∣
θ=60◦

(b)
d

dθ

(
θ + tan θ

) ∣∣∣∣
θ=45◦

84. Assume that

f (0) = 2, f ′(0) = 3, h(0) = −1, h′(0) = 7

Calculate the derivatives of the following functions at x = 0:

(a) (f (x))3 (b) f (7x) (c) f (4x)h(5x)

85. Compute the derivative of h(sin x) at x = π
6 , assuming that

h′(0.5) = 10.

86. Let F(x) = f (g(x)), where the graphs of f and g are shown in
Figure 4. Estimate g′(2) and f ′(g(2)) and compute F ′(2).
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1

2

3

4

1 2 3 4 5

f (x)

g(x)

x

y

FIGURE 4

In Exercises 87–90, use the table of values to calculate the derivative
of the function at the given point.

x 1 4 6

f (x) 4 0 6
f ′(x) 5 7 4
g(x) 4 1 6
g′(x) 5 1

2 3

87. f (g(x)), x = 6 88. ef (x), x = 4

89. g(
√

x), x = 16 90. f (2x + g(x)), x = 1

91. The price (in dollars) of a computer component is P = 2C −
18C−1, where C is the manufacturer’s cost to produce it. Assume that
cost at time t (in years) is C = 9 + 3t−1. Determine the rate of change
of price with respect to time at t = 3.

92. Plot the “astroid” y = (4 − x2/3)3/2 for 0 ≤ x ≤ 8. Show
that the part of every tangent line in the first quadrant has a constant
length 8.

93. According to the U.S. standard atmospheric model, developed
by the National Oceanic and Atmospheric Administration for use in
aircraft and rocket design, atmospheric temperature T (in degrees Cel-
sius), pressure P (kPa = 1,000 pascals), and altitude h (in meters) are
related by these formulas (valid in the troposphere h ≤ 11,000):

T = 15.04 − 0.000649h, P = 101.29 +
(

T + 273.1

288.08

)5.256

Use the Chain Rule to calculate dP/dh. Then estimate the change in
P (in pascals, Pa) per additional meter of altitude when h = 3,000.

94. Climate scientists use the Stefan-Boltzmann Law R = σT 4 to
estimate the change in the earth’s average temperature T (in kelvins)
caused by a change in the radiation R (in joules per square meter
per second) that the earth receives from the sun. Here σ = 5.67 ×
10−8 Js−1m−2K−4. Calculate dR/dt , assuming that T = 283 and
dT
dt

= 0.05 K/yr. What are the units of the derivative?

95. In the setting of Exercise 94, calculate the yearly rate of change
of T if T = 283 K and R increases at a rate of 0.5 Js−1m−2 per year.

96. Use a computer algebra system to compute f (k)(x) for
k = 1, 2, 3 for the following functions:

(a) f (x) = cot(x2) (b) f (x) =
√

x3 + 1

97. Use the Chain Rule to express the second derivative of f ◦ g in
terms of the first and second derivatives of f and g.

98. Compute the second derivative of sin(g(x)) at x = 2, assuming
that g(2) = π

4 , g′(2) = 5, and g′′(2) = 3.

Further Insights and Challenges
99. Show that if f , g, and h are differentiable, then

[f (g(h(x)))]′ = f ′(g(h(x)))g′(h(x))h′(x)

100. Show that differentiation reverses parity: If f is even,
then f ′ is odd, and if f is odd, then f ′ is even. Hint: Differentiate
f (−x).

101. (a) Sketch a graph of any even function f (x) and explain
graphically why f ′(x) is odd.
(b) Suppose that f ′(x) is even. Is f (x) necessarily odd? Hint: Check
whether this is true for linear functions.

102. Power Rule for Fractional Exponents Let f (u) = uq and

g(x) = xp/q . Assume that g(x) is differentiable.

(a) Show that f (g(x)) = xp (recall the laws of exponents).
(b) Apply the Chain Rule and the Power Rule for whole-number ex-
ponents to show that f ′(g(x)) g′(x) = pxp−1.
(c) Then derive the Power Rule for xp/q .

103. Prove that for all whole numbers n ≥ 1,

dn

dxn
sin x = sin

(
x + nπ

2

)
Hint: Use the identity cos x = sin

(
x + π

2

)
.

104. A Discontinuous Derivative Use the limit definition to show
that g′(0) exists but g′(0) �= lim

x→0
g′(x), where

g(x) =

⎧⎪⎨
⎪⎩

x2 sin
1

x
x �= 0

0 x = 0

105. Chain Rule This exercise proves the Chain Rule without the
special assumption made in the text. For any number b, define a new
function

F(u) = f (u) − f (b)

u − b
for all u �= b

(a) Show that if we define F(b) = f ′(b), then F(u) is continuous at
u = b.
(b) Take b = g(a). Show that if x �= a, then for all u,

f (u) − f (g(a))

x − a
= F(u)

u − g(a)

x − a
2

Note that both sides are zero if u = g(a).
(c) Substitute u = g(x) in Eq. (2) to obtain

f (g(x)) − f (g(a))

x − a
= F(g(x))

g(x) − g(a)

x − a

Derive the Chain Rule by computing the limit of both sides as x → a.
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3.8 Derivatives of Inverse Functions

In this section, we derive a formula for the derivative of the inverse f −1(x) and applyREMINDER The inverse of a function
f (x) is denoted f −1(x). Do not confuse
the inverse with the reciprocal 1/f (x). If
necessary, review the definition and
properties of inverse functions in
Section 1.5.

it to the inverse trigonometric functions. In the next section, we will use the formula to
differentiate logarithmic functions.

THEOREM 1 Derivative of the Inverse Assume that f (x) is differentiable and one-to-
one with inverse g(x) = f −1(x). If b belongs to the domain of g(x) and f ′(g(b)) �= 0,
then g′(b) exists and

g′(b) = 1

f ′(g(b))
1

Proof The first claim, that g(x) is differentiable if f ′(g(x)) �= 0, is verified inAppendix D
(see Theorem 6). To prove Eq. (1), note that f (g(x)) = x by definition of the inverse.
Differentiate both sides of this equation, and apply the Chain Rule:

d

dx
f (g(x)) = d

dx
x ⇒ f ′(g(x))g′(x) = 1 ⇒ g′(x) = 1

f ′(g(x))

Set x = b to obtain Eq. (1).

GRAPHICAL INSIGHT The formula for the derivative of the inverse function has a clear
graphical interpretation. Consider a line L of slope m and let L′ be its reflection through
y = x as in Figure 1(A). Then the slope of L′ is 1/m. Indeed, if (a, b) and (c, d) are
any two points on L, then (b, a) and (d, c) lie on L′ and

Slope of L = d − b

c − a
, Slope of L′ = c − a

d − b︸ ︷︷ ︸
Reciprocal slopes

Now recall that the graph of the inverse g(x) is obtained by reflecting the graph of f (x)

through the line y = x. As we see in Figure 1(B), the tangent line to y = g(x) at x = b is
the reflection of the tangent line to y = f (x) at x = a [where b = f (a) and a = g(b)].
These tangent lines have reciprocal slopes, and thus g′(b) = 1/f ′(a) = 1/f ′(g(b)), as
claimed in Theorem 1.

L
slope m

(b, a)

(a, b)

(c, d )

(d, c)

If L has slope m, then its
reflection L´ has slope 1/m.

(A)

x

y

x

y

(b, a)

(a, b)

Slope f ´(a)

The tangent line to the inverse y = g(x) is
the reflection of the tangent line to y = f (x).

(B)

Slope g´(b)L´
slope    1m

y = x y = x

y = g(x)

y = f (x)

FIGURE 1 Graphical illustration of the
formula g′(b) = 1/f ′(g(b)).
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EXAMPLE 1 Using Formula (1) Calculate g′(x), where g(x) is the inverse of the
function f (x) = x4 + 10 on the domain {x : x ≥ 0}.
Solution Solve y = x4 + 10 for x to obtain x = (y − 10)1/4. Thus g(x) = (x − 10)1/4.
Since f ′(x) = 4x3, we have f ′(g(x)) = 4g(x)3, and by Eq. (1),

g′(x) = 1

f ′(g(x))
= 1

4g(x)3
= 1

4(x − 10)3/4
= 1

4
(x − 10)−3/4

We obtain this same result by differentiating g(x) = (x − 10)1/4 directly.

EXAMPLE 2 Calculating g′(x) Without Solving for g(x) Calculate g′(1), where g(x)

is the inverse of f (x) = x + ex .

Solution In this case, we cannot solve for g(x) explicitly, but a formula for g(x) is not
needed (Figure 2). All we need is the particular value g(1), which we can find by solving
f (x) = 1. By inspection, x + ex = 1 has solution x = 0. Therefore, f (0) = 1 and, by
definition of the inverse, g(1) = 0. Since f ′(x) = 1 + ex ,

g′(1) = 1

f ′(g(1))
= 1

f ′(0)
= 1

1 + e0
= 1

2

x

y f (x) = x + ex

g(x) = f −1(x)

y = x

(0, 1)

(1, 0)

FIGURE 2 Graph of f (x) = x + ex and its
inverse g(x).

Derivatives of Inverse Trigonometric Functions
We now apply Theorem 1 to the inverse trigonometric functions. An interesting feature
of these functions is that their derivatives are not trigonometric. Rather, they involve
quadratic expressions and their square roots.

THEOREM 2 Derivatives of Arcsine and Arccosine

d

dx
sin−1 x = 1√

1 − x2
,

d

dx
cos−1 x = − 1√

1 − x2
2

Proof Apply Eq. (1) with f (x) = sin x and g(x) = sin−1 x. Then f ′(x) = cos x, and by
the equation in the margin,

REMINDER In Example 7 of Section
1.5, we used the right triangle in Figure 3
in the computation:

cos(sin−1 x) = cos θ = adjacent

hypotenuse

=
√

1 − x2

θ

1 x

�1 − x2

FIGURE 3 Right triangle constructed so that
sin θ = x.

d

dx
sin−1 x = 1

f ′(g(x))
= 1

cos(sin−1 x)
= 1√

1 − x2

The computation of
d

dx
cos−1 x is similar (see Exercise 37 or the next example).

EXAMPLE 3 Complementary Angles The derivatives of sin−1 x and cos−1 x are equal
up to a minus sign. Explain this by proving that

sin−1 x + cos−1 x = π

2

Solution In Figure 4, we have θ = sin−1 x and ψ = cos−1 x. These angles are comple-
θ

ψ
1

x

FIGURE 4 The angles θ = sin−1 x and
ψ = cos−1 x are complementary and thus
sum to π/2.

mentary, so θ + ψ = π
2 as claimed. Therefore,

d

dx
cos−1 x = d

dx

(π

2
− sin−1 x

)
= − d

dx
sin−1 x
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EXAMPLE 4 Calculate f ′( 1
2

)
, where f (x) = arcsin(x2).

Solution Recall that arcsin x is another notation for sin−1 x. By the Chain Rule,

d

dx
arcsin(x2) = d

dx
sin−1(x2) = 1√

1 − x4

d

dx
x2 = 2x√

1 − x4

f ′
(

1

2

)
= 2

( 1
2

)√
1 − ( 1

2

)4
= 1√

15
16

= 4√
15

THEOREM 3 Derivatives of Inverse Trigonometric Functions

d

dx
tan−1 x = 1

x2 + 1
,

d

dx
cot−1 x = − 1

x2 + 1

d

dx
sec−1 x = 1

|x|√x2 − 1
,

d

dx
csc−1 x = − 1

|x|√x2 − 1

EXAMPLE 5 Calculate
d

dx
csc−1(ex + 1)

∣∣∣∣
x=0

.

The proofs of the formulas in Theorem 3
are similar to the proof of Theorem 2. See
Exercises 38–40.

Solution Apply the Chain Rule using the formula
d

du
csc−1 u = − 1

|u|√u2 − 1
:

d

dx
csc−1(ex + 1) = − 1

|ex + 1|√(ex + 1)2 − 1

d

dx
(ex + 1)

= − ex

(ex + 1)
√

e2x + 2ex

We have replaced |ex + 1| by ex + 1 because this quantity is positive. Now we have

d

dx
csc−1(ex + 1)

∣∣∣∣
x=0

= − e0

(e0 + 1)
√

e0 + 2e0
= − 1

2
√

3

3.8 SUMMARY

• Derivative of the inverse: If f (x) is differentiable and one-to-one with inverse g(x),
then for x such that f ′(g(x)) �= 0,

g′(x) = 1

f ′(g(x))

• Derivative formulas:

d

dx
sin−1 x = 1√

1 − x2
,

d

dx
cos−1 x = − 1√

1 − x2

d

dx
tan−1 x = 1

x2 + 1
,

d

dx
cot−1 x = − 1

x2 + 1

d

dx
sec−1 x = 1

|x|√x2 − 1
,

d

dx
csc−1 x = − 1

|x|√x2 − 1
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3.8 EXERCISES

Preliminary Questions
1. What is the slope of the line obtained by reflecting the line y = x

2
through the line y = x?

2. Suppose that P = (2, 4) lies on the graph of f (x) and that the
slope of the tangent line through P is m = 3. Assuming that f −1(x)

exists, what is the slope of the tangent line to the graph of f −1(x) at
the point Q = (4, 2)?

3. Which inverse trigonometric function g(x) has the derivative

g′(x) = 1

x2 + 1
?

4. What does the following identity tell us about the derivatives of
sin−1 x and cos−1 x?

sin−1 x + cos−1 x = π

2

Exercises
1. Find the inverse g(x) of f (x) =

√
x2 + 9 with domain x ≥ 0 and

calculate g′(x) in two ways: using Theorem 1 and by direct calculation.

2. Let g(x) be the inverse of f (x) = x3 + 1. Find a formula for g(x)

and calculate g′(x) in two ways: using Theorem 1 and then by direct
calculation.

In Exercises 3–8, use Theorem 1 to calculate g′(x), where g(x) is the
inverse of f (x).

3. f (x) = 7x + 6 4. f (x) = √
3 − x

5. f (x) = x−5 6. f (x) = 4x3 − 1

7. f (x) = x

x + 1
8. f (x) = 2 + x−1

9. Let g(x) be the inverse of f (x) = x3 + 2x + 4. Calculate g(7)

[without finding a formula for g(x)], and then calculate g′(7).

10. Find g′( − 1
2

)
, where g(x) is the inverse of f (x) = x3

x2 + 1
.

In Exercises 11–16, calculate g(b) and g′(b), where g is the inverse of
f (in the given domain, if indicated).

11. f (x) = x + cos x, b = 1

12. f (x) = 4x3 − 2x, b = −2

13. f (x) =
√

x2 + 6x for x ≥ 0, b = 4

14. f (x) =
√

x2 + 6x for x ≤ −6, b = 4

15. f (x) = 1

x + 1
, b = 1

4
16. f (x) = ex , b = e

17. Let f (x) = xn and g(x) = x1/n. Compute g′(x) using Theorem
1 and check your answer using the Power Rule.

18. Show that f (x) = 1

1 + x
and g(x) = 1 − x

x
are inverses. Then

compute g′(x) directly and verify that g′(x) = 1/f ′(g(x)).

In Exercises 19–22, compute the derivative at the point indicated with-
out using a calculator.

19. y = sin−1 x, x = 3
5 20. y = tan−1 x, x = 1

2

21. y = sec−1 x, x = 4 22. y = arccos(4x), x = 1
5

In Exercises 23–36, find the derivative.

23. y = sin−1(7x) 24. y = arctan
(x

3

)
25. y = cos−1(x2) 26. y = sec−1(t + 1)

27. y = x tan−1 x 28. y = ecos−1 x

29. y = arcsin(ex) 30. y = csc−1(x−1)

31. y =
√

1 − t2 + sin−1 t 32. y = tan−1
(

1 + t

1 − t

)

33. y = (tan−1 x)3 34. y = cos−1 x

sin−1 x

35. y = cos−1 t−1 − sec−1 t 36. y = cos−1(x + sin−1 x)

37. Use Figure 5 to prove that (cos−1 x)′ = − 1√
1 − x2

.

θ

1

x

�1 − x2

FIGURE 5 Right triangle with θ = cos−1 x.

38. Show that (tan−1 x)′ = cos2(tan−1 x) and then use Figure 6 to
prove that (tan−1 x)′ = (x2 + 1)−1.

θ

1

x
�1 + x2

FIGURE 6 Right triangle with θ = tan−1 x.

39. Let θ = sec−1 x. Show that tan θ =
√

x2 − 1 if x ≥ 1 and that
tan θ = −

√
x2 − 1 if x ≤ −1. Hint: tan θ ≥ 0 on

(
0, π

2

)
and tan θ ≤ 0

on
(
π
2 , π

)
.

40. Use Exercise 39 to verify the formula

(sec−1 x)′ = 1

|x|
√

x2 − 1
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Further Insights and Challenges
41. Let g(x) be the inverse of f (x). Show that if f ′(x) = f (x), then
g′(x) = x−1. We will apply this in the next section to show that

the inverse of f (x) = ex (the natural logarithm) has the derivative
f ′(x) = x−1.

3.9 Derivatives of General Exponential and Logarithmic Functions
In Section 3.2, we proved that for any base b > 0,

d

dx
bx = m(b) bx, where m(b) = lim

h→0

bh − 1

h

but we were not able to identify the factor m(b) (other than to say that e is the uniqueREMINDER ln x is the natural
logarithm; that is, ln x = loge x. number for which m(e) = 1). Now we can use the Chain Rule to prove that m(b) = ln b.

The key point is that every exponential function can be written in terms of e—namely,
bx = (eln(b))x = e(ln b)x . By the Chain Rule,

d

dx
bx = d

dx
e(ln b)x = (ln b)e(ln b)x = (ln b)bx

THEOREM 1 Derivative of f (x) = bx

d

dx
bx = (ln b)bx for b > 0 1

For example, (10 x)′ = (ln 10)10 x .

EXAMPLE 1 Differentiate: (a) f (x) = 43x and (b) f (x) = 5x2
.

Solution

(a) The function f (x) = 43x is a composite of 4u and u = 3x:

d

dx
43x =

(
d

du
4u

)
du

dx
= (ln 4)4u(3x)′ = (ln 4)43x(3) = (3 ln 4)43x

(b) The function f (x) = 5x2
is a composite of 5u and u = x2:

d

dx
5x2 =

(
d

du
5u

)
du

dx
= (ln 5)5u(x2)′ = (ln 5)5x2

(2x) = (2 ln 5) x 5x2

Next, we’ll find the derivative of ln x. Let f (x) = ex and g(x) = ln x. Then g′(x) =
1/f ′(g(x)) because g(x) is the inverse of f (x). However, f ′(x) = f (x), so

d

dx
ln x = g′(x) = 1

f ′(g(x))
= 1

f (g(x))
= 1

x



S E C T I O N 3.9 Derivatives of General Exponential and Logarithmic Functions 183

THEOREM 2 Derivative of the Natural Logarithm

d

dx
ln x = 1

x
for x > 0 2

EXAMPLE 2 Differentiate: (a) y = x ln x and (b) y = (ln x)2.The two most important calculus facts
about exponentials and logs are

d

dx
ex = ex,

d

dx
ln x = 1

x

Solution

(a) Use the Product Rule:

d

dx
(x ln x) = x · (ln x)′ + (x)′ · ln x

= x · 1

x
+ ln x = 1 + ln x

(b) Use the General Power Rule:

d

dx
(ln x)2 = 2 ln x · d

dx
ln x = 2 ln x

x

We obtain a useful formula for the derivative of ln(f (x)) by applying the Chain RuleIn Section 3.2, we proved the Power Rule
for whole-number exponents. We can now
prove it for all exponents n by writing xn as
an exponential. For x > 0,

xn = (eln x)n = en ln x

d

dx
xn = d

dx
en ln x =

(
d

dx
n ln x

)
en ln x

=
(n

x

)
xn = nxn−1

with u = f (x):

d

dx
ln(f (x)) = d

du
ln(u)

du

dx
= 1

u
· u′ = 1

f (x)
f ′(x)

d

dx
ln(f (x)) = f ′(x)

f (x)
3

EXAMPLE 3 Differentiate: (a) y = ln(x3 + 1) and (b) y = ln(
√

sin x).

Solution Use Eq. (3):

(a)
d

dx
ln(x3 + 1) = (x3 + 1)′

x3 + 1
= 3x2

x3 + 1
(b) The algebra is simpler if we write ln(

√
sin x) = ln

(
(sin x)1/2

) = 1
2 ln(sin x):

d

dx
ln

(√
sin x

) = 1

2

d

dx
ln(sin x)

= 1

2

(sin x)′

sin x
= 1

2

cos x

sin x
= 1

2
cot x

EXAMPLE 4 Logarithm to Another Base Calculate
d

dx
log10 x.

REMINDER According to Eq. (1) in
Section 1.6, we have the “change-of-base”
formulas:

logb x = loga x

loga b
, logb x = ln x

ln b

It follows, as in Example 4, that for any
base b > 0, b �= 1:

d

dx
logb x = 1

(ln b)x

Solution By the change-of-base formula (see margin), log10 x = ln x
ln 10 . Therefore,

d

dx
log10 x = d

dx

(
ln x

ln 10

)
= 1

ln 10

d

dx
ln x = 1

(ln 10)x

The next example illustrates logarithmic differentiation. This technique saves work
when the function is a product or quotient with several factors.
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EXAMPLE 5 Logarithmic Differentiation Find the derivative of

f (x) = (x + 1)2(2x2 − 3)√
x2 + 1

Solution In logarithmic differentiation, we differentiate ln(f (x)) rather than f (x) itself:

ln(f (x)) = ln
(
(x + 1)2) + ln

(
2x2 − 3

) − ln
(√

x2 + 1
)

= 2 ln(x + 1) + ln
(
2x2 − 3

) − 1

2
ln(x2 + 1)

Now use Eq. (3):

f ′(x)

f (x)
= d

dx
ln(f (x)) = 2

d

dx
ln

(
x + 1

) + d

dx
ln

(
2x2 − 3

) − 1

2

d

dx
ln

(
x2 + 1

)
f ′(x)

f (x)
= 2

x + 1
+ 4x

2x2 − 3
− 1

2

2x

x2 + 1

Finally, multiply through by f (x):

f ′(x) =
(

2

x + 1
+ 4x

2x2 − 3
− x

x2 + 1

) (
(x + 1)2(2x2 − 3)√

x2 + 1

)

EXAMPLE 6 Differentiate (for x > 0): (a) f (x) = xx and (b) g(x) = xsin x .

Solution The two problems are similar (Figure 1). We illustrate two different methods.

4 8
x

y

4

8

g(x) = x sin x

2 4
x

y

2

4

f (x) = xx

FIGURE 1 Graphs of f (x) = xx and
g(x) = xsin x .

(a) Method 1: Use the identity x = eln x to rewrite f (x) as an exponential:

f (x) = xx = (eln x)x = ex ln x

f ′(x) = (x ln x)′ex ln x = (1 + ln x)ex ln x = (1 + ln x)xx

(b) Method 2: Apply Eq. (3) to ln(g(x)). Since ln(g(x)) = ln(xsin x) = (sin x) ln x,

g′(x)

g(x)
= d

dx
ln(g(x)) = d

dx
(sin x)(ln x) = sin x

x
+ (cos x) ln x

g′(x) =
(

sin x

x
+ (cos x) ln x

)
g(x) =

(
sin x

x
+ (cos x) ln x

)
xsin x

Derivatives of Hyperbolic Functions
Recall from Section 1.6 that the hyperbolic functions are special combinations of ex

and e−x . The formulas for their derivatives are similar to those for the corresponding
trigonometric functions, differing at most by a sign.

Consider the hyperbolic sine and cosine:

sinh x = ex − e−x

2
, cosh x = ex + e−x

2

Their derivatives are

d

dx
sinh x = cosh x,

d

dx
cosh x = sinh x
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We can check this directly. For example,

d

dx

(
ex − e−x

2

)
=

(
ex − e−x

2

)′
= ex + e−x

2
= cosh x

Note the resemblance to the formulas d
dx

sin x = cos x, d
dx

cos x = − sin x. The deriva-
tives of the other hyperbolic functions, which are computed in a similar fashion, also differ
from their trigonometric counterparts by a sign at most.

Derivatives of Hyperbolic and Trigonometric Functions

d

dx
tanh x = sech2 x,

d

dx
tan x = sec2 x

d

dx
coth x = − csch2 x,

d

dx
cot x = − csc2 x

d

dx
sech x = − sech x tanh x,

d

dx
sec x = sec x tan x

d

dx
csch x = − csch x coth x,

d

dx
csc x = − csc x cot x

REMINDER

tanh x = sinh x

cosh x
= ex − e−x

ex + e−x

sech x = 1

cosh x
= 2

ex + e−x

coth x = cosh x

sinh x
= ex + e−x

ex − e−x

csch x = 1

sinh x
= 2

ex − e−x

EXAMPLE 7 Verify:
d

dx
coth x = − csch2 x.REMINDER Hyperbolic sine and cosine

satisfy the basic identity (Section 1.6):

cosh2 x − sinh2 x = 1 Solution By the Quotient Rule and the identity cosh2 x − sinh2 x = 1,

d

dx
coth x =

(
cosh x

sinh x

)′
= (sinh x)(cosh x)′ − (cosh x)(sinh x)′

sinh2 x

= sinh2 x − cosh2 x

sinh2 x
= −1

sinh2 x
= − csch2 x

EXAMPLE 8 Calculate: (a)
d

dx
cosh(3x2 + 1) and (b)

d

dx
sinh x tanh x.

Solution

(a) By the Chain Rule, d
dx

cosh(3x2 + 1) = 6x sinh(3x2 + 1).

(b) By the Product Rule,

d

dx
(sinh x tanh x) = sinh x sech2 x + tanh x cosh x = sech x tanh x + sinh x

Inverse Hyperbolic Functions
Recall that a function f (x) with domain D has an inverse if it is one-to-one on D. Each
of the hyperbolic functions except cosh x and sech x is one-to-one on its domain and
therefore has a well-defined inverse. The functions cosh x and sech x are one-to-one on
the restricted domain {x : x ≥ 0}. We let cosh−1 x and sech−1 x denote the corresponding
inverses (Figure 2). In reading the following table, keep in mind that the domain of the

y = cosh−1 x

y = cosh x

y

3

2

1

1 2 3
x

−3 −1−2

y = sech x

y = sech−1 x

y

3

2

1

1

(B)

(A)

2 3
x

−3 −1−2

FIGURE 2 inverse is equal to the range of the function.
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Inverse Hyperbolic Functions and Their Derivatives

Function Domain Derivative

y = sinh−1 x all x
d

dx
sinh−1 x = 1√

x2 + 1

y = cosh−1 x x ≥ 1
d

dx
cosh−1 x = 1√

x2 − 1

y = tanh−1 x |x| < 1
d

dx
tanh−1 x = 1

1 − x2

y = coth−1 x |x| > 1
d

dx
coth−1 x = 1

1 − x2

y = sech−1 x 0 < x ≤ 1
d

dx
sech−1 x = − 1

x
√

1 − x2

y = csch−1 x x �= 0
d

dx
csch−1 x = − 1

|x|
√

x2 + 1

EXAMPLE 9 Verify:
d

dx
tanh−1 x = 1

1 − x2
.

REMINDER The derivatives of cosh–1 x

and sech–1 x are undefined at the endpoint
x = 1 of their domains.

Solution Apply the formula for the derivative of an inverse [Eq. (1) in Section 3.8]. Since
(tanh x)′ = sech2 x,

d

dx
tanh−1 x = 1

sech2(tanh−1 x)

To compute sech2(tanh−1 x), let t = tanh−1 x. Then

cosh2 t − sinh2 t = 1 (basic identity)

1 − tanh2 t = sech2 t (divide by cosh2 t)

1 − x2 = sech2(tanh−1 x) (because x = tanh t)

This gives the desired result:

d

dx
tanh−1 x = 1

sech2(tanh−1 x)
= 1

1 − x2

y = coth−1 x

y = coth−1 x

y = tanh−1 x

x

y

1−1

FIGURE 3 The functions y = tanh−1 x and
y = coth−1 x have disjoint domains.

The functions y = tanh−1 x and y = coth−1 x both have derivative 1/(1 − x2). Note,
however, that their domains are disjoint (Figure 3).

3.9 SUMMARY

• Derivative formulas:

d

dx
ex = ex,

d

dx
ln x = 1

x
,

d

dx
bx = (ln b)bx,

d

dx
logb x = 1

(ln b)x
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• Hyperbolic functions:

d

dx
sinh x = cosh x,

d

dx
cosh x = sinh x

d

dx
tanh x = sech2 x,

d

dx
coth x = − csch2 x

d

dx
sech x = − sech x tanh x,

d

dx
csch x = − csch x coth x

• Inverse hyperbolic functions:

d

dx
sinh−1 x = 1√

x2 + 1
,

d

dx
cosh−1 x = 1√

x2 − 1
(x > 1)

d

dx
tanh−1 x = 1

1 − x2
(|x| < 1),

d

dx
coth−1 x = 1

1 − x2
(|x| > 1)

d

dx
sech−1 x = −1

x
√

1 − x2
(0 < x < 1),

d

dx
csch−1 x = − 1

|x|√x2 + 1
(x �= 0)

3.9 EXERCISES

Preliminary Questions
1. What is the slope of the tangent line to y = 4x at x = 0?

2. What is the rate of change of y = ln x at x = 10?

3. What is b > 0 if the tangent line to y = bx at x = 0 has slope 2?

4. What is b if (logb x)′ = 1

3x
?

5. What are y(100) and y(101) for y = cosh x?

Exercises
In Exercises 1–20, find the derivative.

1. y = x ln x 2. y = t ln t − t

3. y = (ln x)2 4. y = ln(x5)

5. y = ln(9x2 − 8) 6. y = ln(t5t )

7. y = ln(sin t + 1) 8. y = x2 ln x

9. y = ln x

x
10. y = e(ln x)2

11. y = ln(ln x) 12. y = ln(cot x)

13. y = (
ln(ln x)

)3 14. y = ln
(
(ln x)3)

15. y = ln
(
(x + 1)(2x + 9)

)
16. y = ln

(
x + 1

x3 + 1

)

17. y = 11x 18. y = 74x−x2

19. y = 2x − 3−x

x
20. y = 16sin x

In Exercises 21–24, compute the derivative.

21. f ′(x), f (x) = log2 x 22. f ′(3), f (x) = log5 x

23.
d

dt
log3(sin t) 24.

d

dt
log10(t + 2t )

In Exercises 25–36, find an equation of the tangent line at the point
indicated.

25. f (x) = 6x , x = 2 26. y = (
√

2)x , x = 8

27. s(t) = 39t , t = 2 28. y = π5x−2, x = 1

29. f (x) = 5x2−2x , x = 1 30. s(t) = ln t , t = 5

31. s(t) = ln(8 − 4t), t = 1 32. f (x) = ln(x2), x = 4

33. R(z) = log5(2z2 + 7), z = 3 34. y = ln(sin x), x = π

4

35. f (w) = log2 w, w = 1
8

36. y = log2(1 + 4x−1), x = 4

In Exercises 37–44, find the derivative using logarithmic differentiation
as in Example 5.

37. y = (x + 5)(x + 9) 38. y = (3x + 5)(4x + 9)

39. y = (x − 1)(x − 12)(x + 7) 40. y = x(x + 1)3

(3x − 1)2

41. y = x(x2 + 1)√
x + 1

42. y = (2x + 1)(4x2)
√

x − 9

43. y =
√

x(x + 2)

(2x + 1)(3x + 2)

44. y = (x3 + 1)(x4 + 2)(x5 + 3)2
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In Exercises 45–50, find the derivative using either method of Ex-
ample 6.

45. f (x) = x3x 46. f (x) = xcos x

47. f (x) = xex
48. f (x) = xx2

49. f (x) = x3x
50. f (x) = exx

In Exercises 51–74, calculate the derivative.

51. y = sinh(9x) 52. y = sinh(x2)

53. y = cosh2(9 − 3t) 54. y = tanh(t2 + 1)

55. y = √
cosh x + 1 56. y = sinh x tanh x

57. y = coth t

1 + tanh t
58. y = (ln(cosh x))5

59. y = sinh(ln x) 60. y = ecoth x

61. y = tanh(ex) 62. y = sinh(cosh3 x)

63. y = sech(
√

x) 64. y = ln(coth x)

65. y = sech x coth x 66. y = xsinh x

67. y = cosh−1(3x) 68. y = tanh−1(ex + x2)

69. y = (sinh−1(x2))3 70. y = (csch−1 3x)4

71. y = ecosh−1 x 72. y = sinh−1(
√

x2 + 1)

73. y = tanh−1(ln t) 74. y = ln(tanh−1 x)

In Exercises 75–77, prove the formula.

75.
d

dx
(coth x) = − csch2 x 76.

d

dt
sinh−1 t = 1√

t2 + 1

77.
d

dt
cosh−1 t = 1√

t2 − 1
for t > 1

78. Use the formula (ln f (x))′ = f ′(x)/f (x) to show that ln x

and ln(2x) have the same derivative. Is there a simpler explanation of
this result?

79. According to one simplified model, the purchasing power of a dol-
lar in the year 2000 + t is equal to P(t) = 0.68(1.04)−t (in 1983 dol-
lars). Calculate the predicted rate of decline in purchasing power (in
cents per year) in the year 2020.

80. The energy E (in joules) radiated as seismic waves by an earth-
quake of Richter magnitude M satisfies log10 E = 4.8 + 1.5M .

(a) Show that when M increases by 1, the energy increases by a factor
of approximately 31.5.

(b) Calculate dE/dM .

81. Show that for any constants M , k, and a, the function

y(t) = 1

2
M

(
1 + tanh

(
k(t − a)

2

))

satisfies the logistic equation:
y′
y

= k
(

1 − y

M

)
.

82. Show that V (x) = 2 ln(tanh(x/2)) satisfies the Poisson-
Boltzmann equation V ′′(x) = sinh(V (x)), which is used to describe
electrostatic forces in certain molecules.

83. The Palermo Technical Impact Hazard Scale P is used to quantify
the risk associated with the impact of an asteroid colliding with the
earth:

P = log10

(
piE

0.8

0.03T

)

where pi is the probability of impact, T is the number of years until
impact, and E is the energy of impact (in megatons of TNT). The risk
is greater than a random event of similar magnitude if P > 0.

(a) Calculate dP/dT , assuming that pi = 2 × 10−5 and E = 2 mega-
tons.

(b) Use the derivative to estimate the change in P if T increases from 8
to 9 years.

Further Insights and Challenges
84. (a) Show that if f and g are differentiable, then

d

dx
ln(f (x)g(x)) = f ′(x)

f (x)
+ g′(x)

g(x)
4

(b) Give a new proof of the Product Rule by observing that the left-

hand side of Eq. (4) is equal to
(f (x)g(x))′
f (x)g(x)

.

85. Use the formula logb x = loga x

loga b
for a, b > 0 to verify the formula

d

dx
logb x = 1

(ln b)x

3.10 Implicit Differentiation
We have developed the basic techniques for calculating a derivative dy/dx when y is
given in terms of x by a formula—such as y = x3 + 1. But suppose that y is determined
instead by an equation such as

y4 + xy = x3 − x + 2 1
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In this case, we say that y is defined implicitly. How can we find the slope of the tangent

2 4

2

(1, 1)

−2

x

y

FIGURE 1 Graph of

y4 + xy = x3 − x + 2

line at a point on the graph (Figure 1)? Although it may be difficult or even impossible to
solve for y explicitly as a function of x, we can find dy/dx using the method of implicit
differentiation.

x

y

1

1

−1

−1

, 4
5P = ( )3

5

FIGURE 2 The tangent line to the unit circle
x2 + y2 = 1 at P has slope − 3

4 .

To illustrate, consider the equation of the unit circle (Figure 2):

x2 + y2 = 1

Compute dy/dx by taking the derivative of both sides of the equation:

d

dx

(
x2 + y2) = d

dx
(1)

d

dx

(
x2) + d

dx

(
y2) = 0

2x + d

dx

(
y2) = 0 2

How do we handle the term d
dx

(y2)? We use the Chain Rule. Think of y as a function
y = f (x). Then y2 = f (x)2 and by the Chain Rule,

d

dx
y2 = d

dx
f (x)2 = 2f (x)

df

dx
= 2y

dy

dx

Equation (2) becomes 2x + 2y
dy
dx

= 0, and we can solve for dy
dx

if y �= 0:

dy

dx
= −x

y
3

EXAMPLE 1 Use Eq. (3) to find the slope of the tangent line at the point P = ( 3
5 , 4

5

)
on the unit circle.

Solution Set x = 3
5 and y = 4

5 in Eq. (3):

dy

dx

∣∣∣∣
P

= −x

y
= −

3
5
4
5

= −3

4

In this particular example, we could have computed dy/dx directly, without implicit
differentiation. The upper semicircle is the graph of y = √

1 − x2 and

dy

dx
= d

dx

√
1 − x2 = 1

2

(
1 − x2)−1/2 d

dx

(
1 − x2) = − x√

1 − x2

This formula expresses dy/dx in terms of x alone, whereas Eq. (3) expresses dy/dx in
terms of both x and y, as is typical when we use implicit differentiation. The two formulas
agree because y = √

1 − x2.
Before presenting additional examples, let’s examine again how the factor dy/dx

arises when we differentiate an expression involving y with respect to x. It would not
Notice what happens if we insist on
applying the Chain Rule to d

dy
sin y. The

extra factor appears, but it is equal to 1:

d

dy
sin y = (cos y)

dy

dy
= cos y

appear if we were differentiating with respect to y. Thus,

d

dy
sin y = cos y but

d

dx
sin y = (cos y)

dy

dx

d

dy
y4 = 4y3 but

d

dx
y4 = 4y3 dy

dx
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Similarly, the Product Rule applied to xy yields

d

dx
(xy) = x

dy

dx
+ y

dx

dx
= x

dy

dx
+ y

The Quotient Rule applied to t2/y yields

d

dt

(
t2

y

)
= y d

dt
t2 − t2 dy

dt

y2
= 2ty − t2 dy

dt

y2

EXAMPLE 2 Find an equation of the tangent line at the point P = (1, 1) on the curve
(Figure 1)

y4 + xy = x3 − x + 2

Solution We break up the calculation into two steps.

Step 1. Differentiate both sides of the equation with respect to x.

d

dx
y4 + d

dx
(xy) = d

dx

(
x3 − x + 2

)
4y3 dy

dx
+

(
x

dy

dx
+ y

)
= 3x2 − 1 4

Step 2. Solve for
dy

dx
.

Move the terms involving dy/dx in Eq. (4) to the left and place the remaining terms
on the right:

4y3 dy

dx
+ x

dy

dx
= 3x2 − 1 − y

Then factor out dy/dx and divide:

(
4y3 + x

)dy

dx
= 3x2 − 1 − y

dy

dx
= 3x2 − 1 − y

4y3 + x
5

To find the derivative at P = (1, 1), apply Eq. (5) with x = 1 and y = 1:

dy

dx

∣∣∣∣
(1,1)

= 3 · 12 − 1 − 1

4 · 13 + 1
= 1

5

An equation of the tangent line is y − 1 = 1
5 (x − 1) or y = 1

5x + 4
5 .

CONCEPTUAL INSIGHT The graph of an equation does not always define a function be-
cause there may be more than one y-value for a given value of x. Implicit differentiation
works because the graph is generally made up of several pieces called branches, each of
which does define a function (a proof of this fact relies on the Implicit Function Theorem
from advanced calculus). For example, the branches of the unit circle x2 + y2 = 1 are
the graphs of the functions y = √

1 − x2 and y = −√
1 − x2. Similarly, the graph in

Figure 3 has an upper and a lower branch. In most examples, the branches are differen-
tiable except at certain exceptional points where the tangent line may be vertical.
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Upper branch Lower branch

x

y

x

y

x

y

FIGURE 3 Each branch of the graph of
y4 + xy = x3 − x + 2 defines a function
of x.

EXAMPLE 3 Find the slope of the tangent line at the point P = (1, 1) on the graph
of ex−y = 2x2 − y2.

Solution We follow the steps of the previous example, this time writing y′ for dy/dx:

−2 4

−2

2

4

x

y

P = (1, 1)

FIGURE 4 Graph of ex−y = 2x2 − y2.

d

dx
ex−y = d

dx
(2x2 − y2)

ex−y(1 − y′) = 4x − 2yy′ (Chain Rule applied to ex−y)

ex−y − ex−yy′ = 4x − 2yy′

(2y − ex−y)y′ = 4x − ex−y (place all y′-terms on left)

y′ = 4x − ex−y

2y − ex−y

The slope of the tangent line at P = (1, 1) is (Figure 4)

dy

dx

∣∣∣∣
(1,1)

= 4(1) − e1−1

2(1) − e1−1
= 4 − 1

2 − 1
= 3

EXAMPLE 4 Shortcut to Derivative at a Specific Point Calculate
dy

dt

∣∣∣∣
P

at the point

−1−2−3 1 2 3

−10

−5

5

10

15

P

t

y

FIGURE 5 Graph of y cos(y + t + t2) = t3.
The tangent line at P = (

0, 5π
2

)
has slope

−1.

P = (
0, 5π

2

)
on the curve (Figure 5):

y cos(y + t + t2) = t3

Solution As before, differentiate both sides of the equation (we write y′ for dy/dt):

d

dt
y cos(y + t + t2) = d

dt
t3

y′ cos(y + t + t2) − y sin(y + t + t2)(y′ + 1 + 2t) = 3t2 6

We could continue to solve for y′, but that is not necessary. Instead, we can substitute
t = 0, y = 5π

2 directly in Eq. (6) to obtain

y′ cos

(
5π

2
+ 0 + 02

)
−

(
5π

2

)
sin

(
5π

2
+ 0 + 02

)
(y′ + 1 + 0) = 0

0 −
(

5π

2

)
(1)(y′ + 1) = 0

This gives us y′ + 1 = 0 or y′ = −1.
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3.10 SUMMARY

• Implicit differentiation is used to compute dy/dx when x and y are related by an
equation.

Step 1. Take the derivative of both sides of the equation with respect to x.

Step 2. Solve for dy/dx by collecting the terms involving dy/dx on one side and the
remaining terms on the other side of the equation.

• Remember to include the factor dy/dx when differentiating expressions involving y

with respect to x. For instance,

d

dx
sin y = (cos y)

dy

dx

3.10 EXERCISES

Preliminary Questions
1. Which differentiation rule is used to show

d

dx
sin y = cos y

dy

dx
?

2. One of (a)–(c) is incorrect. Find and correct the mistake.

(a)
d

dy
sin(y2) = 2y cos(y2) (b)

d

dx
sin(x2) = 2x cos(x2)

(c)
d

dx
sin(y2) = 2y cos(y2)

3. On an exam, Jason was asked to differentiate the equation

x2 + 2xy + y3 = 7

Find the errors in Jason’s answer: 2x + 2xy′ + 3y2 = 0

4. Which of (a) or (b) is equal to
d

dx
(x sin t)?

(a) (x cos t)
dt

dx
(b) (x cos t)

dt

dx
+ sin t

Exercises
1. Show that if you differentiate both sides of x2 + 2y3 = 6, the re-

sult is 2x + 6y2 dy
dx

= 0. Then solve for dy/dx and evaluate it at the
point (2, 1).

2. Show that if you differentiate both sides of xy + 4x + 2y = 1, the
result is (x + 2)

dy
dx

+ y + 4 = 0. Then solve for dy/dx and evaluate it
at the point (1, −1).

In Exercises 3–8, differentiate the expression with respect to x, assum-
ing that y = f (x).

3. x2y3 4.
x3

y2
5. (x2 + y2)3/2

6. tan(xy) 7.
y

y + 1
8. ey/tx

In Exercises 9–26, calculate the derivative with respect to x.

9. 3y3 + x2 = 5 10. y4 − 2y = 4x3 + x

11. x2y + 2x3y = x + y 12. xy2 + x2y5 − x3 = 3

13. x3R5 = 1 14. x4 + z4 = 1

15.
y

x
+ x

y
= 2y 16.

√
x + s = 1

x
+ 1

s

17. y−2/3 + x3/2 = 1 18. x1/2 + y2/3 = −4y

19. y + 1

y
= x2 + x 20. sin(xt) = t

21. sin(x + y) = x + cos y 22. tan(x2y) = (x + y)3

23. xey = 2xy + y3 24. exy = sin(y2)

25. ln x + ln y = x − y 26. ln(x2 + y2) = x + 4

27. Show that x + yx−1 = 1 and y = x − x2 define the same curve
(except that (0, 0) is not a solution of the first equation) and that im-
plicit differentiation yields y′ = yx−1 − x and y′ = 1 − 2x. Explain
why these formulas produce the same values for the derivative.

28. Use the method of Example 4 to compute dy
dx

∣∣
P

at P = (2, 1) on

the curve y2x3 + y3x4 − 10x + y = 5.

In Exercises 29 and 30, find dy/dx at the given point.

29. (x + 2)2 − 6(2y + 3)2 = 3, (1, −1)

30. sin2(3y) = x + y,

(
2 − π

4
,
π

4

)
In Exercises 31–38, find an equation of the tangent line at the given
point.

31. xy + x2y2 = 5, (2, 1) 32. x2/3 + y2/3 = 2, (1, 1)

33. x2 + sin y = xy2 + 1, (1, 0)
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34. sin(x − y) = x cos
(
y + π

4

)
,

(
π
4 , π

4

)
35. 2x1/2 + 4y−1/2 = xy, (1, 4) 36. x2ey + yex = 4, (2, 0)

37. e2x−y = x2

y
, (2, 4)

38. y2ex2−16 − xy−1 = 2, (4, 2)

39. Find the points on the graph of y2 = x3 − 3x + 1 (Figure 6) where
the tangent line is horizontal.

(a) First show that 2yy′ = 3x2 − 3, where y′ = dy/dx.
(b) Do not solve for y′. Rather, set y′ = 0 and solve for x. This yields
two values of x where the slope may be zero.
(c) Show that the positive value of x does not correspond to a point on
the graph.
(d) The negative value corresponds to the two points on the graph
where the tangent line is horizontal. Find their coordinates.

2

−2

−2 −1 1 2
x

y

FIGURE 6 Graph of y2 = x3 − 3x + 1.

40. Show, by differentiating the equation, that if the tangent line at a
point (x, y)on the curvex2y − 2x + 8y = 2 is horizontal, thenxy = 1.
Then substitute y = x−1 in x2y − 2x + 8y = 2 to show that the tan-
gent line is horizontal at the points

(
2, 1

2

)
and

( − 4, − 1
4

)
.

41. Find all points on the graph of 3x2 + 4y2 + 3xy = 24 where the
tangent line is horizontal (Figure 7).

x

y

FIGURE 7 Graph of 3x2 + 4y2 + 3xy = 24.

42. Show that no point on the graph of x2 − 3xy + y2 = 1 has a hor-
izontal tangent line.

43. Figure 1 shows the graph of y4 + xy = x3 − x + 2. Find dy/dx

at the two points on the graph with x-coordinate 0 and find an equation
of the tangent line at (1, 1).

44. Folium of Descartes The curve x3 + y3 = 3xy (Figure 8) was
first discussed in 1638 by the French philosopher-mathematician René
Descartes, who called it the folium (meaning “leaf”). Descartes’s sci-
entific colleague Gilles de Roberval called it the jasmine flower. Both

men believed incorrectly that the leaf shape in the first quadrant was
repeated in each quadrant, giving the appearance of petals of a flower.
Find an equation of the tangent line at the point

( 2
3 , 4

3

)
.

2

−2

−2 2
x

y

FIGURE 8 Folium of Descartes: x3 + y3 = 3xy.

45. Find a point on the folium x3 + y3 = 3xy other than the origin at
which the tangent line is horizontal.

46. Plot x3 + y3 = 3xy + b for several values of b

and describe how the graph changes as b → 0. Then compute dy/dx

at the point (b1/3, 0). How does this value change as b → ∞? Do your
plots confirm this conclusion?

47. Find the x-coordinates of the points where the tangent line is hor-
izontal on the trident curve xy = x3 − 5x2 + 2x − 1, so named by
Isaac Newton in his treatise on curves published in 1710 (Figure 9).
Hint: 2x3 − 5x2 + 1 = (2x − 1)(x2 − 2x − 1).

20

−20

−2 86

4

2
x

y

FIGURE 9 Trident curve: xy = x3 − 5x2 + 2x − 1.

48. Find an equation of the tangent line at each of the four points on the
curve (x2 + y2 − 4x)2 = 2(x2 + y2) where x = 1. This curve (Figure
10) is an example of a limaçon of Pascal, named after the father of the
French philosopher Blaise Pascal, who first described it in 1650.

3

−3

531
x

y

FIGURE 10 Limaçon: (x2 + y2 − 4x)2 = 2(x2 + y2).

49. Find the derivative at the points where x = 1 on the folium
(x2 + y2)2 = 25

4 xy2. See Figure 11.
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2

−2

1
x

y

FIGURE 11 Folium curve: (x2 + y2)2 = 25

4
xy2

50. Plot (x2 + y2)2 = 12(x2 − y2) + 2 for −4 ≤ x ≤ 4, 4 ≤
y ≤ 4 using a computer algebra system. How many horizontal tangent
lines does the curve appear to have? Find the points where these occur.

Exercises 51–53: If the derivative dx/dy (instead of dy/dx = 0) exists
at a point and dx/dy = 0, then the tangent line at that point is vertical.

51. Calculate dx/dy for the equation y4 + 1 = y2 + x2 and find the
points on the graph where the tangent line is vertical.

52. Show that the tangent lines at x = 1 ± √
2 to the conchoid with

equation (x − 1)2(x2 + y2) = 2x2 are vertical (Figure 12).

2

1

−1

−2

21
x

y

FIGURE 12 Conchoid: (x − 1)2(x2 + y2) = 2x2.

53. Use a computer algebra system to plot y2 = x3 − 4x for
−4 ≤ x ≤ 4, 4 ≤ y ≤ 4. Show that if dx/dy = 0, then y = 0. Con-
clude that the tangent line is vertical at the points where the curve
intersects the x-axis. Does your plot confirm this conclusion?

54. Show that for all points P on the graph in Figure 13, the segments
OP and PR have equal length.

x

y

P

Tangent line

RO

FIGURE 13 Graph of x2 − y2 = a2.

In Exercises 55–58, use implicit differentiation to calculate higher
derivatives.

55. Consider the equation y3 − 3
2x2 = 1.

(a) Show that y′ = x/y2 and differentiate again to show that

y′′ = y2 − 2xyy′
y4

(b) Express y′′ in terms of x and y using part (a).

56. Use the method of the previous exercise to show that y′′ = −y−3

on the circle x2 + y2 = 1.

57. Calculate y′′ at the point (1, 1) on the curve xy2 + y − 2 = 0 by
the following steps:

(a) Find y′ by implicit differentiation and calculate y′ at the point
(1, 1).

(b) Differentiate the expression for y′ found in (a). Then compute y′′
at (1, 1) by substituting x = 1, y = 1, and the value of y′ found in (a).

58. Use the method of the previous exercise to compute y′′ at the point
(1, 1) on the curve x3 + y3 = 3x + y − 2.

In Exercises 59–61, x and y are functions of a variable t and use implicit
differentiation to relate dy/dt and dx/dt .

59. Differentiate xy = 1 with respect to t and derive the relation
dy

dt
= −y

x

dx

dt
.

60. Differentiate x3 + 3xy2 = 1 with respect to t and express dy/dt

in terms of dx/dt , as in Exercise 59.

61. Calculate dy/dt in terms of dx/dt .

(a) x3 − y3 = 1 (b) y4 + 2xy + x2 = 0

62. The volume V and pressure P of gas in a piston (which

vary in time t) satisfy PV 3/2 = C, where C is a constant. Prove that

dP/dt

dV /dt
= −3

2

P

V

The ratio of the derivatives is negative. Could you have predicted this
from the relation PV 3/2 = C?

Further Insights and Challenges
63. Show that if P lies on the intersection of the two curves x2 − y2 =
c and xy = d (c, d constants), then the tangents to the curves at P are
perpendicular.

64. The lemniscate curve (x2 + y2)2 = 4(x2 − y2) was discovered
by Jacob Bernoulli in 1694, who noted that it is “shaped like a figure 8,
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or a knot, or the bow of a ribbon.” Find the coordinates of the four
points at which the tangent line is horizontal (Figure 14).

1

−1

−1 1
x

y

FIGURE 14 Lemniscate curve: (x2 + y2)2 = 4(x2 − y2).

65. Divide the curve in Figure 15 into five branches, each of which is
the graph of a function. Sketch the branches.

2

−2

−2−4 4

2
x

y

FIGURE 15 Graph of y5 − y = x2y + x + 1.

3.11 Related Rates
In related-rate problems, the goal is to calculate an unknown rate of change in terms of
other rates of change that are known. The “sliding ladder problem” is a good example:
A ladder leans against a wall as the bottom is pulled away at constant velocity. How fast
does the top of the ladder move? What is interesting and perhaps surprising is that the top
and bottom travel at different speeds. Figure 1 shows this clearly: The bottom travels the

t = 0 t = 1 t = 2
x

y

FIGURE 1 Positions of a ladder at times
t = 0, 1, 2.

same distance over each time interval, but the top travels farther during the second time
interval than the first. In other words, the top is speeding up while the bottom moves at a
constant speed. In the next example, we use calculus to find the velocity of the ladder’s
top.

EXAMPLE 1 Sliding Ladder Problem A 5-meter ladder leans against a wall. The bot-
tom of the ladder is 1.5 meters from the wall at time t = 0 and slides away from the wall
at a rate of 0.8 m/s. Find the velocity of the top of the ladder at time t = 1.

Solution The first step in any related-rate problem is to choose variables for the relevant

h

x

5

FIGURE 2 The variables x and h.

quantities. Since we are considering how the top and bottom of the ladder change position,
we use variables (Figure 2):

• x = x(t) distance from the bottom of the ladder to the wall
• h = h(t) height of the ladder’s top

Both x and h are functions of time. The velocity of the bottom is dx/dt = 0.8 m/s. The
unknown velocity of the top is dh/dt , and the initial distance from the bottom to the wall
is x(0) = 1.5, so we can restate the problem as

Compute
dh

dt
at t = 1 given that

dx

dt
= 0.8 m/s and x(0) = 1.5 m

To solve this problem, we need an equation relating x and h (Figure 2). This is
provided by the Pythagorean Theorem:

x2 + h2 = 52

To calculate dh/dt , we differentiate both sides of this equation with respect to t :

d

dt
x2 + d

dt
h2 = d

dt
52

2x
dx

dt
+ 2h

dh

dt
= 0
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Therefore
dh

dt
= −x

h

dx

dt
, and because

dx

dt
= 0.8 m/s, the velocity of the top ist x h dh/dt

0 1.5 4.77 −0.25
1 2.3 4.44 −0.41
2 3.1 3.92 −0.63
3 3.9 3.13 −1.00

This table of values confirms that the top of
the ladder is speeding up.

dh

dt
= −0.8

x

h
m/s 1

To apply this formula, we must find x and h at time t = 1. Since the bottom slides away at
0.8 m/s and x(0) = 1.5, we have x(1) = 2.3 and h(1) = √

52 − 2.32 ≈ 4.44. We obtain
(note that the answer is negative because the ladder top is falling):

dh

dt

∣∣∣∣
t=1

= −0.8
x(1)

h(1)
≈ −0.8

2.3

4.44
≈ −0.41 m/s

CONCEPTUAL INSIGHT A puzzling feature of Eq. (1) is that the velocity dh/dt , which
is equal to −0.8x/h, becomes infinite as h → 0 (as the top of the ladder gets close
to the ground). Since this is impossible, our mathematical model must break down as
h → 0. In fact, the ladder’s top loses contact with the wall on the way down and from
that moment on, the formula is no longer valid.

In the next examples, we divide the solution into three steps that can be followed
when working the exercises.

EXAMPLE 2 Filling a Rectangular Tank Water pours into a fish tank at a rate of
0.3 m3/min. How fast is the water level rising if the base of the tank is a rectangle of
dimensions 2 × 3 meters?

Solution To solve a related-rate problem, it is useful to draw a diagram if possible.
Figure 3 illustrates our problem.h = water level

23

FIGURE 3 V = water volume at time t .

Step 1. Assign variables and restate the problem.
First, we must recognize that the rate at which water pours into the tank is the derivative
of water volume with respect to time. Therefore, let V be the volume and h the height
of the water at time t . ThenIt is helpful to choose variables that are

related to or traditionally associated with
the quantity represented, such as V for
volume, θ for an angle, h or y for height,
and r for radius.

dV

dt
= rate at which water is added to the tank

dh

dt
= rate at which the water level is rising

Now we can restate our problem in terms of derivatives:

Compute
dh

dt
given that

dV

dt
= 0.3 m3/min

Step 2. Find an equation relating the variables and differentiate.
We need a relation between V and h. We have V = 6h since the tank’s base has area
6 m2. Therefore,

dV

dt
= 6

dh

dt
⇒ dh

dt
= 1

6

dV

dt

Step 3. Use the data to find the unknown derivative.
Because dV /dt = 0.3, the water level rises at the rate

dh

dt
= 1

6

dV

dt
= 1

6
(0.3) = 0.05 m/min

Note that dh/dt has units of meters per minute because h and t are in meters and
minutes, respectively.
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The set-up in the next example is similar but more complicated because the water
tank has the shape of a circular cone. We use similar triangles to derive a relation between
the volume and height of the water. We also need the formula V = 1

3πhr2 for the volume
of a circular cone of height h and radius r .

EXAMPLE 3 Filling a Conical Tank Water pours into a conical tank of height
10 m and radius 4 m at a rate of 6 m3/min.

(a) At what rate is the water level rising when the level is 5 m high?

(b) As time passes, what happens to the rate at which the water level rises?

Solution

(a) Step 1. Assign variables and restate the problem.
As in the previous example, let V and h be the volume and height of the water in the
tank at time t . Our problem, in terms of derivatives, is

Compute
dh

dt
at h = 5 given that

dV

dt
= 6 m3/min

Step 2. Find an equation relating the variables and differentiate.
When the water level is h, the volume of water in the cone is V = 1

3πhr2, where r is
the radius of the cone at height h, but we cannot use this relation unless we eliminate
the variable r . Using similar triangles in Figure 4, we see that

h

r

10

4

FIGURE 4 By similar triangles,

r

h
= 4

10 r

h
= 4

10

or

r = 0.4 h

Therefore,CAUTION A common mistake is substituting
the particular value h = 5 in Eq. (2). Do
not set h = 5 until the end of the problem,
after the derivatives have been computed.
This applies to all related-rate problems.

V = 1

3
πh(0.4 h)2 =

(
0.16

3

)
πh3

dV

dt
= (0.16)πh2 dh

dt
2

Step 3. Use the data to find the unknown derivative.

We are given that
dV

dt
= 6. Using this in Eq. (2), we obtain

(0.16)πh2 dh

dt
= 6

dh

dt
= 6

(0.16)πh2
≈ 12

h2
3

When h = 5, the level is rising at a rate of
dh

dt
≈ 12/52 = 0.48 m/min.

(b) Eq. (3) shows that dh/dt is inversely proportional to h2. As h increases, the water
level rises more slowly. This is reasonable if you consider that a thin slice of the cone of
width �h has more volume when h is large, so more water is needed to raise the level
when h is large (Figure 5).

�h

�h

FIGURE 5 When h is larger, it takes more
water to raise the level by an amount �h.
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EXAMPLE 4 Tracking a Rocket A spy uses a telescope to track a rocket launched
vertically from a launching pad 6 km away, as in Figure 6. At a certain moment, the
angle θ between the telescope and the ground is equal to π

3 and is changing at a rate of
0.9 rad/min. What is the rocket’s velocity at that moment?

Solution

Step 1. Assign variables and restate the problem.
Let y be the height of the rocket at time t . Our goal is to compute the rocket’s velocity

6 km

θ

y

FIGURE 6 Tracking a rocket through a
telescope.

dy/dt when θ = π
3 so we can restate the problem as follows:

Compute
dy

dt

∣∣∣∣
θ= π

3

given that
dθ

dt
= 0.9 rad/min when θ = π

3

Step 2. Find an equation relating the variables and differentiate.
We need a relation between θ and y. As we see in Figure 6,

tan θ = y

6

Now differentiate with respect to time:

sec2 θ
dθ

dt
= 1

6

dy

dt

dy

dt
= 6

cos2 θ

dθ

dt
4

Step 3. Use the given data to find the unknown derivative.
At the given moment, θ = π

3 and dθ/dt = 0.9, so Eq. (4) yields

dy

dt
= 6

cos2(π/3)
(0.9) = 6

(0.5)2
(0.9) = 21.6 km/min

The rocket’s velocity at this moment is 21.6 km/min, or approximately 1296 km/h.

EXAMPLE 5 Farmer John’s tractor, traveling at 3 m/s, pulls a rope attached to a bale
of hay through a pulley. With dimensions as indicated in Figure 7, how fast is the bale
rising when the tractor is 5 m from the bale?

x

h

6 − h4.5 m
6 m

Hay

3 m/s

FIGURE 7

Solution

Step 1. Assign variables and restate the problem. Let x be the horizontal distance from
the tractor to the bale of hay, and let h be the height above ground of the top of the bale.
The tractor is 5 m from the bale when x = 5, so we can restate the problem as follows:

Compute
dh

dt

∣∣∣∣
x=5

given that
dx

dt
= 3 m/s

Step 2. Find an equation relating the variables and differentiate.
Let L be the total length of the rope. From Figure 7 (using the Pythagorean Theorem),

L =
√

x2 + 4.52 + (6 − h)

Although the length L is not given, it is a constant, and therefore dL/dt = 0. Thus,

dL

dt
= d

dt

(√
x2 + 4.52 + (6 − h)

)
= x dx

dt√
x2 + 4.52

− dh

dt
= 0 5
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Step 3. Use the given data to find the unknown derivative.
Apply Eq. (5) with x = 5 and dx/dt = 3. The bale is rising at the rate

dh

dt
= x dx

dt√
x2 + 4.52

= (5)(3)√
52 + 4.52

≈ 2.23 m/s

3.11 SUMMARY

• Related-rate problems present us with situations in which two or more variables are
related and we are asked to compute the rate of change of one of the variables in terms of
the rates of change of the other variable(s).
• Draw a diagram if possible. It may also be useful to break the solution into three steps:

Step 1. Assign variables and restate the problem.

Step 2. Find an equation that relates the variables and differentiate.

This gives us an equation relating the known and unknown derivatives. Remember not to
substitute values for the variables until after you have computed all derivatives.

Step 3. Use the given data to find the unknown derivative.

• The two facts from geometry arise often in related-rate problems: Pythagorean Theorem
and the Theorem of Similar Triangles (ratios of corresponding sides are equal).

3.11 EXERCISES

Preliminary Questions
1. Assign variables and restate the following problem in terms of

known and unknown derivatives (but do not solve it): How fast is the
volume of a cube increasing if its side increases at a rate of 0.5 cm/s?

2. What is the relation between dV /dt and dr/dt if V = ( 4
3

)
πr3?

In Questions 3 and 4, water pours into a cylindrical glass of radius
4 cm. Let V and h denote the volume and water level respectively, at
time t .

3. Restate this question in terms of dV /dt and dh/dt : How fast is
the water level rising if water pours in at a rate of 2 cm3/min?

4. Restate this question in terms of dV /dt and dh/dt : At what rate
is water pouring in if the water level rises at a rate of 1 cm/min?

Exercises
In Exercises 1 and 2, consider a rectangular bathtub whose base is
18 ft2.

1. How fast is the water level rising if water is filling the tub at a rate
of 0.7 ft3/min?

2. At what rate is water pouring into the tub if the water level rises at
a rate of 0.8 ft/min?

3. The radius of a circular oil slick expands at a rate of 2 m/min.

(a) How fast is the area of the oil slick increasing when the radius is
25 m?

(b) If the radius is 0 at time t = 0, how fast is the area increasing after
3 min?

4. At what rate is the diagonal of a cube increasing if its edges are
increasing at a rate of 2 cm/s?

In Exercises 5–8, assume that the radius r of a sphere is expanding
at a rate of 30 cm/min. The volume of a sphere is V = 4

3πr3 and its

surface area is 4πr2. Determine the given rate.

5. Volume with respect to time when r = 15 cm.

6. Volume with respect to time at t = 2 min, assuming that r = 0 at
t = 0.

7. Surface area with respect to time when r = 40 cm.

8. Surface area with respect to time at t = 2 min, assuming that r = 10
at t = 0.
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In Exercises 9–12, refer to a 5-meter ladder sliding down a wall, as in
Figures 1 and 2. The variable h is the height of the ladder’s top at time
t , and x is the distance from the wall to the ladder’s bottom.

9. Assume the bottom slides away from the wall at a rate of 0.8 m/s.
Find the velocity of the top of the ladder at t = 2 s if the bottom is 1.5 m
from the wall at t = 0 s.

10. Suppose that the top is sliding down the wall at a rate of 1.2 m/s.
Calculate dx/dt when h = 3 m.

11. Suppose that h(0) = 4 and the top slides down the wall at a rate of
1.2 m/s. Calculate x and dx/dt at t = 2 s.

12. What is the relation between h and x at the moment when the top
and bottom of the ladder move at the same speed?

13. A conical tank has height 3 m and radius 2 m at the top. Water flows
in at a rate of 2 m3/min. How fast is the water level rising when it is
2 m?

14. Follow the same set-up as Exercise 13, but assume that the water
level is rising at a rate of 0.3 m/min when it is 2 m. At what rate is water
flowing in?

15. The radius r and height h of a circular cone change at a rate of
2 cm/s. How fast is the volume of the cone increasing when r = 10 and
h = 20?

16. A road perpendicular to a highway leads to a farmhouse located
2 km away (Figure 8). An automobile travels past the farmhouse at
a speed of 80 km/h. How fast is the distance between the automobile
and the farmhouse increasing when the automobile is 6 km past the
intersection of the highway and the road?

80 km/h

Automobile

2

FIGURE 8

17. A man of height 1.8 meters walks away from a 5-meter lamppost
at a speed of 1.2 m/s (Figure 9). Find the rate at which his shadow is
increasing in length.

x y

5

FIGURE 9

18. As Claudia walks away from a 264-cm lamppost, the tip of her
shadow moves twice as fast as she does. What is Claudia’s height?

19. At a given moment, a plane passes directly above a radar station at
an altitude of 6 km.

(a) The plane’s speed is 800 km/h. How fast is the distance between
the plane and the station changing half an hour later?

(b) How fast is the distance between the plane and the station changing
when the plane passes directly above the station?

20. In the setting of Exercise 19, let θ be the angle that the line through
the radar station and the plane makes with the horizontal. How fast is
θ changing 12 min after the plane passes over the radar station?

21. A hot air balloon rising vertically is tracked by an observer located
4 km from the lift-off point. At a certain moment, the angle between
the observer’s line of sight and the horizontal is π

5 , and it is changing
at a rate of 0.2 rad/min. How fast is the balloon rising at this moment?

22. Alaser pointer is placed on a platform that rotates at a rate of 20 rev-
olutions per minute. The beam hits a wall 8 m away, producing a dot of
light that moves horizontally along the wall. Let θ be the angle between
the beam and the line through the searchlight perpendicular to the wall
(Figure 10). How fast is this dot moving when θ = π

6 ?

8 mθ

Wall

Laser

FIGURE 10

23. A rocket travels vertically at a speed of 1,200 km/h. The rocket
is tracked through a telescope by an observer located 16 km from the
launching pad. Find the rate at which the angle between the telescope
and the ground is increasing 3 min after lift-off.

24. Using a telescope, you track a rocket that was launched 4 km away,
recording the angle θ between the telescope and the ground at half-
second intervals. Estimate the velocity of the rocket if θ(10) = 0.205
and θ(10.5) = 0.225.

25. A police car traveling south toward Sioux Falls at 160 km/h pur-
sues a truck traveling east away from Sioux Falls, Iowa, at 140 km/h
(Figure 11). At time t = 0, the police car is 20 km north and the truck
is 30 km east of Sioux Falls. Calculate the rate at which the distance
between the vehicles is changing:

(a) At time t = 0 (b) 5 minutes later

160 km/h

140 km/h

Sioux Falls

x

y

FIGURE 11
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26. A car travels down a highway at 25 m/s. An observer stands 150 m
from the highway.

(a) How fast is the distance from the observer to the car increasing
when the car passes in front of the observer? Explain your answer
without making any calculations.

(b) How fast is the distance increasing 20 s later?

27. In the setting of Example 5, at a certain moment, the tractor’s speed
is 3 m/s and the bale is rising at 2 m/s. How far is the tractor from the
bale at this moment?

28. Placido pulls a rope attached to a wagon through a pulley at a rate
of q m/s. With dimensions as in Figure 12:

(a) Find a formula for the speed of the wagon in terms of q and the
variable x in the figure.

(b) Find the speed of the wagon when x = 0.6 if q = 0.5 m/s.

x

0.6 m

3 m

FIGURE 12

29. Julian is jogging around a circular track of radius 50 m. In a coordi-
nate system with origin at the center of the track, Julian’s x-coordinate
is changing at a rate of −1.25 m/s when his coordinates are (40, 30).
Find dy/dt at this moment.

30. A particle moves counterclockwise around the ellipse with equa-
tion 9x2 + 16y2 = 25 (Figure 13).

(a) In which of the four quadrants is dx/dt > 0? Explain.

(b) Find a relation between dx/dt and dy/dt .

(c) At what rate is the x-coordinate changing when the particle passes
the point (1, 1) if its y-coordinate is increasing at a rate of 6 m/s?

(d) Find dy/dt when the particle is at the top and bottom of the ellipse.

−

−

5
4

5
4

5
3

5
3

x

y

FIGURE 13

In Exercises 31 and 32, assume that the pressure P (in kilopascals)
and volume V (in cubic centimeters) of an expanding gas are related
by PV b = C, where b and C are constants (this holds in an adiabatic
expansion, without heat gain or loss).

31. Find dP/dt if b = 1.2, P = 8 kPa, V = 100 cm2, and dV /dt =
20 cm3/min.

32. Find b if P = 25 kPa, dP/dt = 12 kPa/min, V = 100 cm2, and
dV /dt = 20 cm3/min.

33. The base x of the right triangle in Figure 14 increases at a rate of
5 cm/s, while the height remains constant at h = 20. How fast is the
angle θ changing when x = 20?

x
θ

20

FIGURE 14

34. Two parallel paths 15 m apart run east-west through the woods.
Brooke jogs east on one path at 10 km/h, while Jamail walks west on
the other path at 6 km/h. If they pass each other at time t = 0, how
far apart are they 3 s later, and how fast is the distance between them
changing at that moment?

35. A particle travels along a curve y = f (x) as in Figure 15. Let L(t)

be the particle’s distance from the origin.

(a) Show that
dL

dt
=

(
x + f (x)f ′(x)√

x2 + f (x)2

)
dx

dt
if the particle’s location

at time t is P = (x, f (x)).

(b) Calculate L′(t) when x = 1 and x = 2 if f (x) =
√

3x2 − 8x + 9
and dx/dt = 4.

x

y

y = f (x)

O

P

θ

1 2

2

FIGURE 15

36. Let θ be the angle in Figure 15, where P = (x, f (x)). In the setting
of the previous exercise, show that

dθ

dt
=

(
xf ′(x) − f (x)

x2 + f (x)2

)
dx

dt

Hint: Differentiate tan θ = f (x)/x and observe that cos θ =
x/

√
x2 + f (x)2.

Exercises 37 and 38 refer to the baseball diamond (a square of side
90 ft) in Figure 16.

37. A baseball player runs from home plate toward first base at 20 ft/s.
How fast is the player’s distance from second base changing when the
player is halfway to first base?
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38. Player 1 runs to first base at a speed of 20 ft/s while Player 2 runs
from second base to third base at a speed of 15 ft/s. Let s be the distance
between the two players. How fast is s changing when Player 1 is 30 ft
from home plate and Player 2 is 60 ft from second base?

20 ft/s

15 ft/s

s

90 ft

First base

Second base

Home plate

FIGURE 16

39. The conical watering pail in Figure 17 has a grid of holes. Water
flows out through the holes at a rate of kA m3/min, where k is a constant

and A is the surface area of the part of the cone in contact with the water.

This surface area is A = πr
√

h2 + r2 and the volume is V = 1
3πr2h.

Calculate the rate dh/dt at which the water level changes at h = 0.3 m,
assuming that k = 0.25 m.

0.45 m

0.15 m

h

r

FIGURE 17

Further Insights and Challenges
40. A bowl contains water that evaporates at a rate propor-
tional to the surface area of water exposed to the air (Figure 18). Let
A(h) be the cross-sectional area of the bowl at height h.

(a) Explain why V (h + �h) − V (h) ≈ A(h)�h if �h is small.

(b) Use (a) to argue that
dV

dh
= A(h).

(c) Show that the water level h decreases at a constant rate.

V(h) = volume up 
            to height h
Cross-sectional
area A(h)

h

�h

V(h + �h) − V(h)

FIGURE 18

41. A roller coaster has the shape of the graph in Figure 19. Show that
when the roller coaster passes the point (x, f (x)), the vertical velocity
of the roller coaster is equal to f ′(x) times its horizontal velocity.

(x, f (x))

FIGURE 19 Graph of f (x) as a roller coaster track.

42. Two trains leave a station at t = 0 and travel with constant velocity
v along straight tracks that make an angle θ .

(a) Show that the trains are separating from each other at a rate
v
√

2 − 2 cos θ .

(b) What does this formula give for θ = π?

43. As the wheel of radius r cm in Figure 20 rotates, the rod of length
L attached at point P drives a piston back and forth in a straight line.
Let x be the distance from the origin to point Q at the end of the rod,
as shown in the figure.

(a) Use the Pythagorean Theorem to show that

L2 = (x − r cos θ)2 + r2 sin2 θ 6

(b) Differentiate Eq. (6) with respect to t to prove that

2(x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
= 0

(c) Calculate the speed of the piston when θ = π
2 , assuming that

r = 10 cm, L = 30 cm, and the wheel rotates at 4 revolutions per
minute.

Piston moves
back and forth

x

L
θP

Q

r

FIGURE 20

44. A spectator seated 300 m away from the center of a circular track
of radius 100 m watches an athlete run laps at a speed of 5 m/s. How
fast is the distance between the spectator and athlete changing when
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the runner is approaching the spectator and the distance between them
is 250 m? Hint: The diagram for this problem is similar to Figure 20,
with r = 100 and x = 300.

45. A cylindrical tank of radius R and length L lying horizontally as
in Figure 21 is filled with oil to height h.

(a) Show that the volume V (h) of oil in the tank is

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)

(b) Show that dV
dh

= 2L
√

h(2R − h).
(c) Suppose that R = 1.5 m and L = 10 m and that the tank is filled
at a constant rate of 0.6 m3/min. How fast is the height h increasing
when h = 0.5?

h

L

R

FIGURE 21 Oil in the tank has level h.

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function f (x) whose graph is shown in
Figure 1.

1. Compute the average rate of change of f (x) over [0, 2]. What is
the graphical interpretation of this average rate?

2. For which value of h is
f (0.7 + h) − f (0.7)

h
equal to the slope

of the secant line between the points where x = 0.7 and x = 1.1?

3. Estimate
f (0.7 + h) − f (0.7)

h
for h = 0.3. Is this number larger

or smaller than f ′(0.7)?

4. Estimate f ′(0.7) and f ′(1.1).

y

2.01.51.00.5
x

7
6
5
4
3
2
1

FIGURE 1

In Exercises 5–8, compute f ′(a) using the limit definition and find an
equation of the tangent line to the graph of f (x) at x = a.

5. f (x) = x2 − x, a = 1 6. f (x) = 5 − 3x, a = 2

7. f (x) = x−1, a = 4 8. f (x) = x3, a = −2

In Exercises 9–12, compute dy/dx using the limit definition.

9. y = 4 − x2 10. y = √
2x + 1

11. y = 1

2 − x
12. y = 1

(x − 1)2

In Exercises 13–16, express the limit as a derivative.

13. lim
h→0

√
1 + h − 1

h
14. lim

x→−1

x3 + 1

x + 1

15. lim
t→π

sin t cos t

t − π
16. lim

θ→π

cos θ − sin θ + 1

θ − π

17. Find f (4) and f ′(4) if the tangent line to the graph of f (x) at
x = 4 has equation y = 3x − 14.

18. Each graph in Figure 2 shows the graph of a function f (x) and
its derivative f ′(x). Determine which is the function and which is the
derivative.

y

x

(I)

y

x

(II)

y

x

(III)

A

B

A

B

A

B

FIGURE 2 Graph of f (x).

19. Is (A), (B), or (C) the graph of the derivative of the function f (x)

shown in Figure 3?

(A) (B)

y

(C)

y

x
−2 2−1 1

x
−2 2−1 1

y

y = f (x)

x
−2 2−1 1

y

x
−2 2−1 1

FIGURE 3
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20. Let N(t) be the percentage of a state population infected with a
flu virus on week t of an epidemic. What percentage is likely to be
infected in week 4 if N(3) = 8 and N ′(3) = 1.2?

21. Agirl’s height h(t) (in centimeters) is measured at time t (in years)
for 0 ≤ t ≤ 14:

52, 75.1, 87.5, 96.7, 104.5, 111.8, 118.7, 125.2,
131.5, 137.5, 143.3, 149.2, 155.3, 160.8, 164.7

(a) What is the average growth rate over the 14-year period?

(b) Is the average growth rate larger over the first half or the second
half of this period?

(c) Estimate h′(t) (in centimeters per year) for t = 3, 8.

22. A planet’s period P (number of days to complete one revolution
around the sun) is approximately 0.199A3/2, where A is the average
distance (in millions of kilometers) from the planet to the sun.

(a) Calculate P and dP/dA for Earth using the value A = 150.

(b) Estimate the increase in P if A is increased to 152.

In Exercises 23 and 24, use the following table of values for the number
A(t) of automobiles (in millions) manufactured in the United States in
year t .

t 1970 1971 1972 1973 1974 1975 1976

A(t) 6.55 8.58 8.83 9.67 7.32 6.72 8.50

23. What is the interpretation of A′(t)? Estimate A′(1971). Does
A′(1974) appear to be positive or negative?

24. Given the data, which of (A)–(C) in Figure 4 could be the graph
of the derivative A′(t)? Explain.

(A) (B) (C)

−2

'75'73'71−1

1
2

−2

'75'73'71−1

1
2

−2

'75'73'71−1

1
2

FIGURE 4

25. Which of the following is equal to
d

dx
2x?

(a) 2x (b) (ln 2)2x (c) x2x−1 (d)
1

ln 2
2x

26. Describe the graphical interpretation of the relation
g′(x) = 1/f ′(g(x)), where f (x) and g(x) are inverses of each other.

27. Show that if f (x) is a function satisfying f ′(x) = f (x)2, then its
inverse g(x) satisfies g′(x) = x−2.

28. Find g′(8), where g(x) is the inverse of a differentiable function
f (x) such that f (−1) = 8 and f ′(−1) = 12.

In Exercises 29–80, compute the derivative.

29. y = 3x5 − 7x2 + 4 30. y = 4x−3/2

31. y = t−7.3 32. y = 4x2 − x−2

33. y = x + 1

x2 + 1
34. y = 3t − 2

4t − 9

35. y = (x4 − 9x)6 36. y = (3t2 + 20t−3)6

37. y = (2 + 9x2)3/2 38. y = (x + 1)3(x + 4)4

39. y = z√
1 − z

40. y =
(

1 + 1

x

)3

41. y = x4 + √
x

x2
42. y = 1

(1 − x)
√

2 − x

43. y =
√

x +
√

x + √
x

44. h(z) = (
z + (z + 1)1/2)−3/2

45. y = tan(t−3) 46. y = 4 cos(2 − 3x)

47. y = sin(2x) cos2 x 48. y = sin

(
4

θ

)

49. y = t

1 + sec t
50. y = z csc(9z + 1)

51. y = 8

1 + cot θ
52. y = tan(cos x)

53. y = tan(
√

1 + csc θ) 54. y = cos(cos(cos(θ)))

55. f (x) = 9e−4x 56. f (x) = e−x

x

57. g(t) = e4t−t2
58. g (t) = t2e1/t

59. f (x) = ln(4x2 + 1) 60. f (x) = ln(ex − 4x)

61. G(s) = (ln(s))2 62. G(s) = ln(s2)

63. f (θ) = ln(sin θ) 64. f (θ) = sin(ln θ)

65. h(z) = sec(z + ln z) 66. f (x) = esin2x

67. f (x) = 7−2x 68. h (y) = 1 + ey

1 − ey

69. g(x) = tan−1(ln x) 70. G(s) = cos−1(s−1)

71. f (x) = ln(csc−1 x) 72. f (x) = esec−1 x

73. R(s) = sln s 74. f (x) = (cos2 x)cos x

75. G(t) = (sin2 t)t 76. h(t) = t (t
t )

77. g(t) = sinh(t2) 78. h(y) = y tanh(4y)

79. g(x) = tanh−1(ex) 80. g(t) =
√

t2 − 1 sinh−1 t

81. For which values of α is f (x) = |x|α differentiable at x = 0?

82. Find f ′(2) if f (g(x)) = ex2
, g(1) = 2, and g′(1) = 4.

In Exercises 83 and 84, let f (x) = xe−x .

83. Show that f (x) has an inverse on [1, ∞). Let g(x) be this inverse.
Find the domain and range of g(x) and compute g′(2e−2).

84. Show that f (x) = c has two solutions if 0 < c < e−1.
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In Exercises 85–90, use the following table of values to calculate the
derivative of the given function at x = 2.

x f (x) g(x) f ′(x) g′(x)

2 5 4 −3 9

4 3 2 −2 3

85. S(x) = 3f (x) − 2g(x) 86. H(x) = f (x)g(x)

87. R(x) = f (x)

g(x)
88. G(x) = f (g(x))

89. F(x) = f (g(2x)) 90. K(x) = f (x2)

91. Find the points on the graph of f (x) = x3 − 3x2 + x + 4 where
the tangent line has slope 10.

92. Find the points on the graph of x2/3 + y2/3 = 1 where the tangent
line has slope 1.

93. Find a such that the tangent lines y = x3 − 2x2 + x + 1 at x = a

and x = a + 1 are parallel.

94. Use the table to compute the average rate of change of
Candidate A’s percentage of votes over the intervals from day 20 to
day 15, day 15 to day 10, and day 10 to day 5. If this trend continues
over the last 5 days before the election, will Candidate A win?

Days Before Election 20 15 10 5

Candidate A 44.8% 46.8% 48.3% 49.3%

Candidate B 55.2% 53.2% 51.7% 50.7%

In Exercises 95–100, calculate y′′.
95. y = 12x3 − 5x2 + 3x 96. y = x−2/5

97. y = √
2x + 3 98. y = 4x

x + 1

99. y = tan(x2) 100. y = sin2(4x + 9)

In Exercises 101–106, compute
dy

dx
.

101. x3 − y3 = 4 102. 4x2 − 9y2 = 36

103. y = xy2 + 2x2 104.
y

x
= x + y

105. y = sin(x + y) 106. tan(x + y) = xy

107. In Figure 5, label the graphs f , f ′, and f ′′.

y

x

y

x

FIGURE 5

108. Let f (x) = x2 sin(x−1) for x �= 0 and f (0) = 0. Show that
f ′(x) exists for all x (including x = 0) but that f ′(x) is not contin-
uous at x = 0 (Figure 6).

y

x

−0.05

0.05

−0.5 0.5

FIGURE 6 Graph of f (x) = x2 sin(x−1).

In Exercises 109–114, use logarithmic differentiation to find the deriva-
tive.

109. y = (x + 1)3

(4x − 2)2
110. y = (x + 1)(x + 2)2

(x + 3)(x + 4)

111. y = e(x−1)2
e(x−3)2

112. y = ex sin−1 x

ln x

113. y = e3x(x − 2)2

(x + 1)2
114. y = x

√
x(xln x)

Exercises 115–117: Let q be the number of units of a product (cell
phones, barrels of oil, etc.) that can be sold at the price p. The price
elasticity of demand E is defined as the percentage rate of change of
q with respect to p. In terms of derivatives,

E = p

q

dq

dp
= lim

�p→0

(100�q)/q

(100�p)/p

115. Show that the total revenue R = pq satisfies
dR

dp
= q(1 + E).

116. Acommercial bakery can sell q chocolate cakes per week
at price $p, where q = 50p(10 − p) for 5 < p < 10.

(a) Show that E(p) = 2p − 10

p − 10
.

(b) Show, by computing E(8), that if p = $8, then a 1% increase in
price reduces demand by approximately 3%.

117. The monthly demand (in thousands) for flights between Chicago
and St. Louis at the price p is q = 40 − 0.2p. Calculate the price elas-
ticity of demand when p = $150 and estimate the percentage increase
in number of additional passengers if the ticket price is lowered by 1%.

118. How fast does the water level rise in the tank in Figure 7 when
the water level is h = 4 m and water pours in at 20 m3/min?

24 m
10 m

8 m

36 m

FIGURE 7
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119. The minute hand of a clock is 8 cm long, and the hour hand is 5 cm
long. How fast is the distance between the tips of the hands changing
at 3 o’clock?

120. Chloe and Bao are in motorboats at the center of a lake. At time
t = 0, Chloe begins traveling south at a speed of 50 km/h. One minute
later, Bao takes off, heading east at a speed of 40 km/h. At what rate is
the distance between them increasing at t = 12 min?

121. A bead slides down the curve xy = 10. Find the bead’s hori-
zontal velocity at time t = 2 s if its height at time t seconds is y =
400 − 16t2 cm.

122. In Figure 8, x is increasing at 2 cm/s, y is increasing at 3 cm/s,
and θ is decreasing such that the area of the triangle has the constant
value 4 cm2.

(a) How fast is θ decreasing when x = 4, y = 4?

(b) How fast is the distance between P and Q changing when x = 4,
y = 4?

P

Q
θ

y

x

FIGURE 8

123. A light moving at 0.8 m/s approaches a man standing 4 m from a
wall (Figure 9). The light is 1 m above the ground. How fast is the tip
P of the man’s shadow moving when the light is 7 m from the wall?

1.8 m
1 m

4 m 0.8 m/s

P

FIGURE 9



CHAPTER 3
DIFFERENTIATION
PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided.

1. Let f (x) = |x − 3|, then f ′(1) is
(A) −1
(B) 0
(C) 1
(D) 2
(E) nonexistent

2. lim
h→0

(10 + h)3 − 1000

h
=

(A) 0
(B) 1
(C) 30
(D) 300
(E) 3000

3. lim
x→8

3
√

x − 2

x − 8
is

(A) 0
(B) 1

12

(C) 1
3

(D) 4
3

(E) nonexistent

4. lim
h→0

cos
(

π
3 + h

) − 1
2

h
=

(A) −1

(B) −
√

3
2

(C) − 1
2

(D) 1
2

(E)
√

3
2

C Use the following table to answer items 5 through 10.

x F(x) F ′(x) F ′′(x) G(x) G′(x) G′′(x)

3 5 4 −3 2 7 −2
5 8 6 10 −6 −4 11

5. If H(x) = (F (x))2, then H ′(3) =
(A) 0
(B) 10
(C) 25
(D) 40
(E) 100

6. If H(x) = F(x)

G(x)
, then H ′(3) =

(A) − 27
4

(B) − 3
2

(C) 0
(D) 4

7

(E) 43
4

7. If H(x) = F(x) · G(x), then H ′′(3) =
(A) −31
(B) −16
(C) 6
(D) 40
(E) 43

8. If H(x) = G(F(x)), then H ′(3) =
(A) −16
(B) −6
(C) −4
(D) 28
(E) 43

AP3-1
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9. If H(x) = G(F(x)), then H ′′(3) =
(A) −33

(B) 0

(C) 6

(D) 56

(E) 188

10. If H(x) = ln(F (x)), then H ′(3) =
(A) 0.2

(B) 0.25

(C) 0.333

(D) 0.621

(E) 0.8

11. C If f and f −1 are both differentiable for all x, with
f (3) = 5 and f ′(3) = 7, then which of the following must
be a line tangent to the graph of f −1?

(A) y = 5 + 7(x − 3)

(B) y = 1
5 + 1

7 (x − 3)

(C) y = 3 + 7(x − 5)

(D) y = 1
3 + 1

7 (x − 5)

(E) y = 3 + 1
7 (x − 5)

12. If y = ex2
, then

d2y

dx2
=

(A) (2x)(x2 − 1)ex2−2

(B) ex2

(C) 2xex2

(D) (2 + 2x)ex2

(E) (2 + 4x2)ex2

13. If f (x) = x sin−1(x), then f ′(x) =
(A)

x√
1 − x2

(B) sin−1(x) − x sin−2(x)

(C)
x√

1 − x2
+ sin−1(x)

(D)
x√

1 − x2
− sin−1(x)

(E)
1√

1 − x2

14. If y = xx , then
dy

dx
=

(A) x · xx−1

(B) xx ln(x)

(C) xx(1 + ln(x))

(D) x ln(x)

(E) 1 + ln(x)

15. If y − x2y2 = 6, then
dy

dx
=

(A)
2xy2

1 − 2x2y

(B)
1 − 2xy2

2x2y

(C)
2xy2

2x2y + 1

(D)
5

4xy

(E)
6 + 2xy2

1 + 2x2y

16. If x2 + y2 = 6, then
d2y

dx2
=

(A)
−6

y3

(B) − (x2 + y2)

y3

(C)
6

y3

(D)
6

y2

(E)
x − y

y2

17. C At the moment that a rectangle is 8 feet long and
3 feet wide, its length is increasing at 0.5 feet/minute and
its width is decreasing at 1.5 feet/minute. The area is

(A) decreasing at 10.5 square feet/minute.

(B) increasing at 13.5 square feet/minute.

(C) increasing at 8.5 square feet/minute.

(D) decreasing at 0.5 square feet/minute.

(E) decreasing at 0.75 square feet/minute.

18. C A particle is traveling on the curve x2 − xy + y2 = 7.
At the moment when the particle is at the point (2, 3), its
x-coordinate is increasing at the rate of 5 units/minute. At
this moment, the y-coordinate of the particle is

(A) decreasing at 1.25 units/minute.

(B) decreasing at 0.625 units/minute.

(C) increasing at 0.5 units/minute.

(D) increasing at 20 units/minute.

(E) decreasing at 0.25 units/minute.
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19. lim
x→a

ln(x) − ln(a)

x − a
=

(A)
1

x

(B)
1

ln(x)

(C)
1

ln(a)

(D)
1

a

(E)
1

x
− 1

a

20. If f (x) = e3x , then (f −1)′(x) =
(A)

1

3x

(B)
1

e3x

(C)
1

3e3x

(D)
−2

e3x

(E)
1

x

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work.

1. Consider the parabola y = x2.
(a) Show that the line through the point (3, −7) with slope

−2 is tangent to the parabola.
(b) Find another line through (3, −7) that is tangent to the

parabola.
(c) Is there a third line through (3, −7) that is tangent to

the parabola? Justify your answer.

2. Consider the curve xy2 − x3y = 6.
(a) Find dy/dx.
(b) Find all points on the curve where the tangent line is

horizontal. Explain your reasoning.
(c) Find all points where the tangent line is vertical. Ex-

plain your reasoning.

3. Sand is falling from a rectangular box container whose base
measures 40 inches by 20 inches at a constant rate of 300
cubic inches per minute. (Include units in all your answers.)
(a) How is the depth of the sand in the box changing?
(b) The sand is forming a conical pile

(
V = π

3 r2h
)
. At a

particular moment, the pile is 23 inches high and the di-
ameter of the base is 16 inches. The diameter of the base
at this moment is increasing at 1.5 inches per minute.
At this moment,
(i) how fast is the area of the circular base of the cone

increasing?
(ii) how fast is the height of the pile increasing?

4. A person is running around an elliptical track. The equation
of the track is 4x2 + 25y2 = 200.

4x2 + 25y2 = 200 

y

x
(8, 0)
Bear

Runner

(a) When the person is at the point (5, 2), her x-coordinate
is increasing at 6 units per minute. Describe how her
y-coordinate is changing.

(b) Can she run in such a way that her x-coordinate changes
at a constant rate? Explain.

(c) The inside of the track is heavily wooded, and she can-
not see through the woods. There is a bear standing
outside the woods at the point (8, 0). When she is at
the point (5, 2), can she see the bear? Explain.

Answers to odd-numbered questions can be found in the back of
the book.
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This striking image, created by Sam Derbyshire

while an undergraduate student at the University

of Warwick in England, is a density plot of the

roots (real or complex) of all polynomials of

degree 24 whose coefficients are +1 or −1.

4 APPLICATIONS OF THE
DERIVATIVE

T his chapter puts the derivative to work. The first and second derivatives are used to ana-
lyze functions and their graphs and to solve optimization problems (finding minimum

and maximum values of a function). Newton’s Method in Section 4.8 employs the deriva-
tive to approximate solutions of equations. In Section 4.9, we introduce antidifferentiation,
the inverse operation to differentiation, to prepare for the study of integration in Chapter 5.

4.1 Linear Approximation and Applications
In some situations we are interested in determining the “effect of a small change.” For
example:

• How does a small change in angle affect the distance of a basketball shot? (Exer-
cise 39)

• How are revenues at the box office affected by a small change in ticket prices?
(Exercise 29)

• The cube root of 27 is 3. How much larger is the cube root of 27.2? (Exercise 7)

In each case, we have a function f (x) and we’re interested in the change

�f = f (a + �x) − f (a)

where �x is small. The LinearApproximation uses the derivative to estimate �f without
computing it exactly. By definition, the derivative is the limit

f ′(a) = lim
�x→0

f (a + �x) − f (a)

�x
= lim

�x→0

�f

�x

So when �x is small, we have �f/�x ≈ f ′(a), and thus,

REMINDER The notation ≈ means
“approximately equal to.” The accuracy of
the Linear Approximation is discussed at
the end of this section.

�f ≈ f ′(a)�x

Linear Approximation of �f If f is differentiable at x = a and �x is small, then

�f ≈ f ′(a)�x 1

where �f = f (a + �x) − f (a).

Keep in mind the different roles played by �f and f ′(a)�x. The quantity of interest
is the actual change �f . We estimate it by f ′(a) �x. The Linear Approximation tells us
that up to a small error, �f is directly proportional to �x when �x is small.

207
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GRAPHICAL INSIGHT The Linear Approximation is sometimes called the tangent line
approximation. Why? Observe in Figure 1 that �f is the vertical change in the graph
from x = a to x = a + �x. For a straight line, the vertical change is equal to the slope
times the horizontal change �x, and since the tangent line has slope f ′(a), its vertical
change is f ′(a)�x. So the Linear Approximation approximates �f by the vertical
change in the tangent line. When �x is small, the two quantities are nearly equal.

a

f (a)

� f = vertical change 
          in the graph of f (x)

f (a + �x)

a + �x

�x

f ´(a)�x

x

y

FIGURE 1 Graphical meaning of the Linear
Approximation �f ≈ f ′(a)�x.

EXAMPLE 1 Use the Linear Approximation to estimate 1
10.2 − 1

10 . How accurate isLinear Approximation:

�f ≈ f ′(a)�x

where �f = f (a + �x) − f (a)

your estimate?

Solution We apply the Linear Approximation to f (x) = 1
x

with a = 10 and �x = 0.2:

�f = f (10.2) − f (10) = 1

10.2
− 1

10

We have f ′(x) = −x−2 and f ′(10) = −0.01, so �f is approximated by

f ′(10)�x = (−0.01)(0.2) = −0.002

In other words,

1

10.2
− 1

10
≈ −0.002

A calculator gives the value 1
10.2 − 1

10 ≈ −0.00196 and thus our error is less than 10−4:The error in the Linear Approximation is the
quantity

Error = ∣∣�f − f ′(a)�x
∣∣ Error ≈ ∣∣−0.00196 − (−0.002)

∣∣ = 0.00004 < 10−4

Differential Notation The Linear Approximation to y = f (x) is often written using
the “differentials” dx and dy. In this notation, dx is used instead of �x to represent the
change in x, and dy is the corresponding vertical change in the tangent line:

dy = f ′(a)dx 2

Let �y = f (a + dx) − f (a). Then the Linear Approximation says

�y ≈ dy 3

This is simply another way of writing �f ≈ f ′(a)�x.

EXAMPLE 2 Differential Notation How much larger is 3
√

8.1 than 3
√

8 = 2?

Solution We are interested in 3
√

8.1 − 3
√

8, so we apply the Linear Approximation to
f (x) = x1/3 with a = 8 and change �x = dx = 0.1.
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Step 1. Write out �y.

�y = f (a + dx) − f (a) = 3
√

8 + 0.1 − 3
√

8 = 3
√

8.1 − 2

Step 2. Compute dy.

f ′(x) = 1

3
x−2/3 and f ′(8) =

(
1

3

)
8−2/3 =

(
1

3

) (
1

4

)
= 1

12

Therefore, dy = f ′(8) dx = 1
12 (0.1) ≈ 0.0083.

Step 3. Use the Linear Approximation.

�y ≈ dy ⇒ 3
√

8.1 − 2 ≈ 0.0083

Thus 3
√

8.1 is larger than 3
√

8 by the amount 0.0083, and 3
√

8.1 ≈ 2.0083.

When engineers need to monitor the change in position of an object with great accu-
racy, they may use a cable position transducer (Figure 2). This device detects and records
the movement of a metal cable attached to the object. Its accuracy is affected by changes
in temperature because heat causes the cable to stretch. The Linear Approximation can be
used to estimate these effects.

FIGURE 2 Cable position transducer
(manufactured by Space Age Control,
Inc.). In one application, a transducer was
used to compare the changes in throttle
position on a Formula 1 race car with the
shifting actions of the driver.

EXAMPLE 3 Thermal Expansion A thin metal cable has length L = 12 cm when the
temperature is T = 21◦C. Estimate the change in length when T rises to 24◦C, assuming
that

dL

dT
= kL 4

where k = 1.7 × 10−5◦C−1 (k is called the coefficient of thermal expansion).

Solution How does the Linear Approximation apply here? We will use the differential
dL to estimate the actual change in length �L when T increases from 21◦ to 24◦—that
is, when dT = 3◦. By Eq. (2), the differential dL is

dL =
(

dL

dT

)
dT

By Eq. (4), since L = 12,

dL

dT

∣∣∣
L=12

= kL = (1.7 × 10−5)(12) ≈ 2 × 10−4 cm/◦C

The Linear Approximation �L ≈ dL tells us that the change in length is approximately

�L ≈
(

dL

dT

)
dT︸ ︷︷ ︸

dL

≈ (2 × 10−4)(3) = 6 × 10−4 cm

Suppose that we measure the diameter D of a circle and use this result to compute
the area of the circle. If our measurement of D is inexact, the area computation will also
be inexact. What is the effect of the measurement error on the resulting area computation?
This can be estimated using the Linear Approximation, as in the next example.

EXAMPLE 4 Effect of an Inexact Measurement The Bonzo Pizza Company claims
that its pizzas are circular with diameter 50 cm (Figure 3).

50 cm
Width 1.2 cm

FIGURE 3 The border of the actual pizza
lies between the dashed circles.

(a) What is the area of the pizza?
(b) Estimate the quantity of pizza lost or gained if the diameter is off by at most 1.2 cm.
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Solution First, we need a formula for the area A of a circle in terms of its diameter D.
Since the radius is r = D/2, the area is

A(D) = π r2 = π

(
D

2

)2

= π

4
D2

(a) If D = 50 cm, then the pizza has area A(50) = (
π
4

)
(50)2 ≈ 1963.5 cm2.

(b) If the actual diameter is equal to 50 + �D, then the loss or gain in pizza area is
In this example, we interpret �A as the
possible error in the computation of A(D).
This should not be confused with the error
in the Linear Approximation. This latter
error refers to the accuracy in using
A′(D) �D to approximate �A.

�A = A(50 + �D) − A(50). Observe that A′(D) = π
2 D and A′(50) = 25π ≈ 78.5 cm,

so the Linear Approximation yields

�A = A(50 + �D) − A(50) ≈ A′(D)�D ≈ (78.5) �D

Because �D is at most ±1.2 cm, the loss or gain in pizza is no more than around

�A ≈ ±(78.5)(1.2) ≈ ±94.2 cm2

This is a loss or gain of approximately 4.8%.

Linearization
To approximate the function f (x) itself rather than the change �f , we use the linearization
L(x) “centered at x = a,” defined by

L(x) = f ′(a)(x − a) + f (a)

Notice that y = L(x) is the equation of the tangent line at x = a (Figure 4). For values ofP

y = f (x) y = L(x)

FIGURE 4 The tangent line is a good
approximation in a small neighborhood
of P = (a, f (a)).

x close to a, L(x) provides a good approximation to f (x).

Approximating f (x) by Its Linearization If f is differentiable at x = a and x is close
to a, then

f (x) ≈ L(x) = f ′(a)(x − a) + f (a)

CONCEPTUAL INSIGHT Keep in mind that the linearization and the LinearApproximation
are two ways of saying the same thing. Indeed, when we apply the linearization with
x = a + �x and re-arrange, we obtain the Linear Approximation:

f (x) ≈ f (a) + f ′(a)(x − a)

f (a + �x) ≈ f (a) + f ′(a) �x (since �x = x − a)

f (a + �x) − f (a) ≈ f ′(a)�x

EXAMPLE 5 Compute the linearization of f (x) = √
xex−1 at a = 1.

Solution By the Product Rule:

f ′(x) = x1/2ex−1 + 1

2
x−1/2ex−1 =

(
x1/2 + 1

2
x−1/2

)
ex−1

f (1) = √
1e0 = 1, f ′(1) =

(
1 + 1

2

)
e0 = 3

2

Therefore, the linearization at a = 1 is

L(x) = f (1) + f ′(1)(x − 1) = 1 + 3

2
(x − 1) = 3

2
x − 1

2
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The linearization can be used to approximate function values. The following table
compares values of the linearization to values obtained from a calculator for the function
f (x) = √

xex−1 in the previous example. Note that the error is large for x = 2.5, as
expected, because 2.5 is not close to the center a = 1 (Figure 5).

2

4

6

8

10

12

f (x) = �xex−1

L(x) = x −

1 2 32.5

Error is large
for x = 2.5

x

y

3
2

1
2

FIGURE 5 Graph of f (x) = √
xex−1 and

its linearization at a = 1.

x
√

xex−1 Linearization at a = 1: L(x) = 3
2x − 1

2 Calculator Error

1.1
√

1.1e0.1 L(1.1) = 3
2 (1.1) − 1

2 = 1.15 1.15911 10−2

0.999
√

0.999e−0.001 L(0.999) = 3
2 (0.999) − 1

2 = 0.9985 0.998501 10−6

2.5
√

2.5e1.5 L(2.5) = 3
2 (2.5) − 1

2 = 3.25 7.086 3.84

In the next example, we compute the percentage error, which is often more important
than the error itself. By definition,

Percentage error =
∣∣∣∣ error

actual value

∣∣∣∣ × 100%

EXAMPLE 6 Estimate tan
(

π
4 + 0.02

)
and compute the percentage error.

Solution We find the linearization of f (x) = tan x at a = π
4 :

f
(π

4

)
= tan

(π

4

)
= 1, f ′ (π

4

)
= sec2

(π

4

)
= (√

2
)2 = 2

L(x) = f
(π

4

)
+ f ′ (π

4

) (
x − π

4

)
= 1 + 2

(
x − π

4

)
At x = π

4 + 0.02, the linearization yields the estimate

tan
(π

4
+ 0.02

)
≈ L

(π

4
+ 0.02

)
= 1 + 2(0.02) = 1.04

A calculator gives tan
(

π
4 + 0.02

) ≈ 1.0408, so

Percentage error ≈
∣∣∣∣1.0408 − 1.04

1.0408

∣∣∣∣ × 100 ≈ 0.08%

The Size of the Error
The examples in this section may have convinced you that the Linear Approximation
yields a good approximation to �f when �x is small, but if we want to rely on the Linear
Approximation, we need to know more about the size of the error:

E = Error = ∣∣�f − f ′(a)�x
∣∣

Remember that the error E is simply the vertical gap between the graph and the tangent
line (Figure 6). In Section 10.7, we will prove the following Error Bound:

a

f (a)

Error

f (a + �x)

a + �x

�x

x

y

f ´(a)�x

FIGURE 6 Graphical interpretation of the
error in the Linear Approximation.

E ≤ 1

2
K (�x)2 5

where K is the maximum value of |f ′′(x)| on the interval from a to a + �x.
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The Error Bound tells us two important things. First, it says that the error is smallError Bound:

E ≤ 1

2
K (�x)2

where K is the max of |f ′′| on the interval
[a, a + �x].

when the second derivative (and hence K) is small. This makes sense, because f ′′(x)

measures how quickly the tangent lines change direction. When |f ′′(x)| is smaller, the
graph is flatter and the LinearApproximation is more accurate over a larger interval around
x = a (compare the graphs in Figure 7).

(A) Graph flat, f ´´(x) is small.

Small error in the
Linear Approximation

(B) Graph bends a lot, f ´´(x) is large.

(a, f (a)) (a, f (a))

Large error in the
Linear Approximation

FIGURE 7 The accuracy of the Linear
Approximation depends on how much
the curve bends.

Second, the Error Bound tells us that the error is of order two in �x, meaning that E

is no larger than a constant times (�x)2. So if �x is small, say �x = 10−n, then E has
substantially smaller order of magnitude (�x)2 = 10−2n. In particular, E/�x tends to
zero (because E/�x < K�x), so the Error Bound tells us that the graph becomes nearly
indistinguishable from its tangent line as we zoom in on the graph around x = a. This is
a precise version of the “local linearity” property discussed in Section 3.2.

4.1 SUMMARY

• Let �f = f (a + �x) − f (a). The Linear Approximation is the estimate

�f ≈ f ′(a)�x (for �x small)

• Differential notation: dx is the change in x, dy = f ′(a)dx, �y = f (a + dx) − f (a).
In this notation, the Linear Approximation reads

�y ≈ dy (for dx small)

• The linearization of f (x) at x = a is the function

L(x) = f ′(a)(x − a) + f (a)

• The Linear Approximation is equivalent to the approximation

f (x) ≈ L(x) (for x close to a)

• The error in the Linear Approximation is the quantity

Error =
∣∣∣�f − f ′(a)�x

∣∣∣
In many cases, the percentage error is more important than the error itself:

Percentage error =
∣∣∣ error

actual value

∣∣∣ × 100%
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4.1 EXERCISES

Preliminary Questions
1. True or False? The Linear Approximation says that the vertical

change in the graph is approximately equal to the vertical change in the
tangent line.

2. Estimate g(1.2) − g(1) if g′(1) = 4.

3. Estimate f (2.1) if f (2) = 1 and f ′(2) = 3.

4. Complete the sentence: The Linear Approximation shows that up
to a small error, the change in output �f is directly proportional to ….

Exercises
In Exercises 1–6, use Eq. (1) to estimate �f = f (3.02) − f (3).

1. f (x) = x2 2. f (x) = x4

3. f (x) = x−1 4. f (x) = 1

x + 1

5. f (x) = √
x + 6 6. f (x) = tan

πx

3

7. The cube root of 27 is 3. How much larger is the cube root of 27.2?
Estimate using the Linear Approximation.

8. Estimate ln(e3 + 0.1) − ln(e3) using differentials.

In Exercises 9–12, use Eq. (1) to estimate �f . Use a calculator to
compute both the error and the percentage error.

9. f (x) = √
1 + x, a = 3, �x = 0.2

10. f (x) = 2x2 − x, a = 5, �x = −0.4

11. f (x) = 1

1 + x2
, a = 3, �x = 0.5

12. f (x) = ln(x2 + 1), a = 1, �x = 0.1

In Exercises 13–16, estimate �y using differentials [Eq. (3)].

13. y = cos x, a = π
6 , dx = 0.014

14. y = tan2 x, a = π
4 , dx = −0.02

15. y = 10 − x2

2 + x2
, a = 1, dx = 0.01

16. y = x1/3ex−1, a = 1, dx = 0.1

In Exercises 17–24, estimate using the Linear Approximation and find
the error using a calculator.

17.
√

26 − √
25 18. 16.51/4 − 161/4

19.
1√
101

− 1

10
20.

1√
98

− 1

10

21. 91/3 − 2 22. tan−1(1.05) − π
4

23. e−0.1 − 1 24. ln(0.97)

25. Estimate f (4.03) for f (x) as in Figure 8.

(4, 2)

(10, 4)

x

y = f (x)

Tangent line

y

FIGURE 8

26. At a certain moment, an object in linear motion has veloc-
ity 100 m/s. Estimate the distance traveled over the next quarter-second,
and explain how this is an application of the Linear Approximation.

27. Which is larger:
√

2.1 − √
2 or

√
9.1 − √

9? Explain using the
Linear Approximation.

28. Estimate sin 61◦ − sin 60◦ using the Linear Approximation. Hint:
Express �θ in radians.

29. Box office revenue at a multiplex cinema in Paris is R(p) =
3600p − 10p3 euros per showing when the ticket price is p euros.
Calculate R(p) for p = 9 and use the Linear Approximation to esti-
mate �R if p is raised or lowered by 0.5 euros.

30. The stopping distance for an automobile is F(s) = 1.1s +
0.054s2 ft, where s is the speed in mph. Use the Linear Approximation
to estimate the change in stopping distance per additional mph when
s = 35 and when s = 55.

31. A thin silver wire has length L = 18 cm when the temperature is
T = 30◦C. Estimate �L when T decreases to 25◦C if the coefficient
of thermal expansion is k = 1.9 × 10−5◦C−1 (see Example 3).

32. At a certain moment, the temperature in a snake cage satisfies
dT /dt = 0.008◦C/s. Estimate the rise in temperature over the next
10 seconds.

33. The atmospheric pressure at altitude h (kilometers) for 11 ≤ h ≤
25 is approximately

P(h) = 128e−0.157h kilopascals.

(a) Estimate �P at h = 20 when �h = 0.5.
(b) Compute the actual change, and compute the percentage error in
the Linear Approximation.

34. The resistance R of a copper wire at temperature T = 20◦C
is R = 15 �. Estimate the resistance at T = 22◦C, assuming that
dR/dT

∣∣
T =20 = 0.06 �/◦C.
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35. Newton’s Law of Gravitation shows that if a person weighs w

pounds on the surface of the earth, then his or her weight at distance x

from the center of the earth is

W(x) = wR2

x2
(for x ≥ R)

where R = 3,960 miles is the radius of the earth (Figure 9).

(a) Show that the weight lost at altitude h miles above the earth’s
surface is approximately �W ≈ −(0.0005w)h. Hint: Use the Linear
Approximation with dx = h.

(b) Estimate the weight lost by a 200-lb football player flying in a jet
at an altitude of 7 miles.

3960

dx

FIGURE 9 The distance to the center of the earth is 3,960 + h miles.

36. Using Exercise 35(a), estimate the altitude at which a 130-lb pilot
would weigh 129.5 lb.

37. A stone tossed vertically into the air with initial velocity v cm/s
reaches a maximum height of h = v2/1960 cm.

(a) Estimate �h if v = 700 cm/s and �v = 1 cm/s.

(b) Estimate �h if v = 1,000 cm/s and �v = 1 cm/s.

(c) In general, does a 1 cm/s increase in v lead to a greater change in
h at low or high initial velocities? Explain.

38. The side s of a square carpet is measured at 6 m. Estimate the
maximum error in the area A of the carpet if s is accurate to within
2 centimeters.

In Exercises 39 and 40, use the following fact derived from Newton’s
Laws: An object released at an angle θ with initial velocity v ft/s travels
a horizontal distance

s = 1

32
v2 sin 2θ ft (Figure 10)

39. A player located 18.1 ft from the basket launches a successful jump
shot from a height of 10 ft (level with the rim of the basket), at an angle
θ = 34◦ and initial velocity v = 25 ft/s.)

(a) Show that �s ≈ 0.255�θ ft for a small change of �θ .

(b) Is it likely that the shot would have been successful if the angle
had been off by 2◦?

θ
x

s

y

FIGURE 10 Trajectory of an object released at an angle θ .

40. Estimate �s if θ = 34◦, v = 25 ft/s, and �v = 2.

41. The radius of a spherical ball is measured at r = 25 cm. Estimate
the maximum error in the volume and surface area if r is accurate to
within 0.5 cm.

42. The dosage D of diphenhydramine for a dog of body mass w kg
is D = 4.7w2/3 mg. Estimate the maximum allowable error in w for a
cocker spaniel of mass w = 10 kg if the percentage error in D must be
less than 3%.

43. The volume (in liters) and pressure P (in atmospheres) of a cer-
tain gas satisfy PV = 24. A measurement yields V = 4 with a possible
error of ±0.3 L. Compute P and estimate the maximum error in this
computation.

44. In the notation of Exercise 43, assume that a measurement yields
V = 4. Estimate the maximum allowable error in V if P must have an
error of less than 0.2 atm.

In Exercises 45–54, find the linearization at x = a.

45. f (x) = x4, a = 1 46. f (x) = 1

x
, a = 2

47. f (θ) = sin2 θ , a = π
4 48. g(x) = x2

x − 3
, a = 4

49. y = (1 + x)−1/2, a = 0 50. y = (1 + x)−1/2, a = 3

51. y = (1 + x2)−1/2, a = 0 52. y = tan−1 x, a = 1

53. y = e
√

x , a = 1 54. y = ex ln x, a = 1

55. What is f (2) if the linearization of f (x) at a = 2 is L(x) =
2x + 4?

56. Compute the linearization of f (x) = 3x − 4 at a = 0 and a = 2.
Prove more generally that a linear function coincides with its lineariza-
tion at x = a for all a.

57. Estimate
√

16.2 using the linearization L(x) of f (x) = √
x at

a = 16. Plot f (x) and L(x) on the same set of axes and determine
whether the estimate is too large or too small.

58. Estimate 1/
√

15 using a suitable linearization of f (x) =
1/

√
x. Plot f (x) and L(x) on the same set of axes and determine

whether the estimate is too large or too small. Use a calculator to com-
pute the percentage error.
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In Exercises 59–67, approximate using linearization and use a calcu-
lator to compute the percentage error.

59.
1√
17

60.
1

101
61.

1

(10.03)2

62. (17)1/4 63. (64.1)1/3 64. (1.2)5/3

65. cos−1(0.52) 66. ln 1.07 67. e−0.012

68. Compute the linearization L(x) of f (x) = x2 − x3/2 at
a = 4. Then plot f (x) − L(x) and find an interval I around a = 4
such that |f (x) − L(x)| ≤ 0.1 for x ∈ I .

69. Show that the Linear Approximation to f (x) = √
x at x = 9

yields the estimate
√

9 + h − 3 ≈ 1
6h. Set K = 0.001 and show that

|f ′′(x)| ≤ K for x ≥ 9. Then verify numerically that the error E sat-
isfies Eq. (5) for h = 10−n, for 1 ≤ n ≤ 4.

70. The LinearApproximation to f (x) = tan x at x = π
4 yields

the estimate tan
(
π
4 + h

) − 1 ≈ 2h. SetK = 6.2 and show, using a plot,
that |f ′′(x)| ≤ K for x ∈ [π

4 , π
4 + 0.1]. Then verify numerically that

the error E satisfies Eq. (5) for h = 10−n, for 1 ≤ n ≤ 4.

Further Insights and Challenges
71. Compute dy/dx at the point P = (2, 1) on the curve y3 + 3xy = 7
and show that the linearization at P is L(x) = − 1

3x + 5
3 . Use L(x) to

estimate the y-coordinate of the point on the curve where x = 2.1.

72. Apply the method of Exercise 71 to P = (0.5, 1) on y5 + y −
2x = 1 to estimate the y-coordinate of the point on the curve where
x = 0.55.

73. Apply the method of Exercise 71 to P = (−1, 2) on y4 + 7xy = 2
to estimate the solution of y4 − 7.7y = 2 near y = 2.

74. Show that for any real number k, (1 + �x)k ≈ 1 + k�x for small
�x. Estimate (1.02)0.7 and (1.02)−0.3.

75. Let �f = f (5 + h) − f (5), where f (x) = x2. Verify directly that
E = |�f − f ′(5)h| satisfies (5) with K = 2.

76. Let �f = f (1 + h) − f (1) where f (x) = x−1. Show directly
that E = |�f − f ′(1)h| is equal to h2/(1 + h). Then prove that E ≤
2h2 if − 1

2 ≤ h ≤ 1
2 . Hint: In this case, 1

2 ≤ 1 + h ≤ 3
2 .

4.2 Extreme Values
In many applications it is important to find the minimum or maximum value of a function
f (x). For example, a physician needs to know the maximum drug concentration in a

Maximum
concentration

108642

C(t) mg/ml

t (h)

0.002

0.001

FIGURE 1 Drug Concentration in
bloodstream (see Exercise 74).

patient’s bloodstream when a drug is administered. This amounts to finding the highest
point on the graph of C(t), the concentration at time t (Figure 1).

We refer to the maximum and minimum values (max and min for short) as extreme
values or extrema (singular: extremum) and to the process of finding them as optimiza-
tion. Sometimes, we are interested in finding the min or max for x in a particular interval
I , rather than on the entire domain of f (x).

Often, we drop the word “absolute” and
speak simply of the min or max on an
interval I . When no interval is mentioned,
it is understood that we refer to the extreme
values on the entire domain of the function.

DEFINITION Extreme Values on an Interval Let f (x) be a function on an interval I

and let a ∈ I . We say that f (a) is the

• Absolute minimum of f (x) on I if f (a) ≤ f (x) for all x ∈ I .
• Absolute maximum of f (x) on I if f (a) ≥ f (x) for all x ∈ I .

Does every function have a minimum or maximum value? Clearly not, as we see by
taking f (x) = x. Indeed, f (x) = x increases without bound as x → ∞ and decreases
without bound as x → −∞. In fact, extreme values do not always exist even if we restrict
ourselves to an interval I . Figure 2 illustrates what can go wrong if I is open or f has a
discontinuity.

• Discontinuity: (A) shows a discontinuous function with no maximum value. The
values of f (x) get arbitrarily close to 3 from below, but 3 is not the maximum value
because f (x) never actually takes on the value 3.
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• Open interval: In (B), g(x) is defined on the open interval (a, b). It has no max
because it tends to ∞ on the right, and it has no min because it tends to 10 on the
left without ever reaching this value.

Fortunately, our next theorem guarantees that extreme values exist when the function is
continuous and I is closed [Figure 2(C)].

Every continuous function on a closed
interval [a, b] has both a min and a
max on [a, b].

(C)Continuous function
with no min or max on
the open interval (a, b).

(B)Discontinuous function
with no max on [a, b].

(A)

g(x)

10

Max on [a, b]

Min on [a, b]

h(x)

1

2

3
f (x)

a c b a b a b
x x x

y y y

FIGURE 2

THEOREM 1 Existence of Extrema on a Closed Interval A continuous function f (x)

on a closed (bounded) interval I = [a, b] takes on both a minimum and a maximum
value on I .

REMINDER A closed, bounded interval
is an interval I = [a, b] (endpoints
included), where a and b are both finite.
Often, we drop the word “bounded” and
refer to I more simply as a closed interval.
An open interval (a, b) (endpoints not
included) may have one or two infinite
endpoints.

CONCEPTUAL INSIGHT Why does Theorem 1 require a closed interval? Think of the
graph of a continuous function as a string. If the interval is closed, the string is pinned
down at the two endpoints and cannot fly off to infinity (or approach a min/max without
reaching it) as in Figure 2(B). Intuitively, therefore, it must have a highest and lowest
point. However, a rigorous proof of Theorem 1 relies on the completeness property of
the real numbers (see Appendix D).

Local Extrema and Critical Points
We focus now on the problem of finding extreme values. A key concept is that of a local
minimum or maximum.

DEFINITION Local Extrema We say that f (x) has a

• Local minimum at x = c if f (c) is the minimum value of f on some open
interval (in the domain of f ) containing c.

• Local maximum at x = c if f (c) is the maximum value of f (x) on some open
interval (in the domain of f ) containing c.

When we get to the top of a hill
in an otherwise flat region, our
altitude is at a local maximum,
but we are still far from the
point of absolute maximum
altitude, which is located at
the peak of Mt. Everest. That’s
the difference between local
and absolute extrema.

Adapted from “Stories About Maxima and
Minima,” V. M. Tikhomirov, AMS (1990)

A local max occurs at x = c if (c, f (c)) is the highest point on the graph within some
small box [Figure 3(A)]. Thus, f (c) is greater than or equal to all other nearby values,
but it does not have to be the absolute maximum value of f (x). Local minima are similar.
Figure 3(B) illustrates the difference between local and absolute extrema: f (a) is the
absolute max on [a, b] but is not a local max because f (x) takes on larger values to the
left of x = a.
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(A)

ca b

(B)

Local max
(c, f (c))

y = f (x)
Absolute max 
on [a, b]

c

Local
min

Local
min

Local
max

f (c)

f (a)

y

x

y

x

FIGURE 3

How do we find the local extrema? The crucial observation is that the tangent line at
a local min or max is horizontal [Figure 4(A)]. In other words, if f (c) is a local min or
max, then f ′(c) = 0. However, this assumes that f (x) is differentiable. Otherwise, the
tangent line may not exist, as in Figure 4(B). To take both possibilities into account, we
define the notion of a critical point.

Tangent line is horizontal
at the local extrema.  

(A) (B) This local minimum occurs at a point
where the function is not differentiable.

c c

FIGURE 4

DEFINITION Critical Points A number c in the domain of f is called a critical point
if either f ′(c) = 0 or f ′(c) does not exist.

EXAMPLE 1 Find the critical points of f (x) = x3 − 9x2 + 24x − 10.

2 4
x

y

FIGURE 5 Graph of
f (x) = x3 − 9x2 + 24x − 10.

Solution The function f (x) is differentiable everywhere (Figure 5), so the critical points
are the solutions of f ′(x) = 0:

f ′(x) = 3x2 − 18x + 24 = 3(x2 − 6x + 8)

= 3(x − 2)(x − 4) = 0

The critical points are the roots c = 2 and c = 4.

EXAMPLE 2 Nondifferentiable Function Find the critical points of f (x) = |x|.
Solution As we see in Figure 6, f ′(x) = −1 for x < 0 and f ′(x) = 1 for x > 0. There-

−1

1

x

y

FIGURE 6 Graph of f (x) = |x|.

fore, f ′(x) = 0 has no solutions with x = 0. However, f ′(0) does not exist. Therefore
c = 0 is a critical point.

The next theorem tells us that we can find local extrema by solving for the critical
points. It is one of the most important results in calculus.
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THEOREM 2 Fermat’s Theorem on Local Extrema If f (c) is a local min or max, then
c is a critical point of f (x).

Proof Suppose that f (c) is a local minimum (the case of a local maximum is similar).
If f ′(c) does not exist, then c is a critical point and there is nothing more to prove. So
assume that f ′(c) exists. We must then prove that f ′(c) = 0.

Because f (c) is a local minimum, we have f (c + h) ≥ f (c) for all sufficiently small
h = 0. Equivalently, f (c + h) − f (c) ≥ 0. Now divide this inequality by h:

f (c + h) − f (c)

h
≥ 0 if h > 0 1

f (c + h) − f (c)

h
≤ 0 if h < 0 2

Figure 7 shows the graphical interpretation of these inequalities. Taking the one-sided

c

Secant line has
positive slope

for h > 0.

Secant line has
negative slope

for h < 0.

c − h c + h
x

FIGURE 7

limits of both sides of (1) and (2), we obtain

f ′(c) = lim
h→0+

f (c + h) − f (c)

h
≥ lim

h→0+ 0 = 0

f ′(c) = lim
h→0−

f (c + h) − f (c)

h
≤ lim

h→0− 0 = 0

Thus f ′(c) ≥ 0 and f ′(c) ≤ 0. The only possibility is f ′(c) = 0 as claimed.

CONCEPTUAL INSIGHT Fermat’s Theorem does not claim that all critical points yield
local extrema. “False positives” may exist—that is, we might have f ′(c) = 0 without
f (c) being a local min or max. For example, f (x) = x3 has derivative f ′(x) = 3x2

and f ′(0) = 0, but f (0) is neither a local min nor max (Figure 8). The origin is a point
of inflection (studied in Section 4.4), where the tangent line crosses the graph.

Optimizing on a Closed Interval
Finally, we have all the tools needed for optimizing a continuous function on a closed

f (x) = x3
1

−1

−1 1
x

y

FIGURE 8 The tangent line at (0, 0) is
horizontal, but f (0) is not a local min or
max.

In this section, we restrict our attention
to closed intervals because in this case
extreme values are guaranteed to exist
(Theorem 1). Optimization on open
intervals is discussed in Section 4.7.

interval. Theorem 1 guarantees that the extreme values exist, and the next theorem tells
us where to find them, namely among the critical points or endpoints of the interval.

THEOREM 3 Extreme Values on a Closed Interval Assume that f (x) is continuous
on [a, b] and let f (c) be the minimum or maximum value on [a, b]. Then c is either a
critical point or one of the endpoints a or b.

Proof If c is one of the endpoints a or b, there is nothing to prove. If not, then c belongs
to the open interval (a, b). In this case, f (c) is also a local min or max because it is the
min or max on (a, b). By Fermat’s Theorem, c is a critical point.

EXAMPLE 3 Find the extrema of f (x) = 2x3 − 15x2 + 24x + 7 on [0, 6].
Solution The extreme values occur at critical points or endpoints by Theorem 3, so we
can break up the problem neatly into two steps.
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Step 1. Find the critical points.
The function f (x) is differentiable, so we find the critical points by solving

f ′(x) = 6x2 − 30x + 24 = 6(x − 1)(x − 4) = 0

The critical points are c = 1 and 4.

Step 2. Compare values at the critical points and endpoints.

x-value Value of f

1 (critical point) f (1) = 18
4 (critical point) f (4) = −9 min
0 (endpoint) f (0) = 7
6 (endpoint) f (6) = 43 max

The maximum of f (x) on [0, 6] is the largest of the values in this table, namely
f (6) = 43. Similarly, the minimum is f (4) = −9. See Figure 9.20

40

1

4

Min

Max

6
x

y

FIGURE 9 Extreme values of
f (x) = 2x3 − 15x2 + 24x + 7 on [0, 6].

EXAMPLE 4 Function with a Cusp Find the max of f (x) = 1 − (x − 1)2/3 on
[−1, 2].
Solution First, find the critical points:

f ′(x) = −2

3
(x − 1)−1/3 = − 2

3(x − 1)1/3

The equation f ′(x) = 0 has no solutions because f ′(x) is never zero. However, f ′(x)

does not exist at x = 1, so c = 1 is a critical point (Figure 10).
1 2−1

1

x

y

Min

Max

FIGURE 10 Extreme values of
f (x) = 1 − (x − 1)2/3 on [−1, 2].

Next, compare values at the critical points and endpoints.

x-value Value of f

1 (critical point) f (1) = 1 max
−1 (endpoint) f (−1) ≈ −0.59 min
2 (endpoint) f (2) = 0

EXAMPLE 5 Logarithmic Example Find the extreme values of the function f (x) =
x2 − 8 ln x on [1, 4].

(2, −1.55)
Min

y

2

−1.5

4

6

1 2 3 4 5
x

Max

FIGURE 11 Extreme values of
f (x) = x2 − 8 ln x on [1, 4].

Solution First, solve for the critical points:

f ′(x) = 2x − 8

x
= 0 ⇒ 2x = 8

x
⇒ x = ±2

The only critical point in the interval [1, 4] is c = 2. Next, compare the values of f (x) at
the critical points and endpoints (Figure 11):

x-value Value of f

2 (critical point) f (2) ≈ −1.55 min
1 (endpoint) f (1) = 1
4 (endpoint) f (4) ≈ 4.9 max

We see that the min on [1, 4] is f (2) ≈ −1.55 and the max is f (4) ≈ 4.9.
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EXAMPLE 6 Trigonometric Function Find the min and max of the function f (x) =
sin x + cos2 x on [0, 2π ] (Figure 12).

Solution First, solve for the critical points:

f ′(x) = cos x − 2 sin x cos x = cos x(1 − 2 sin x) = 0 ⇒ cos x = 0 or sin x = 1

2

cos x = 0 ⇒ x = π

2
,

3π

2
and sin x = 1

2
⇒ x = π

6
,

5π

6

Then compare the values of f (x) at the critical points and endpoints:

−1

1

y

x
π

6
π

2
5π

6
3π 2π

2

FIGURE 12 f (x) attains a max at π
6 and 5π

6
and a min at 3π

2 .

x-value Value of f

π
2 (critical point) f

(
π
2

) = 1 + 02 = 1

3π
2 (critical point) f

( 3π
2

) = −1 + 02 = −1 min

π
6 (critical point) f

(
π
6

) = 1
2 +

(√
3

2

)2 = 5
4 max

5π
6 (critical point) f

( 5π
6

) = 1
2 +

(
−

√
3

2

)2 = 5
4 max

0 and 2π (endpoints) f (0) = f (2π) = 1

Rolle’s Theorem
As an application of our optimization methods, we prove Rolle’s Theorem: If f (x) takes
on the same value at two different points a and b, then somewhere between these two
points the derivative is zero. Graphically: If the secant line between x = a and x = b is
horizontal, then at least one tangent line between a and b is also horizontal (Figure 13).

a bc

f (a) = f (b)

f ´(c) = 0

x

y

FIGURE 13 Rolle’s Theorem: If
f (a) = f (b), then f ′(c) = 0 for some c

between a and b.

THEOREM 4 Rolle’s Theorem Assume that f (x) is continuous on [a, b] and differ-
entiable on (a, b). If f (a) = f (b), then there exists a number c between a and b such
that f ′(c) = 0.

Proof Since f (x) is continuous and [a, b] is closed, f (x) has a min and a max in [a, b].
Where do they occur? If either the min or the max occurs at a point c in the open interval
(a, b), then f (c) is a local extreme value and f ′(c) = 0 by Fermat’s Theorem (Theorem
2). Otherwise, both the min and the max occur at the endpoints. However, f (a) = f (b), so
in this case, the min and max coincide and f (x) is a constant function with zero derivative.
Therefore, f ′(c) = 0 for all c ∈ (a, b).

EXAMPLE 7 Illustrating Rolle’s Theorem Verify Rolle’s Theorem for

f (x) = x4 − x2 on [−2, 2]
Solution The hypotheses of Rolle’s Theorem are satisfied because f (x) is differentiable
(and therefore continuous) everywhere, and f (2) = f (−2):

f (2) = 24 − 22 = 12, f (−2) = (−2)4 − (−2)2 = 12

We must verify that f ′(c) = 0 has a solution in (−2, 2), so we solve f ′(x) = 4x3 − 2x =
2x(2x2 − 1) = 0. The solutions are c = 0 and c = ±1/

√
2 ≈ ±0.707. They all lie in

(−2, 2), so Rolle’s Theorem is satisfied with three values of c.

EXAMPLE 8 Using Rolle’s Theorem Show that f (x) = x3 + 9x − 4 has precisely
one real root.
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Solution First, we note that f (0) = −4 is negative and f (1) = 6 is positive. By the

−2 −1 21a

20

−20

x

y

FIGURE 14 Graph of f (x) = x3 + 9x − 4.
This function has one real root.

Intermediate Value Theorem (Section 2.8), f (x) has at least one root a in [0, 1]. If f (x) had
a second root b, then f (a) = f (b) = 0 and Rolle’s Theorem would imply that f ′(c) = 0
for some c ∈ (a, b). This is not possible because f ′(x) = 3x2 + 9 ≥ 9, so f ′(c) = 0 has
no solutions. We conclude that a is the only real root of f (x) (Figure 14).

We can hardly expect a more general
method…. This method never fails and
could be extended to a number of beautiful
problems; with its aid we have found the
centers of gravity of figures bounded by
straight lines or curves, as well as those of
solids, and a number of other results which
we may treat elsewhere if we have the time
to do so.

—From Fermat’s On Maxima and Minima
and on Tangents

Pierre de Fermat
(1601–1665)

René Descartes
(1596–1650)

HISTORICAL
PERSPECTIVE

Sometime in the 1630’s, in the decade before
Isaac Newton was born, the French mathe-
matician Pierre de Fermat invented a general
method for finding extreme values. Fermat said,
in essence, that if you want to find extrema, you
must set the derivative equal to zero and solve
for the critical points, just as we have done in this
section. He also described a general method for
finding tangent lines that is not essentially dif-
ferent from our method of derivatives. For this
reason, Fermat is often regarded as an inventor
of calculus, together with Newton and Leibniz.

At around the same time, René Descartes
(1596-1650) developed a different but less effec-
tive approach to finding tangent lines. Descartes,
after whom Cartesian coordinates are named,
was a profound thinker—the leading philoso-
pher and scientist of his time in Europe. He is re-
garded today as the father of modern philosophy
and the founder (along with Fermat) of analytic
geometry. A dispute developed when Descartes
learned through an intermediary that Fermat had
criticized his work on optics. Sensitive and stub-
born, Descartes retaliated by attacking Fermat’s

method of finding tangents and only after some
third-party refereeing did he admit that Fermat
was correct. He wrote:

…Seeing the last method that you use for finding
tangents to curved lines, I can reply to it in no other
way than to say that it is very good and that, if you
had explained it in this manner at the outset, I would
have not contradicted it at all.

However, in subsequent private correspondence,
Descartes was less generous, referring at one
point to some of Fermat’s work as “le galima-
tias le plus ridicule”—the most ridiculous gib-
berish. Today Fermat is recognized as one of the
greatest mathematicians of his age who made
far-reaching contributions in several areas of
mathematics.

4.2 SUMMARY

• The extreme values of f (x) on an interval I are the minimum and maximum values of
f (x) for x ∈ I (also called absolute extrema on I ).
• Basic Theorem: If f (x) is continuous on a closed interval [a, b], then f (x) has both a
min and a max on [a, b].
• f (c) is a local minimum if f (x) ≥ f (c) for all x in some open interval around c. Local
maxima are defined similarly.
• x = c is a critical point of f (x) if either f ′(c) = 0 or f ′(c) does not exist.
• Fermat’s Theorem: If f (c) is a local min or max, then c is a critical point.
• To find the extreme values of a continuous function f (x) on a closed interval [a, b]:
Step 1. Find the critical points of f (x) in [a, b].
Step 2. Calculate f (x) at the critical points in [a, b] and at the endpoints.

The min and max on [a, b] are the smallest and largest among the values computed in
Step 2.
• Rolle’s Theorem: If f (x) is continuous on [a, b] and differentiable on (a, b), and if
f (a) = f (b), then there exists c between a and b such that f ′(c) = 0.
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4.2 EXERCISES

Preliminary Questions
1. What is the definition of a critical point?

In Questions 2 and 3, choose the correct conclusion.

2. If f (x) is not continuous on [0, 1], then

(a) f (x) has no extreme values on [0, 1].
(b) f (x) might not have any extreme values on [0, 1].

3. If f (x) is continuous but has no critical points in [0, 1], then

(a) f (x) has no min or max on [0, 1].
(b) Either f (0) or f (1) is the minimum value on [0, 1].

4. Fermat’s Theorem does not claim that if f ′(c) = 0, then f (c) is a
local extreme value (this is false). What does Fermat’s Theorem assert?

Exercises
1. The following questions refer to Figure 15.

(a) How many critical points does f (x) have on [0, 8]?
(b) What is the maximum value of f (x) on [0, 8]?
(c) What are the local maximum values of f (x)?
(d) Find a closed interval on which both the minimum and maximum
values of f (x) occur at critical points.
(e) Find an interval on which the minimum value occurs at an endpoint.

83 4 5 6 721

2

3

4

5

6

1

f (x)

x

y

FIGURE 15

2. State whether f (x) = x−1 (Figure 16) has a minimum or maxi-
mum value on the following intervals:

(a) (0, 2) (b) (1, 2) (c) [1, 2]

1 2 3
x

y

FIGURE 16 Graph of f (x) = x−1.

In Exercises 3–20, find all critical points of the function.

3. f (x) = x2 − 2x + 4 4. f (x) = 7x − 2

5. f (x) = x3 − 9
2x2 − 54x + 2 6. f (t) = 8t3 − t2

7. f (x) = x−1 − x−2 8. g(z) = 1

z − 1
− 1

z

9. f (x) = x

x2 + 1
10. f (x) = x2

x2 − 4x + 8

11. f (t) = t − 4
√

t + 1 12. f (t) = 4t −
√

t2 + 1

13. f (x) = x2
√

1 − x2 14. f (x) = x + |2x + 1|
15. g(θ) = sin2 θ 16. R(θ) = cos θ + sin2 θ

17. f (x) = x ln x 18. f (x) = xe2x

19. f (x) = sin−1 x − 2x 20. f (x) = sec−1 x − ln x

21. Let f (x) = x2 − 4x + 1.

(a) Find the critical point c of f (x) and compute f (c).

(b) Compute the value of f (x) at the endpoints of the interval [0, 4].
(c) Determine the min and max of f (x) on [0, 4].
(d) Find the extreme values of f (x) on [0, 1].
22. Find the extreme values of f (x) = 2x3 − 9x2 + 12x on [0, 3] and
[0, 2].
23. Find the critical points of f (x) = sin x + cos x and determine the
extreme values on

[
0, π

2

]
.

24. Compute the critical points of h(t) = (t2 − 1)1/3. Check that your
answer is consistent with Figure 17. Then find the extreme values of
h(t) on [0, 1] and [0, 2].

1 2−1−2

1

−1

t

h(t)

FIGURE 17 Graph of h(t) = (t2 − 1)1/3.

25. Plot f (x) = 2
√

x − x on [0, 4] and determine the maxi-
mum value graphically. Then verify your answer using calculus.
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26. Plot f (x) = ln x − 5 sin x on [0.1, 2] and approximate
both the critical points and the extreme values.

27. Approximate the critical points of g(x) = x cos−1 x and
estimate the maximum value of g(x).

28. Approximate the critical points of g(x) = 5ex − tan x in(−π
2 , π

2

)
.

In Exercises 29–58, find the min and max of the function on the given
interval by comparing values at the critical points and endpoints.

29. y = 2x2 + 4x + 5, [−2, 2]
30. y = 2x2 + 4x + 5, [0, 2]
31. y = 6t − t2, [0, 5]
32. y = 6t − t2, [4, 6]
33. y = x3 − 6x2 + 8, [1, 6]
34. y = x3 + x2 − x, [−2, 2]
35. y = 2t3 + 3t2, [1, 2]
36. y = x3 − 12x2 + 21x, [0, 2]
37. y = z5 − 80z, [−3, 3]
38. y = 2x5 + 5x2, [−2, 2]

39. y = x2 + 1

x − 4
, [5, 6]

40. y = 1 − x

x2 + 3x
, [1, 4]

41. y = x − 4x

x + 1
, [0, 3]

42. y = 2
√

x2 + 1 − x, [0, 2]
43. y = (2 + x)

√
2 + (2 − x)2, [0, 2]

44. y =
√

1 + x2 − 2x, [0, 1]
45. y =

√
x + x2 − 2

√
x, [0, 4]

46. y = (t − t2)1/3, [−1, 2]
47. y = sin x cos x,

[
0, π

2

]
48. y = x + sin x, [0, 2π ]
49. y = √

2 θ − sec θ ,
[
0, π

3

]
50. y = cos θ + sin θ , [0, 2π ]
51. y = θ − 2 sin θ , [0, 2π ]
52. y = 4 sin3 θ − 3 cos2 θ , [0, 2π ]
53. y = tan x − 2x, [0, 1]
54. y = xe−x , [0, 2]

55. y = ln x

x
, [1, 3]

56. y = 3ex − e2x ,
[− 1

2 , 1
]

57. y = 5 tan−1 x − x, [1, 5]
58. y = x3 − 24 ln x,

[ 1
2 , 3

]
59. Let f (θ) = 2 sin 2θ + sin 4θ .

(a) Show that θ is a critical point if cos 4θ = − cos 2θ .

(b) Show, using a unit circle, that cos θ1 = − cos θ2 if and only if
θ1 = π ± θ2 + 2πk for an integer k.

(c) Show that cos 4θ = − cos 2θ if and only if θ = π
2 + πk or θ =

π
6 + (

π
3

)
k.

(d) Find the six critical points of f (θ) on [0, 2π ] and find the extreme
values of f (θ) on this interval.

(e) Check your results against a graph of f (θ).

60. Find the critical points of f (x) = 2 cos 3x + 3 cos 2x in
[0, 2π ]. Check your answer against a graph of f (x).

In Exercises 61–64, find the critical points and the extreme values on
[0, 4]. In Exercises 63 and 64, refer to Figure 18.

61. y = |x − 2| 62. y = |3x − 9|
63. y = |x2 + 4x − 12| 64. y = | cos x|

y = |x2 + 4x − 12|
2−6

10

20

30

y = |cos x|
1

−
x x

yy

π

2
π π

2
3π

2

FIGURE 18

In Exercises 65–68, verify Rolle’s Theorem for the given interval.

65. f (x) = x + x−1,
[ 1

2 , 2
]

66. f (x) = sin x,
[
π
4 , 3π

4

]
67. f (x) = x2

8x − 15
, [3, 5]

68. f (x) = sin2 x − cos2 x,
[
π
4 , 3π

4

]
69. Prove thatf (x) = x5 + 2x3 + 4x − 12 has precisely one real root.

70. Prove that f (x) = x3 + 3x2 + 6x has precisely one real root.

71. Prove that f (x) = x4 + 5x3 + 4x has no root c satisfying c > 0.
Hint: Note that x = 0 is a root and apply Rolle’s Theorem.

72. Prove that c = 4 is the largest root of f (x) = x4 − 8x2 − 128.

73. The position of a mass oscillating at the end of a spring is s(t) =
A sin ωt , where A is the amplitude and ω is the angular frequency.
Show that the speed |v(t)| is at a maximum when the acceleration a(t)

is zero and that |a(t)| is at a maximum when v(t) is zero.
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74. The concentration C(t) (in mg/cm3) of a drug in a patient’s blood-
stream after t hours is

C(t) = 0.016t

t2 + 4t + 4

Find the maximum concentration in the time interval [0, 8] and the time
at which it occurs.

75. Antibiotic Levels A study shows that the concentration
C(t) (in micrograms per milliliter) of antibiotic in a patient’s blood
serum after t hours is C(t) = 120(e−0.2t − e−bt ), where b ≥ 1 is a
constant that depends on the particular combination of antibiotic agents
used. Solve numerically for the value of b (to two decimal places) for
which maximum concentration occurs at t = 1 h. You may assume that
the maximum occurs at a critical point as suggested by Figure 19.

t (h)

C (mcg/ml)

2 4 6 8 10 12

20

40

60

80

100

FIGURE 19 Graph of C(t) = 120(e−0.2t − e−bt ) with b chosen so that
the maximum occurs at t = 1 h.

76. In the notation of Exercise 75, find the value of b (to two
decimal places) for which the maximum value of C(t) is equal to 100
mcg/ml.

77. In 1919, physicist Alfred Betz argued that the maximum efficiency
of a wind turbine is around 59%. If wind enters a turbine with speed
v1 and exits with speed v2, then the power extracted is the difference
in kinetic energy per unit time:

P = 1

2
mv2

1 − 1

2
mv2

2 watts

where m is the mass of wind flowing through the rotor per unit time
(Figure 20). Betz assumed that m = ρA(v1 + v2)/2, where ρ is the
density of air and A is the area swept out by the rotor. Wind flowing
undisturbed through the same area A would have mass per unit time
ρAv1 and power P0 = 1

2ρAv3
1. The fraction of power extracted by the

turbine is F = P/P0.

(a) Show that F depends only on the ratio r = v2/v1 and is equal to
F(r) = 1

2 (1 − r2)(1 + r), where 0 ≤ r ≤ 1.

(b) Show that the maximum value of F(r), called the Betz Limit, is
16/27 ≈ 0.59.

(c) Explain why Betz’s formula for F(r) is not meaningful for
r close to zero. Hint: How much wind would pass through the turbine
if v2 were zero? Is this realistic?

1

0.1
0.2
0.3

0.5
0.4

0.6

0.5
r

F

(A) Wind flowing through a turbine. (B) F is the fraction of energy
       extracted by the turbine as a 
      function of r = v2/v1.

v1 v2

FIGURE 20

78. The Bohr radius a0 of the hydrogen atom is the value of
r that minimizes the energy

E(r) = h̄2

2mr2
− e2

4πε0r

where h̄, m, e, and ε0 are physical constants. Show that a0 =
4πε0h̄2/(me2). Assume that the minimum occurs at a critical point,
as suggested by Figure 21.

1 32
−1

−2

1

2

r (10−10 meters) 

E(r) (10−18 joules) 

FIGURE 21

79. The response of a circuit or other oscillatory system to an input of
frequency ω (“omega”) is described by the function

φ(ω) = 1√
(ω2

0 − ω2)2 + 4D2ω2

Both ω0 (the natural frequency of the system) and D (the damping
factor) are positive constants. The graph of φ is called a resonance
curve, and the positive frequency ωr > 0, where φ takes its maxi-
mum value, if it exists, is called the resonant frequency. Show that

ωr =
√

ω2
0 − 2D2 if 0 < D < ω0/

√
2 and that no resonant frequency

exists otherwise (Figure 22).

ω

(A) D = 0.01 (B) D = 0.2

2 2ωr

(C) D = 0.75 (no resonance)

50

φ φ φ

ω
ωr

1

2

3

ω
31 2

1

0.5

FIGURE 22 Resonance curves with ω0 = 1.
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80. Bees build honeycomb structures out of cells with a hexagonal base
and three rhombus-shaped faces on top, as in Figure 23. We can show
that the surface area of this cell is

A(θ) = 6hs + 3

2
s2(

√
3 csc θ − cot θ)

with h, s, and θ as indicated in the figure. Remarkably, bees “know”
which angle θ minimizes the surface area (and therefore requires the
least amount of wax).

(a) Show that θ ≈ 54.7◦ (assume h and s are constant). Hint: Find the
critical point of A(θ) for 0 < θ < π/2.

(b) Confirm, by graphing f (θ) = √
3 csc θ − cot θ , that the

critical point indeed minimizes the surface area.

s

h

θ

FIGURE 23 A cell in a honeycomb constructed by bees.

81. Find the maximum of y = xa − xb on [0, 1] where 0 < a < b. In
particular, find the maximum of y = x5 − x10 on [0, 1].
In Exercises 82–84, plot the function using a graphing utility and find
its critical points and extreme values on [−5, 5].

82. y = 1

1 + |x − 1|

83. y = 1

1 + |x − 1| + 1

1 + |x − 4|
84. y = x

|x2 − 1| + |x2 − 4|
85. (a) Use implicit differentiation to find the critical points on the
curve 27x2 = (x2 + y2)3.

(b) Plot the curve and the horizontal tangent lines on the same
set of axes.

86. Sketch the graph of a continuous function on (0, 4) with a minimum
value but no maximum value.

87. Sketch the graph of a continuous function on (0, 4) having a local
minimum but no absolute minimum.

88. Sketch the graph of a function on [0, 4] having

(a) Two local maxima and one local minimum.

(b) An absolute minimum that occurs at an endpoint, and an absolute
maximum that occurs at a critical point.

89. Sketch the graph of a function f (x) on [0, 4] with a discontinuity
such that f (x) has an absolute minimum but no absolute maximum.

90. A rainbow is produced by light rays that enter a raindrop (assumed
spherical) and exit after being reflected internally as in Figure 24. The
angle between the incoming and reflected rays is θ = 4r − 2i, where
the angle of incidence i and refraction r are related by Snell’s Law
sin i = n sin r with n ≈ 1.33 (the index of refraction for air and water).

(a) Use Snell’s Law to show that
dr

di
= cos i

n cos r
.

(b) Show that the maximum value θmax of θ occurs when i satisfies

cos i =
√

n2 − 1

3
. Hint: Show that

dθ

di
= 0 if cos i = n

2
cos r . Then

use Snell’s Law to eliminate r .

(c) Show that θmax ≈ 59.58◦.

i
r

r
r

r

i

θ

Incoming light ray

Water
droplet

Reflected ray

FIGURE 24

Further Insights and Challenges
91. Show that the extreme values of f (x) = a sin x + b cos x are

±
√

a2 + b2.

92. Show, by considering its minimum, that f (x) = x2 − 2x + 3 takes
on only positive values. More generally, find the conditions on r and s

under which the quadratic function f (x) = x2 + rx + s takes on only
positive values. Give examples of r and s for which f takes on both
positive and negative values.

93. Show that if the quadratic polynomial f (x) = x2 + rx + s takes
on both positive and negative values, then its minimum value occurs at
the midpoint between the two roots.

94. Generalize Exercise 93: Show that if the horizontal line y = c in-
tersects the graph of f (x) = x2 + rx + s at two points (x1, f (x1))

and (x2, f (x2)), then f (x) takes its minimum value at the midpoint

M = x1 + x2

2
(Figure 25).

x

y

x1 M

c

f (x)

y = c

x2

FIGURE 25



226 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

95. A cubic polynomial may have a local min and max, or it may have
neither (Figure 26). Find conditions on the coefficients a and b of

f (x) = 1

3
x3 + 1

2
ax2 + bx + c

−4 −2 42

(A) (B)

−2 42

20

−20

60

30

xx

yy

FIGURE 26 Cubic polynomials

that ensure that f has neither a local min nor a local max. Hint: Apply
Exercise 92 to f ′(x).

96. Find the min and max of

f (x) = xp(1 − x)q on [0, 1],

where p, q > 0.

97. Prove that if f is continuous and f (a) and f (b) are local
minima where a < b, then there exists a value c between a and b such
that f (c) is a local maximum. (Hint: Apply Theorem 1 to the interval
[a, b].) Show that continuity is a necessary hypothesis by sketching the
graph of a function (necessarily discontinuous) with two local minima
but no local maximum.

4.3 The Mean Value Theorem and Monotonicity
We have taken for granted that a function f (x) is increasing if f ′(x) is positive and de-

a c b

Slope  f ´(c)

Slope
f (b) − f (a)

b − a
x

FIGURE 1 By the MVT, there exists at least
one tangent line parallel to the secant line.

creasing if f ′(x) is negative. In this section, we prove this rigorously using an important
result called the Mean Value Theorem (MVT). Then we develop a method for “test-
ing” critical points—that is, for determining whether they correspond to local minima or
maxima.

The MVT says that a secant line between two points (a, f (a)) and (b, f (b)) on a
graph is parallel to at least one tangent line in the interval (a, b) [Figure 1]. Because two
lines are parallel if they have the same slope, what the MVT claims is that there exists a
point c between a and b such that

f ′(c)︸ ︷︷ ︸
Slope of tangent line

= f (b) − f (a)

b − a︸ ︷︷ ︸
Slope of secant line

THEOREM 1 The Mean Value Theorem Assume that f (x) is continuous on the closed
interval [a, b] and differentiable on (a, b). Then there exists at least one value c in (a, b)

such that

f ′(c) = f (b) − f (a)

b − a

Rolle’s Theorem (Section 4.2) is the special case of the MVT in which f (a) = f (b).
In this case, the conclusion is that f ′(c) = 0.

FIGURE 2 Move the secant line in a parallel
fashion until it becomes tangent to the
curve.

GRAPHICAL INSIGHT Imagine what happens when a secant line is moved parallel to
itself. Eventually, it becomes a tangent line, as shown in Figure 2. This is the idea
behind the MVT. We present a formal proof at the end of this section.
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CONCEPTUAL INSIGHT The conclusion of the MVT can be rewritten as

f (b) − f (a) = f ′(c)(b − a)

We can think of this as a variation on the Linear Approximation, which says

f (b) − f (a) ≈ f ′(a)(b − a).

The MVT turns this approximation into an equality by replacing f ′(a) with f ′(c) for a
suitable choice of c in (a, b).

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

(1, 1)

(9, 3)

Secant line

Tangent line

y

x

f (x) = �x

FIGURE 3 The tangent line at c = 4 is
parallel to the secant line.

EXAMPLE 1 Verify the MVT with f (x) = √
x, a = 1, and b = 9.

Solution First, compute the slope of the secant line (Figure 3):

f (b) − f (a)

b − a
=

√
9 − √

1

9 − 1
= 3 − 1

9 − 1
= 1

4

We must find c such that f ′(c) = 1/4. The derivative is f ′(x) = 1
2x−1/2, and

f ′(c) = 1

2
√

c
= 1

4
⇒ 2

√
c = 4 ⇒ c = 4

The value c = 4 lies in (1, 9) and satisfies f ′(4) = 1
4 . This verifies the MVT.

As a first application, we prove that a function with zero derivative is constant.

COROLLARY If f (x) is differentiable and f ′(x) = 0 for all x ∈ (a, b), then f (x) is
constant on (a, b). In other words, f (x) = C for some constant C.

Proof If a1 and b1 are any two distinct points in (a, b), then, by the MVT, there exists c

between a1 and b1 such that

f (b1) − f (a1) = f ′(c)(b1 − a1) = 0 (since f ′(c) = 0)

Thus f (b1) = f (a1). This says that f (x) is constant on (a, b).

Increasing / Decreasing Behavior of Functions
We prove now that the sign of the derivative determines whether a function f (x) is
increasing or decreasing. Recall that f (x) is

• Increasing on (a, b) if f (x1) < f (x2) for all x1, x2 ∈ (a, b) such that x1 < x2
• Decreasing on (a, b) if f (x1) > f (x2) for all x1, x2 ∈ (a, b) such that x1 < x2

We say that f (x) is monotonic on (a, b) if it is either increasing or decreasing on (a, b).We say that f is “nondecreasing” if

f (x1) ≤ f (x2) for x1 ≤ x2

“Nonincreasing” is defined similarly. In
Theorem 2, if we assume that f ′(x) ≥ 0
(instead of > 0), then f (x) is
nondecreasing on (a, b). If f ′(x) ≤ 0,
then f (x) is nonincreasing on (a, b).

THEOREM 2 The Sign of the Derivative Let f be a differentiable function on an
open interval (a, b).

• If f ′(x) > 0 for x ∈ (a, b), then f is increasing on (a, b).
• If f ′(x) < 0 for x ∈ (a, b), then f is decreasing on (a, b).
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Proof Suppose first that f ′(x) > 0 for all x ∈ (a, b). The MVT tells us that for any two
points x1 < x2 in (a, b), there exists c between x1 and x2 such that

f (x2) − f (x1) = f ′(c)(x2 − x1) > 0

The inequality holds because f ′(c) and (x2 − x1) are both positive. Therefore, f (x2) >

f (x1), as required. The case f ′(x) < 0 is similar.

GRAPHICAL INSIGHT Theorem 2 confirms our graphical intuition (Figure 4):

• f ′(x) > 0 ⇒ Tangent lines have positive slope ⇒ f increasing
• f ′(x) < 0 ⇒ Tangent lines have negative slope ⇒ f decreasing

Increasing function: Tangent
lines have positive slope.

Decreasing function: Tangent 
lines have negative slope.

FIGURE 4

EXAMPLE 2 Show that f (x) = ln x is increasing.

Solution The derivative f ′(x) = x−1 is positive on the domain {x : x > 0}, so f (x) =
ln x is increasing. Observe, however, that f ′(x) = x−1 is decreasing, so the graph of f (x)

grows flatter as x → ∞ (Figure 5).

x

y

f (x) = ln x

1

FIGURE 5 The tangent lines to y = ln x get
flatter as x → ∞.

y

x

f ´ > 0f ´ < 0

f increasingf decreasing

−1

−4

31

FIGURE 6 Graph of f (x) = x2 − 2x − 3.

EXAMPLE 3 Find the intervals on which f (x) = x2 − 2x − 3 is monotonic.

Solution The derivative f ′(x) = 2x − 2 = 2(x − 1) is positive for x > 1 and negative
for x < 1. By Theorem 2, f is decreasing on the interval (−∞, 1) and increasing on the
interval (1, ∞), as confirmed in Figure 6.

Testing Critical Points
There is a useful test for determining whether a critical point is a min or max (or neither)
based on the sign change of the derivative f ′(x).
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To explain the term “sign change,” suppose that a function F(x) satisfies F(c) = 0.
We say that F(x) changes from positive to negative at x = c if F(x) > 0 to the left of
c and F(x) < 0 to the right of c for x within a small open interval around c (Figure 7).
A sign change from negative to positive is defined similarly. Observe in Figure 7 that

No sign change
Sign change
from − to +

Sign change
from + to −

y = F (x)

x

y

4321 5

FIGURE 7

F(5) = 0 but F(x) does not change sign at x = 5.
Now suppose that f ′(c) = 0 and that f ′(x) changes sign at x = c, say from + to −.

Then f (x) is increasing to the left of c and decreasing to the right, so f (c) is a local
maximum. Similarly, if f ′(x) changes sign from − to +, then f (c) is a local minimum.
See Figure 8(A).

Figure 8(B) illustrates a case where f ′(c) = 0 but f ′ does not change sign. In this
case, f ′(x) > 0 for all x near but not equal to c, so f (x) is increasing and has neither a
local min nor a local max at c.

THEOREM 3 First Derivative Test for Critical Points Assume that f (x) is differen-
tiable and let c be a critical point of f (x). Then

• f ′(x) changes from + to − at c ⇒ f (c) is a local maximum.
• f ′(x) changes from − to + at c ⇒ f (c) is a local minimum.

(A)

f ´(x) = 3x2 − 27

f (x) = x3 − 27x − 20

3

Local max

Local min

−3

f ´(x) changes
from − to +

f ´(x) changes
from + to −

3−3

(B)

f ´(x) does not
change sign

Neither a local
min nor max

f (x)

c

c

x

x

x

x

y

y

y

y

f ´(x) 

FIGURE 8

To carry out the First Derivative Test, we make a useful observation: f ′(x) can change
sign at a critical point, but it cannot change sign on the interval between two consecutive
critical points (one can prove this is true even if f ′(x) is not assumed to be continuous).
So we can determine the sign of f ′(x) on an interval between consecutive critical points
by evaluating f ′(x) at an any test point x0 inside the interval. The sign of f ′(x0) is the
sign of f ′(x) on the entire interval.

EXAMPLE 4 Analyze the critical points of f (x) = x3 − 27x − 20.

Solution Our analysis will confirm the picture in Figure 8(A).
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Step 1. Find the critical points.
The roots of f ′(x) = 3x2 − 27 = 3(x2 − 9) = 0 are c = ±3.

Step 2. Find the sign of f ′ on the intervals between the critical points.
The critical points c = ±3 divide the real line into three intervals:

(−∞, −3), (−3, 3), (3,∞)

To determine the sign of f ′ on these intervals, we choose a test point inside each interval
and evaluate. For example, in (−∞, −3) we choose x = −4. Because f ′(−4) = 21 >

0, f ′(x) is positive on the entire interval (−3, ∞). Similarly,

We chose the test points −4, 0, and 4
arbitrarily. To find the sign of f ′(x) on
(−∞, −3), we could just as well have
computed f ′(−5) or any other value of f ′
in the interval (−∞, −3).

f ′(−4) = 21 > 0 ⇒ f ′(x) > 0 for all x ∈ (−∞, −3)

f ′(0) = −27 < 0 ⇒ f ′(x) < 0 for all x ∈ (−3, 3)

f ′(4) = 21 > 0 ⇒ f ′(x) > 0 for all x ∈ (3, ∞)

This information is displayed in the following sign diagram:

3−3

−+ +Sign of f ´(x)

0

Behavior of f (x)

Step 3. Use the First Derivative Test.

• c = −3: f ′(x) changes from + to − ⇒ f (−3) is a local max.
• c = 3: f ′(x) changes from − to + ⇒ f (3) is a local min.

EXAMPLE 5 Analyze the critical points and the increase/decrease behavior of f (x) =
cos2 x + sin x in (0, π).

Solution First, find the critical points:

f ′(x) = −2 cos x sin x + cos x = (cos x)(1 − 2 sin x) = 0 ⇒ cos x = 0 or sin x = 1

2

The critical points are π
6 , π

2 , and 5π
6 . They divide (0, π) into four intervals:

−− −−−
+++ ++

1

−1

1

x

x

y

y

y = f ´(x)

y = f (x)

π π

π

2
π

6
5π

6

π

2
π

6
5π

6

FIGURE 9 Graph of f (x) = cos2 x + sin x

and its derivative.

(
0,

π

6

)
,

(π

6
,
π

2

)
,

(π

2
,

5π

6

)
,

(5π

6
, π

)
We determine the sign of f ′ by evaluating f ′ at a test point inside each interval. Since
π
6 ≈ 0.52, π

2 ≈ 1.57, 5π
6 ≈ 2.62, and π ≈ 3.14, we can use the following test points.

Interval Test Value Sign of f ′(x) Behavior of f (x)(
0, π

6

)
f ′(0.5) ≈ 0.04 + ↑(

π
6 , π

2

)
f ′(1) ≈ −0.37 − ↓(

π
2 , 5π

6

)
f ′(2) ≈ 0.34 + ↑( 5π

6 , π
)

f ′(3) ≈ −0.71 − ↓

Now apply the First Derivative Test:

• Local max at c = π
6 and c = 5π

6 because f ′ changes from + to −.

• Local min at c = π
2 because f ′ changes from − to +.

The behavior of f (x) and f ′(x) is reflected in the graphs in Figure 9.
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EXAMPLE 6 A Critical Point Without a Sign Transition Analyze the critical points of
f (x) = 1

3x3 − x2 + x.

21−1

f ´(1) = 0

x

y

FIGURE 10 Graph of
f (x) = 1

3x3 − x2 + x.

Solution The derivative is f ′(x) = x2 − 2x + 1 = (x − 1)2, so c = 1 is the only critical
point. However, (x − 1)2 ≥ 0, so f ′(x) does not change sign at c = 1, and f (1) is neither
a local min nor a local max (Figure 10).

Proof of the MVT

Let m = f (b) − f (a)

b − a
be the slope of the secant line joining (a, f (a)) and (b, f (b)).

The secant line has equation y = mx + r for some r (Figure 11). The value of r is not
important, but you can check that r = f (a) − ma. Now consider the function

G(x) = f (x) − (mx + r)

As indicated in Figure 11, G(x) is the vertical distance between the graph and the secant

a x b

G(x) = f (x) − (mx + r)

y = f (x)

y = mx + r

x

y

FIGURE 11 G(x) is the vertical distance
between the graph and the secant line.

line at x (it is negative at points where the graph of f lies below the secant line). This
distance is zero at the endpoints, and therefore G(a) = G(b) = 0. By Rolle’s Theorem
(Section 4.2), there exists a point c in (a, b) such that G′(c) = 0. But G′(x) = f ′(x) − m,
so G′(c) = f ′(c) − m = 0, and f ′(c) = m as desired.

4.3 SUMMARY

• The Mean Value Theorem (MVT): If f (x) is continuous on [a, b] and differentiable on
(a, b), then there exists at least one value c in (a, b) such that

f ′(c) = f (b) − f (a)

b − a

This conclusion can also be written

f (b) − f (a) = f ′(c)(b − a)

• Important corollary of the MVT: If f ′(x) = 0 for all x ∈ (a, b), then f (x) is constant
on (a, b).
• The sign of f ′(x) determines whether f (x) is increasing or decreasing:

f ′(x) > 0 for x ∈ (a, b) ⇒ f is increasing on (a, b)

f ′(x) < 0 for x ∈ (a, b) ⇒ f is decreasing on (a, b)

• The sign of f ′(x) can change only at the critical points, so f (x) is monotonic (increasing
or decreasing) on the intervals between the critical points.
• To find the sign of f ′(x) on the interval between two critical points, calculate the sign
of f ′(x0) at any test point x0 in that interval.
• First Derivative Test: If f (x) is differentiable and c is a critical point, then

Sign Change of f ′ at c Type of Critical Point

From + to − Local maximum
From − to + Local minimum
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4.3 EXERCISES

Preliminary Questions
1. For which value of m is the following statement correct? If

f (2) = 3 and f (4) = 9, and f (x) is differentiable, then f has a tangent
line of slope m.

2. Assume f is differentiable. Which of the following statements does
not follow from the MVT?

(a) If f has a secant line of slope 0, then f has a tangent line of
slope 0.
(b) If f (5) < f (9), then f ′(c) > 0 for some c ∈ (5, 9).
(c) If f has a tangent line of slope 0, then f has a secant line of
slope 0.
(d) If f ′(x) > 0 for all x, then every secant line has positive slope.

3. Can a function that takes on only negative values have a positive
derivative? If so, sketch an example.

4. For f (x) with derivative as in Figure 12:

(a) Is f (c) a local minimum or maximum?

(b) Is f (x) a decreasing function?

c
x

y

FIGURE 12 Graph of derivative f ′(x).

Exercises
In Exercises 1–8, find a point c satisfying the conclusion of the MVT
for the given function and interval.

1. y = x−1, [2, 8] 2. y = √
x, [9, 25]

3. y = cos x − sin x, [0, 2π ] 4. y = x

x + 2
, [1, 4]

5. y = x3, [−4, 5] 6. y = x ln x, [1, 2]
7. y = e−2x , [0, 3] 8. y = ex − x, [−1, 1]
9. Let f (x) = x5 + x2. The secant line between x = 0 and

x = 1 has slope 2 (check this), so by the MVT, f ′(c) = 2 for some
c ∈ (0, 1). Plot f (x) and the secant line on the same axes. Then plot
y = 2x + b for different values of b until the line becomes tangent to the
graph of f . Zoom in on the point of tangency to estimate x-coordinate
c of the point of tangency.

10. Plot the derivative of f (x) = 3x5 − 5x3. Describe its sign
changes and use this to determine the local extreme values of f (x).
Then graph f (x) to confirm your conclusions.

11. Determine the intervals on which f ′(x) is positive and negative,
assuming that Figure 13 is the graph of f (x).

12. Determine the intervals on which f (x) is increasing or decreasing,
assuming that Figure 13 is the graph of f ′(x).

13. State whether f (2) and f (4) are local minima or local maxima,
assuming that Figure 13 is the graph of f ′(x).

x
654321

y

FIGURE 13

14. Figure 14 shows the graph of the derivative f ′(x) of a function
f (x). Find the critical points of f (x) and determine whether they are
local minima, local maxima, or neither.

y

x
320.5−2 −1

y = f ´(x)

6

−2

FIGURE 14

In Exercises 15–18, sketch the graph of a function f (x) whose deriva-
tive f ′(x) has the given description.

15. f ′(x) > 0 for x > 3 and f ′(x) < 0 for x < 3

16. f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1

17. f ′(x) is negative on (1, 3) and positive everywhere else.

18. f ′(x) makes the sign transitions +, −, +, −.

In Exercises 19–22, find all critical points of f and use the First Deriva-
tive Test to determine whether they are local minima or maxima.

19. f (x) = 4 + 6x − x2 20. f (x) = x3 − 12x − 4

21. f (x) = x2

x + 1
22. f (x) = x3 + x−3

In Exercises 23–52, find the critical points and the intervals on which
the function is increasing or decreasing. Use the First Derivative Test to
determine whether the critical point is a local min or max (or neither).

23. y = −x2 + 7x − 17 24. y = 5x2 + 6x − 4

25. y = x3 − 12x2 26. y = x(x − 2)3

27. y = 3x4 + 8x3 − 6x2 − 24x 28. y = x2 + (10 − x)2
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29. y = 1
3x3 + 3

2x2 + 2x + 4 30. y = x4 + x3

31. y = x5 + x3 + 1 32. y = x5 + x3 + x

33. y = x4 − 4x3/2 (x > 0) 34. y = x5/2 − x2 (x > 0)

35. y = x + x−1 (x > 0) 36. y = x−2 − 4x−1 (x > 0)

37. y = 1

x2 + 1
38. y = 2x + 1

x2 + 1

39. y = x3

x2 + 1
40. y = x3

x2 − 3

41. y = θ + sin θ + cos θ 42. y = sin θ + √
3 cos θ

43. y = sin2 θ + sin θ 44. y = θ − 2 cos θ , [0, 2π ]

45. y = x + e−x 46. y = ex

x
(x > 0)

47. y = e−x cos x,
[ − π

2 , π
2

]
48. y = x2ex

49. y = tan−1 x − 1
2x 50. y = (x2 − 2x)ex

51. y = x − ln x (x > 0) 52. y = ln x

x
(x > 0)

53. Find the minimum value of f (x) = xx for x > 0.

54. Show that f (x) = x2 + bx + c is decreasing on
( − ∞, − b

2

)
and

increasing on
( − b

2 , ∞)
.

55. Show that f (x) = x3 − 2x2 + 2x is an increasing function. Hint:
Find the minimum value of f ′(x).

56. Find conditions on a and b that ensure that f (x) = x3 + ax + b

is increasing on (−∞, ∞).

57. Leth(x) = x(x2 − 1)

x2 + 1
and suppose thatf ′(x) = h(x). Plot

h(x) and use the plot to describe the local extrema and the increasing/
decreasing behavior of f (x). Sketch a plausible graph for f (x) itself.

58. Sam made two statements that Deborah found dubious.

(a) “The average velocity for my trip was 70 mph; at no point in time
did my speedometer read 70 mph.”

(b) “Apoliceman clocked me going 70 mph, but my speedometer never
read 65 mph.”

In each case, which theorem did Deborah apply to prove Sam’s state-
ment false: the Intermediate Value Theorem or the Mean Value Theo-
rem? Explain.

59. Determine where f (x) = (1,000 − x)2 + x2 is decreasing. Use
this to decide which is larger: 8002 + 2002 or 6002 + 4002.

60. Show that f (x) = 1 − |x| satisfies the conclusion of the MVT
on [a, b] if both a and b are positive or negative, but not if a < 0
and b > 0.

61. Which values of c satisfy the conclusion of the MVT on the interval
[a, b] if f (x) is a linear function?

62. Show that if f (x) is any quadratic polynomial, then the midpoint

c = a + b

2
satisfies the conclusion of the MVT on [a, b] for any a

and b.

63. Suppose that f (0) = 2 and f ′(x) ≤ 3 for x > 0. Apply the MVT
to the interval [0, 4] to prove that f (4) ≤ 14. Prove more generally that
f (x) ≤ 2 + 3x for all x > 0.

64. Show that if f (2) = −2 and f ′(x) ≥ 5 for x > 2, then f (4) ≥ 8.

65. Show that if f (2) = 5 and f ′(x) ≥ 10 for x > 2, then f (x) ≥
10x − 15 for all x > 2.

Further Insights and Challenges
66. Show that a cubic function f (x) = x3 + ax2 + bx + c is increas-
ing on (−∞, ∞) if b > a2/3.

67. Prove that if f (0) = g(0) and f ′(x) ≤ g′(x) for x ≥ 0, then
f (x) ≤ g(x) for all x ≥ 0. Hint: Show that f (x) − g(x) is nonin-
creasing.

68. Use Exercise 67 to prove that x ≤ tan x for 0 ≤ x < π
2 .

69. Use Exercise 67 and the inequality sin x ≤ x for x ≥ 0 (estab-
lished in Theorem 3 of Section 2.6) to prove the following assertions
for all x ≥ 0 (each assertion follows from the previous one).

(a) cos x ≥ 1 − 1
2x2

(b) sin x ≥ x − 1
6x3

(c) cos x ≤ 1 − 1
2x2 + 1

24x4

(d) Can you guess the next inequality in the series?

70. Let f (x) = e−x . Use the method of Exercise 69 to prove the fol-
lowing inequalities for x ≥ 0.

(a) e−x ≥ 1 − x

(b) e−x ≤ 1 − x + 1
2x2

(c) e−x ≥ 1 − x + 1
2x2 − 1

6x3

Can you guess the next inequality in the series?

71. Assume that f ′′ exists and f ′′(x) = 0 for all x. Prove that f (x) =
mx + b, where m = f ′(0) and b = f (0).

72. Define f (x) = x3 sin
( 1
x

)
for x = 0 and f (0) = 0.

(a) Show that f ′(x) is continuous at x = 0 and that x = 0 is a critical
point of f .
(b) Examine the graphs of f (x) and f ′(x). Can the First
Derivative Test be applied?
(c) Show that f (0) is neither a local min nor a local max.

73. Suppose that f (x) satisfies the following equation (an example of
a differential equation):

f ′′(x) = −f (x) 1

(a) Show that f (x)2 + f ′(x)2 = f (0)2 + f ′(0)2 for all x. Hint:
Show that the function on the left has zero derivative.
(b) Verify that sin x and cos x satisfy Eq. (1), and deduce that sin2 x +
cos2 x = 1.
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74. Suppose that functions f and g satisfy Eq. (1) and have the
same initial values—that is, f (0) = g(0) and f ′(0) = g′(0). Prove
that f (x) = g(x) for all x. Hint: Apply Exercise 73(a) to f − g.

75. Use Exercise 74 to prove: f (x) = sin x is the unique solution of
Eq. (1) such that f (0) = 0 and f ′(0) = 1; and g(x) = cos x is the
unique solution such that g(0) = 1 and g′(0) = 0. This result can
be used to develop all the properties of the trigonometric functions
“analytically”—that is, without reference to triangles.

4.4 The Shape of a Graph
In the previous section, we studied the increasing/decreasing behavior of a function, as
determined by the sign of the derivative. Another important property is concavity, which
refers to the way the graph bends. Informally, a curve is concave up if it bends up and
concave down if it bends down (Figure 1).

Concave downConcave up

FIGURE 1

To analyze concavity in a precise fashion, let’s examine how concavity is related to
tangent lines and derivatives. Observe in Figure 2 that when f (x) is concave up, f ′(x)

is increasing (the slopes of the tangent lines increase as we move to the right). Similarly,
when f (x) is concave down, f ′(x) is decreasing. This suggests the following definition.

Concave up: Slopes of tangent
lines are increasing.

Concave down: Slopes of tangent
lines are decreasing.

FIGURE 2

DEFINITION Concavity Let f (x) be a differentiable function on an open interval
(a, b). Then

• f is concave up on (a, b) if f ′(x) is increasing on (a, b).
• f is concave down on (a, b) if f ′(x) is decreasing on (a, b).

EXAMPLE 1 Concavity and Stock Prices The stocks of two companies, A and B,
went up in value, and both currently sell for $75 (Figure 3). However, one is clearly a
better investment than the other. Explain in terms of concavity.

Stock price

75

25

75

25

Stock price

Company A Company B

Time Time

FIGURE 3
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Solution The graph of Stock A is concave down, so its growth rate (first derivative) is
declining as time goes on. The graph of Stock B is concave up, so its growth rate is
increasing. If these trends continue, Stock B is the better investment.

y = f (x)

FIGURE 4 This function is decreasing. Its
derivative is negative but increasing.

GRAPHICAL INSIGHT Keep in mind that a function can decrease while its derivative
increases. In Figure 4, the derivative f ′(x) is increasing. Although the tangent lines are
getting less steep, their slopes are becoming less negative.

The concavity of a function is determined by the sign of its second derivative. Indeed, if
f ′′(x) > 0, then f ′(x) is increasing and hence f (x) is concave up. Similarly, if f ′′(x) < 0,
then f ′(x) is decreasing and f (x) is concave down.

THEOREM 1 Test for Concavity Assume that f ′′(x) exists for all x ∈ (a, b).

• If f ′′(x) > 0 for all x ∈ (a, b), then f is concave up on (a, b).
• If f ′′(x) < 0 for all x ∈ (a, b), then f is concave down on (a, b).

Of special interest are the points on the graph where the concavity changes. We say
that P = (c, f (c)) is a point of inflection of f (x) if the concavity changes from up to
down or from down to up at x = c. Figure 5 shows a curve made up of two arcs—one
is concave down and one is concave up (the word “arc” refers to a piece of a curve).
The point P where the arcs are joined is a point of inflection. We will denote points of
inflection in graphs by a solid square .

Concave down Concave up

P

P = point of inflection

FIGURE 5

According to Theorem 1, the concavity off is determined by the sign off ′′. Therefore,
a point of inflection is a point where f ′′(x) changes sign.

THEOREM 2 Test for Inflection Points Assume that f ′′(x) exists. If f ′′(c) = 0 and
f ′′(x) changes sign at x = c, then f (x) has a point of inflection at x = c.

EXAMPLE 2 Find the points of inflection of f (x) = cos x on [0, 2π ].

π

2
3π 2π

2

π

2
3π 2π

2

Concave
down

Concave
up

Concave
down

1

−1

−1

1

f ´́ (x) = −cos x

f (x) = cos x

x

x

y

y

−−−−
+++

FIGURE 6

Solution We have f ′′(x) = − cos x, and f ′′(x) = 0 for x = π
2 , 3π

2 . Figure 6 shows that
f ′′(x) changes sign at x = π

2 and 3π
2 , so f (x) has a point of inflection at both points.

EXAMPLE 3 Points of Inflection and Intervals of Concavity Find the points of inflec-
tion and intervals of concavity of f (x) = 3x5 − 5x4 + 1.

Solution The first derivative is f ′(x) = 15x4 − 20x3 and

f ′′(x) = 60x3 − 60x2 = 60x2(x − 1)
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The zeroes of f ′′(x) = 60x2(x − 1) are x = 0, 1. They divide the x-axis into three inter-

f ´´(x)

f (x)

2

f ´´(x) does not
change sign

No point of
inflection

Point of
inflection

f ´´(x)
changes sign

+++
−−−−−− 2

1

1−2

−2
x

x

y

y

FIGURE 7 Graph of f (x) = 3x5 − 5x4 + 1
and its second derivative.

vals: (−∞, 0), (0, 1), and (1, ∞). We determine the sign of f ′′(x) and the concavity of
f by computing “test values” within each interval (Figure 7):

Interval Test Value Sign of f ′′(x) Behavior of f (x)

(−∞, 0) f ′′(−1) = −120 − Concave down

(0, 1) f ′′( 1
2

) = − 15
2 − Concave down

(1, ∞) f ′′(2) = 240 + Concave up

We can read off the points of inflection from this table:

• c = 0: no point of inflection, because f ′′(x) does not change sign at 0.
• c = 1: point of inflection, because f ′′(x) changes sign at 1.

Usually, we find the inflection points by solving f ′′(x) = 0. However, an inflection
point can also occur at a point c where f ′′(c) does not exist.

EXAMPLE 4 A Case Where the Second Derivative Does Not Exist Find the points of
inflection of f (x) = x5/3.

−2 −1 1
Point of

inflection

2

2

1

−2

−1

x

y

FIGURE 8 The concavity of f (x) = x5/3

changes at x = 0 even though f ′′(0) does
not exist.

Solution In this case, f ′(x) = 5
3x2/3 and f ′′(x) = 10

9 x−1/3. Although f ′′(0) does not
exist, f ′′(x) does change sign at x = 0:

f ′′(x) = 10

9x1/3
=

{
> 0 for x > 0

< 0 for x < 0

Therefore, the concavity of f (x) changes at x = 0, and (0, 0) is a point of inflection
(Figure 8).

GRAPHICAL INSIGHT Points of inflection are easy to spot on the graph of the first deriva-
tive f ′(x). If f ′′(c) = 0 and f ′′(x) changes sign at x = c, then the increasing/decreasing
behavior of f ′(x) changes at x = c. Thus, inflection points of f occur where f ′(x) has
a local min or max (Figure 9).

f ´´ changes sign

Points of inflection

Local
max
of f ´

Local min
of f ´

y = f (x)

y = f ´(x)

y = f ´´(x)

x

x

x

y

y

y

FIGURE 9

Second Derivative Test for Critical Points

There is a simple test for critical points based on concavity. Suppose that f ′(c) = 0. As
we see in Figure 10, f (c) is a local max if f (x) is concave down, and it is a local min if
f (x) is concave up. Concavity is determined by the sign of f ′′, so we obtain the following
Second Derivative Test. (See Exercise 63 for a detailed proof.)

c

Concave down—local max

f ´´(c) > 0

c

Concave up—local min

f ´´(c) < 0

x

y

x

y

y = f (x) y = f (x)

FIGURE 10 Concavity determines the type of the critical point.
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THEOREM 3 Second Derivative Test Let c be a critical point of f (x). If f ′′(c) exists,
then

• f ′′(c) > 0 ⇒ f (c) is a local minimum
• f ′′(c) < 0 ⇒ f (c) is a local maximum
• f ′′(c) = 0 ⇒ inconclusive: f (c) may be a local min, a local max, or neither

EXAMPLE 5 Analyze the critical points of f (x) = (2x − x2)ex .

Solution First, solve

f ′(x) = (2x − x2)ex + ex(2 − 2x) = (2 − x2)ex = 0

The critical points are c = ±√
2 (Figure 11). Next, determine the sign of the second

y

x

f (x) = (2x − x2)ex

Local min
( f ´´ > 0)

Local max
( f ´´ < 0)

−�2

�2

FIGURE 11

derivative at the critical points:

f ′′(x) = (2 − x2)ex + ex(−2x) = (2 − 2x − x2)ex

f ′′(−√
2) = (

2 − 2(−√
2) − (−√

2)2)e−√
2 = 2

√
2e−√

2 > 0 (local min)

f ′′(
√

2) = (
2 − 2

√
2 − (

√
2)2)e√

2 = −2
√

2e
√

2 < 0 (local max)

By the Second Derivative Test, f (x) has a local min at c = −√
2 and a local max at

c = √
2 (Figure 11).

EXAMPLE 6 Second Derivative Test Inconclusive Analyze the critical points of
f (x) = x5 − 5x4.

Solution The first two derivatives are

f ′(x) = 5x4 − 20x3 = 5x3(x − 4)

f ′′(x) = 20x3 − 60x2

The critical points are c = 0, 4, and the Second Derivative Test yields

f ′′(0) = 0 ⇒ Second Derivative Test fails

f ′′(4) = 320 > 0 ⇒ f (4) is a local min

The Second Derivative Test fails at c = 0, so we fall back on the First Derivative Test.
Choosing test points to the left and right of c = 0, we find

4

f (x) = x5 − 5x4

x

y

FIGURE 12 Graph of f (x) = x5 − 5x4.

f ′(−1) = 5 + 20 = 25 > 0 ⇒ f ′(x) is positive on (−∞, 0)

f ′(1) = 5 − 20 = −15 < 0 ⇒ f ′(x) is negative on (0, 4)

Since f ′(x) changes from + to − at c = 0, f (0) is a local max (Figure 12).

4.4 SUMMARY

• A differentiable function f (x) is concave up on (a, b) if f ′(x) is increasing and concave
down if f ′(x) is decreasing on (a, b).
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• The signs of the first two derivatives provide the following information:

First Derivative Second Derivative

f ′ > 0 ⇒ f is increasing f ′′ > 0 ⇒ f is concave up
f ′ < 0 ⇒ f is decreasing f ′′ < 0 ⇒ f is concave down

• A point of inflection is a point where the concavity changes from concave up to concave
down, or vice versa.
• If f ′′(c) = 0 and f ′′(x) changes sign at c, then c is a point of inflection.
• Second Derivative Test: If f ′(c) = 0 and f ′′(c) exists, then

– f (c) is a local maximum if f ′′(c) < 0.
– f (c) is a local minimum if f ′′(c) > 0.
– The test fails if f ′′(c) = 0.

If the test fails, use the First Derivative Test.

4.4 EXERCISES

Preliminary Questions
1. If f is concave up, then f ′ is (choose one):

(a) increasing (b) decreasing

2. What conclusion can you draw if f ′(c) = 0 and f ′′(c) < 0?

3. True or False? If f (c) is a local min, then f ′′(c) must be positive.

4. True or False? If f ′′(x) changes from + to − at x = c, then f has
a point of inflection at x = c.

Exercises
1. Match the graphs in Figure 13 with the description:

(a) f ′′(x) < 0 for all x. (b) f ′′(x) goes from + to −.
(c) f ′′(x) > 0 for all x. (d) f ′′(x) goes from − to +.

(A) (B) (C) (D)

FIGURE 13

2. Match each statement with a graph in Figure 14 that represents
company profits as a function of time.

(a) The outlook is great: The growth rate keeps increasing.
(b) We’re losing money, but not as quickly as before.
(c) We’re losing money, and it’s getting worse as time goes on.
(d) We’re doing well, but our growth rate is leveling off.
(e) Business had been cooling off, but now it’s picking up.
(f) Business had been picking up, but now it’s cooling off.

(i) (ii) (iii) (iv) (v) (vi)

FIGURE 14

In Exercises 3–18, determine the intervals on which the function is
concave up or down and find the points of inflection.

3. y = x2 − 4x + 3 4. y = t3 − 6t2 + 4

5. y = 10x3 − x5 6. y = 5x2 + x4

7. y = θ − 2 sin θ , [0, 2π ] 8. y = θ + sin2 θ , [0, π ]

9. y = x(x − 8
√

x) (x ≥ 0) 10. y = x7/2 − 35x2

11. y = (x − 2)(1 − x3) 12. y = x7/5

13. y = 1

x2 + 3
14. y = x − 1

x2 + 8

15. y = xe−3x 16. y = (x2 − 7)ex

17. y = 2x2 + ln x (x > 0) 18. y = x − ln x (x > 0)

19. The growth of a sunflower during the first 100 days af-
ter sprouting is modeled well by the logistic curve y = h(t) shown in
Figure 15. Estimate the growth rate at the point of inflection and ex-
plain its significance. Then make a rough sketch of the first and second
derivatives of h(t).
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FIGURE 15

20. Assume that Figure 16 is the graph of f (x). Where do the points of
inflection of f (x) occur, and on which interval is f (x) concave down?

x

y

gecba d f

FIGURE 16

21. Repeat Exercise 20 but assume that Figure 16 is the graph of the
derivative f ′(x).

22. Repeat Exercise 20 but assume that Figure 16 is the graph of the
second derivative f ′′(x).

23. Figure 17 shows the derivative f ′(x) on [0, 1.2]. Locate the points
of inflection of f (x) and the points where the local minima and max-
ima occur. Determine the intervals on which f (x) has the following
properties:

(a) Increasing (b) Decreasing
(c) Concave up (d) Concave down

1.210.17 0.640.4
x

y

y = f ´(x)

FIGURE 17

24. Leticia has been selling solar-powered laptop chargers through her
website, with monthly sales as recorded below. In a report to investors,
she states, “Sales reached a point of inflection when I started using
pay-per-click advertising.” In which month did that occur? Explain.

Month 1 2 3 4 5 6 7 8

Sales 2 30 50 60 90 150 230 340

In Exercises 25–38, find the critical points and apply the Second Deriva-
tive Test.

25. f (x) = x3 − 12x2 + 45x 26. f (x) = x4 − 8x2 + 1

27. f (x) = 3x4 − 8x3 + 6x2 28. f (x) = x5 − x3

29. f (x) = x2 − 8x

x + 1
30. f (x) = 1

x2 − x + 2

31. y = 6x3/2 − 4x1/2 32. y = 9x7/3 − 21x1/2

33. f (x) = sin2 x + cos x, [0, π ] 34. y = 1

sin x + 4
, [0, 2π ]

35. f (x) = xe−x2
36. f (x) = e−x − 4e−2x

37. f (x) = x3 ln x (x > 0)

38. f (x) = ln x + ln(4 − x2), (0, 2)

In Exercises 39–52, find the intervals on which f is concave up or
down, the points of inflection, the critical points, and the local minima
and maxima.

39. f (x) = x3 − 2x2 + x 40. f (x) = x2(x − 4)

41. f (t) = t2 − t3 42. f (x) = 2x4 − 3x2 + 2

43. f (x) = x2 − 8x1/2 (x ≥ 0)

44. f (x) = x3/2 − 4x−1/2 (x > 0)

45. f (x) = x

x2 + 27
46. f (x) = 1

x4 + 1

47. f (θ) = θ + sin θ , [0, 2π ] 48. f (x) = cos2 x, [0, π ]
49. f (x) = tan x,

(−π
2 , π

2

)
50. f (x) = e−x cos x,

[−π
2 , 3π

2

]
51. y = (x2 − 2)e−x (x > 0) 52. y = ln(x2 + 2x + 5)

53. Sketch the graph of an increasing function such that f ′′(x) changes
from + to − at x = 2 and from − to + at x = 4. Do the same for a
decreasing function.

In Exercises 54–56, sketch the graph of a function f (x) satisfying all
of the given conditions.

54. f ′(x) > 0 and f ′′(x) < 0 for all x.

55. (i) f ′(x) > 0 for all x, and

(ii) f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0.

56. (i) f ′(x) < 0 for x < 0 and f ′(x) > 0 for x > 0, and

(ii) f ′′(x) < 0 for |x| > 2, and f ′′(x) > 0 for |x| < 2.

57. An infectious flu spreads slowly at the beginning of an
epidemic. The infection process accelerates until a majority of the sus-
ceptible individuals are infected, at which point the process slows down.

(a) If R(t) is the number of individuals infected at time t , describe the
concavity of the graph of R near the beginning and end of the epidemic.

(b) Describe the status of the epidemic on the day that R(t) has a point
of inflection.
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58. Water is pumped into a sphere at a constant rate (Fig-
ure 18). Let h(t) be the water level at time t . Sketch the graph of h(t)

(approximately, but with the correct concavity). Where does the point
of inflection occur?

59. Water is pumped into a sphere of radius R at a variable rate
in such a way that the water level rises at a constant rate (Figure 18).
Let V (t) be the volume of water in the tank at time t . Sketch the graph
V (t) (approximately, but with the correct concavity). Where does the
point of inflection occur?

h
R

FIGURE 18

60. (Continuation of Exercise 59) If the sphere has radius R, the vol-
ume of water is V = π

(
Rh2 − 1

3h3)
where h is the water level.Assume

the level rises at a constant rate of 1 (that is, h = t).

(a) Find the inflection point of V (t). Does this agree with your con-
clusion in Exercise 59?

(b) Plot V (t) for R = 1.

61. Image Processing The intensity of a pixel in a digital image is
measured by a number u between 0 and 1. Often, images can be en-
hanced by rescaling intensities (Figure 19), where pixels of intensity
u are displayed with intensity g(u) for a suitable function g(u). One
common choice is the sigmoidal correction, defined for constants a,
b by

g(u) = f (u) − f (0)

f (1) − f (0)
where f (u) = (

1 + eb(a−u)
)−1

Figure 20 shows that g(u) reduces the intensity of low-intensity pixels
(where g(u) < u) and increases the intensity of high-intensity pixels.

(a) Verify that f ′(u) > 0 and use this to show that g(u) increases from
0 to 1 for 0 ≤ u ≤ 1.

(b) Where does g′(u) have a point of inflection?

Original Sigmoidal correction

FIGURE 19

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

u

y

y = g(u)
y = u

FIGURE 20 Sigmoidal correction with
a = 0.47, b = 12.

62. Use graphical reasoning to determine whether the follow-
ing statements are true or false. If false, modify the statement to make
it correct.

(a) If f (x) is increasing, then f −1(x) is decreasing.

(b) If f (x) is decreasing, then f −1(x) is decreasing.

(c) If f (x) is concave up, then f −1(x) is concave up.

(d) If f (x) is concave down, then f −1(x) is concave up.

Further Insights and Challenges
In Exercises 63–65, assume that f (x) is differentiable.

63. Proof of the Second Derivative Test Let c be a critical point
such that f ′′(c) > 0 (the case f ′′(c) < 0 is similar).

(a) Show that f ′′(c) = lim
h→0

f ′(c + h)

h
.

(b) Use (a) to show that there exists an open interval (a, b) contain-
ing c such that f ′(x) < 0 if a < x < c and f ′(x) > 0 if c < x < b.
Conclude that f (c) is a local minimum.

64. Prove that if f ′′(x) exists and f ′′(x) > 0 for all x, then
the graph of f (x) “sits above” its tangent lines.

(a) For any c, set G(x) = f (x) − f ′(c)(x − c) − f (c). It is sufficient
to prove that G(x) ≥ 0 for all c. Explain why with a sketch.

(b) Show that G(c) = G′(c) = 0 and G′′(x) > 0 for all x. Conclude
that G′(x) < 0 for x < c and G′(x) > 0 for x > c. Then deduce, using
the MVT, that G(x) > G(c) for x = c.

65. Assume that f ′′(x) exists and let c be a point of inflection
of f (x).

(a) Use the method of Exercise 64 to prove that the tangent line at
x = c crosses the graph (Figure 21). Hint: Show that G(x) changes
sign at x = c.



S E C T I O N 4.5 L’Hôpital’s Rule 241

(b) Verify this conclusion for f (x) = x

3x2 + 1
by graphing

f (x) and the tangent line at each inflection point on the same set of
axes.

FIGURE 21 Tangent line crosses graph at point of inflection.

66. Let C(x) be the cost of producing x units of a certain good.Assume
that the graph of C(x) is concave up.

(a) Show that the average cost A(x) = C(x)/x is minimized at the
production level x0 such that average cost equals marginal cost—that
is, A(x0) = C′(x0).

(b) Show that the line through (0, 0) and (x0, C(x0)) is tangent to the
graph of C(x).

67. Let f (x) be a polynomial of degree n ≥ 2. Show that f (x) has at
least one point of inflection if n is odd. Then give an example to show
that f (x) need not have a point of inflection if n is even.

68. Critical and Inflection Points If f ′(c) = 0 and f (c) is neither
a local min nor a local max, must x = c be a point of inflection? This is
true for “reasonable” functions (including the functions studied in this
text), but it is not true in general. Let

f (x) =
{

x2 sin 1
x for x = 0

0 for x = 0

(a) Use the limit definition of the derivative to show that f ′(0) exists
and f ′(0) = 0.

(b) Show that f (0) is neither a local min nor a local max.

(c) Show that f ′(x) changes sign infinitely often near x = 0. Conclude
that x = 0 is not a point of inflection.

4.5 L’Hôpital’s Rule
L’Hôpital’s Rule is a valuable tool for computing certain limits that are otherwise difficult
to evaluate, and also for determining “asymptotic behavior” (limits at infinity). We will
use it for graph sketching in the next section.

Consider the limit of a quotient

L’Hôpital’s Rule is named for the French
mathematician Guillaume François Antoine
Marquis de L’Hôpital (1661–1704), who
wrote the first textbook on calculus in
1696. The name L’Hôpital is pronounced
“Lo-pee-tal.”

lim
x→a

f (x)

g(x)

Roughly speaking, L’Hôpital’s Rule states that when f (x)/g(x) has an indeterminate
form of type 0/0 or ∞/∞ at x = a, then we can replace f (x)/g(x) by the quotient of the
derivatives f ′(x)/g′(x).

THEOREM 1 L’Hôpital’s Rule Assume that f (x) and g(x) are differentiable on an
open interval containing a and that

f (a) = g(a) = 0

Also assume that g′(x) = 0 (except possibly at a). Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right exists or is infinite (∞ or −∞). This conclusion also holds if
f (x) and g(x) are differentiable for x near (but not equal to) a and

lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞

Furthermore, this rule if valid for one-sided limits.
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EXAMPLE 1 Use L’Hôpital’s Rule to evaluate lim
x→2

x3 − 8

x4 + 2x − 20
.

Solution Let f (x) = x3 − 8 and g(x) = x4 + 2x − 20. Both f and g are differentiable
and f (x)/g(x) is indeterminate of type 0/0 at a = 2 because f (2) = g(2) = 0:

• Numerator: f (2) = 23 − 1 = 0
• Denominator: g(1) = 24 + 2(2) − 20 = 0

Furthermore, g′(x) = 4x3 + 2 is nonzero near x = 2, so L’Hôpital’s Rule applies. We
may replace the numerator and denominator by their derivatives to obtain

CAUTION When using L’Hˆopital’s Rule, be
sure to take the derivative of the numerator
and denominator separately:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Do not differentiate the quotient function
f (x)/g(x).

lim
x→2

x3 − 8

x4 + 2x − 2
= lim

x→2

3x2

4x3 + 2
= 3(22)

4(23) + 2
= 12

34
= 6

17

EXAMPLE 2 Evaluate lim
x→2

4 − x2

sin πx
.

Solution The quotient is indeterminate of type 0/0 at x = 2:

• Numerator: 4 − x2 = 4 − 22 = 0
• Denominator: sin πx = sin 2π = 0

The other hypotheses (that f and g are differentiable and g′(x) = 0 for x near a = 2) are
also satisfied, so we may apply L’Hôpital’s Rule:

lim
x→2

4 − x2

sin πx
= lim

x→2

(4 − x2)′

(sin πx)′
= lim

x→2

−2x

π cos πx
= −2(2)

π cos 2π
= −4

π

EXAMPLE 3 Evaluate lim
x→π/2

cos2 x

1 − sin x
.

Solution Again, the quotient is indeterminate of type 0/0 at x = π
2 :

cos2
(π

2

)
= 0, 1 − sin

π

2
= 1 − 1 = 0

The other hypotheses are satisfied, so we may apply L’Hôpital’s Rule:

lim
x→π/2

cos2 x

1 − sin x
= lim

x→π/2

(cos2 x)′

(1 − sin x)′
= lim

x→π/2

−2 cos x sin x

− cos x︸ ︷︷ ︸
L’Hôpital’s Rule

= lim
x→π/2

(2 sin x)︸ ︷︷ ︸
Simplify

= 2

Note that the quotient
−2 cos x sin x

− cos x
is still indeterminate at x = π/2. We removed this

indeterminacy by cancelling the factor − cos x.

EXAMPLE 4 The Form 0 · ∞ Evaluate lim
x→0+ x ln x.

Solution This limit is one-sided because f (x) = x ln x is not defined for x ≤ 0. Further-
more, as x → 0+,

• x approaches 0
• ln x approaches −∞

So f (x) presents an indeterminate form of type 0 · ∞. To apply L’Hôpital’s Rule we
rewrite our function as f (x) = (ln x)/x−1 so that f (x) presents an indeterminate form
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of type −∞/∞. Then L’Hôpital’s Rule applies:

lim
x→0+ x ln x = lim

x→0+
ln x

x−1
= lim

x→0+
(ln x)′

(x−1)′
= lim

x→0+

( x−1

−x−2

)
︸ ︷︷ ︸

L’Hôpital’s Rule

= lim
x→0+(−x)︸ ︷︷ ︸

Simplify

= 0

EXAMPLE 5 Using L’Hôpital’s Rule Twice Evaluate lim
x→0

ex − x − 1

cos x − 1
.

Solution For x = 0, we have

ex − x − 1 = e0 − 0 − 1 = 0, cos x − 1 = cos 0 − 1 = 0

A first application of L’Hôpital’s Rule gives

lim
x→0

ex − x − 1

cos x − 1
= lim

x→0

(ex − x − 1)′

(cos x − 1)′
= lim

x→0

(
ex − 1

− sin x

)
= lim

x→0

1 − ex

sin x

This limit is again indeterminate of type 0/0, so we apply L’Hôpital’s Rule again:

lim
x→0

1 − ex

sin x
= lim

x→0

−ex

cos x
= −e0

cos 0
= −1

EXAMPLE 6 Assumptions Matter Can L’Hôpital’s Rule be applied to lim
x→1

x2 + 1

2x + 1
?

Solution The answer is no. The function does not have an indeterminate form because

x2 + 1

2x + 1

∣∣∣∣
x=1

= 12 + 1

2 · 1 + 1
= 2

3

However, the limit can be evaluated directly by substitution: lim
x→1

x2 + 1

2x + 1
= 2

3
. An incor-

rect application of L’Hôpital’s Rule gives the wrong answer:

lim
x→1

(x2 + 1)′

(2x + 1)′
= lim

x→1

2x

2
= 1 (not equal to original limit)

EXAMPLE 7 The Form ∞ − ∞ Evaluate lim
x→0

(
1

sin x
− 1

x

)
.

Solution Both 1/ sin x and 1/x become infinite at x = 0, so we have an indeterminate
form of type ∞ − ∞. We must rewrite the function as

1

sin x
− 1

x
= x − sin x

x sin x

to obtain an indeterminate form of type 0/0. L’Hôpital’s Rule yields (see Figure 1):

lim
x→0

(
1

sin x
− 1

x

)
= lim

x→0

x − sin x

x sin x
= lim

x→0

1 − cos x

x cos x + sin x︸ ︷︷ ︸
L’Hôpital’s Rule

= lim
x→0

sin x

−x sin x + 2 cos x︸ ︷︷ ︸
L’Hôpital’s Rule needed again

= 0

2
= 0

x

y

1 2−1

0.5 y = −1
sin x

1
x

FIGURE 1 The graph confirms that

y = 1

sin x
− 1

x
approaches 0 as x → 0.

Limits of functions of the form f (x)g(x) can lead to the indeterminate forms 00, 1∞,
or ∞0. In such cases, take the logarithm and then apply L’Hôpital’s Rule.
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EXAMPLE 8 The Form 00 Evaluate lim
x→0+ xx .

Solution First, compute the limit of the logarithm ln xx = x ln x:

lim
x→0+ ln(xx) = lim

x→0+ x ln x = lim
x→0+

ln x

x−1
= 0 (by Example 4)

Since f (x) = ex is continuous, we can exponentiate to obtain the desired limit (see Fig-
ure 2):

y

1 2
x

4

2

1

3 y = xx

FIGURE 2 The function y = xx approaches
1 as x → 0+.

lim
x→0+ xx = lim

x→0+ eln(xx) = elimx→0+ ln(xx) = e0 = 1

Comparing Growth of Functions
Sometimes, we are interested in determining which of two functions, f (x) and g(x),
grows faster. For example, there are two standard computer algorithms for sorting data
(alphabetizing, ordering according to rank, etc.): Quick Sort and Bubble Sort. The av-
erage time required to sort a list of size n has order of magnitude n ln n for Quick Sort
and n2 for Bubble Sort. Which algorithm is faster when the size n is large? Although n

is a whole number, this problem amounts to comparing the growth of f (x) = x ln x and
g(x) = x2 as x → ∞.

We say that f (x) grows faster than g(x) if

lim
x→∞

f (x)

g(x)
= ∞ or, equivalently, lim

x→∞
g(x)

f (x)
= 0

To indicate that f (x) grows faster than g(x), we use the notation g(x) � f (x). For
example, x � x2 because

lim
x→∞

x2

x
= lim

x→∞ x = ∞
To compare the growth of functions, we need a version of L’Hôpital’s Rule that applies
to limits at infinity.

THEOREM 2 L’Hôpital’s Rule for Limits at Infinity Assume that f (x) and g(x) are
differentiable in an interval (b, ∞) and that g′(x) = 0 for x > b. If lim

x→∞ f (x) and

lim
x→∞ g(x) exist and either both are zero or both are infinite, then

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)

provided that the limit on the right exists. A similar result holds for limits as x → −∞.

EXAMPLE 9 The Form
∞
∞ Which of f (x) = x2 and g(x) = x ln x grows faster as

x → ∞?

Solution Both f (x) and g(x) approach infinity as x → ∞, so L’Hôpital’s Rule applies
to the quotient:

lim
x→∞

f (x)

g(x)
= lim

x→∞
x2

x ln x
= lim

x→∞
x

ln x
= lim

x→∞
1

x−1︸ ︷︷ ︸
L’Hôpital’s Rule

= lim
x→∞ x = ∞

We conclude that x ln x � x2 (Figure 3).

x

y

321 4

10

15

5

f (x) = x2

g(x) = x ln x

FIGURE 3
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EXAMPLE 10 Jonathan is interested in comparing two computer algorithms whose
average run times are approximately (ln n)2 and

√
n. Which algorithm takes less time for

large values of n?

Solution Replace n by the continuous variable x and apply L’Hôpital’s Rule twice:

lim
x→∞

√
x

(ln x)2
= lim

x→∞

1
2x−1/2

2x−1 ln x︸ ︷︷ ︸
L’Hôpital’s Rule

= lim
x→∞

x1/2

4 ln x︸ ︷︷ ︸
Simplify

= lim
x→∞

1
2x−1/2

4x−1︸ ︷︷ ︸
L’Hôpital’s Rule again

= lim
x→∞

x1/2

8︸ ︷︷ ︸
Simplify

= ∞

This shows that (ln x)2 � √
x. We conclude that the algorithm whose average time is

proportional to (ln n)2 takes less time for large n.

In Section 1.6, we asserted that exponential functions increase more rapidly than
the power functions. We now prove this by showing that xn � ex for every exponent n

(Figure 4).

1284
x

y

3,000,000

2,000,000

1,000,000

y = ex

y = x5

FIGURE 4 Graph illustrating that x5 � ex .
THEOREM 3 Growth of ex

xn � ex for every exponent n

In other words, lim
x→∞

ex

xn
= ∞ for all n.

Proof The theorem is true for n = 0 since lim
x→∞ ex = ∞. We use L’Hôpital’s Rule re-

peatedly to prove that ex/xn tends to ∞ for n = 1, 2, 3 . . . . For example,

lim
x→∞

ex

x
= lim

x→∞
ex

1
= lim

x→∞ ex = ∞
Then, having proved that ex/x → ∞, we use L’Hôpital’s Rule again

lim
x→∞

ex

x2
= lim

x→∞
ex

2x
= 1

2
lim

x→∞
ex

x
= ∞

Proceeding in this way, we prove the result for all whole numbers n. A more formal proof
would use the principle of induction. Finally, if k is any exponent, choose any whole
number n such that n > k. Then ex/xn < ex/xk for x > 1, so ex/xk must also tend to
infinity as x → ∞.

Proof of L’Hôpital’s Rule
We prove L’Hôpital’s Rule here only in the first case of Theorem 1—namely, in the caseA full proof of L’Hôpital’s Rule, without

simplifying assumptions, is presented in a
supplement on the text’s Comapanion Web
Site.

that f (a) = g(a) = 0. We also assume that f ′ and g′ are continuous at x = a and that
g′(a) = 0. Then g(x) = g(a) for x near but not equal to a, and

f (x)

g(x)
= f (x) − f (a)

g(x) − g(a)
=

f (x) − f (a)

x − a
g(x) − g(a)

x − a

By the Quotient Law for Limits and the definition of the derivative,

lim
x→a

f (x)

g(x)
=

lim
x→a

f (x) − f (a)

x − a

lim
x→a

g(x) − g(a)

x − a

= f ′(a)

g′(a)
= lim

x→a

f ′(x)

g′(x)
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4.5 SUMMARY

• L’Hôpital’s Rule: Assume that f and g are differentiable near a and that

f (a) = g(a) = 0

Assume also that g′(x) = 0 (except possibly at a). Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided that the limit on the right exists or is infinite (∞ or −∞).
• L’Hôpital’s Rule also applies to limits as x → ∞ or x → −∞.
• Limits involving the indeterminate forms 00, 1∞, or ∞0 can often be evaluated by first
taking the logarithm and then applying L’Hôpital’s Rule.
• In comparing the growth rates of functions, we say that f (x) grows faster than g(x),
and we write g << f , if

lim
x→∞

f (x)

g(x)
= ∞

4.5 EXERCISES

Preliminary Questions

1. What is wrong with applying L’Hôpital’s Rule to lim
x→0

x2 − 2x

3x − 2
? 2. Does L’Hôpital’s Rule apply to lim

x→a
f (x)g(x) if f (x) and g(x)

both approach ∞ as x → a?

Exercises
In Exercises 1–10, use L’Hôpital’s Rule to evaluate the limit, or state
that L’Hôpital’s Rule does not apply.

1. lim
x→3

2x2 − 5x − 3

x − 4
2. lim

x→−5

x2 − 25

5 − 4x − x2

3. lim
x→4

x3 − 64

x2 + 16
4. lim

x→−1

x4 + 2x + 1

x5 − 2x − 1

5. lim
x→9

x1/2 + x − 6

x3/2 − 27
6. lim

x→3

√
x + 1 − 2

x3 − 7x − 6

7. lim
x→0

sin 4x

x2 + 3x + 1
8. lim

x→0

x3

sin x − x

9. lim
x→0

cos 2x − 1

sin 5x
10. lim

x→0

cos x − sin2 x

sin x

In Exercises 11–16, show that L’Hôpital’s Rule is applicable to the limit
as x → ±∞ and evaluate.

11. lim
x→∞

9x + 4

3 − 2x
12. lim

x→−∞ x sin
1

x

13. lim
x→∞

ln x

x1/2
14. lim

x→∞
x

ex

15. lim
x→−∞

ln(x4 + 1)

x
16. lim

x→∞
x2

ex

In Exercises 17–54, evaluate the limit.

17. lim
x→1

√
8 + x − 3x1/3

x2 − 3x + 2
18. lim

x→4

[
1√

x − 2
− 4

x − 4

]

19. lim
x→−∞

3x − 2

1 − 5x
20. lim

x→∞
x2/3 + 3x

x5/3 − x

21. lim
x→−∞

7x2 + 4x

9 − 3x2
22. lim

x→∞
3x3 + 4x2

4x3 − 7

23. lim
x→1

(1 + 3x)1/2 − 2

(1 + 7x)1/3 − 2
24. lim

x→8

x5/3 − 2x − 16

x1/3 − 2

25. lim
x→0

sin 2x

sin 7x
26. lim

x→π/2

tan 4x

tan 5x

27. lim
x→0

tan x

x
28. lim

x→0

(
cot x − 1

x

)

29. lim
x→0

sin x − x cos x

x − sin x
30. lim

x→π/2

(
x − π

2

)
tan x

31. lim
x→0

cos(x + π
2 )

sin x
32. lim

x→0

x2

1 − cos x
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33. lim
x→π/2

cos x

sin(2x)
34. lim

x→0

(
1

x2
− csc2 x

)

35. lim
x→π/2

(sec x − tan x) 36. lim
x→2

ex2 − e4

x − 2

37. lim
x→1

tan
(πx

2

)
ln x 38. lim

x→1

x(ln x − 1) + 1

(x − 1) ln x

39. lim
x→0

ex − 1

sin x
40. lim

x→1

ex − e

ln x

41. lim
x→0

e2x − 1 − x

x2
42. lim

x→∞
e2x − 1 − x

x2

43. lim
t→0+(sin t)(ln t) 44. lim

x→∞ e−x(x3 − x2 + 9)

45. lim
x→0

ax − 1

x
(a > 0) 46. lim

x→∞ x1/x2

47. lim
x→1

(1 + ln x)1/(x−1) 48. lim
x→0+ xsin x

49. lim
x→0

(cos x)3/x2
50. lim

x→∞

(
x

x + 1

)x

51. lim
x→0

sin−1 x

x
52. lim

x→0

tan−1 x

sin−1 x

53. lim
x→1

tan−1 x − π
4

tan π
4 x − 1

54. lim
x→0+ ln x tan−1 x

55. Evaluate lim
x→π/2

cos mx

cos nx
, where m, n = 0 are integers.

56. Evaluate lim
x→1

xm − 1

xn − 1
for any numbers m, n = 0.

57. Prove the following limit formula for e:

e = lim
x→0

(1 + x)1/x

Then find a value of x such that |(1 + x)1/x − e| ≤ 0.001.

58. Can L’Hôpital’s Rule be applied to lim
x→0+ xsin(1/x)? Does

a graphical or numerical investigation suggest that the limit exists?

59. Let f (x) = x1/x for x > 0.

(a) Calculate lim
x→0+ f (x) and lim

x→∞ f (x).

(b) Find the maximum value of f (x), and determine the intervals on
which f (x) is increasing or decreasing.

60. (a) Use the results of Exercise 59 to prove that x1/x = c has a
unique solution if 0 < c ≤ 1 or c = e1/e, two solutions if 1 < c <

e1/e, and no solutions if c > e1/e.

(b) Plot the graph of f (x) = x1/x and verify that it confirms
the conclusions of (a).

61. Determine whether f << g or g << f (or neither) for the func-
tions f (x) = log10 x and g(x) = ln x.

62. Show that (ln x)2 <<
√

x and (ln x)4 << x1/10.

63. Just as exponential functions are distinguished by their rapid rate
of increase, the logarithm functions grow particularly slowly. Show that
ln x << xa for all a > 0.

64. Show that (ln x)N << xa for all N and all a > 0.

65. Determine whether
√

x << e

√
ln x or e

√
ln x <<

√
x. Hint: Use

the substitution u = ln x instead of L’Hôpital’s Rule.

66. Show that lim
x→∞ xne−x = 0 for all whole numbers n > 0.

67. Assumptions Matter Let f (x) = x(2 + sin x) and g(x) =
x2 + 1.

(a) Show directly that lim
x→∞ f (x)/g(x) = 0.

(b) Show that lim
x→∞ f (x) = lim

x→∞ g(x) = ∞, but lim
x→∞ f ′(x)/g′(x)

does not exist.

Do (a) and (b) contradict L’Hôpital’s Rule? Explain.

68. Let H(b) = lim
x→∞

ln(1 + bx)

x
for b > 0.

(a) Show that H(b) = ln b if b ≥ 1

(b) Determine H(b) for 0 < b ≤ 1.

69. Let G(b) = lim
x→∞(1 + bx)1/x .

(a) Use the result of Exercise 68 to evaluate G(b) for all b > 0.

(b) Verify your result graphically by plotting y = (1 + bx)1/x

together with the horizontal line y = G(b) for the values b =
0.25, 0.5, 2, 3.

70. Show that lim
t→∞ tke−t2 = 0 for all k. Hint: Compare with

lim
t→∞ tke−t = 0.

In Exercises 71–73, let

f (x) =
{

e−1/x2
for x = 0

0 for x = 0

These exercises show that f (x) has an unusual property: All of its
derivatives at x = 0 exist and are equal to zero.

71. Show that lim
x→0

f (x)

xk
= 0 for all k. Hint: Let t = x−1 and apply

the result of Exercise 70.

72. Show that f ′(0) exists and is equal to zero. Also, verify that f ′′(0)

exists and is equal to zero.

73. Show that for k ≥ 1 and x = 0,

f (k)(x) = P(x)e−1/x2

xr

for some polynomial P(x) and some exponent r ≥ 1. Use the result
of Exercise 71 to show that f (k)(0) exists and is equal to zero for all
k ≥ 1.
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Further Insights and Challenges
74. Show that L’Hôpital’s Rule applies to lim

x→∞
x√

x2 + 1
but that it

does not help. Then evaluate the limit directly.

75. The Second Derivative Test for critical points fails if f ′′(c) = 0.
This exercise develops a Higher Derivative Test based on the sign of
the first nonzero derivative. Suppose that

f ′(c) = f ′′(c) = · · · = f (n−1)(c) = 0, but f (n)(c) = 0

(a) Show, by applying L’Hôpital’s Rule n times, that

lim
x→c

f (x) − f (c)

(x − c)n
= 1

n! f (n)(c)

where n! = n(n − 1)(n − 2) · · · (2)(1).
(b) Use (a) to show that if n is even, then f (c) is a local minimum if
f (n)(c) > 0 and is a local maximum if f (n)(c) < 0. Hint: If n is even,
then (x − c)n > 0 for x = a, so f (x) − f (c) must be positive for x

near c if f (n)(c) > 0.
(c) Use (a) to show that if n is odd, then f (c) is neither a local minimum
nor a local maximum.

76. When a spring with natural frequency λ/2π is driven with a sinu-
soidal force sin(ωt) with ω = λ, it oscillates according to

y(t) = 1

λ2 − ω2

(
λ sin(ωt) − ω sin(λt)

)
Let y0(t) = lim

ω→λ
y(t).

(a) Use L’Hôpital’s Rule to determine y0(t).

(b) Show that y0(t) ceases to be periodic and that its amplitude |y0(t)|
tends to ∞ as t → ∞ (the system is said to be in resonance; eventually,
the spring is stretched beyond its limits).

(c) Plot y(t) for λ = 1 and ω = 0.8, 0.9, 0.99, and 0.999. Do
the graphs confirm your conclusion in (b)?

77. We expended a lot of effort to evaluate lim
x→0

sin x

x
in

Chapter 2. Show that we could have evaluated it easily using
L’Hôpital’s Rule. Then explain why this method would involve circular
reasoning.

78. By a fact from algebra, if f , g are polynomials such that f (a) =
g(a) = 0, then there are polynomials f1, g1 such that

f (x) = (x − a)f1(x), g(x) = (x − a)g1(x)

Use this to verify L’Hôpital’s Rule directly for lim
x→a

f (x)/g(x).

79. Patience Required Use L’Hôpital’s Rule to evaluate and check
your answers numerically:

(a) lim
x→0+

(
sin x

x

)1/x2

(b) lim
x→0

(
1

sin2 x
− 1

x2

)
80. In the following cases, check that x = c is a critical point and use
Exercise 75 to determine whether f (c) is a local minimum or a local
maximum.

(a) f (x) = x5 − 6x4 + 14x3 − 16x2 + 9x + 12 (c = 1)

(b) f (x) = x6 − x3 (c = 0)

4.6 Graph Sketching and Asymptotes
In this section, our goal is to sketch graphs using the information provided by the first two
derivatives f ′ and f ′′. We will see that a useful sketch can be produced without plotting a
large number of points. Although nowadays almost all graphs are produced by computer
(including, of course, the graphs in this textbook), sketching graphs by hand is a useful
way of solidifying your understanding of the basic concepts in this chapter.

Most graphs are made up of smaller arcs that have one of the four basic shapes,
corresponding to the four possible sign combinations of f ′ and f ′′ (Figure 1). Since f ′
and f ′′ can each have sign + or −, the sign combinations are

+ + + − − + −−
In this notation, the first sign refers to f ′ and the second sign to f ′′. For instance, −+
indicates that f ′(x) < 0 and f ′′(x) > 0.

+
Concave

up

+
Increasing

–
Decreasing

–
Concave

down

f ´´
f ´

– –

+ –

+ +

– +

FIGURE 1 The four basic shapes.

In graph sketching, we focus on the transition points, where the basic shape changes
due to a sign change in either f ′ (local min or max) or f ′′ (point of inflection). In this
section, local extrema are indicated by solid dots, and points of inflection are indicated by
green solid squares (Figure 2).

+ +− +− −+ −+ +− +

FIGURE 2 The graph of f (x) with transition
points and sign combinations of f ′ and f ′′.

In graph sketching, we must also pay attention to asymptotic behavior—that is, to
the behavior of f (x) as x approaches either ±∞ or a vertical asymptote.

The next three examples treat polynomials. Recall from Section 2.7 that the limits at
infinity of a polynomial

f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0
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(assuming that an = 0) are determined by

lim
x→∞ f (x) = an lim

x→±∞ xn

In general, then, the graph of a polynomial “wiggles” up and down a finite number of
times and then tends to positive or negative infinity (Figure 3).

(A) Degree 3, a3 > 0 (B) Degree 4, a4 > 0 (C) Degree 5, a5 < 0

y y y

xxx

FIGURE 3 Graphs of polynomials.

EXAMPLE 1 Quadratic Polynomial Sketch the graph of f (x) = x2 − 4x + 3.

Solution We have f ′(x) = 2x − 4 = 2(x − 2). We can see directly that f ′(x) is negative
for x < 2 and positive for x > 2, but let’s confirm this using test values, as in previous
sections:

Interval Test Value Sign of f ′

(−∞, 2) f ′(1) = −2 −
(2, ∞) f ′(3) = 2 +

Furthermore, f ′′(x) = 2 is positive, so the graph is everywhere concave up. To sketch the

y

x

Local min

− + + +

3

1 3

2

FIGURE 4 Graph of f (x) = x2 − 4x + 3.

graph, plot the local minimum (2, −1), the y-intercept, and the roots x = 1, 3. Since the
leading term of f is x2, f (x) tends to ∞ as x → ±∞. This asymptotic behavior is noted
by the arrows in Figure 4.

EXAMPLE 2 Cubic Polynomial Sketch the graph of f (x) = 1
3x3 − 1

2x2 − 2x + 3.

Solution

Step 1. Determine the signs of f ′ and f ′′.
First, solve for the critical points:

f ′(x) = x2 − x − 2 = (x + 1)(x − 2) = 0

The critical points c = −1, 2 divide the x-axis into three intervals (−∞, −1), (−1, 2),
and (2, ∞), on which we determine the sign of f ′ by computing test values:

Interval Test Value Sign of f ′

(−∞, −1) f ′(−2) = 4 +
(−1, 2) f ′(0) = −2 −
(2, ∞) f ′(3) = 4 +

Next, solve f ′′(x) = 2x − 1 = 0. The solution is c = 1
2 and we have

Interval Test Value Sign of f ′′

(−∞, 1
2

)
f ′′(0) = −1 −( 1

2 , ∞)
f ′′(1) = 1 +
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Step 2. Note transition points and sign combinations.
This step merges the information about f ′ and f ′′ in a sign diagram (Figure 5). There− −+ − + +− +

Local
min

Local
max

Inflection
point

−1 0 21
2

x

FIGURE 5 Sign combinations of f ′ and f ′′.

are three transition points:

• c = −1: local max since f ′ changes from + to − at c = −1.
• c = 1

2 : point of inflection since f ′′ changes sign at c = 1
2 .

• c = 2: local min since f ′ changes from − to + at c = 2.

In Figure 6(A), we plot the transition points and, for added accuracy, the y-intercept
f (0), using the values

f (−1) = 25

6
, f

(
1

2

)
= 23

12
, f (0) = 3, f (2) = −1

3

Step 3. Draw arcs of appropriate shape and asymptotic behavior.
The leading term of f (x) is 1

3x3. Therefore, lim
x→∞ f (x) = ∞ and lim

x→−∞ f (x) = −∞.

To create the sketch, it remains only to connect the transition points by arcs of the
appropriate concavity and asymptotic behavior, as in Figure 6(B) and (C).

(A) (B) (C)

+ − − − − + + + + − − − − + + +

1−3 −1

3

31−3 −1

3

xx

yy

,( )1
2

23
12

−1,( )25
6

1
3

2, −( )

+ − − −

− + + +

FIGURE 6 Graph of
f (x) = 1

3x3 − 1
2x2 − 2x + 3.

EXAMPLE 3 Sketch the graph of f (x) = 3x4 − 8x3 + 6x2 + 1.

Solution

Step 1. Determine the signs of f ′ and f ′′.
First, solve for the transition points:

f ′(x) = 12x3 − 24x2 + 12x = 12x(x − 1)2 = 0 ⇒ x = 0, 1

f ′′(x) = 36x2 − 48x + 12 = 12(x − 1)(3x − 1) = 0 ⇒ x = 1

3
, 1

The signs of f ′ and f ′′ are recorded in the following tables.

Interval Test Value Sign of f ′

(−∞, 0) f ′(−1) = −48 −
(0, 1) f ′( 1

2

) = 3
2 +

(1, ∞) f ′(2) = 24 +

Interval Test Value Sign of f ′′
( − ∞, 1

3

)
f ′′(0) = 12 +( 1

3 , 1
)

f ′′( 1
2

) = −3 −
(1, ∞) f ′′(2) = 60 +

Step 2. Note transition points and sign combinations.
The transition points c = 0, 1

3 , 1 divide the x-axis into four intervals (Figure 7). The
10

+ −+ + + + − +

Inflection
point

Local
min

Inflection
point

x
1
3

FIGURE 7

type of sign change determines the nature of the transition point:

• c = 0: local min since f ′ changes from − to + at c = 0.
• c = 1

3 : point of inflection since f ′′ changes sign at c = 1
3 .
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• c = 1: neither a local min nor a local max since f ′ does not change sign, but it
is a point of inflection since f ′′(x) changes sign at c = 1.

We plot the transition points c = 0, 1
3 , 1 in Figure 8(A) using function values f (0) = 1,

f
( 1

3

) = 38
27 , and f (1) = 2.

1
3

1
3

1−1

2

4

1−1

2

4
+ − + −+ + + ++ + + +− + − +

x x

y y

(A) (B)

Points of inflection

FIGURE 8 f (x) = 3x4 − 8x3 + 6x2 + 1

Step 3. Draw arcs of appropriate shape and asymptotic behavior.
Before drawing the arcs, we note that f (x) has leading term 3x4, so f (x) tends to ∞
as x → ∞ and as x → −∞. We obtain Figure 8(B).

EXAMPLE 4 Trigonometric Function Sketch f (x) = cos x + 1
2x over [0, π ].

Solution First, we solve the transition points for x in [0, π ]:

f ′(x) = − sin x + 1

2
= 0 ⇒ x = π

6
,

5π

6

f ′′(x) = − cos x = 0 ⇒ x = π

2

The sign combinations are shown in the following tables.

Interval Test Value Sign of f ′
(
0, π

6

)
f ′( π

12

) ≈ 0.24 +(
π
6 , 5π

6

)
f ′(π

2

) = − 1
2 −( 5π

6 , π
)

f ′( 11π
12

) ≈ 0.24 +

Interval Test Value Sign of f ′′
(
0, π

2

)
f ′′(π

4

) = −
√

2
2 −(

π
2 , π

)
f ′′( 3π

4

) =
√

2
2 +

We record the sign changes and transition points in Figure 9 and sketch the graph
using the values

1

0.75
0.5

+ − + +− +− −

x

y

π π

2
π

6
5π

6

FIGURE 9 f (x) = cos x + 1
2x.

f (0) = 1, f
(π

6

)
≈ 1.13, f

(π

2

)
≈ 0.79, f

(
5π

6

)
≈ 0.44, f (π) ≈ 0.57

EXAMPLE 5 A Function Involving ex Sketch the graph of f (x) = xex .

Solution As usual, we solve for the transition points and determine the signs:

f ′(x) = xex + ex = (x + 1)ex = 0 ⇒ x = −1

f ′′(x) = (x + 1)ex + ex = (x + 2)ex = 0 ⇒ x = −2
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Interval Test Value
Sign
of f ′

(−∞, −1) f ′(−2) = −e−2 −
(−1, ∞) f ′(0) = e0 +

Interval Test Value
Sign

of f ′′
( − ∞, −2

)
f ′′(−3) = −e−3 −( − 2, ∞)

f ′′(0) = 2e0 +

The sign change of f ′ shows that f (−1) is a local min. The sign change of f ′′ shows that

1 2

−2 −1

1

x

y

− + + +− −

FIGURE 10 Graph of f (x) = xex . The sign
combinations −−, −+, ++ indicate the
signs of f ′ and f ′′.

f has a point of inflection at x = −2, where the graph changes from concave down to
concave up.

The last pieces of information we need are the limits at infinity. Both x and ex tend to ∞
as x → ∞, so lim

x→∞ xex = ∞. On the other hand, the limit as x → −∞ is indeterminate of

type ∞ · 0 because x tends to −∞ and ex tends to zero. Therefore, we write xex = x/e−x

and apply L’Hôpital’s Rule:

lim
x→−∞ xex = lim

x→−∞
x

e−x
= lim

x→−∞
1

−e−x
= − lim

x→−∞ ex = 0

Figure 10 shows the graph with its local minimum and point of inflection, drawn with the
correct concavity and asymptotic behavior.

The next two examples deal with horizontal and vertical asymptotes.

EXAMPLE 6 Sketch the graph of f (x) = 3x + 2

2x − 4
.

Solution The function f (x) is not defined for all x. This plays a role in our analysis so
we add a Step 0 to our procedure.

Step 0. Determine the domain of f .
Since f (x) is not defined for x = 2, the domain of f consists of the two intervals
(−∞, 2) and (2, ∞). We must analyze f on these intervals separately.

Step 1. Determine the signs of f ′ and f ′′.
Calculation shows that

f ′(x) = − 4

(x − 2)2
, f ′′(x) = 8

(x − 2)3

Although f ′(x) is not defined at x = 2, we do not call it a critical point because x = 2
is not in the domain of f . In fact, f ′(x) is negative for x = 2, so f (x) is decreasing
and has no critical points.

On the other hand, f ′′(x) > 0 for x > 2 and f ′′(x) < 0 for x < 2. Although
f ′′(x) changes sign at x = 2, we do not call x = 2 a point of inflection because it is
not in the domain of f .

Step 2. Note transition points and sign combinations.
There are no transition points in the domain of f .

(−∞, 2) f ′(x) < 0 and f ′′(x) < 0
(2, ∞) f ′(x) < 0 and f ′′(x) > 0

Step 3. Draw arcs of appropriate shape and asymptotic behavior.
The following limits show that y = 3

2 is a horizontal asymptote:

lim
x→±∞

3x + 2

2x − 4
= lim

x→±∞
3 + 2x−1

2 − 4x−1
= 3

2
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The line x = 2 is a vertical asymptote because f (x) has infinite one-sided limits

lim
x→2−

3x + 2

2x − 4
= −∞, lim

x→2+
3x + 2

2x − 4
= ∞

To verify this, note that for x near 2, the denominator 2x − 4 is small negative if x < 2
and small positive if x > 2, whereas the numerator 3x + 4 is positive.

Figure 11(A) summarizes the asymptotic behavior. What does the graph look like
to the right of x = 2? It is decreasing and concave up since f ′ < 0 and f ′′ > 0, and it
approaches the asymptotes. The only possibility is the right-hand curve in Figure 11(B).
To the left of x = 2, the graph is decreasing, is concave down, and approaches the
asymptotes. The x-intercept is x = − 2

3 because f
( − 2

3

) = 0 and the y-intercept is
y = f (0) = − 1

2 .

3
2

3
2

2
3

−

(B)

2

(A)

Horizontal
asymptote

Vertical
asymptote

2

− − − −

− + − +

x x

y y

FIGURE 11 Graph of y = 3x + 2

2x − 4
.

EXAMPLE 7 Sketch the graph of f (x) = 1

x2 − 1
.

Solution The function f (x) is defined for x = ±1. By calculation,

f ′(x) = − 2x

(x2 − 1)2
, f ′′(x) = 6x2 + 2

(x2 − 1)3

For x = ±1, the denominator of f ′(x) is positive. Therefore, f ′(x) and x have opposite
signs:

• f ′(x) > 0 for x < 0, f ′(x) < 0 for x > 0, x = 0 is a local max

The sign of f ′′(x) is equal to the sign of x2 − 1 because 6x2 + 2 is positive:

• f ′′(x) > 0 for x < −1 or x > 1 and f ′′(x) < 0 for −1 < x < 1

Figure 12 summarizes the sign information.

Local
max

f (x)
undefined

1

f (x)
undefined

−1 0

− −+ −+ + − +
x

FIGURE 12

The x-axis, y = 0, is a horizontal asymptote because

In this example,

f (x) = 1

x2 − 1

f ′(x) = − 2x

(x2 − 1)2

f ′′(x) = 6x2 + 2

(x2 − 1)3

lim
x→∞

1

x2 − 1
= 0 and lim

x→−∞
1

x2 − 1
= 0

The lines x = ±1 are vertical asymptotes. To determine the one-sided limits, note that
f (x) < 0 for −1 < x < 1 and f (x) > 0 for |x| > 1. Therefore, as x → ±1, f (x) ap-
proaches −∞ from within the interval (−1, 1), and it approaches ∞ from outside (−1, 1)

(Figure 13). We obtain the sketch in Figure 14.

Vertical Asymptote Left-Hand Limit Right-Hand Limit

x = −1 lim
x→−1−

1

x2 − 1
= ∞ lim

x→−1+
1

x2 − 1
= −∞

x = 1 lim
x→1−

1

x2 − 1
= −∞ lim

x→1+
1

x2 − 1
= ∞
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1−1 0

f (x) < 0

f (x) > 0f (x) > 0

x

FIGURE 13 Behavior at vertical asymptotes.

1−1

− −+ −+ + − +

x

y

FIGURE 14 Graph of y = 1

x2 − 1
.

4.6 SUMMARY

• Most graphs are made up of arcs that have one of the four basic shapes (Figure 15):

− −

+ −

+ +

− +

FIGURE 15 The four basic shapes.

Sign Combination Curve Type

++ f ′ > 0, f ′′ > 0 Increasing and concave up
+− f ′ > 0, f ′′ < 0 Increasing and concave down
−+ f ′ < 0, f ′′ > 0 Decreasing and concave up
−− f ′ < 0, f ′′ < 0 Decreasing and concave down

• A transition point is a point in the domain of f at which either f ′ changes sign (local
min or max) or f ′′ changes sign (point of inflection).
• It is convenient to break up the curve-sketching process into steps:

Step 0. Determine the domain of f .

Step 1. Determine the signs of f ′ and f ′′.
Step 2. Note transition points and sign combinations.

Step 3. Determine the asymptotic behavior of f (x).

Step 4. Draw arcs of appropriate shape and asymptotic behavior.

4.6 EXERCISES

Preliminary Questions
1. Sketch an arc where f ′ and f ′′ have the sign combination ++. Do

the same for −+.

2. If the sign combination of f ′ and f ′′ changes from ++ to +− at
x = c, then (choose the correct answer):
(a) f (c) is a local min (b) f (c) is a local max

(c) c is a point of inflection

3. The second derivative of the function f (x) = (x − 4)−1 is
f ′′(x) = 2(x − 4)−3. Although f ′′(x) changes sign at x = 4, f (x)

does not have a point of inflection at x = 4. Why not?

Exercises
1. Determine the sign combinations of f ′ and f ′′ for each interval

A–G in Figure 16.

CB D E F GA
x

y

y = f (x)

FIGURE 16
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2. State the sign change at each transition point A–G in Figure 17.
Example: f ′(x) goes from + to − at A.

A
x

y

CB D E F G

y = f (x)

FIGURE 17

In Exercises 3–6, draw the graph of a function for which f ′ and f ′′
take on the given sign combinations.

3. ++, +−, −− 4. +−, −−, −+
5. −+, −−, −+ 6. −+, ++, +−

7. Sketch the graph of y = x2 − 5x + 4.

8. Sketch the graph of y = 12 − 5x − 2x2.

9. Sketch the graph of f (x) = x3 − 3x2 + 2. Include the zeros of
f (x), which are x = 1 and 1 ± √

3 (approximately −0.73, 2.73).

10. Show that f (x) = x3 − 3x2 + 6x has a point of inflection but no
local extreme values. Sketch the graph.

11. Extend the sketch of the graph of f (x) = cos x + 1
2x in Example

4 to the interval [0, 5π ].
12. Sketch the graphs of y = x2/3 and y = x4/3.

In Exercises 13–34, find the transition points, intervals of in-
crease/decrease, concavity, and asymptotic behavior. Then sketch the
graph, with this information indicated.

13. y = x3 + 24x2 14. y = x3 − 3x + 5

15. y = x2 − 4x3 16. y = 1
3x3 + x2 + 3x

17. y = 4 − 2x2 + 1
6x4 18. y = 7x4 − 6x2 + 1

19. y = x5 + 5x 20. y = x5 − 15x3

21. y = x4 − 3x3 + 4x 22. y = x2(x − 4)2

23. y = x7 − 14x6 24. y = x6 − 9x4

25. y = x − 4
√

x 26. y = √
x + √

16 − x

27. y = x(8 − x)1/3 28. y = (x2 − 4x)1/3

29. y = xe−x2
30. y = (2x2 − 1)e−x2

31. y = x − 2 ln x 32. y = x(4 − x) − 3 ln x

33. y = x − x2 ln x 34. y = x − 2 ln(x2 + 1)

35. Sketch the graph of f (x) = 18(x − 3)(x − 1)2/3 using the formu-
las

f ′(x) = 30
(
x − 9

5

)
(x − 1)1/3

, f ′′(x) = 20
(
x − 3

5

)
(x − 1)4/3

36. Sketch the graph of f (x) = x

x2 + 1
using the formulas

f ′(x) = 1 − x2

(1 + x2)2
, f ′′(x) = 2x(x2 − 3)

(x2 + 1)3

In Exercises 37–40, sketch the graph of the function, indicating
all transition points. If necessary, use a graphing utility or computer
algebra system to locate the transition points numerically.

37. y = x2 − 10 ln(x2 + 1) 38. y = e−x/2 ln x

39. y = x4 − 4x2 + x + 1

40. y = 2
√

x − sin x, 0 ≤ x ≤ 2π

In Exercises 41–46, sketch the graph over the given interval, with all
transition points indicated.

41. y = x + sin x, [0, 2π ]
42. y = sin x + cos x, [0, 2π ]
43. y = 2 sin x − cos2 x, [0, 2π ] 44. y = sin x + 1

2x, [0, 2π ]
45. y = sin x + √

3 cos x, [0, π ]
46. y = sin x − 1

2 sin 2x, [0, π ]

47. Are all sign transitions possible? Explain with a sketch
why the transitions ++ → −+ and −− → +− do not occur if the
function is differentiable. (See Exercise 76 for a proof.)

48. Suppose that f is twice differentiable satisfying (i) f (0) = 1,
(ii) f ′(x) > 0 for all x = 0, and (iii) f ′′(x) < 0 for x < 0 and f ′′(x) >

0 for x > 0. Let g(x) = f (x2).

(a) Sketch a possible graph of f (x).

(b) Prove that g(x) has no points of inflection and a unique local ex-
treme value at x = 0. Sketch a possible graph of g(x).

49. Which of the graphs in Figure 18 cannot be the graph of a polyno-
mial? Explain.

(A) (B) (C)

x

x

x

yy y

FIGURE 18
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50. Which curve in Figure 19 is the graph of f (x) = 2x4 − 1

1 + x4
? Explain

on the basis of horizontal asymptotes.

(A)

−4 −2 2 4

2

−1.5

(B)

−4 −2 2 4

2

−1.5

x x

yy

FIGURE 19

51. Match the graphs in Figure 20 with the two functions y = 3x

x2 − 1

and y = 3x2

x2 − 1
. Explain.

(A) (B)

−1 1−1 1
xx

y y

FIGURE 20

52. Match the functions with their graphs in Figure 21.

(a) y = 1

x2 − 1
(b) y = x2

x2 + 1

(c) y = 1

x2 + 1
(d) y = x

x2 − 1

(A) (B)

(D)(C)

x
x

y y

xx

y y

FIGURE 21

In Exercises 53–70, sketch the graph of the function. Indicate the tran-
sition points and asymptotes.

53. y = 1

3x − 1
54. y = x − 2

x − 3

55. y = x + 3

x − 2
56. y = x + 1

x

57. y = 1

x
+ 1

x − 1
58. y = 1

x
− 1

x − 1

59. y = 1

x(x − 2)
60. y = x

x2 − 9

61. y = 1

x2 − 6x + 8
62. y = x3 + 1

x

63. y = 1 − 3

x
+ 4

x3
64. y = 1

x2
+ 1

(x − 2)2

65. y = 1

x2
− 1

(x − 2)2
66. y = 4

x2 − 9

67. y = 1

(x2 + 1)2
68. y = x2

(x2 − 1)(x2 + 1)

69. y = 1√
x2 + 1

70. y = x√
x2 + 1

Further Insights and Challenges
In Exercises 71–75, we explore functions whose graphs approach a
nonhorizontal line as x → ∞. A line y = ax + b is called a slant
asymptote if

lim
x→∞(f (x) − (ax + b)) = 0

or

lim
x→−∞(f (x) − (ax + b)) = 0

71. Let f (x) = x2

x − 1
(Figure 22). Verify the following:

(a) f (0) is a local max and f (2) a local min.

(b) f is concave down on (−∞, 1) and concave up on (1, ∞).

(c) lim
x→1− f (x) = −∞ and lim

x→1+ f (x) = ∞.

(d) y = x + 1 is a slant asymptote of f (x) as x → ±∞.

(e) The slant asymptote lies above the graph of f (x) for x < 1 and
below the graph for x > 1.
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y = x + 1

10−10

10

−10

x

y
f (x) = x2

x − 1

FIGURE 22

72. If f (x) = P(x)/Q(x), where P and Q are polynomials
of degrees m + 1 and m, then by long division, we can write

f (x) = (ax + b) + P1(x)/Q(x)

where P1 is a polynomial of degree < m. Show that y = ax + b is the
slant asymptote of f (x). Use this procedure to find the slant asymptotes
of the following functions:

(a) y = x2

x + 2
(b) y = x3 + x

x2 + x + 1

73. Sketch the graph of

f (x) = x2

x + 1
.

Proceed as in the previous exercise to find the slant asymptote.

74. Show that y = 3x is a slant asymptote for f (x) = 3x + x−2. De-
termine whether f (x) approaches the slant asymptote from above or
below and make a sketch of the graph.

75. Sketch the graph of f (x) = 1 − x2

2 − x
.

76. Assume that f ′(x) and f ′′(x) exist for all x and let c be a critical
point of f (x). Show that f (x) cannot make a transition from ++ to
−+ at x = c. Hint: Apply the MVT to f ′(x).

77. Assume that f ′′(x) exists and f ′′(x) > 0 for all x. Show
that f (x) cannot be negative for all x. Hint: Show that f ′(b) = 0 for
some b and use the result of Exercise 64 in Section 4.4.

4.7 Applied Optimization
Optimization plays a role in a wide range of disciplines, including the physical sciences,
economics, and biology. For example, scientists have studied how migrating birds choose
an optimal velocity v that maximizes the distance they can travel without stopping, given
the energy that can be stored as body fat (Figure 1).

10 20 30 40
v (m/s)

D(v) (km)

200

150

100

50

FIGURE 1 Physiology and aerodynamics are
applied to obtain a plausible formula for
bird migration distance D(v) as a function
of velocity v. The optimal velocity
corresponds to the maximum point on the
graph (see Exercise 56).

In many optimization problems, the first step is to write down the objective function.
This is the function whose minimum or maximum we need. Once we find the objective
function, we can apply the techniques developed in this chapter. Our first examples require
optimization on a closed interval [a, b]. Let’s recall the steps for finding extrema developed
in Section 4.2:

(i) Find the critical points of f (x) in [a, b].
(ii) Evaluate f (x) at the critical points and the endpoints a and b.
(iii) The largest and smallest values are the extreme values of f (x) on [a, b].

EXAMPLE 1 A piece of wire of length L is bent into the shape of a rectangle (Figure
2). Which dimensions produce the rectangle of maximum area?

xL

− xL
2

FIGURE 2

Solution The rectangle has area A = xy, where x and y are the lengths of the sides. Since
A depends on two variables x and y, we cannot find the maximum until we eliminate one of
the variables. We can do this because the variables are related: The rectangle has perimeter
L = 2x + 2y, so y = 1

2L − x. This allows us to rewrite the area in terms of x alone to
An equation relating two or more variables
in an optimization problem is called a
“constraint equation.” In Example 1, the
constraint equation is

2x + 2y = L

obtain the objective function

A(x) = x

(
1

2
L − x

)
= 1

2
Lx − x2
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On which interval does the optimization take place? The sides of the rectangle are non-
negative, so we require both x ≥ 0 and 1

2L − x ≥ 0. Thus, 0 ≤ x ≤ 1
2L. Our problem is

to maximize A(x) on the closed interval
[
0, 1

2L
]
.

We solve A′(x) = 1
2L − 2x = 0 to obtain the critical point x = 1

4L and compare:

Endpoints: A(0) = 0

A

(
1

2
L

)
= 1

2
L

(
1

2
L − 1

2
L

)
= 0

Critical point: A

(
1

4
L

)
=

(
1

4
L

) (
1

2
L − 1

4
L

)
= 1

16
L2

The largest value occurs for x = 1
4L, and in this case, y = 1

2L − 1
4L = 1

4L. The rectangle
of maximum area is the square of sides x = y = 1

4L.

EXAMPLE 2 Minimizing Travel Time Your task is to build a road joining a ranch to a
highway that enables drivers to reach the city in the shortest time (Figure 3). How should
this be done if the speed limit is 60 km/h on the road and 110 km/h on the highway? The
perpendicular distance from the ranch to the highway is 30 km, and the city is 50 km down
the highway.30

P

x

Q

50 − x

50

�302 + x2

Ranch

City

FIGURE 3

Solution This problem is more complicated than the previous one, so we’ll analyze it in
three steps. You can follow these steps to solve other optimization problems.

Step 1. Choose variables.
We need to determine the point Q where the road will join the highway. So let x be the
distance from Q to the point P where the perpendicular joins the highway.

Step 2. Find the objective function and the interval.
Our objective function is the time T (x) of the trip as a function of x. To find a formula
for T (x), recall that distance traveled at constant velocity v is d = vt , and the time
required to travel a distance d is t = d/v. The road has length

√
302 + x2 by the

Pythagorean Theorem, so at velocity v = 60 km/h it takes
√

302 + x2

60
hours to travel from the ranch to Q

The strip of highway from Q to the city has length 50 − x. At velocity v = 110 km/h,
it takes

50 − x

110
hours to travel from Q to the city

The total number of hours for the trip is

T (x) =
√

302 + x2

60
+ 50 − x

110

Our interval is 0 ≤ x ≤ 50 because the road joins the highway somewhere between P

5019.52
x (mi)

0.5

1
T(x) (h)

FIGURE 4 Graph of time of trip as function
of x.

and the city. So our task is to minimize T (x) on [0, 50] (Figure 4).
Step 3. Optimize.

Solve for the critical points:

T ′(x) = x

60
√

302 + x2
− 1

110
= 0

110x = 60
√

302 + x2 ⇒ 11x = 6
√

302 + x2 ⇒
121x2 = 36(302 + x2) ⇒ 85x2 = 32,400 ⇒ x = √

32,400/85 ≈ 19.52
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To find the minimum value of T (x), we compare the values of T (x) at the critical
point and the endpoints of [0, 50]:

T (0) ≈ 0.95 h, T (19.52) ≈ 0.87 h, T (50) ≈ 0.97 h

We conclude that the travel time is minimized if the road joins the highway at a distance
x ≈ 19.52 km along the highway from P .

EXAMPLE 3 Optimal Price All units in a 30-unit apartment building are rented out
when the monthly rent is set at r = $1000/month. A survey reveals that one unit becomes
vacant with each $40 increase in rent. Suppose that each occupied unit costs $120/month
in maintenance. Which rent r maximizes monthly profit?

Solution

Step 1. Choose variables.
Our goal is to maximize the total monthly profit P(r) as a function of rent r . It will
depend on the number N(r) of units occupied.

Step 2. Find the objective function and the interval.
Since one unit becomes vacant with each $40 increase in rent above $1000, we find
that (r − 1000)/40 units are vacant when r > 1000. Therefore

N(r) = 30 − 1

40
(r − 1000) = 55 − 1

40
r

Total monthly profit is equal to the number of occupied units times the profit per unit,
which is r − 120 (because each unit costs $120 in maintenance), so

P(r) = N(r)(r − 120) =
(

55 − 1

40
r
)
(r − 120) = −6600 + 58r − 1

40
r2

Which interval of r-values should we consider? There is no reason to lower the rent
below r = 1000 because all units are already occupied when r = 1000. On the other
hand, N(r) = 0 for r = 40 · 55 = 2200. Therefore, zero units are occupied when r =
2200 and it makes sense to take 1000 ≤ r ≤ 2200.

Step 3. Optimize.
Solve for the critical points:

P ′(r) = 58 − 1

20
r = 0 ⇒ r = 1160

and compare values at the critical point and the endpoints:

P(1000) = 26,400, P (1160) = 27,040, P (2200) = 0

We conclude that the profit is maximized when the rent is set at r = $1160. In this case,
four units are left vacant.

Open Versus Closed Intervals
When we have to optimize over an open interval, there is no guarantee that a min or max
exists (unlike the case of closed intervals) . However, if a min or max does exist, then it
must occur at a critical point (because it is also a local min or max). Often, we can show
that a min or max exists by examining f (x) near the endpoints of the open interval. If
f (x) tends to infinity at the endpoints (as in Figure 6), then a minimum occurs at a critical
point somewhere in the interval.
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EXAMPLE 4 Design a cylindrical can of volume 900 cm3 so that it uses the least
amount of metal (Figure 5). In other words, minimize the surface area of the can (including
its top and bottom).

h

r

FIGURE 5 Cylinders with the same volume
but different surface areas.

Solution

Step 1. Choose variables.
We must specify the can’s radius and height. Therefore, let r be the radius and h the
height. Let A be the surface area of the can.

Step 2. Find the objective function and the interval.
We compute A as a function of r and h:

A = πr2︸︷︷︸
Top

+ πr2︸︷︷︸
Bottom

+ 2πrh︸ ︷︷ ︸
Side

= 2πr2 + 2πrh

The can’s volume is V = πr2h. Since we require that V = 900 cm3, we have the
constraint equation πr2h = 900. Thus h = (900/π)r−2 and

A(r) = 2πr2 + 2πr

(
900

πr2

)
= 2πr2 + 1800

r

The radius r can take on any positive value, so we minimize A(r) on (0, ∞).

Step 3. Optimize the function.
Observe that A(r) tends to infinity as r approaches the endpoints of (0, ∞):

5 10 15 20

Radius r

Surface Area A

FIGURE 6 Surface area increases as r tends
to 0 or ∞. The minimum value exists.

• A(r) → ∞ as r → ∞ (because of the r2 term)
• A(r) → ∞ as r → 0 (because of the 1/r term)

Therefore A(r) must take on a minimum value at a critical point in (0, ∞) [Figure 6].
We solve in the usual way:

dA

dr
= 4πr − 1800

r2
= 0 ⇒ r3 = 450

π
⇒ r =

(
450

π

)1/3

≈ 5.23 cm

We also need to calculate the height:

h = 900

πr2
= 2

(
450

π

)
r−2 = 2

(
450

π

) (
450

π

)−2/3

= 2

(
450

π

)1/3

≈ 10.46 cm

Notice that the optimal dimensions satisfy h = 2r . In other words, the optimal can is
as tall as it is wide.
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EXAMPLE 5 Optimization Problem with No Solution Is it possible to design a cylinder
of volume 900 cm3 with the largest possible surface area?

Solution The answer is no. In the previous example, we showed that a cylinder of volume
900 and radius r has surface area

A(r) = 2πr2 + 1800

r

This function has no maximum value because it tends to infinity as r → 0 or r → ∞
(Figure 6). This means that a cylinder of fixed volume has a large surface area if it is either
very fat and short (r large) or very tall and skinny (r small).

The Principle of Least Distance states that a light beam reflected in a mirror travelsThe Principle of Least Distance is also
called Heron’s Principle after the
mathematician Heron of Alexandria
(c. 100 AD). See Exercise 69 for an
elementary proof that does not use calculus
and would have been known to Heron.
Exercise 44 develops Snell’s Law, a more
general optical law based on the Principle
of Least Time.

along the shortest path. More precisely, a beam traveling from A to B, as in Figure 7, is
reflected at the point P for which the path APB has minimum length. In the next example,
we show that this minimum occurs when the angle of incidence is equal to the angle of
reflection, that is, θ1 = θ2.

A

B

θ1 θ2

h1

h2

L  − xx

L

P

FIGURE 7 Reflection of a light beam in a
mirror.

EXAMPLE 6 Show that if P is the point for which the path APB in Figure 7 has
minimal length, then θ1 = θ2.

Solution By the Pythagorean Theorem, the path APB has length

f (x) = AP + PB =
√

x2 + h2
1 +

√
(L − x)2 + h2

2

with x, h1, and h2 as in the figure. The function f (x) tends to infinity as x approaches
±∞ (that is, as P moves arbitrarily far to the right or left), so f (x) takes on its minimum
value at a critical point x such that (see Figure 8)

10 20 30 40

25

50

y

x

FIGURE 8 Graph of path length for
h1 = 10, h2 = 20, L = 40.

f ′(x) = x√
x2 + h2

1

− L − x√
(L − x)2 + h2

2

= 0 1

It is not necessary to solve for x because our goal is not to find the critical point, but rather
to show that θ1 = θ2. To do this, we rewrite Eq. (1) as

x√
x2 + h2

1︸ ︷︷ ︸
cos θ1

= L − x√
(L − x)2 + h2

2︸ ︷︷ ︸
cos θ2

Referring to Figure 7, we see that this equation says cos θ1 = cos θ2, and since θ1 and θ2
lie between 0 and π , we conclude that θ1 = θ2 as claimed.
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CONCEPTUAL INSIGHT The examples in this section were selected because they lead to
optimization problems where the min or max occurs at a critical point. Often, the critical
point represents the best compromise between “competing factors.” In Example 3, we
maximized profit by finding the best compromise between raising the rent and keeping
the apartment units occupied. In Example 4, our solution minimizes surface area by
finding the best compromise between height and width. In daily life, however, we often
encounter endpoint rather than critical point solutions. For example, to run 10 meters
in minimal time, you should run as fast as you can—the solution is not a critical point
but rather an endpoint (your maximum speed).

4.7 SUMMARY

• There are usually three main steps in solving an applied optimization problem:

Step 1. Choose variables.
Determine which quantities are relevant, often by drawing a diagram, and assign ap-
propriate variables.

Step 2. Find the objective function and the interval.
Restate as an optimization problem for a function f over an interval. If f depends on
more than one variable, use a constraint equation to write f as a function of just one
variable.

Step 3. Optimize the objective function.

• If the interval is open, f does not necessarily take on a minimum or maximum value.
But if it does, these must occur at critical points within the interval. To determine if a min
or max exists, analyze the behavior of f as x approaches the endpoints of the interval.

4.7 EXERCISES

Preliminary Questions
1. The problem is to find the right triangle of perimeter 10 whose area

is as large as possible. What is the constraint equation relating the base
b and height h of the triangle?

2. Describe a way of showing that a continuous function on an open
interval (a, b) has a minimum value.

3. Is there a rectangle of area 100 of largest perimeter? Explain

Exercises
1. Find the dimensions x and y of the rectangle of maximum area that

can be formed using 3 meters of wire.

(a) What is the constraint equation relating x and y?

(b) Find a formula for the area in terms of x alone.

(c) What is the interval of optimization? Is it open or closed?

(d) Solve the optimization problem.

2. Wire of length 12 m is divided into two pieces and each piece is
bent into a square. How should this be done in order to minimize the
sum of the areas of the two squares?

(a) Express the sum of the areas of the squares in terms of the lengths
x and y of the two pieces.

(b) What is the constraint equation relating x and y?

(c) What is the interval of optimization? Is it open or closed?

(d) Solve the optimization problem.

3. Wire of length 12 m is divided into two pieces and the pieces are
bend into a square and a circle. How should this be done in order to
minimize the sum of their areas?

4. Find the positive number x such that the sum of x and its reciprocal
is as small as possible. Does this problem require optimization over an
open interval or a closed interval?

5. A flexible tube of length 4 m is bent into an L-shape. Where should
the bend be made to minimize the distance between the two ends?

zxy34
放置图像
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6. Find the dimensions of the box with square base with:

(a) Volume 12 and the minimal surface area.
(b) Surface area 20 and maximal volume.

7. A rancher will use 600 m of fencing to build a corral in the shape
of a semicircle on top of a rectangle (Figure 9). Find the dimensions
that maximize the area of the corral.

FIGURE 9

8

5

FIGURE 10

8. What is the maximum area of a rectangle inscribed in a right trian-
gle with 5 and 8 as in Figure 10. The sides of the rectangle are parallel
to the legs of the triangle.

9. Find the dimensions of the rectangle of maximum area that can be
inscribed in a circle of radius r = 4 (Figure 11).

r

FIGURE 11

10. Find the dimensions x and y of the rectangle inscribed in a circle
of radius r that maximizes the quantity xy2.

11. Find the point on the line y = x closest to the point (1, 0). Hint: It
is equivalent and easier to minimize the square of the distance.

12. Find the point P on the parabola y = x2 closest to the point (3, 0)

(Figure 12).

13. Find a good numerical approximation to the coordinates
of the point on the graph of y = ln x − x closest to the origin (Figure
13).

3
x

y

P
y = x2

FIGURE 12

x

y

y = ln x − x

FIGURE 13

14. Problem of Tartaglia (1500–1557) Among all positive numbers
a, b whose sum is 8, find those for which the product of the two numbers
and their difference is largest.

15. Find the angle θ that maximizes the area of the isosceles triangle
whose legs have length � (Figure 14).

θ

� �

FIGURE 14

16. A right circular cone (Figure 15) has volume V = π
3 r2h and sur-

face area is S = πr
√

r2 + h2. Find the dimensions of the cone with
surface area 1 and maximal volume.

r

h

FIGURE 15

17. Find the area of the largest isosceles triangle that can be inscribed
in a circle of radius r .

18. Find the radius and height of a cylindrical can of total surface area
A whose volume is as large as possible. Does there exist a cylinder of
surface area A and minimal total volume?

19. A poster of area 6000 cm2 has blank margins of width 10 cm on
the top and bottom and 6 cm on the sides. Find the dimensions that
maximize the printed area.

20. According to postal regulations, a carton is classified as “oversized”
if the sum of its height and girth ( perimeter of its base) exceeds 108 in.
Find the dimensions of a carton with square base that is not oversized
and has maximum volume.

21. Kepler’s Wine Barrel Problem In his work Nova stereometria
doliorum vinariorum (New Solid Geometry of a Wine Barrel), pub-
lished in 1615, astronomer Johannes Kepler stated and solved the fol-
lowing problem: Find the dimensions of the cylinder of largest volume
that can be inscribed in a sphere of radius R. Hint: Show that an in-
scribed cylinder has volume 2πx(R2 − x2), where x is one-half the
height of the cylinder.

22. Find the angle θ that maximizes the area of the trapezoid with a
base of length 4 and sides of length 2, as in Figure 16.

4

2 2

θθ

FIGURE 16
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23. A landscape architect wishes to enclose a rectangular garden of
area 1,000 m2 on one side by a brick wall costing $90/m and on the
other three sides by a metal fence costing $30/m. Which dimensions
minimize the total cost?

24. The amount of light reaching a point at a distance r from a light
source A of intensity IA is IA/r2. Suppose that a second light source
B of intensity IB = 4IA is located 10 m from A. Find the point on
the segment joining A and B where the total amount of light is at a
minimum.

25. Find the maximum area of a rectangle inscribed in the region

bounded by the graph of y = 4 − x

2 + x
and the axes (Figure 17).

2

4

y = 4 − x
2 + x

x

y

FIGURE 17

26. Find the maximum area of a triangle formed by the axes and a
tangent line to the graph of y = (x + 1)−2 with x > 0.

27. Find the maximum area of a rectangle circumscribed around a rect-
angle of sides L and H . Hint: Express the area in terms of the angle θ

(Figure 18).

H

θ

L

FIGURE 18

28. A contractor is engaged to build steps up the slope of a hill that has
the shape of the graph of y = x2(120 − x)/6400 for 0 ≤ x ≤ 80 with
x in meters (Figure 19). What is the maximum vertical rise of a stair if
each stair has a horizontal length of one-third meter.

20 40 60 80

20

40

y

x

FIGURE 19

29. Find the equation of the line through P = (4, 12) such that the tri-
angle bounded by this line and the axes in the first quadrant has minimal
area.

30. Let P = (a, b) lie in the first quadrant. Find the slope of the line
through P such that the triangle bounded by this line and the axes in
the first quadrant has minimal area. Then show that P is the midpoint
of the hypotenuse of this triangle.

31. Archimedes’Problem A spherical cap (Figure 20) of radius r and
height h has volume V = πh2(

r − 1
3h

)
and surface area S = 2πrh.

Prove that the hemisphere encloses the largest volume among all spher-
ical caps of fixed surface area S.

32. Find the isosceles triangle of smallest area (Figure 21) that circum-
scribes a circle of radius 1 (from Thomas Simpson’s The Doctrine and
Application of Fluxions, a calculus text that appeared in 1750).

r

h

FIGURE 20

θ

1

FIGURE 21

33. A box of volume 72 m3 with square bottom and no top is con-
structed out of two different materials. The cost of the bottom is $40/m2

and the cost of the sides is $30/m2. Find the dimensions of the box that
minimize total cost.

34. Find the dimensions of a cylinder of volume 1 m3 of minimal cost
if the top and bottom are made of material that costs twice as much as
the material for the side.

35. Your task is to design a rectangular industrial warehouse consisting
of three separate spaces of equal size as in Figure 22. The wall materials
cost $500 per linear meter and your company allocates $2,400,000 for
the project.

(a) Which dimensions maximize the area of the warehouse?

(b) What is the area of each compartment in this case?

FIGURE 22

36. Suppose, in the previous exercise, that the warehouse consists of
n separate spaces of equal size. Find a formula in terms of n for the
maximum possible area of the warehouse.
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37. According to a model developed by economists E. Heady and J. Pe-
sek, if fertilizer made from N pounds of nitrogen and P pounds of
phosphate is used on an acre of farmland, then the yield of corn (in
bushels per acre) is

Y = 7.5 + 0.6N + 0.7P − 0.001N2 − 0.002P 2 + 0.001NP

A farmer intends to spend $30 per acre on fertilizer. If nitrogen costs
25 cents/lb and phosphate costs 20 cents/lb, which combination of N

and L produces the highest yield of corn?

38. Experiments show that the quantities x of corn and y of soybean
required to produce a hog of weight Q satisfy Q = 0.5x1/2y1/4. The
unit of x, y, and Q is the cwt, an agricultural unit equal to 100 lbs. Find
the values of x and y that minimize the cost of a hog of weight Q = 2.5
cwt if corn costs $3/cwt and soy costs $7/cwt.

39. All units in a 100-unit apartment building are rented out when the
monthly rent is set at r = $900/month. Suppose that one unit becomes
vacant with each $10 increase in rent and that each occupied unit costs
$80/month in maintenance. Which rent r maximizes monthly profit?

40. An 8-billion-bushel corn crop brings a price of $2.40/bu. A com-
modity broker uses the rule of thumb: If the crop is reduced by x percent,
then the price increases by 10x cents. Which crop size results in maxi-
mum revenue and what is the price per bu? Hint: Revenue is equal to
price times crop size.

41. The monthly output of a Spanish light bulb factory is P = 2LK2

(in millions), where L is the cost of labor and K is the cost of equipment
(in millions of euros). The company needs to produce 1.7 million units
per month. Which values of L and K would minimize the total cost
L + K?

42. The rectangular plot in Figure 23 has size 100 m × 200 m. Pipe is
to be laid from A to a point P on side BC and from there to C. The cost
of laying pipe along the side of the plot is $45/m and the cost through
the plot is $80/m (since it is underground).

(a) Let f (x) be the total cost, where x is the distance from P to B. De-
termine f (x), but note that f is discontinuous at x = 0 (when x = 0,
the cost of the entire pipe is $45/ft).

(b) What is the most economical way to lay the pipe? What if the cost
along the sides is $65/m?

100

200

200 − x

A

B P C
x

FIGURE 23

43. Brandon is on one side of a river that is 50 m wide and wants to
reach a point 200 m downstream on the opposite side as quickly as
possible by swimming diagonally across the river and then running the
rest of the way. Find the best route if Brandon can swim at 1.5 m/s and
run at 4 m/s.

44. Snell’s Law When a light beam travels from a point A above a
swimming pool to a point B below the water (Figure 24), it chooses the
path that takes the least time. Let v1 be the velocity of light in air and
v2 the velocity in water (it is known that v1 > v2). Prove Snell’s Law
of Refraction:

sin θ1

v1
= sin θ2

v2

A

h1 θ1

θ2

B

h2

FIGURE 24

In Exercises 45–47, a box (with no top) is to be constructed from a
piece of cardboard of sides A and B by cutting out squares of length h

from the corners and folding up the sides (Figure 26).

45. Find the value of h that maximizes the volume of the box if A = 15
and B = 24. What are the dimensions of this box?

46. Vascular Branching A small blood vessel of radius r branches
off at an angle θ from a larger vessel of radius R to supply blood along
a path from A to B. According to Poiseuille’s Law, the total resistance
to blood flow is proportional to

T =
(

a − b cot θ

R4
+ b csc θ

r4

)

where a and b are as in Figure 25. Show that the total resistance is
minimized when cos θ = (r/R)4.

B

A

R

r

θ

b

a

FIGURE 25

47. Which values of A and B maximize the volume of the box if h = 10
cm and AB = 900 cm.

h

A

B

FIGURE 26
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48. Given n numbers x1, . . . , xn, find the value of x minimizing the
sum of the squares:

(x − x1)2 + (x − x2)2 + · · · + (x − xn)2

First solve for n = 2, 3 and then try it for arbitrary n.

49. A billboard of height b is mounted on the side of a building with
its bottom edge at a distance h from the street as in Figure 27. At what
distance x should an observer stand from the wall to maximize the angle
of observation θ?

50. Solve Exercise 49 again using geometry rather than calculus. There
is a unique circle passing through points B and C which is tangent to the
street. Let R be the point of tangency. Note that the two angles labeled
ψ in Figure 27 are equal because they subtend equal arcs on the circle.

(a) Show that the maximum value of θ is θ = ψ .
(b) Prove that this agrees with the answer to Exercise 49. Hint: Show
that ψ = θ +  PBA where A is the intersection of the circle with PC.
(c) Show that  QRB =  RCQ for the maximal angle ψ .

h

b

x

P
θ

θ

ψ

ψ

P

A

R

B

C

Q

FIGURE 27

51. Optimal Delivery Schedule A gas station sells Q gallons of
gasoline per year, which is delivered N times per year in equal ship-
ments of Q/N gallons. The cost of each delivery is d dollars and the
yearly storage costs are sQT , where T is the length of time (a fraction of
a year) between shipments and s is a constant. Show that costs are mini-
mized for N = √

sQ/d . (Hint: T = 1/N .) Find the optimal number of
deliveries if Q = 2 million gal, d = $8,000, and s = 30 cents/gal-yr.
Your answer should be a whole number, so compare costs for the two
integer values of N nearest the optimal value.

52. Victor Klee’s Endpoint Maximum Problem Given 40 meters of
straight fence, your goal is to build a rectangular enclosure using 80
additional meters of fence that encompasses the greatest area. Let A(x)

be the area of the enclosure, with x as in Figure 28.

(a) Find the maximum value of A(x).

(b) Which interval of x values is relevant to our problem? Find the
maximum value of A(x) on this interval.

40

20 − x

40 + x

20 − x

x

FIGURE 28

53. Let (a, b) be a fixed point in the first quadrant and let S(d) be the
sum of the distances from (d, 0) to the points (0, 0), (a, b), and (a, −b).

(a) Find the value of d for which S(d) is minimal. The answer de-
pends on whether b <

√
3a or b ≥ √

3a. Hint: Show that d = 0 when
b ≥ √

3a.

(b) Let a = 1. Plot S(d) for b = 0.5,
√

3, 3 and describe the
position of the minimum.

54. The force F (in Newtons) required to move a box of mass m kg in
motion by pulling on an attached rope (Figure 29) is

F(θ) = f mg

cos θ + f sin θ

where θ is the angle between the rope and the horizontal, f is the
coefficient of static friction, and g = 9.8 m/s2. Find the angle θ that
minimizes the required force F , assuming f = 0.4. Hint: Find the max-
imum value of cos θ + f sin θ .

F

θ

FIGURE 29

55. In the setting of Exercise 54, show that for any f the minimal force
required is proportional to 1/

√
1 + f 2.

56. Bird Migration Ornithologists have found that the power (in
joules per second) consumed by a certain pigeon flying at velocity
v m/s is described well by the function P(v) = 17v−1 + 10−3v3 J/s.
Assume that the pigeon can store 5 × 104 J of usable energy as body
fat.

(a) Show that at velocity v, a pigeon can fly a total distance of
D(v) = (5 × 104)v/P (v) if it uses all of its stored energy.

(b) Find the velocity vp that minimizes P(v).

(c) Migrating birds are smart enough to fly at the velocity that max-
imizes distance traveled rather than minimizes power consumption.
Show that the velocity vd which maximizes D(v) satisfies P ′(vd) =
P(vd)/vd. Show that vd is obtained graphically as the velocity coordi-
nate of the point where a line through the origin is tangent to the graph
of P(v) (Figure 30).
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(d) Find vd and the maximum distance D(vd).

10 155

Velocity (m/s)

Minimum power
consumption

Maximum
distance
traveled

Power (J/s)

4

FIGURE 30

57. The problem is to put a “roof” of side s on an attic room of height h
and width b. Find the smallest length s for which this is possible if
b = 27 and h = 8 (Figure 31).

58. Redo Exercise 57 for arbitrary b and h.

s

h

b

FIGURE 31

a

b

FIGURE 32

59. Find the maximum length of a pole that can be carried horizontally
around a corner joining corridors of widths a = 24 and b = 3 (Figure
32).

60. Redo Exercise 59 for arbitrary widths a and b.

61. Find the minimum length � of a beam that can clear a fence of
height h and touch a wall located b ft behind the fence (Figure 33).

b x

h

�

FIGURE 33

62. Which value of h maximizes the volume of the box if A = B?

63. A basketball player stands d feet from the basket. Let h

and α be as in Figure 34. Using physics, one can show that if the player
releases the ball at an angle θ , then the initial velocity required to make
the ball go through the basket satisfies

v2 = 16d

cos2 θ(tan θ − tan α)

(a) Explain why this formula is meaningful only for α < θ < π
2 . Why

does v approach infinity at the endpoints of this interval?

(b) Take α = π
6 and plot v2 as a function of θ for π

6 < θ < π
2 .

Verify that the minimum occurs at θ = π
3 .

(c) Set F(θ) = cos2 θ(tan θ − tan α). Explain why v is minimized for
θ such that F(θ) is maximized.
(d) Verify that F ′(θ) = cos(α − 2θ) sec α (you will need to use the ad-
dition formula for cosine) and show that the maximum value of F(θ)

on
[
α, π

2

]
occurs at θ0 = α

2 + π
4 .

(e) For a given α, the optimal angle for shooting the basket is θ0 be-
cause it minimizes v2 and therefore minimizes the energy required to
make the shot (energy is proportional to v2). Show that the velocity
vopt at the optimal angle θ0 satisfies

v2
opt = 32d cos α

1 − sin α
= 32 d2

−h +
√

d2 + h2

(f) Show with a graph that for fixed d (say, d = 15 ft, the dis-

tance of a free throw), v2
opt is an increasing function of h. Use this to

explain why taller players have an advantage and why it can help to
jump while shooting.

θ
α

h

d

FIGURE 34

64. Three towns A, B, and C are to be joined by an underground fiber
cable as illustrated in Figure 35(A). Assume that C is located directly
below the midpoint of AB. Find the junction point P that minimizes
the total amount of cable used.

(a) First show that P must lie directly above C. Hint: Use the result
of Example 6 to show that if the junction is placed at point Q in Figure
35(B), then we can reduce the cable length by moving Q horizontally
over to the point P lying above C.
(b) With x as in Figure 35(A), let f (x) be the total length of cable used.
Show that f (x) has a unique critical point c. Compute c and show that
0 ≤ c ≤ L if and only if D ≤ 2

√
3 L.

(c) Find the minimum of f (x) on [0, L] in two cases: D = 2, L = 4
and D = 8, L = 2.

D

PCable

(A)

L

x x

C

A B

(B)

PQ

C

A B

FIGURE 35
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Further Insights and Challenges
65. Tom and Ali drive along a highway represented by the graph of
f (x) in Figure 36. During the trip, Ali views a billboard represented
by the segment BC along the y-axis. Let Q be the y-intercept of the
tangent line to y = f (x). Show that θ is maximized at the value of x

for which the angles  QPB and  QCP are equal. This generalizes
Exercise 50 (c) (which corresponds to the case f (x) = 0). Hints:

(a) Show that dθ/dx is equal to

(b − c) · (x2 + (xf ′(x))2) − (b − (f (x) − xf ′(x)))(c − (f (x) − xf ′(x)))

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

(b) Show that the y-coordinate of Q is f (x) − xf ′(x).

(c) Show that the condition dθ/dx = 0 is equivalent to

PQ2 = BQ · CQ

(d) Conclude that �QPB and �QCP are similar triangles.

x
x

y

Billboard

Highway

θ

P = (x, f (x))

y = f (x)
B = (0, b)

C = (0, c)

Q

FIGURE 36

Seismic Prospecting Exercises 66–68 are concerned with determin-
ing the thickness d of a layer of soil that lies on top of a rock formation.
Geologists send two sound pulses from point A to point D separated
by a distance s. The first pulse travels directly from A to D along the
surface of the earth. The second pulse travels down to the rock forma-
tion, then along its surface, and then back up to D (path ABCD), as in
Figure 37. The pulse travels with velocity v1 in the soil and v2 in the
rock.

66. (a) Show that the time required for the first pulse to travel from A

to D is t1 = s/v1.

(b) Show that the time required for the second pulse is

t2 = 2d

v1
sec θ + s − 2d tan θ

v2

provided that

tan θ ≤ s

2d
2

(Note: If this inequality is not satisfied, then point B does not lie to the
left of C.)

(c) Show that t2 is minimized when sin θ = v1/v2.

67. In this exercise, assume that v2/v1 ≥
√

1 + 4(d/s)2.

(a) Show that inequality (2) holds if sin θ = v1/v2.

(b) Show that the minimal time for the second pulse is

t2 = 2d

v1
(1 − k2)1/2 + s

v2

where k = v1/v2.

(c) Conclude that
t2

t1
= 2d(1 − k2)1/2

s
+ k.

68. Continue with the assumption of the previous exercise.

(a) Find the thickness of the soil layer, assuming that v1 = 0.7v2,
t2/t1 = 1.3, and s = 400 m.

(b) The times t1 and t2 are measured experimentally. The equation in
Exercise 67(c) shows that t2/t1 is a linear function of 1/s. What might
you conclude if experiments were formed for several values of s and
the points (1/s, t2/t1) did not lie on a straight line?

A

B C

s D

Soil

Rock

θ θ d

FIGURE 37

69. In this exercise we use Figure 38 to prove Heron’s prin-
ciple of Example 6 without calculus. By definition, C is the reflection
of B across the line MN (so that BC is perpendicular to MN and
BN = CN . Let P be the intersection of AC and MN . Use geometry
to justify:

(a) �PNB and �PNC are congruent and θ1 = θ2.

(b) The paths APB and APC have equal length.

(c) Similarly AQB and AQC have equal length.

(d) The path APC is shorter than AQC for all Q = P .

Conclude that the shortest path AQB occurs for Q = P .

A
B

h1 h2

P

h2

Q

C

M N

θ1

θ1

θ2

FIGURE 38
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70. A jewelry designer plans to incorporate a component made of gold
in the shape of a frustum of a cone of height 1 cm and fixed lower radius
r (Figure 39). The upper radius x can take on any value between 0 and
r . Note that x = 0 and x = r correspond to a cone and cylinder, respec-
tively. As a function of x, the surface area (not including the top and
bottom) is S(x) = πs(r + x), where s is the slant height as indicated
in the figure. Which value of x yields the least expensive design [the
minimum value of S(x) for 0 ≤ x ≤ r]?

(a) Show that S(x) = π(r + x)
√

1 + (r − x)2.

(b) Show that if r <
√

2, then S(x) is an increasing function. Conclude
that the cone (x = 0) has minimal area in this case.

(c) Assume that r >
√

2. Show that S(x) has two critical points
x1 < x2 in (0, r), and that S(x1) is a local maximum, and S(x2) is
a local minimum.

(d) Conclude that the minimum occurs at x = 0 or x2.

(e) Find the minimum in the cases r = 1.5 and r = 2.

(f) Challenge: Let c =
√

(5 + 3
√

3)/4 ≈ 1.597. Prove that the mini-

mum occurs at x = 0 (cone) if
√

2 < r < c, but the minimum occurs
at x = x2 if r > c.

s

r

x

1 cm

FIGURE 39 Frustum of height 1 cm.

4.8 Newton’s Method
Newton’s Method is a procedure for finding numerical approximations to zeros of func-
tions. Numerical approximations are important because it is often impossible to find the

REMINDER A “zero” or “root” of a
function f (x) is a solution of the equation
f (x) = 0. zeros exactly. For example, the polynomial f (x) = x5 − x − 1 has one real root c (see

Figure 1), but we can prove, using an advanced branch of mathematics called Galois

21

1.1673

−2

1

−1

x

y

FIGURE 1 Graph of y = x5 − x − 1. The
value 1.1673 is a good numerical
approximation to the root.

Theory, that there is no algebraic formula for this root. Newton’s Method shows that
c ≈ 1.1673, and with enough computation, we can compute c to any desired degree of
accuracy.

In Newton’s Method, we begin by choosing a number x0, which we believe is close
to a root of the equation f (x) = 0. This starting value x0 is called the initial guess.
Newton’s Method then produces a sequence x0, x1, x2, . . . of successive approximations
that, in favorable situations, converge to a root.

Figure 2 illustrates the procedure. Given an initial guess x0, we draw the tangent line
to the graph at (x0, f (x0)). The approximation x1 is defined as the x-coordinate of the
point where the tangent line intersects the x-axis. To produce the second approximation
x2 (also called the second iterate), we apply this procedure to x1.

First iteration

x0x1

Second iteration

x0x1x2
xx

yy

FIGURE 2 The sequence produced by
iteration converges to a root.

Let’s derive a formula for x1. The tangent line at (x0, f (x0)) has equation

y = f (x0) + f ′(x0)(x − x0)

The tangent line crosses the x-axis at x1, where

y = f (x0) + f ′(x0)(x1 − x0) = 0
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If f ′(x0) = 0, we can solve for x1 to obtain x1 − x0 = −f (x0)/f
′(x0), or

x1 = x0 − f (x0)

f ′(x0)

The second iterate x2 is obtained by applying this formula to x1 instead of x0:

x2 = x1 − f (x1)

f ′(x1)

and so on. Notice in Figure 2 that x1 is closer to the root than x0 and that x2 is closer
still. This is typical: The successive approximations usually converge to the actual root.
However, there are cases where Newton’s Method fails (see Figure 4).

Newton’s Method is an example of an
iterative procedure. To “iterate” means to
repeat, and in Newton’s Method we use
Eq. (1) repeatedly to produce the sequence
of approximations.

Newton’s Method To approximate a root of f (x) = 0:

Step 1. Choose initial guess x0 (close to the desired root if possible).
Step 2. Generate successive approximations x1, x2, . . . , where

xn+1 = xn − f (xn)

f ′(xn)
1

EXAMPLE 1 Approximating
√

5 Calculate the first three approximations x1, x2, x3 to
a root of f (x) = x2 − 5 using the initial guess x0 = 2.

Solution We have f ′(x) = 2x. Therefore,

x1 = x0 − f (x0)

f ′(x0)
= x0 − x2

0 − 5

2x0

We compute the successive approximations as follows:

x1 = x0 − f (x0)

f ′(x0)
= 2 − 22 − 5

2 · 2
= 2.25

x2 = x1 − f (x1)

f ′(x1)
= 2.25 − 2.252 − 5

2 · 2.25
≈ 2.23611

x3 = x2 − f (x2)

f ′(x2)
= 2.23611 − 2.236112 − 5

2 · 2.23611
≈ 2.23606797789

This sequence provides successive approximations to a root of x2 − 5 = 0, namely
√

5 = 2.236067977499789696 . . .

Observe that x3 is accurate to within an error of less than 10−9. This is impressive accuracy
for just three iterations of Newton’s Method.

How Many Iterations Are Required?
How many iterations of Newton’s Method are required to approximate a root to within a
given accuracy? There is no definitive answer, but in practice, it is usually safe to assume
that if xn and xn+1 agree to m decimal places, then the approximation xn is correct to these
m places.

EXAMPLE 2 Let c be the smallest positive solution of sin 3x = cos x.

(a) Use a computer-generated graph to choose an initial guess x0 for c.
(b) Use Newton’s Method to approximate c to within an error of at most 10−6.
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Solution

(a) A solution of sin 3x = cos x is a zero of the function f (x) = sin 3x − cos x. Figure 3

π π

2
π

4

1

−1

x

y

FIGURE 3 Graph of f (x) = sin 3x − cos x.

shows that the smallest zero is approximately halfway between 0 and π
4 . Because π

4 ≈
0.785, a good initial guess is x0 = 0.4.

There is no single “correct” initial guess. In
Example 2, we chose x0 = 0.4, but
another possible choice is x0 = 0, leading
to the sequence

x1 ≈ 0.3333333333

x2 ≈ 0.3864547725

x3 ≈ 0.3926082513

x4 ≈ 0.3926990816

You can check, however, that x0 = 1 yields
a sequence converging to π

4 , which is the
second positive solution of sin 3x = cos x.

(b) Since f ′(x) = 3 cos 3x + sin x, Eq. (1) yields the formula

xn+1 = xn − sin 3xn − cos xn

3 cos 3xn + sin xn

With x0 = 0.4 as the initial guess, the first four iterates are

x1 ≈ 0.3925647447

x2 ≈ 0.3926990382

x3 ≈ 0.3926990816987196

x4 ≈ 0.3926990816987241

Stopping here, we can be fairly confident that x4 approximates the smallest positive root
c to at least twelve places. In fact, c = π

8 and x4 is accurate to sixteen places.

Which Root Does Newton’s Method Compute?
Sometimes, Newton’s Method computes no root at all. In Figure 4, the iterates diverge

Zero of f (x)

x0 x1 x2
x

y

FIGURE 4 Function has only one zero but
the sequence of Newton iterates goes off to
infinity.

to infinity. In practice, however, Newton’s Method usually converges quickly, and if a
particular choice of x0 does not lead to a root, the best strategy is to try a different initial
guess, consulting a graph if possible. If f (x) = 0 has more than one root, different initial
guesses x0 may lead to different roots.

EXAMPLE 3 Figure 5 shows that f (x) = x4 − 6x2 + x + 5 has four real roots.

(a) Show that with x0 = 0, Newton’s Method converges to the root near −2.

(b) Show that with x0 = −1, Newton’s Method converges to the root near −1.

Solution We have f ′(x) = 4x3 − 12x + 1 and

321−3

−2 −1
x

y

FIGURE 5 Graph of
f (x) = x4 − 6x2 + x + 5.

xn+1 = xn − x4
n − 6x2

n + xn + 5

4x3
n − 12xn + 1

= 3x4
n − 6x2

n − 5

4x3
n − 12xn + 1

(a) On the basis of Table 1, we can be confident that when x0 = 0, Newton’s Method
converges to a root near −2.3. Notice in Figure 5 that this is not the closest root to x0.

(b) Table 2 suggests that with x0 = −1, Newton’s Method converges to the root near
−0.9.

TABLE 1

x0 0
x1 −5
x2 −3.9179954
x3 −3.1669480
x4 −2.6871270
x5 −2.4363303
x6 −2.3572979
x7 −2.3495000

TABLE 2

x0 −1
x1 −0.8888888888
x2 −0.8882866140
x3 −0.88828656234358
x4 −0.888286562343575
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4.8 SUMMARY

• Newton’s Method: To find a sequence of numerical approximations to a root of f (x),
begin with an initial guess x0. Then construct the sequence x0, x1, x2, . . . using the formula

xn+1 = xn − f (xn)

f ′(xn)

You should choose the initial guess x0 as close as possible to a root, possibly by referring
to a graph. In favorable cases, the sequence converges rapidly to a root.
• If xn and xn+1 agree to m decimal places, it is usually safe to assume that xn agrees with
a root to m decimal places.

4.8 EXERCISES

Preliminary Questions
1. How many iterations of Newton’s Method are required to compute

a root if f (x) is a linear function?

2. What happens in Newton’s Method if your initial guess happens
to be a zero of f ?

3. What happens in Newton’s Method if your initial guess happens
to be a local min or max of f ?

4. Is the following a reasonable description of Newton’s Method: “A
root of the equation of the tangent line to f (x) is used as an approxi-
mation to a root of f (x) itself”? Explain.

Exercises
In this exercise set, all approximations should be carried out using
Newton’s Method.

In Exercises 1–6, apply Newton’s Method to f (x) and initial guess x0
to calculate x1, x2, x3.

1. f (x) = x2 − 6, x0 = 2

2. f (x) = x2 − 3x + 1, x0 = 3

3. f (x) = x3 − 10, x0 = 2

4. f (x) = x3 + x + 1, x0 = −1

5. f (x) = cos x − 4x, x0 = 1

6. f (x) = 1 − x sin x, x0 = 7

7. Use Figure 6 to choose an initial guess x0 to the unique real root
of x3 + 2x + 5 = 0 and compute the first three Newton iterates.

21−2 −1
x

y

FIGURE 6 Graph of y = x3 + 2x + 5.

8. Approximate a solution of sin x = cos 2x in the interval
[
0, π

2

]
to

three decimal places. Then find the exact solution and compare with
your approximation.

9. Approximate both solutions of ex = 5x to three decimal places
(Figure 7).

321
x

y

10

20 y = ex

y = 5x

FIGURE 7 Graphs of ex and 5x.

10. The first positive solution of sin x = 0 is x = π . Use Newton’s
Method to calculate π to four decimal places.

In Exercises 11–14, approximate to three decimal places using Newton’s
Method and compare with the value from a calculator.

11.
√

11 12. 51/3 13. 27/3 14. 3−1/4

15. Approximate the largest positive root of f (x) = x4 − 6x2 + x + 5
to within an error of at most 10−4. Refer to Figure 5.

In Exercises 16–19, approximate the root specified to three dec-
imal places using Newton’s Method. Use a plot to choose an initial
guess.

16. Largest positive root of f (x) = x3 − 5x + 1.

17. Negative root of f (x) = x5 − 20x + 10.

18. Positive solution of sin θ = 0.8θ .

19. Solution of ln(x + 4) = x.
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20. Let x1, x2 be the estimates to a root obtained by applying Newton’s
Method with x0 = 1 to the function graphed in Figure 8. Estimate the
numerical values of x1 and x2, and draw the tangent lines used to obtain
them.

31 2−1
x

y

FIGURE 8

21. Find the smallest positive value of x at which y = x and
y = tan x intersect. Hint: Draw a plot.

22. In 1535, the mathematician Antonio Fior challenged his rival Nic-
colo Tartaglia to solve this problem: A tree stands 12 braccia high; it
is broken into two parts at such a point that the height of the part left
standing is the cube root of the length of the part cut away. What is the
height of the part left standing? Show that this is equivalent to solving
x3 + x = 12 and find the height to three decimal places. Tartaglia, who
had discovered the secret of the cubic equation, was able to determine
the exact answer:

x =
(

3
√√

2,919 + 54 − 3
√√

2,919 − 54

) /
3√

9

23. Find (to two decimal places) the coordinates of the point P in
Figure 9 where the tangent line to y = cos x passes through the origin.

P

y = cos x

2π

1

x

y

FIGURE 9

Newton’s Method is often used to determine interest rates in financial
calculations. In Exercises 24–26, r denotes a yearly interest rate ex-
pressed as a decimal (rather than as a percent).

24. If P dollars are deposited every month in an account earning in-
terest at the yearly rate r , then the value S of the account after N years
is

S = P

(
b12N+1 − b

b − 1

)
where b = 1 + r

12

You have decided to deposit P = 100 dollars per month.

(a) Determine S after 5 years if r = 0.07 (that is, 7%).

(b) Show that to save $10,000 after 5 years, you must earn interest at a
rate r determined bys the equation b61 − 101b + 100 = 0. Use New-
ton’s Method to solve for b. Then find r . Note that b = 1 is a root, but
you want the root satisfying b > 1.

25. If you borrow L dollars for N years at a yearly interest rate r , your
monthly payment of P dollars is calculated using the equation

L = P

(
1 − b−12N

b − 1

)
where b = 1 + r

12

(a) Find P if L = $5,000, N = 3, and r = 0.08 (8%).

(b) You are offered a loan of L = $5,000 to be paid back over 3 years
with monthly payments of P = $200. Use Newton’s Method to com-
pute b and find the implied interest rate r of this loan. Hint: Show that
(L/P )b12N+1 − (1 + L/P )b12N + 1 = 0.

26. If you deposit P dollars in a retirement fund every year for N years
with the intention of then withdrawing Q dollars per year for M years,
you must earn interest at a rate r satisfying P(bN − 1) = Q(1 − b−M),
where b = 1 + r . Assume that $2,000 is deposited each year for 30
years and the goal is to withdraw $10,000 per year for 25 years. Use
Newton’s Method to compute b and then find r . Note that b = 1 is a
root, but you want the root satisfying b > 1.

27. There is no simple formula for the position at time t of a planet
P in its orbit (an ellipse) around the sun. Introduce the auxiliary circle
and angle θ in Figure 10 (note that P determines θ because it is the
central angle of point B on the circle). Let a = OA and e = OS/OA

(the eccentricity of the orbit).

(a) Show that sector BSA has area (a2/2)(θ − e sin θ).

(b) By Kepler’s Second Law, the area of sector BSA is proportional
to the time t elapsed since the planet passed point A, and because the
circle has area πa2, BSA has area (πa2)(t/T ), where T is the period
of the orbit. Deduce Kepler’s Equation:

2πt

T
= θ − e sin θ

(c) The eccentricity of Mercury’s orbit is approximately e = 0.2. Use
Newton’s Method to find θ after a quarter of Mercury’s year has elapsed
(t = T/4). Convert θ to degrees. Has Mercury covered more than a
quarter of its orbit at t = T/4?

O

P

A
S

Auxiliary circle

Elliptical orbit

Sun
θ

B

FIGURE 10

28. The roots of f (x) = 1
3x3 − 4x + 1 to three decimal places are

−3.583, 0.251, and 3.332 (Figure 11). Determine the root to which
Newton’s Method converges for the initial choices x0 = 1.85, 1.7, and
1.55. The answer shows that a small change in x0 can have a significant
effect on the outcome of Newton’s Method.
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0.251

4

−4

−3.583

3.332
x

y

FIGURE 11 Graph of f (x) = 1
3x3 − 4x + 1.

29. What happens when you apply Newton’s Method to find a zero of
f (x) = x1/3? Note that x = 0 is the only zero.

30. What happens when you apply Newton’s Method to the equation
x3 − 20x = 0 with the unlucky initial guess x0 = 2?

Further Insights and Challenges
31. Newton’s Method can be used to compute reciprocals without per-
forming division. Let c > 0 and set f (x) = x−1 − c.

(a) Show that x − (f (x)/f ′(x)) = 2x − cx2.
(b) Calculate the first three iterates of Newton’s Method with c = 10.3
and the two initial guesses x0 = 0.1 and x0 = 0.5.
(c) Explain graphically why x0 = 0.5 does not yield a sequence con-
verging to 1/10.3.

In Exercises 32 and 33, consider a metal rod of length L fastened at
both ends. If you cut the rod and weld on an additional segment of
length m, leaving the ends fixed, the rod will bow up into a circular arc
of radius R (unknown), as indicated in Figure 12.

32. Let h be the maximum vertical displacement of the rod.

(a) Show that L = 2R sin θ and conclude that

h = L(1 − cos θ)

2 sin θ

(b) Show that L + m = 2Rθ and then prove

sin θ

θ
= L

L + m
2

33. Let L = 3 and m = 1. Apply Newton’s Method to Eq. (2) to esti-
mate θ , and use this to estimate h.

R

h

θ

L

FIGURE 12 The bold circular arc has length L + m.

34. Quadratic Convergence to Square Roots Let f (x) = x2 − c

and let en = xn − √
c be the error in xn.

(a) Show that xn+1 = 1
2 (xn + c/xn) and en+1 = e2

n/2xn.
(b) Show that if x0 >

√
c, then xn >

√
c for all n. Explain graphically.

(c) Show that if x0 >
√

c, then en+1 ≤ e2
n/(2

√
c).

In Exercises 35–37, a flexible chain of length L is suspended between
two poles of equal height separated by a distance 2M (Figure 13). By
Newton’s laws, the chain describes a catenary y = a cosh

(
x
a

)
, where

a is the number such that L = 2a sinh
(
M
a

)
. The sag s is the vertical

distance from the highest to the lowest point on the chain.

35. Suppose that L = 120 and M = 50.

(a) Use Newton’s Method to find a value of a (to two decimal places)
satisfying L = 2a sinh(M/a).

(b) Compute the sag s.

36. Assume that M is fixed.

(a) Calculate ds
da

. Note that s = a cosh
(
M
a

) − a.

(b) Calculate da
dL

by implicit differentiation using the relation

L = 2a sinh
(
M
a

)
.

(c) Use (a) and (b) and the Chain Rule to show that

ds

dL
= ds

da

da

dL
= cosh(M/a) − (M/a) sinh(M/a) − 1

2 sinh(M/a) − (2M/a) cosh(M/a)
3

37. Suppose that L = 160 and M = 50.

(a) Use Newton’s Method to find a value of a (to two decimal places)
satisfying L = 2a sinh(M/a).

(b) Use Eq. (3) and the Linear Approximation to estimate the increase
in sag �s for changes in length �L = 1 and �L = 5.

(c) Compute s(161) − s(160) and s(165) − s(160) directly
and compare with your estimates in (b).

y = a cosh(x/a)

2 M

s

x

y

FIGURE 13 Chain hanging between two poles.
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4.9 Antiderivatives
In addition to finding derivatives, there is an important “inverse” problem: Given the
derivative, find the function itself. For example, in physics we may know the velocity v(t)

(the derivative) and wish to compute the position s(t) of an object. Since s′(t) = v(t), this
amounts to finding a function whose derivative is v(t). A function F(x) whose derivative
is f (x) is called an antiderivative of f (x).

DEFINITION Antiderivatives A function F(x) is an antiderivative of f (x) on (a, b)

if F ′(x) = f (x) for all x ∈ (a, b).

Examples:

• F(x) = − cos x is an antiderivative of f (x) = sin x because

F ′(x) = d

dx
(− cos x) = sin x = f (x)

• F(x) = 1
3x3 is an antiderivative of f (x) = x2 because

F ′(x) = d

dx

(
1

3
x3

)
= x2 = f (x)

One critical observation is that antiderivatives are not unique. We are free to add a constant
C because the derivative of a constant is zero, and so, if F ′(x) = f (x), then (F (x) + C)′ =
f (x). For example, each of the following is an antiderivative of x2:

1

3
x3,

1

3
x3 + 5,

1

3
x3 − 4

Are there any antiderivatives of f (x) other than those obtained by adding a constant to a
given antiderivative F(x)? Our next theorem says that the answer is no if f (x) is defined
on an interval (a, b).

THEOREM 1 The General Antiderivative Let F(x) be an antiderivative of f (x) on
(a, b). Then every other antiderivative on (a, b) is of the form F(x) + C for some
constant C.

Proof If G(x) is a second antiderivative of f (x), set H(x) = G(x) − F(x). Then
H ′(x) = G′(x) − F ′(x) = f (x) − f (x) = 0. By the Corollary in Section 4.3, H(x)

must be a constant—say, H(x) = C—and therefore G(x) = F(x) + C.

GRAPHICAL INSIGHT The graph of F(x) + C is obtained by shifting the graph of F(x)

vertically by C units. Since vertical shifting moves the tangent lines without changing
their slopes, it makes sense that all of the functions F(x) + C have the same derivative
(Figure 1). Theorem 1 tells us that conversely, if two graphs have parallel tangent lines,
then one graph is obtained from the other by a vertical shift.

We often describe the general antiderivative of a function in terms of an arbitrary
constant C, as in the following example.

F(x)

F(x) + C

x

y

FIGURE 1 The tangent lines to the graphs of
y = F(x) and y = F(x) + C are parallel.
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EXAMPLE 1 Find two antiderivatives of f (x) = cos x. Then determine the general
antiderivative.

Solution The functions F(x) = sin x and G(x) = sin x + 2 are both antiderivatives of
f (x). The general antiderivative is F(x) = sin x + C, where C is any constant.

The process of finding an antiderivative is called integration. We will see why in
Chapter 5, when we discuss the connection between antiderivatives and areas under curves
given by the Fundamental Theorem of Calculus. Anticipating this result, we begin using
the integral sign

∫
, the standard notation for antiderivatives.

The terms “antiderivative” and “indefinite
integral” are used interchangeably. In some
textbooks, an antiderivative is called a
“primitive function.”

NOTATION Indefinite Integral The notation∫
f (x) dx = F(x) + C means that F ′(x) = f (x)

We say that F(x) + C is the general antiderivative or indefinite integral of f (x).

The function f (x) appearing in the integral sign is called the integrand. The symbol dx

is a differential. It is part of the integral notation and serves to indicate the independent
variable. The constant C is called the constant of integration.

Some indefinite integrals can be evaluated by reversing the familiar derivative for-
mulas. For example, we obtain the indefinite integral of xn by reversing the Power Rule
for derivatives.There are no Product, Quotient, or Chain

Rules for integrals. However, we will see
that the Product Rule for derivatives leads
to an important technique called
Integration by Parts (Section 7.1) and the
Chain Rule leads to the Substitution
Method (Section 5.6).

THEOREM 2 Power Rule for Integrals

∫
xn dx = xn+1

n + 1
+ C for n = −1

Proof We just need to verify that F(x) = xn+1

n + 1
is an antiderivative of f (x) = xn:

F ′(x) = d

dx

(
xn+1

n + 1
+ C

)
= 1

n + 1
((n + 1)xn) = xn

In words, the Power Rule for Integrals says that to integrate a power of x, “add one
to the exponent and then divide by the new exponent.” Here are some examples:∫

x5 dx = 1

6
x6 + C,

∫
x−9 dx = −1

8
x−8 + C,

∫
x3/5 dx = 5

8
x8/5 + C

The Power Rule is not valid forn = −1. In fact, forn = −1, we obtain the meaningless
result ∫

x−1 dx = xn+1

n + 1
+ C = x0

0
+ C (meaningless)

Recall, however, that the derivative of the natural logarithm is d
dx

ln x = 1
x

. This shows

Notice that in integral notation, we treat dx

as a movable variable, and thus we write∫
1

x
dx as

∫
dx

x
.

that F(x) = ln x is an antiderivative of y = 1
x

. Thus, for n = −1, instead of the Power
Rule we have ∫

dx

x
= ln x + C
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This formula is valid for x > 0, where ln x is defined. We would like to have an antideriva-
tive of y = 1

x
on its full domain, namely on {x : x = 0}. To achieve this end, we extend

F(x) to an even function by setting F(x) = ln |x| (Figure 2). Then F(x) = F(−x), and
x
1

x
1

x

y

x−x 1−1

2

y = ln |x|

Slope − Slope

FIGURE 2

by the Chain Rule, F ′(x) = −F ′(−x). For x < 0, we obtain

F ′(x) = d

dx
ln |x| = −F ′(−x) = − 1

−x
= 1

x

This proves that F ′(x) = 1
x

for all x = 0.

THEOREM 3 Antiderivative of y = 1
x

The function F(x) = ln |x| is an antideriva-

tive of y = 1

x
in the domain {x : x = 0}; that is,

∫
dx

x
= ln |x| + C 1

The indefinite integral obeys the usual linearity rules that allow us to integrate “term
by term.” These rules follow from the linearity rules for the derivative (see Exercise 79.)

THEOREM 4 Linearity of the Indefinite Integral

• Sum Rule:
∫

(f (x) + g(x)) dx =
∫

f (x) dx +
∫

g(x) dx

• Multiples Rule:
∫

cf (x) dx = c

∫
f (x) dx

EXAMPLE 2 Evaluate
∫
(3x4 − 5x2/3 + x−3) dx.

Solution We integrate term by term and use the Power Rule:

When we break up an indefinite integral
into a sum of several integrals as in
Example 2, it is not necessary to include a
separate constant of integration for each
integral.

∫
(3x4 − 5x2/3 + x−3) dx =

∫
3x4 dx −

∫
5x2/3 dx +

∫
x−3 dx (Sum Rule)

= 3
∫

x4 dx − 5
∫

x2/3 dx +
∫

x−3 dx (Multiples Rule)

= 3

(
x5

5

)
− 5

(
x5/3

5/3

)
+ x−2

−2
+ C (Power Rule)

= 3

5
x5 − 3x5/3 − 1

2
x−2 + C

To check the answer, we verify that the derivative is equal to the integrand:

d

dx

(
3

5
x5 − 3x5/3 − 1

2
x−2 + C

)
= 3x4 − 5x2/3 + x−3

EXAMPLE 3 Evaluate
∫ (

5

x
− 3x−10

)
dx.

Solution Apply Eq. (1) and the Power Rule:∫ (
5

x
− 3x−10

)
dx = 5

∫
dx

x
− 3

∫
x−10 dx

= 5 ln |x| − 3

(
x−9

−9

)
+ C = 5 ln |x| + 1

3
x−9 + C
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The differentiation formulas for the trigonometric functions give us the following
integration formulas. Each formula can be checked by differentiation.

Basic Trigonometric Integrals∫
sin x dx = − cos x + C

∫
cos x dx = sin x + C∫

sec2 x dx = tan x + C

∫
csc2 x dx = − cot x + C∫

sec x tan x dx = sec x + C

∫
csc x cot x dx = − csc x + C

Similarly, for any constants b and k with k = 0, the formulas

d

dx
sin(kx + b) = k cos(kx + b),

d

dx
cos(kx + b) = −k sin(kx + b)

translate to the following indefinite integral formulas:∫
cos(kx + b) dx = 1

k
sin(kx + b) + C∫

sin(kx + b) dx = −1

k
cos(kx + b) + C

EXAMPLE 4 Evaluate
∫ (

sin(8t − 3) + 20 cos 9t
)
dt .

Solution ∫ (
sin(8t − 3) + 20 cos 9t

)
dt =

∫
sin(8t − 3) dt + 20

∫
cos 9t dt

= −1

8
cos(8t − 3) + 20

9
sin 9t + C

Integrals Involving ex

The formula (ex)′ = ex says that f (x) = ex is its own derivative. But this means that
f (x) = ex is also its own antiderivative. In other words,∫

ex dx = ex + C

More generally, for any constants b and k = 0,∫
ekx+b dx = 1

k
ekx+b + C

EXAMPLE 5 Evaluate (a)
∫

(3ex − 4) dx and (b)
∫

12e7−3x dx.

Solution

(a)
∫

(3ex − 4) dx = 3
∫

ex dx −
∫

4 dx = 3ex − 4x + C
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(b)
∫

12e7−3x dx = 12
∫

e7−3x dx = 12

(
1

−3
e7−3x

)
= −4e7−3x + C

Initial Conditions
We can think of an antiderivative as a solution to the differential equation

dy

dx
= f (x) 2

In general, a differential equation is an equation relating an unknown function and its
derivatives. The unknown in Eq. (2) is a function y = F(x) whose derivative is f (x); that
is, F(x) is an antiderivative of f (x).

Eq. (2) has infinitely many solutions (because the antiderivative is not unique), but we
can specify a particular solution by imposing an initial condition—that is, by requiring

An initial condition is like the y-intercept
of a line, which determines one particular
line among all lines with the same slope.
The graphs of the antiderivatives of f (x)

are all parallel (Figure 1), and the initial
condition determines one of them.

that the solution satisfy y(x0) = y0 for some fixed values x0 and y0.Adifferential equation
with an initial condition is called an initial value problem.

EXAMPLE 6 Solve
dy

dx
= 4x7 subject to the initial condition y(0) = 4.

Solution First, find the general antiderivative:

y(x) =
∫

4x7 dx = 1

2
x8 + C

Then choose C so that the initial condition is satisfied: y(0) = 0 + C = 4. This yields
C = 4, and our solution is y = 1

2x8 + 4.

EXAMPLE 7 Solve the initial value problem
dy

dt
= sin(πt), y(2) = 2.

Solution First find the general antiderivative:

y(t) =
∫

sin(πt) dt = − 1

π
cos(πt) + C

Then solve for C by evaluating at t = 2:

y(2) = − 1

π
cos(2π) + C = 2 ⇒ C = 2 + 1

π

The solution of the initial value problem is y(t) = − 1
π

cos(πt) + 2 + 1
π

.

EXAMPLE 8 A car traveling with velocity 24 m/s begins to slow down at time t = 0
with a constant deceleration of a = −6 m/s2. Find (a) the velocity v(t) at time t , and
(b) the distance traveled before the car comes to a halt.

Solution (a) The derivative of velocity is acceleration, so velocity is the antiderivative
of acceleration:

v(t) =
∫

a dt =
∫

(−6) dt = −6t + C

The initial condition v(0) = C = 24 gives us v(t) = −6t + 24.

(b) Position is the antiderivative of velocity, so the car’s position is

Relation between position, velocity, and
acceleration:

s ′(t) = v(t), s(t) =
∫

v(t) dt

v′(t) = a(t), v(t) =
∫

a(t) dt s(t) =
∫

v(t) dt =
∫

(−6t + 24) dt = −3t2 + 24t + C1
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where C1 is a constant. We are not told where the car is at t = 0, so let us set s(0) = 0
for convenience, getting c1 = 0. With this choice, s(t) = −3t2 + 24t . This is the distance
traveled from time t = 0.

The car comes to a halt when its velocity is zero, so we solve

v(t) = −6t + 24 = 0 ⇒ t = 4 s

The distance traveled before coming to a halt is s(4) = −3(42) + 24(4) = 48 m.

4.9 SUMMARY

• F(x) is called an antiderivative of f (x) if F ′(x) = f (x).
• Any two antiderivatives of f (x) on an interval (a, b) differ by a constant.
• The general antiderivative is denoted by the indefinite integral∫

f (x) dx = F(x) + C

• Integration formulas: ∫
xn dx = xn+1

n + 1
+ C (n = −1)∫

sin(kx + b) dx = −1

k
cos(kx + b) + C (k = 0)∫

cos(kx + b) dx = 1

k
sin(kx + b) + C (k = 0)∫

ekx+b dx = 1

k
ekx+b + C (k = 0)∫

dx

x
= ln |x| + C

• To solve an initial value problem
dy

dx
= f (x), y(x0) = y0, first find the general anti-

derivative y = F(x) + C. Then determine C using the initial condition F(x0) + C = y0.

4.9 EXERCISES

Preliminary Questions
1. Find an antiderivative of the function f (x) = 0.

2. Is there a difference between finding the general antiderivative of
a function f (x) and evaluating

∫
f (x) dx?

3. Jacques was told that f (x) and g(x) have the same derivative,
and he wonders whether f (x) = g(x). Does Jacques have sufficient
information to answer his question?

4. Suppose that F ′(x) = f (x) and G′(x) = g(x). Which of the fol-
lowing statements are true? Explain.

(a) If f = g, then F = G.

(b) If F and G differ by a constant, then f = g.

(c) If f and g differ by a constant, then F = G.

5. Is y = x a solution of the following Initial Value Problem?

dy

dx
= 1, y(0) = 1

Exercises
In Exercises 1–8, find the general antiderivative of f (x) and check your
answer by differentiating.

1. f (x) = 18x2 2. f (x) = x−3/5

3. f (x) = 2x4 − 24x2 + 12x−1

4. f (x) = 9x + 15x−2
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5. f (x) = 2 cos x − 9 sin x 6. f (x) = 4x7 − 3 cos x

7. f (x) = 12ex − 5x−2 8. f (x) = ex − 4 sin x

9. Match functions (a)–(d) with their antiderivatives (i)–(iv).

(a) f (x) = sin x (i) F(x) = cos(1 − x)

(b) f (x) = x sin(x2) (ii) F(x) = − cos x

(c) f (x) = sin(1 − x) (iii) F(x) = − 1
2 cos(x2)

(d) f (x) = x sin x (iv) F(x) = sin x − x cos x

In Exercises 10–39, evaluate the indefinite integral.

10.
∫

(9x + 2) dx 11.
∫

(4 − 18x) dx

12.
∫

x−3 dx 13.
∫

t−6/11 dt

14.
∫

(5t3 − t−3) dt 15.
∫

(18t5 − 10t4 − 28t) dt

16.
∫

14s9/5 ds 17.
∫

(z−4/5 − z2/3 + z5/4) dz

18.
∫

3

2
dx 19.

∫
1

3√x
dx

20.
∫

dx

x4/3
21.

∫
36 dt

t3

22.
∫

x(x2 − 4) dx 23.
∫

(t1/2 + 1)(t + 1) dt

24.
∫

12 − z√
z

dz 25.
∫

x3 + 3x − 4

x2
dx

26.
∫ (

1

3
sin x − 1

4
cos x

)
dx 27.

∫
12 sec x tan x dx

28.
∫

(θ + sec2 θ) dθ 29.
∫

(csc t cot t) dt

30.
∫

sin(7x − 5) dx 31.
∫

sec2(7 − 3θ) dθ

32.
∫

(θ − cos(1 − θ)) dθ 33.
∫

25 sec2(3z + 1) dz

34.
∫

sec(x + 5) tan(x + 5) dx

35.
∫ (

cos(3θ) − 1

2
sec2

(
θ

4

))
dθ

36.
∫ (

4

x
− ex

)
dx 37.

∫
(3e5x) dx

38.
∫

e3t−4 dt 39.
∫

(8x − 4e5−2x) dx

40. In Figure 3, is graph (A) or graph (B) the graph of an antiderivative
of f (x)?

f (x) (A) (B)

x

x

x

yy y

FIGURE 3

41. In Figure 4, which of graphs (A), (B), and (C) is not the graph of
an antiderivative of f (x)? Explain.

f (x)

(C)(B)(A)

x

x

y

x

y

x

y

y

FIGURE 4

42. Show that F(x) = 1
3 (x + 13)3 is an antiderivative of f (x) =

(x + 13)2.

In Exercises 43–46, verify by differentiation.

43.
∫

(x + 13)6 dx = 1

7
(x + 13)7 + C

44.
∫

(x + 13)−5 dx = −1

4
(x + 13)−4 + C

45.
∫

(4x + 13)2 dx = 1

12
(4x + 13)3 + C

46.
∫

(ax + b)n dx = 1

a(n + 1)
(ax + b)n+1 + C

In Exercises 47–62, solve the initial value problem.

47.
dy

dx
= x3, y(0) = 4 48.

dy

dt
= 3 − 2t , y(0) = −5

49.
dy

dt
= 2t + 9t2, y(1) = 2

50.
dy

dx
= 8x3 + 3x2, y(2) = 0

51.
dy

dt
= √

t , y(1) = 1 52.
dz

dt
= t−3/2, z(4) = −1

53.
dy

dx
= (3x + 2)3, y(0) = 1

54.
dy

dt
= (4t + 3)−2, y(1) = 0
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55.
dy

dx
= sin x, y

(π

2

)
= 1 56.

dy

dz
= sin 2z, y

(π

4

)
= 4

57.
dy

dx
= cos 5x, y(π) = 3

58.
dy

dx
= sec2 3x, y

(π

4

)
= 2

59.
dy

dx
= ex , y(2) = 0 60.

dy

dt
= e−t , y(0) = 0

61.
dy

dt
= 9e12−3t , y(4) = 7

62.
dy

dt
= t + 2et−9, y(9) = 4

In Exercises 63–69, first find f ′ and then find f .

63. f ′′(x) = 12x, f ′(0) = 1, f (0) = 2

64. f ′′(x) = x3 − 2x, f ′(1) = 0, f (1) = 2

65. f ′′(x) = x3 − 2x + 1, f ′(0) = 1, f (0) = 0

66. f ′′(x) = x3 − 2x + 1, f ′(1) = 0, f (1) = 4

67. f ′′(t) = t−3/2, f ′(4) = 1, f (4) = 4

68. f ′′(θ) = cos θ , f ′ (π

2

)
= 1, f

(π

2

)
= 6

69. f ′′(t) = t − cos t , f ′(0) = 2, f (0) = −2

70. Show that F(x) = tan2 x and G(x) = sec2 x have the same deriva-
tive. What can you conclude about the relation between F and G? Verify
this conclusion directly.

71. A particle located at the origin at t = 1 s moves along the x-axis
with velocity v(t) = (6t2 − t) m/s. State the differential equation with
initial condition satisfied by the position s(t) of the particle, and find
s(t).

72. A particle moves along the x-axis with velocity v(t) = (6t2 −
t) m/s. Find the particle’s position s(t) assuming that s(2) = 4.

73. A mass oscillates at the end of a spring. Let s(t) be the displace-
ment of the mass from the equilibrium position at time t . Assum-
ing that the mass is located at the origin at t = 0 and has velocity
v(t) = sin(πt/2) m/s, state the differential equation with initial condi-
tion satisfied by s(t), and find s(t).

74. Beginning at t = 0 with initial velocity 4 m/s, a particle moves in
a straight line with acceleration a(t) = 3t1/2 m/s2. Find the distance
traveled after 25 seconds.

75. A car traveling 25 m/s begins to decelerate at a constant rate of
4 m/s2. After how many seconds does the car come to a stop and how
far will the car have traveled before stopping?

76. At time t = 1 s, a particle is traveling at 72 m/s and begins to decel-
erate at the rate a(t) = −t−1/2 until it stops. How far does the particle
travel before stopping?

77. A 900-kg rocket is released from a space station. As it burns fuel,
the rocket’s mass decreases and its velocity increases. Let v(m) be the
velocity (in meters per second) as a function of mass m. Find the veloc-
ity when m = 729 if dv/dm = −50m−1/2. Assume that v(900) = 0.

78. As water flows through a tube of radius R = 10 cm, the velocity
v of an individual water particle depends only on its distance r from
the center of the tube. The particles at the walls of the tube have zero
velocity and dv/dr = −0.06r . Determine v(r).

79. Verify the linearity properties of the indefinite integral stated in
Theorem 4.

Further Insights and Challenges
80. Find constants c1 and c2 such that F(x) = c1x sin x + c2 cos x is
an antiderivative of f (x) = x cos x.

81. Find constants c1 and c2 such that F(x) = c1xex + c2ex is an
antiderivative of f (x) = xex .

82. Suppose that F ′(x) = f (x) and G′(x) = g(x). Is it true that
F(x)G(x) is an antiderivative of f (x)g(x)? Confirm or provide a coun-
terexample.

83. Suppose that F ′(x) = f (x).

(a) Show that 1
2F(2x) is an antiderivative of f (2x).

(b) Find the general antiderivative of f (kx) for k = 0.

84. Find an antiderivative for f (x) = |x|.

85. Using Theorem 1, prove that F ′(x) = f (x) where f (x) is a poly-
nomial of degree n − 1, then F(x) is a polynomial of degree n. Then
prove that if g(x) is any function such that g(n)(x) = 0, then g(x) is a
polynomial of degree at most n.

86. Show that F(x) = xn+1 − 1

n + 1
is an antiderivative of y = xn for

n = −1. Then use L’Hôpital’s Rule to prove that

lim
n→−1

F(x) = ln x

In this limit, x is fixed and n is the variable. This result shows that,
although the Power Rule breaks down for n = −1, the antiderivative
of y = x−1 is a limit of antiderivatives of xn as n → −1.

CHAPTER REVIEW EXERCISES

In Exercises 1–6, estimate using the Linear Approximation or lineariza-
tion, and use a calculator to estimate the error.

1. 8.11/3 − 2 2.
1√
4.1

− 1

2
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3. 6251/4 − 6241/4 4.
√

101

5.
1

1.02
6. 5√33

In Exercises 7–12, find the linearization at the point indicated.

7. y = √
x, a = 25

8. v(t) = 32t − 4t2, a = 2

9. A(r) = 4
3πr3, a = 3

10. V (h) = 4h(2 − h)(4 − 2h), a = 1

11. P(x) = e−x2/2, a = 1

12. f (x) = ln(x + e), a = e

In Exercises 13–18, use the Linear Approximation.

13. The position of an object in linear motion at time t is s(t) =
0.4t2 + (t + 1)−1. Estimate the distance traveled over the time inter-
val [4, 4.2].

14. A bond that pays $10,000 in 6 years is offered for sale at a price
P . The percentage yield Y of the bond is

Y = 100

((
10,000

P

)1/6
− 1

)

Verify that if P = $7,500, then Y = 4.91%. Estimate the drop in yield
if the price rises to $7,700.

15. When a bus pass from Albuquerque to Los Alamos is priced
at p dollars, a bus company takes in a monthly revenue of R(p) =
1.5p − 0.01p2 (in thousands of dollars).

(a) Estimate �R if the price rises from $50 to $53.

(b) If p = 80, how will revenue be affected by a small increase in
price? Explain using the Linear Approximation.

16. A store sells 80 MP4 players per week when the players are priced
at P = $75. Estimate the number N sold if P is raised to $80, assuming
that dN/dP = −4. Estimate N if the price is lowered to $69.

17. The circumference of a sphere is measured at C = 100 cm. Es-
timate the maximum percentage error in V if the error in C is at most
3 cm.

18. Show that
√

a2 + b ≈ a + b
2a

if b is small. Use this to estimate√
26 and find the error using a calculator.

19. Use the Intermediate Value Theorem to prove that sin x − cos x =
3x has a solution, and use Rolle’s Theorem to show that this solution
is unique.

20. Show that f (x) = 2x3 + 2x + sin x + 1 has precisely one real
root.

21. Verify the MVT for f (x) = ln x on [1, 4].
22. Suppose that f (1) = 5 and f ′(x) ≥ 2 for x ≥ 1. Use the MVT

to show that f (8) ≥ 19.

23. Use the MVT to prove that if f ′(x) ≤ 2 for x > 0 and f (0) = 4,
then f (x) ≤ 2x + 4 for all x ≥ 0.

24. A function f (x) has derivative f ′(x) = 1

x4 + 1
. Where on the

interval [1, 4] does f (x) take on its maximum value?

In Exercises 25–30, find the critical points and determine whether they
are minima, maxima, or neither.

25. f (x) = x3 − 4x2 + 4x

26. s(t) = t4 − 8t2

27. f (x) = x2(x + 2)3

28. f (x) = x2/3(1 − x)

29. g(θ) = sin2 θ + θ

30. h(θ) = 2 cos 2θ + cos 4θ

In Exercises 31–38, find the extreme values on the interval.

31. f (x) = x(10 − x), [−1, 3]
32. f (x) = 6x4 − 4x6, [−2, 2]
33. g(θ) = sin2 θ − cos θ , [0, 2π ]

34. R(t) = t

t2 + t + 1
, [0, 3]

35. f (x) = x2/3 − 2x1/3, [−1, 3]
36. f (x) = x − tan x,

[ − π
2 , π

2

]
37. f (x) = x − 12 ln x, [5, 40]
38. f (x) = ex − 20x − 1, [0, 5]
39. Find the critical points and extreme values of

f (x) = |x − 1| + |2x − 6| in [0, 8].
40. Match the description of f (x) with the graph of its derivative

f ′(x) in Figure 1.

(a) f (x) is increasing and concave up.

(b) f (x) is decreasing and concave up.

(c) f (x) is increasing and concave down.

y y y

x

x x

(ii) (iii)(i)

FIGURE 1 Graphs of the derivative.

In Exercises 41–46, find the points of inflection.

41. y = x3 − 4x2 + 4x 42. y = x − 2 cos x

43. y = x2

x2 + 4
44. y = x

(x2 − 4)1/3

45. f (x) = (x2 − x)e−x 46. f (x) = x(ln x)2
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In Exercises 47–56, sketch the graph, noting the transition points and
asymptotic behavior.

47. y = 12x − 3x2 48. y = 8x2 − x4

49. y = x3 − 2x2 + 3 50. y = 4x − x3/2

51. y = x

x3 + 1
52. y = x

(x2 − 4)2/3

53. y = 1

|x + 2| + 1
54. y =

√
2 − x3

55. y = √
3 sin x − cos x on [0, 2π ]

56. y = 2x − tan x on [0, 2π ]
57. Draw a curve y = f (x) for which f ′ and f ′′ have signs as indi-

cated in Figure 2.

x
−2 0 1 3 5

− + − + + + + −− −

FIGURE 2

58. Find the dimensions of a cylindrical can with a bottom but no top
of volume 4 m3 that uses the least amount of metal.

59. A rectangular box of height h with square base of side b has vol-
ume V = 4 m3. Two of the side faces are made of material costing
$40/m2. The remaining sides cost $20/m2. Which values of b and h

minimize the cost of the box?

60. The corn yield on a certain farm is

Y = −0.118x2 + 8.5x + 12.9 (bushels per acre)

where x is the number of corn plants per acre (in thousands). Assume
that corn seed costs $1.25 (per thousand seeds) and that corn can be
sold for $1.50/bushel. Let P(x) be the profit (revenue minus the cost
of seeds) at planting level x.

(a) Compute P(x0) for the value x0 that maximizes yield Y .

(b) Find the maximum value of P(x). Does maximum yield lead to
maximum profit?

61. Let N(t) be the size of a tumor (in units of 106 cells) at time t (in
days). According to the Gompertz Model, dN/dt = N(a − b ln N)

where a, b are positive constants. Show that the maximum value of N

is e
a
b and that the tumor increases most rapidly when N = e

a
b
−1.

62. A truck gets 10 miles per gallon of diesel fuel traveling along an
interstate highway at 50 mph. This mileage decreases by 0.15 mpg for
each mile per hour increase above 50 mph.

(a) If the truck driver is paid $30/hour and diesel fuel costs P = $3/gal,
which speed v between 50 and 70 mph will minimize the cost of a trip
along the highway? Notice that the actual cost depends on the length
of the trip, but the optimal speed does not.

(b) Plot cost as a function of v (choose the length arbitrarily)
and verify your answer to part (a).

(c) Do you expect the optimal speed v to increase or decrease if
fuel costs go down to P = $2/gal? Plot the graphs of cost as a function
of v for P = 2 and P = 3 on the same axis and verify your conclusion.

63. Find the maximum volume of a right-circular cone placed upside-
down in a right-circular cone of radius R = 3 and height H = 4 as in
Figure 3. A cone of radius r and height h has volume 1

3πr2h.

64. Redo Exercise 63 for arbitrary R and H .

R

H

FIGURE 3

65. Show that the maximum area of a parallelogram ADEF that is
inscribed in a triangle ABC, as in Figure 4, is equal to one-half the area
of �ABC.

D E

B

F CA

FIGURE 4

66. A box of volume 8 m3 with a square top and bottom is constructed
out of two types of metal. The metal for the top and bottom costs $50/m2

and the metal for the sides costs $30/m2. Find the dimensions of the
box that minimize total cost.

67. Let f (x) be a function whose graph does not pass through the x-
axis and let Q = (a, 0). Let P = (x0, f (x0)) be the point on the graph
closest to Q (Figure 5). Prove that PQ is perpendicular to the tangent
line to the graph of x0. Hint: Find the minimum value of the square of
the distance from (x, f (x)) to (a, 0).

y

x

y = f (x)

P = (x0, f (x0))

Q = (a, 0)

FIGURE 5
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68. Take a circular piece of paper of radius R, remove a sector of
angle θ (Figure 6), and fold the remaining piece into a cone-shaped
cup. Which angle θ produces the cup of largest volume?

θ

R

FIGURE 6

69. Use Newton’s Method to estimate 3√25 to four decimal places.

70. Use Newton’s Method to find a root of f (x) = x2 − x − 1 to four
decimal places.

In Exercises 71–84, calculate the indefinite integral.

71.
∫ (

4x3 − 2x2)
dx 72.

∫
x9/4 dx

73.
∫

sin(θ − 8) dθ 74.
∫

cos(5 − 7θ) dθ

75.
∫

(4t−3 − 12t−4) dt 76.
∫

(9t−2/3 + 4t7/3) dt

77.
∫

sec2 x dx 78.
∫

tan 3θ sec 3θ dθ

79.
∫

(y + 2)4 dy 80.
∫

3x3 − 9

x2
dx

81.
∫

(ex − x) dx 82.
∫

e−4x dx

83.
∫

4x−1 dx 84.
∫

sin(4x − 9) dx

In Exercises 85–90, solve the differential equation with the given initial
condition.

85.
dy

dx
= 4x3, y(1) = 4

86.
dy

dt
= 3t2 + cos t , y(0) = 12

87.
dy

dx
= x−1/2, y(1) = 1

88.
dy

dx
= sec2 x, y

(
π
4

) = 2

89.
dy

dx
= e−x , y(0) = 3

90.
dy

dx
= e4x , y(1) = 1

91. Find f (t) if f ′′(t) = 1 − 2t , f (0) = 2, and f ′(0) = −1.

92. At time t = 0, a driver begins decelerating at a constant rate of
−10 m/s2 and comes to a halt after traveling 500 m. Find the velocity
at t = 0.

93. Find the local extrema of f (x) = e2x + 1

ex+1
.

94. Find the points of inflection of f (x) = ln(x2 + 1), and at each
point, determine whether the concavity changes from up to down or
from down to up.

In Exercises 95–98, find the local extrema and points of inflection,
and sketch the graph. Use L’Hôpital’s Rule to determine the limits as
x → 0+ or x → ±∞ if necessary.

95. y = x ln x (x > 0) 96. y = ex−x2

97. y = x(ln x)2 (x > 0) 98. y = tan−1

(
x2

4

)

99. Explain why L’Hôpital’s Rule gives no information about

lim
x→∞

2x − sin x

3x + cos 2x
. Evaluate the limit by another method.

100. Let f (x) be a differentiable function with inverse g(x) such that
f (0) = 0 and f ′(0) = 0. Prove that

lim
x→0

f (x)

g(x)
= f ′(0)2

In Exercises 101–112, verify that L’Hôpital’s Rule applies and evaluate
the limit.

101. lim
x→3

4x − 12

x2 − 5x + 6

102. lim
x→−2

x3 + 2x2 − x − 2

x4 + 2x3 − 4x − 8

103. lim
x→0+ x1/2 ln x 104. lim

t→∞
ln(et + 1)

t

105. lim
θ→0

2 sin θ − sin 2θ

sin θ − θ cos θ
106. lim

x→0

√
4 + x − 2 8√1 + x

x2

107. lim
t→∞

ln(t + 2)

log2 t
108. lim

x→0

(
ex

ex − 1
− 1

x

)

109. lim
y→0

sin−1 y − y

y3
110. lim

x→1

√
1 − x2

cos−1 x

111. lim
x→0

sinh(x2)

cosh x − 1
112. lim

x→0

tanh x − sinh x

sin x − x

113. Let f (x) = e−Ax2/2, where A > 0. Given any n numbers
a1, a2, . . . , an, set

�(x) = f (x − a1)f (x − a2) · · · f (x − an)

(a) Assume n = 2 and prove that �(x) attains its maximum value at
the average x = 1

2 (a1 + a2). Hint: Calculate �′(x) using logarithmic
differentiation.

(b) Show that for any n, �(x) attains its maximum value at x =
1
n (a1 + a2 + · · · + an). This fact is related to the role of f (x) (whose
graph is a bell-shaped curve) in statistics.



CHAPTER 4 APPLICATIONS
OF THE DERIVATIVE
PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided.

1. Using the tangent line approximation for f (x) = √
x at

a = 9, we have
√

8.2 ≈
(A) 3.133

(B) 2.866

(C) 2.863

(D) 2.733

(E) 2.712

2. If f ′(x) = 3
√

x2 − 9, then f (x) has a local minimum at
x =
(A) −3

(B) −2.080

(C) 0

(D) 2.080

(E) 3

−3 −2 −1 1 2 3 4

−2

2

4

6

8

y

x

3. C The graph of f ′(x) is given at bottom left. Thus f (x)

has a local minimum at x =
(A) −3

(B) −1

(C) 0

(D) 1

(E) 2

4. C Again using the graph of f ′(x) just given, f (x) has a
local maximum at x =
(A) −3

(B) −2

(C) 0

(D) 1

(E) 2

5. C Now consider the same graph to be the graph of f ′′(x).
Then the graph of f has point(s) of inflection when x =
(A) −1 and 1 only

(B) −1 only

(C) −3 and −1 only

(D) −3, −1, and 2 only

(E) −2, 0, and 2 only

AP4-1
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6. Let f (x) = x2. Then f (x) has a minimum value on which
of the following intervals?

I (−1, 1)

II (2, 3)

III (−5, −2]
(A) I only

(B) I and II only

(C) I and III only

(D) I, II, and III

(E) on none of these intervals

7. If f (x) = |x + 2| (x − 4), then the critical point(s) of f are
x =
(A) −2 only

(B) −2 and 4 only

(C) −2 and 1 only

(D) −2, 1, and 4 only

(E) −2, 0, and 4 only

8. C If f ′(x) = |x + 2| (x − 4), then the critical point(s) of
f are x =
(A) −2 only

(B) −2 and 4 only

(C) −2 and 1 only

(D) −2, 1, and 4 only

(E) −2, 0, and 4 only

9. The maximum value of f (x) = x3 + 3x2 − 9x − 2 on the
interval [0, 2] is

(A) 25

(B) −7

(C) −2

(D) 0

(E) 2

10. C Which of the following are true statements?

I If f has a local minimum at x = a, then f ′(a) = 0.

II If f ′(a) = 0 and f ′′(a) = 3, then f has a local mini-
mum at x = a.

III If f ′(a) = 0 and f ′′(a) = 0, then f does not have a
local minimum at x = a.

(A) I only

(B) II only

(C) I and II only

(D) II and III only

(E) I, II, and III

11. If f ′(x) = x cos2x for −π ≤ x ≤ π , then the critical
point(s) of f on −π < x < π are x =
(A) 0 only

(B) 0 and π
2 only

(C) −π
2 , 0, and π

2 only

(D) 0 and
√

π
2 only

(E) −√
π
2 , 0, and

√
π
2 only

12. Let f (x) = 3x√
x2 − 1

. The graph of f has which of the

following lines as horizontal asymptotes?

(A) y = 3 only

(B) y = −3 and y = 3 only

(C) y = 1 only

(D) y = 1 and y = −1 only

(E) y = −3, y = 3, y = 1, and y = −1 only

13. If f ′(x) = 6x2 + 8x, and f (1) = 11, then f (−1) =
(A) −11

(B) −2

(C) −1

(D) 5

(E) 7

14. lim
x→∞

ln(1 + x3)

ln(2 + x)
is

(A) 0

(B) 1
2

(C) 1

(D) 3

(E) ∞

15. lim
x→0+

1 + sin(x)

x
is

(A) 0

(B) 1

(C) 2

(D) π

(E) ∞

16. lim
x→0+

e3x − 1 − 3x

x2
is

(A) 0

(B) 1

(C) 4.5

(D) 9

(E) nonexistent
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17.
∫

6x2 + 4x + 5

2x
dx =

(A)
2x3 + 2x2 + 5x

x2
+ C

(B)
2x3 + 2x2 + 5x + C

x2

(C) 1.5x2 + 2x + 2.5 ln |x| + C

(D) 3x + 2 + 5

2x
+ C

(E) 1.5x2 + 2x − 5

2x2
+ C

18.
∫

8e2xdx =
(A) 16e2x + C

(B) 8e2x + C

(C) 4e2x + C

(D)
8e2x+1

2x + 1
+ C

(E) 8ex2 + C

19. C If f is continuous on [2, 5] and differentiable on (2, 5),
with f (2) = −4 and f (5) = 14, which of the following
statements must be true?

I f (x) = 6 has a solution in (2, 5).

II f ′(x) = 6 has a solution in (2, 5).

III f ′′(x) = 6 has a solution in (2, 5).

(A) I only

(B) II only

(C) I and II only

(D) I and III only

(E) I, II, and III

20. A particle is moving on the x-axis with position given by
x(t) = t + sin(2t) for 0 ≤ t ≤ 2π . Then the particle is at
rest only when t =
(A) π

2

(B) π
2 and 3π

2

(C) 2π
3 and 4π

3

(D) π
3 and 2π

3

(E) π
3 , 2π

3 , 4π
3 , and 5π

3

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work.

1. An elliptical running track can be modeled by the equation
10x2 + 4y2 = 50,000, where the units of x and y are yards.

(a) Is it possible for someone to run around the track in a
counterclockwise direction so the runner has a constant
dx/dt? Justify your answer.

(b) A coach wants to put a rectangular plot, with sides par-
allel to the axes, inside the track with an area of exactly
5000 square yards. Is it possible to do this? Justify your
answer.

2. C

x f (x) f ′(x) f ′′(x)

0 1 2 4
2 5 0 1
4 11 6 3

The above table gives various values of a function and its
derivatives, where f ′′(x) is continuous for all x.

(a) Is it possible for the line x = 3 to be a vertical asymp-
tote for f ? Explain.

(b) Is it possible for the liney = 5 to be a horizontal asymp-
tote for f ? Explain.

(c) Show there is a point c in (0, 2) with f ′′(c) < 0.

(d) Show there is a point c in (0, 2) with f ′(c) < 0.
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3. Let f (x) = 2x3 − 3x2 − 12x + k.

(a) Show that if k = 30, then f (x) = 0 has at least one
solution.

(b) Show that if k = 30, then f (x) = 0 has exactly one
solution.

(c) Find all values of k so that f (x) = 0 has exactly one
solution.

4. C Consider the curve x2 − xy + y2 = 19.

(a) Write an equation of the line tangent to the curve at the
point (−2, 3).

(b) Use your answer to (a) to approximate q, where
(−2.168, q) is on the curve near (−2, 3).

(c) Compare the actual value, correct to three decimal
places, of q to your answer to (b), and draw a tentative
conclusion about the concavity of the curve at (−2, 3).

(d) Compute d2y/dx2 at (−2, 3), and draw a conclusion
about the concavity of the curve at (−2, 3).

Answers to odd-numbered questions can be found in the back of
the book.



Integration solves an ancient mathematical

problem—finding the area of an irregular region.

5 THE INTEGRAL

T he basic problem in integral calculus is finding the area under a curve. You may wonder
why calculus deals with two seemingly unrelated topics: tangent lines on the one hand

and areas on the other. One reason is that both are computed using limits. A deeper
connection is revealed by the Fundamental Theorem of Calculus, discussed in Sections
5.3 and 5.4. This theorem expresses the “inverse” relationship between integration and
differentiation. It plays a truly fundamental role in nearly all applications of calculus, both
theoretical and practical.

5.1 Approximating and Computing Area
Why might we be interested in the area under a graph? Consider an object moving in
a straight line with constant velocity v (assumed positive). The distance traveled over a
time interval [t1, t2] is equal to v�t where �t = (t2 − t1) is the time elapsed. This is the
well-known formula

Distance traveled =
v�t︷ ︸︸ ︷

velocity × time elapsed 1

Because v is constant, the graph of velocity is a horizontal line (Figure 1) and v�t is equal
to the area of the rectangular region under the graph of velocity over [t1, t2]. So we can
write Eq. (1) as

Distance traveled = area under the graph of velocity over [t1, t2] 2

There is, however, an important difference between these two equations: Eq. (1) makes
sense only if velocity v is constant whereas Eq. (2) is correct even if the velocity changes
with time (we will prove this in Section 5.5). Thus, the advantage of expressing distance
traveled as an area is that it enables us to deal with much more general types of motion.

To see why Eq. (2) might be true in general, let’s consider the case where velocity
changes over time but is constant on intervals. In other words, we assume that the object’s
velocity changes abruptly from one interval to the next as in Figure 2. The distance
traveled over each interval is equal to the area of the rectangle above that interval, so the

t1 t2

v

v (m/s)

Area = v�t

t (s)

�t = t2 − t1

FIGURE 1 The rectangle has area v�t ,
which is equal to the distance traveled.

1 2 3 4 5 6 7 8

5

10

15

10

15
30

10

v (m/s)

t (s)

FIGURE 2 Distance traveled equals the sum
of the areas of the rectangles.

286



S E C T I O N 5.1 Approximating and Computing Area 287

5

10

15

20

5
10 10

30 30

20

1 2 3 4 5 6 7 8

v (m/s)

t (s)

FIGURE 3 Distance traveled is equal to the
area under the graph. It is approximated by
the sum of the areas of the rectangles.

total distance traveled is the sum of the areas of the rectangles. In Figure 2,

Distance traveled over [0, 8] = 10 + 15 + 30 + 10︸ ︷︷ ︸
Sum of areas of rectangles

= 65 m

Our strategy when velocity changes continuously (Figure 3) is to approximate the area
under the graph by sums of areas of rectangles and then pass to a limit. This idea leads to
the concept of an integral.

Approximating Area by Rectangles
Our goal is to compute the area under the graph of a function f (x). In this section, we
assume that f (x) is continuous and positive, so that the graph of f (x) lies above the x-axis
(Figure 4). The first step is to approximate the area using rectangles.Recall the two-step procedure for finding

the slope of the tangent line (the
derivative): First approximate the slope
using secant lines and then compute the
limit of these approximations. In integral
calculus, there are also two steps:

• First, approximate the area under the
graph using rectangles, and then

• Compute the exact area (the integral)
as the limit of these approximations.

To begin, choose a whole number N and divide [a, b] into N subintervals of equal
width, as in Figure 4(A). The full interval [a, b] has width b − a, so each subinterval has
width �x = (b − a)/N . The right endpoints of the subintervals are

a + �x, a + 2�x, . . . , a + (N − 1)�x, a + N�x

Note that the last right endpoint is b because a + N�x = a + N((b − a)/N) = b. Next,
as in Figure 4(B), construct, above each subinterval, a rectangle whose height is the value
of f (x) at the right endpoint of the subinterval.

(A) Divide [a, b] into N subintervals,
       each of width �x

(B)  Construct right-endpoint rectangles

Height of
first rectangle
is f (a + �x)

Height of
second rectangle

is f (a + 2�x)

b…a a + �x
a + 2�x

a ba + �x
a + 2�x

…

y = f (x)

FIGURE 4

The sum of the areas of these rectangles provides an approximation to the area
under the graph. The first rectangle has base �x and height f (a + �x), so its area
is f (a + �x)�x. Similarly, the second rectangle has height f (a + 2�x) and area
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f (a + 2�x) �x, etc. The sum of the areas of the rectangles is denoted RN and is called
the N th right-endpoint approximation:

RN = f (a + �x)�x + f (a + 2�x)�x + · · · + f (a + N�x)�x

Factoring out �x, we obtain the formula

RN = �x
(
f (a + �x) + f (a + 2�x) + · · · + f (a + N�x)

)
In words: RN is equal to �x times the sum of the function values at the right endpoints of
the subintervals.

To summarize,

a = left endpoint of interval [a, b]
b = right endpoint of interval [a, b]
N = number of subintervals in [a, b]

�x = b − a

N

EXAMPLE 1 Calculate R4 and R6 for f (x) = x2 on the interval [1, 3].
Solution

Step 1. Determine �x and the right endpoints.
To calculate R4, divide [1, 3] into four subintervals of width �x = 3−1

4 = 1
2 . The right

endpoints are the numbers a + j�x = 1 + j
( 1

2

)
for j = 1, 2, 3, 4. They are spaced at

intervals of 1
2 beginning at 3

2 , so, as we see in Figure 5(A), the right endpoints are 3
2 ,

4
2 , 5

2 , 6
2 .

Step 2. Calculate �x times the sum of function values.
R4 is �x times the sum of the function values at the right endpoints:

R4 = 1

2

(
f

(
3

2

)
+ f

(
4

2

)
+ f

(
5

2

)
+ f

(
6

2

))

= 1

2

((
3

2

)2

+
(

4

2

)2

+
(

5

2

)2

+
(

6

2

)2
)

= 43

4
= 10.75

R6 is similar: �x = 3−1
6 = 1

3 , and the right endpoints are spaced at intervals of 1
3

beginning at 4
3 and ending at 3, as in Figure 5(B). Thus,

R6 = 1

3

(
f

(
4

3

)
+ f

(
5

3

)
+ f

(
6

3

)
+ f

(
7

3

)
+ f

(
8

3

)
+ f

(
9

3

))

= 1

3

(
16

9
+ 25

9
+ 36

9
+ 49

9
+ 64

9
+ 81

9

)
= 271

27
≈ 10.037

5

10

15

5

10

15

xx

y y

R6R4

(A) The approximation R4

f (x) = x2 f (x) = x2

(B) The approximation  R6

1 2 33
2

5
2

1 2 34
3

5
3

7
3

8
3

FIGURE 5
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Summation Notation
Summation notation is a standard notation for writing sums in compact form. The sum
of numbers am, . . . , an (m ≤ n) is denoted

n∑
j=m

aj = am + am+1 + · · · + an

The Greek letter
∑

(capital sigma) stands for “sum,” and the notation
n∑

j=m

tells us to start

the summation at j = m and end it at j = n. For example,

5∑
j=1

j2 = 12 + 22 + 32 + 42 + 52 = 55

In this summation, the j th term is aj = j2. We refer to j2 as the general term. The letter
j is called the summation index. It is also referred to as a dummy variable because any
other letter can be used instead. For example,

6∑
k=4

(
k2 − 2k

) =
k=4︷ ︸︸ ︷(

42 − 2(4)
) +

k=5︷ ︸︸ ︷(
52 − 2(5)

) +
k=6︷ ︸︸ ︷(

62 − 2(6)
) = 47

9∑
m=7

1 = 1 + 1 + 1 = 3 (because a7 = a8 = a9 = 1)

The usual commutative, associative, and distributive laws of addition give us the
following rules for manipulating summations.

Linearity of Summations

•
n∑

j=m

(aj + bj ) =
n∑

j=m

aj +
n∑

j=m

bj

•
n∑

j=m

Caj = C

n∑
j=m

aj (C any constant)

•
n∑

j=1

k = nk (k any constant and n ≥ 1)

For example,

5∑
j=3

(j2 + j) = (32 + 3) + (42 + 4) + (52 + 5)

is equal to

5∑
j=3

j2 +
5∑

j=3

j = (
32 + 42 + 52) + (

3 + 4 + 5
)
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Linearity can be used to write a single summation as a sum of several summations.
For example,

100∑
k=0

(7k2 − 4k + 9) =
100∑
k=0

7k2 +
100∑
k=0

(−4k) +
100∑
k=0

9

= 7
100∑
k=0

k2 − 4
100∑
k=0

k + 9
100∑
k=0

1

It is convenient to use summation notation when working with area approximations.
For example, RN is a sum with general term f (a + j�x):

RN = �x
[
f (a + �x) + f (a + 2�x) + · · · + f (a + N�x)

]
The summation extends from j = 1 to j = N , so we can write RN concisely as

RN = �x

N∑
j=1

f (a + j�x)

We shall make use of two other rectangular approximations to area: the left-endpoint
and the midpoint approximations. Divide [a, b] into N subintervals as before. In the left-
endpoint approximation LN , the heights of the rectangles are the values of f (x) at the
left endpoints [Figure 6(A)]. These left endpoints areREMINDER

�x = b − a

N
a, a + �x, a + 2�x, . . . , a + (N − 1)�x

and the sum of the areas of the left-endpoint rectangles is

LN = �x
(
f (a) + f (a + �x) + f (a + 2�x) + · · · + f (a + (N − 1)�x)

)
Note that both RN and LN have general term f (a + j�x), but the sum for LN runs from
j = 0 to j = N − 1 rather than from j = 1 to j = N :

LN = �x

N−1∑
j=0

f (a + j�x)

In the midpoint approximation MN , the heights of the rectangles are the values of
f (x) at the midpoints of the subintervals rather than at the endpoints. As we see in Figure
6(B), the midpoints are

a + 1

2
�x, a + 3

2
�x, . . . , a +

(
N − 1

2

)
�x

The sum of the areas of the midpoint rectangles is

MN = �x

(
f

(
a + 1

2
�x

)
+ f

(
a + 3

2
�x

)
+ · · · + f

(
a +

(
N − 1

2

)
�x

))
In summation notation,

MN = �x

N∑
j=1

f

(
a +

(
j − 1

2

)
�x

)
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 (B) Midpoint rectangles

a b…

f (a)
f (a + �x)

a b

a + �x

a + 2�x …

(A) Left-endpoint rectangles

f (a + �x)1
2

a + �x1
2

a + �x3
2

f (a + �x)3
2

FIGURE 6

EXAMPLE 2 Calculate R6, L6, and M6 for f (x) = x−1 on [2, 4].
Solution In this case, �x = (b − a)/N = (4 − 2)/6 = 1

3 . The general term in the sum-
mation for R6 and L6 is

f (a + j�x) = f

(
2 + j

(
1

3

))
= 1

2 + 1
3j

= 3

6 + j

Therefore (Figure 7),

2

Left-endpoint
rectangleRight-endpoint

rectangle

3 4
x

y

FIGURE 7 L6 and R6 for f (x) = x−1 on
[2, 4].

2 3 4
x

y

13
6

15
6

17
6

19
6

21
6

23
6

FIGURE 8 M6 for f (x) = x−1 on [2, 4].

R6 = 1

3

6∑
j=1

f

(
2 +

(
1

3

)
j

)
= 1

3

6∑
j=1

3

6 + j

= 1

3

(
3

7
+ 3

8
+ 3

9
+ 3

10
+ 3

11
+ 3

12

)
≈ 0.653

In L6, the sum begins at j = 0 and ends at j = 5:

L6 = 1

3

5∑
j=0

3

6 + j
= 1

3

(
3

6
+ 3

7
+ 3

8
+ 3

9
+ 3

10
+ 3

11

)
≈ 0.737

The general term in M6 is

f

(
a +

(
j − 1

2

)
�x

)
= f

(
2 +

(
j − 1

2

)
1

3

)
= 1

2 + j
3 − 1

6

= 6

12 + 2j − 1

Summing up from j = 1 to 6, we obtain (Figure 8)

Right-endpoint
rectangle

Left-endpoint
rectangle

x

y

FIGURE 9 When f (x) is increasing, the
left-endpoint rectangles lie below the graph
and right-endpoint rectangles lie above it.

M6 = 1

3

6∑
j=1

f

(
2 +

(
j − 1

2

)
1

3

)
= 1

3

6∑
j=1

6

12 + 2j − 1

= 1

3

(
6

13
+ 6

15
+ 6

17
+ 6

19
+ 6

21
+ 6

23

)
≈ 0.692

GRAPHICAL INSIGHT Monotonic Functions Observe in Figure 7 that the left-endpoint
rectangles for f (x) = x−1 extend above the graph and the right-endpoint rectangles lie
below it. The exact area A must lie between R6 and L6, and so, according to the previous
example, 0.65 ≤ A ≤ 0.74. More generally, when f (x) is monotonic (increasing or
decreasing), the exact area lies between RN and LN (Figure 9):

• f (x) increasing ⇒ LN ≤ area under graph ≤ RN

• f (x) decreasing ⇒ RN ≤ area under graph ≤ LN
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Computing Area as the Limit of Approximations
Figure 10 shows several right-endpoint approximations. Notice that the error, correspond-
ing to the yellow region above the graph, gets smaller as the number of rectangles increases.
In fact, it appears that we can make the error as small as we please by taking the number
N of rectangles large enough. If so, it makes sense to consider the limit as N → ∞, as
this should give us the exact area under the curve. The next theorem guarantees that the
limit exists (see Theorem 8 in Appendix D for a proof and Exercise 87 for a special case).

N = 2
a b a b a b

N = 4 N = 8

xxx
FIGURE 10 The error decreases as we use
more rectangles.

THEOREM 1 If f (x) is continuous on [a, b], then the endpoint and midpoint approx-
imations approach one and the same limit as N → ∞. In other words, there is a value
L such that

lim
N→∞ RN = lim

N→∞ LN = lim
N→∞ MN = L

If f (x) ≥ 0, we define the area under the graph over [a, b] to be L.

In Theorem 1, it is not assumed that
f (x) ≥ 0. If f (x) takes on negative
values, the limit L no longer represents
area under the graph, but we can interpret
it as a “signed area,” discussed in the next
section.

CONCEPTUAL INSIGHT In calculus, limits are used to define basic quantities that other-
wise would not have a precise meaning. Theorem 1 allows us to define area as a limit
L in much the same way that we define the slope of a tangent line as the limit of slopes
of secant lines.

The next three examples illustrate Theorem 1 using formulas for power sums. The
kth power sum is the sum of the kth powers of the first N integers. We shall use the power
sum formulas for k = 1, 2, 3.

A method for proving power sum formulas
is developed in Exercises 40–43 of Section
1.3. Formulas (3)–(5) can also be verified
using the method of induction.

Power Sums

N∑
j=1

j = 1 + 2 + · · · + N = N(N + 1)

2
= N2

2
+ N

2
3

N∑
j=1

j2 = 12 + 22 + · · · + N2 = N(N + 1)(2N + 1)

6
= N3

3
+ N2

2
+ N

6
4

N∑
j=1

j3 = 13 + 23 + · · · + N3 = N2(N + 1)2

4
= N4

4
+ N3

2
+ N2

4
5

For example, by Eq. (4),
6∑

j=1

j2 = 12 + 22 + 32 + 42 + 52 + 62 = 63

3
+ 62

2
+ 6

6︸ ︷︷ ︸
N3
3 + N2

2 + N
6 for N=6

= 91
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40

4

y = x

40

4

y = x

40

4

y = x

x x x

yyy

R8

40

4

y = x

x

y

R4 R16

FIGURE 11 The right-endpoint approximations approach the area of the triangle.

As a first illustration, we compute the area of a right triangle “the hard way.”

EXAMPLE 3 Find the area A under the graph of f (x) = x over [0, 4] in three ways:

(a) Using geometry (b) lim
N→∞ RN (c) lim

N→∞ LN

Solution The region under the graph is a right triangle with base b = 4 and height h = 4
(Figure 11).

(a) By geometry, A = 1
2bh = ( 1

2

)
(4)(4) = 8.

(b) We compute this area again as a limit. Since �x = (b − a)/N = 4/N and f (x) = x,REMINDER

RN = �x

N∑
j=1

f (a + j�x)

LN = �x

N−1∑
j=0

f (a + j�x)

�x = b − a

N

f (a + j�x) = f

(
0 + j

(
4

N

))
= 4j

N

RN = �x

N∑
j=1

f (a + j�x) = 4

N

N∑
j=1

4j

N
= 16

N2

N∑
j=1

j

In the last equality, we factored out 4/N from the sum. This is valid because 4/N is a
constant that does not depend on j . Now use formula (3):

RN = 16

N2

N∑
j=1

j = 16

N2

(
N(N + 1)

2

)
︸ ︷︷ ︸

Formula for power sum

= 8

N2

(
N2 + N

)
= 8 + 8

N

The second term 8/N tends to zero as N approaches ∞, so

A = lim
N→∞ RN = lim

N→∞

(
8 + 8

N

)
= 8

As expected, this limit yields the same value as the formula 1
2bh.

(c) The left-endpoint approximation is similar, but the sum begins at j = 0 and ends at
j = N − 1:In Eq. (6), we apply the formula

N∑
j=1

j = N(N + 1)

2

with N − 1 in place of N :

N−1∑
j=1

j = (N − 1)N

2

LN = 16

N2

N−1∑
j=0

j = 16

N2

N−1∑
j=1

j = 16

N2

(
(N − 1)N

2

)
= 8 − 8

N
6

Note in the second step that we replaced the sum beginning at j = 0 with a sum beginning
at j = 1. This is valid because the term for j = 0 is zero and may be dropped. Again, we
find that A = lim

N→∞ LN = lim
N→∞(8 − 8/N) = 8.

In the next example, we compute the area under a curved graph. Unlike the previous
example, it is not possible to compute this area directly using geometry.
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EXAMPLE 4 Let A be the area under the graph of f (x) = 2x2 − x + 3 over [2, 4]
(Figure 12). Compute A as the limit lim

N→∞ RN .

43210

30

20

10

x

y

FIGURE 12 Area under the graph of
f (x) = 2x2 − x + 3 over [2, 4].

Solution

Step 1. Express RN in terms of power sums.
In this case, �x = (4 − 2)/N = 2/N and

RN = �x

N∑
j=1

f (a + j�x) = 2

N

N∑
j=1

f

(
2 + 2j

N

)

Let’s use algebra to simplify the general term. Since f (x) = 2x2 − x + 3,

f

(
2 + 2j

N

)
= 2

(
2 + 2j

N

)2

−
(

2 + 2j

N

)
+ 3

= 2

(
4 + 8j

N
+ 4j2

N2

)
−

(
2 + 2j

N

)
+ 3 = 8

N2
j2 + 14

N
j + 9

Now we can express RN in terms of power sums:

RN = 2

N

N∑
j=1

(
8

N2
j2 + 14

N
j + 9

)
= 2

N

N∑
j=1

8

N2
j2 + 2

N

N∑
j=1

14

N
j + 2

N

N∑
j=1

9

= 16

N3

N∑
j=1

j2 + 28

N2

N∑
j=1

j + 18

N

N∑
j=1

1 7

Step 2. Use the formulas for the power sums.
Using formulas (3) and (4) for the power sums in Eq. (7), we obtain

RN = 16

N3

(
N3

3
+ N2

2
+ N

6

)
+ 28

N2

(
N2

2
+ N

2

)
+ 18

N
(N)

=
(

16

3
+ 8

N
+ 8

3N2

)
+

(
14 + 14

N

)
+ 18

= 112

3
+ 22

N
+ 8

3N2

Step 3. Calculate the limit.

A = lim
N→∞ RN = lim

N→∞

(
112

3
+ 22

N
+ 8

3N2

)
= 112

3

EXAMPLE 5 Prove that for all b > 0, the area A under the graph of f (x) = x2 over
x

y

y = x2

b

Area b3

3

FIGURE 13 [0, b] is equal to b3/3, as indicated in Figure 13.

REMINDER By Eq. (4)

N∑
j=1

j 2 = N3

3
+ N2

2
+ N

6

Solution We’ll compute with RN . We have �x = (b − 0)/N = b/N and

RN = �x

N∑
j=1

f (0 + j�x) = b

N

N∑
j=1

(
0 + j

b

N

)2

= b

N

N∑
j=1

(
j2 b2

N2

)
= b3

N3

N∑
j=1

j2

By the formula for the power sum recalled in the margin,

RN = b3

N3

(
N3

3
+ N2

2
+ N

6

)
= b3

3
+ b3

2N
+ b3

6N2

A = lim
N→∞

(
b3

3
+ b3

2N
+ b3

6N2

)
= b3

3



S E C T I O N 5.1 Approximating and Computing Area 295

The area under the graph of any polynomial can be calculated using power sum

1
f (x) = sin x

x

y

π

4
3π

4

FIGURE 14 The area of this region is more
difficult to compute as a limit of endpoint
approximations.

formulas as in the examples above. For other functions, the limit defining the area may be
hard or impossible to evaluate directly. Consider f (x) = sin x on the interval

[
π
4 , 3π

4

]
. In

this case (Figure 14), �x = (3π/4 − π/4)/N = π/(2N) and the area A is

A = lim
N→∞ RN = lim

N→∞ �x

N∑
j=1

f (a + j�x) = lim
N→∞

π

2N

N∑
j=1

sin

(
π

4
+ πj

2N

)

With some work, we can show that the limit is equal to A = √
2. However, in Section 5.3

we will see that it is much easier to apply the Fundamental Theorem of Calculus, which
reduces area computations to the problem of finding antiderivatives.

HISTORICAL
PERSPECTIVE

Jacob Bernoulli
(1654–1705)

We used the formu-
las for the kth power

sums for k = 1, 2, 3. Do similar formulas exist
for all powers k? This problem was studied in
the seventeenth century and eventually solved
around 1690 by the great Swiss mathematician
Jacob Bernoulli. Of this discovery, he wrote

With the help of [these formulas] it took me less than
half of a quarter of an hour to find that the 10th
powers of the first 1000 numbers being added
together will yield the sum

91409924241424243424241924242500

Bernoulli’s formula has the general form

n∑
j=1

jk = 1

k + 1
nk+1 + 1

2
nk + k

12
nk−1 + · · ·

The dots indicate terms involving smaller pow-
ers of n whose coefficients are expressed in
terms of the so-called Bernoulli numbers. For
example,

n∑
j=1

j4 = 1

5
n5 + 1

2
n4 + 1

3
n3 − 1

30
n

These formulas are available on most computer
algebra systems.

5.1 SUMMARY

Power Sums

N∑
j=1

j = N(N + 1)

2
= N2

2
+ N

2

N∑
j=1

j2 = N(N + 1)(2N + 1)

6
= N3

3
+ N2

2
+ N

6

N∑
j=1

j3 = N2(N + 1)2

4
= N4

4
+ N3

2
+ N2

4

• Approximations to the area under the graph of f (x) over [a, b]
(

�x = b − a

N

)
:

RN = �x

N∑
j=1

f (a + j�x) = �x
(
f (a + �x) + f (a + 2�x) + · · · + f (a + N�x)

)

LN = �x

N−1∑
j=0

f (a + j�x) = �x
(
f (a) + f (a + �x) + · · · + f (a + (N − 1)�x)

)

MN = �x

N∑
j=1

f

(
a +

(
j − 1

2

)
�x

)

= �x

(
f

(
a + 1

2
�x

)
+ · · · + f

(
a +

(
N − 1

2

)
�x

))



296 C H A P T E R 5 THE INTEGRAL

• If f (x) is continuous on [a, b], then the endpoint and midpoint approximations approach
one and the same limit L:

lim
N→∞ RN = lim

N→∞ LN = lim
N→∞ MN = L

• If f (x) ≥ 0 on [a, b], we take L as the definition of the area under the graph of y = f (x)

over [a, b].

5.1 EXERCISES

Preliminary Questions
1. What are the right and left endpoints if [2, 5] is divided into six

subintervals?

2. The interval [1, 5] is divided into eight subintervals.
(a) What is the left endpoint of the last subinterval?
(b) What are the right endpoints of the first two subintervals?

3. Which of the following pairs of sums are not equal?

(a)
4∑

i=1

i,

4∑
�=1

� (b)
4∑

j=1

j2,

5∑
k=2

k2

(c)
4∑

j=1

j,

5∑
i=2

(i − 1) (d)
4∑

i=1

i(i + 1),

5∑
j=2

(j − 1)j

4. Explain:
100∑
j=1

j =
100∑
j=0

j but
100∑
j=1

1 is not equal to
100∑
j=0

1.

5. Explain why L100 ≥ R100 for f (x) = x−2 on [3, 7].

Exercises
1. Figure 15 shows the velocity of an object over a 3-min interval.

Determine the distance traveled over the intervals [0, 3] and [1, 2.5]
(remember to convert from km/h to km/min).

3
min

km/h

21

20

30

10

FIGURE 15

2. An ostrich (Figure 16) runs with velocity 20 km/h for 2 minutes,
12 km/h for 3 minutes, and 40 km/h for another minute. Compute the
total distance traveled and indicate with a graph how this quantity can
be interpreted as an area.

FIGURE 16 Ostriches can reach speeds as high as 70 km/h.

3. A rainstorm hit Portland, Maine, in October 1996, resulting in
record rainfall. The rainfall rate R(t) on October 21 is recorded, in
centimeters per hour, in the following table, where t is the number of
hours since midnight. Compute the total rainfall during this 24-hour
period and indicate on a graph how this quantity can be interpreted as
an area.

t (h) 0–2 2–4 4–9 9–12 12–20 20–24

R(t) (cm) 0.5 0.3 1.0 2.5 1.5 0.6

4. The velocity of an object is v(t) = 12t m/s. Use Eq. (2) and ge-
ometry to find the distance traveled over the time intervals [0, 2] and
[2, 5].

5. Compute R5 and L5 over [0, 1] using the following values.

x 0 0.2 0.4 0.6 0.8 1

f (x) 50 48 46 44 42 40

6. Compute R6, L6, and M3 to estimate the distance traveled over
[0, 3] if the velocity at half-second intervals is as follows:

t (s) 0 0.5 1 1.5 2 2.5 3

v (m/s) 0 12 18 25 20 14 20

7. Let f (x) = 2x + 3.
(a) Compute R6 and L6 over [0, 3].
(b) Use geometry to find the exact area A and compute the errors
|A − R6| and |A − L6| in the approximations.
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8. Repeat Exercise 7 for f (x) = 20 − 3x over [2, 4].
9. Calculate R3 and L3

for f (x) = x2 − x + 4 over [1, 4]
Then sketch the graph of f and the rectangles that make up each ap-
proximation. Is the area under the graph larger or smaller than R3? Is
it larger or smaller than L3?

10. Let f (x) =
√

x2 + 1 and �x = 1
3 . Sketch the graph of f (x) and

draw the right-endpoint rectangles whose area is represented by the

sum
6∑

i=1

f (1 + i�x)�x.

11. Estimate R3, M3, and L6 over [0, 1.5] for the function in Figure 17.

1

2

3

4

5

x

y

0.5 1 1.5

FIGURE 17

12. Calculate the area of the shaded rectangles in Figure 18. Which
approximation do these rectangles represent?

1 32−1−3 −2
x

y

y =
1 + x2
4 − x

FIGURE 18

In Exercises 13–20, calculate the approximation for the given function
and interval.

13. R3, f (x) = 7 − x, [3, 5]
14. L6, f (x) = √

6x + 2, [1, 3]
15. M6, f (x) = 4x + 3, [5, 8]
16. R5, f (x) = x2 + x, [−1, 1]
17. L6, f (x) = x2 + 3|x|, [−2, 1]
18. M4, f (x) = √

x, [3, 5]

19. L4, f (x) = cos2 x,
[
π
6 , π

2

]
20. M5, f (x) = ln x, [1, 3]
In Exercises 21–26, write the sum in summation notation.

21. 47 + 57 + 67 + 77 + 87

22. (22 + 2) + (32 + 3) + (42 + 4) + (52 + 5)

23. (22 + 2) + (23 + 2) + (24 + 2) + (25 + 2)

24.
√

1 + 13 +
√

2 + 23 + · · · +
√

n + n3

25.
1

2 · 3
+ 2

3 · 4
+ · · · + n

(n + 1)(n + 2)

26. eπ + eπ/2 + eπ/3 + · · · + eπ/n

27. Calculate the sums:

(a)
5∑

i=1

9 (b)
5∑

i=0

4 (c)
4∑

k=2

k3

28. Calculate the sums:

(a)
4∑

j=3

sin
(
j

π

2

)
(b)

5∑
k=3

1

k − 1
(c)

2∑
j=0

3j−1

29. Let b1 = 4, b2 = 1, b3 = 2, and b4 = −4. Calculate:

(a)
4∑

i=2

bi (b)
2∑

j=1

(2bj − bj ) (c)
3∑

k=1

kbk

30. Assume that a1 = −5,
10∑
i=1

ai = 20, and
10∑
i=1

bi = 7. Calculate:

(a)
10∑
i=1

(4ai + 3) (b)
10∑
i=2

ai (c)
10∑
i=1

(2ai − 3bi)

31. Calculate
200∑

j=101

j . Hint: Write as a difference of two sums and use

formula (3).

32. Calculate
30∑

j=1

(2j + 1)2. Hint: Expand and use formulas (3)–(4).

In Exercises 33–40, use linearity and formulas (3)–(5) to rewrite and
evaluate the sums.

33.
20∑

j=1

8j3 34.
30∑

k=1

(4k − 3)

35.
150∑

n=51

n2 36.
200∑

k=101

k3

37.
50∑

j=0

j (j − 1) 38.
30∑

j=2

(
6j + 4j2

3

)

39.
30∑

m=1

(4 − m)3 40.
20∑

m=1

(
5 + 3m

2

)2
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In Exercises 41–44, use formulas (3)–(5) to evaluate the limit.

41. lim
N→∞

N∑
i=1

i

N2
42. lim

N→∞

N∑
j=1

j3

N4

43. lim
N→∞

N∑
i=1

i2 − i + 1

N3
44. lim

N→∞

N∑
i=1

(
i3

N4
− 20

N

)

In Exercises 45–50, calculate the limit for the given function and inter-
val. Verify your answer by using geometry.

45. lim
N→∞ RN , f (x) = 9x, [0, 2]

46. lim
N→∞ RN , f (x) = 3x + 6, [1, 4]

47. lim
N→∞ LN , f (x) = 1

2x + 2, [0, 4]

48. lim
N→∞ LN , f (x) = 4x − 2, [1, 3]

49. lim
N→∞ MN , f (x) = x, [0, 2]

50. lim
N→∞ MN , f (x) = 12 − 4x, [2, 6]

51. Show, for f (x) = 3x2 + 4x over [0, 2], that

RN = 2

N

N∑
j=1

(
24j2

N2
+ 16j

N

)

Then evaluate lim
N→∞ RN .

52. Show, for f (x) = 3x3 − x2 over [1, 5], that

RN = 4

N

N∑
j=1

(
192j3

N3
+ 128j2

N2
+ 28j

N
+ 2

)

Then evaluate lim
N→∞ RN .

In Exercises 53–60, find a formula for RN and compute the area under
the graph as a limit.

53. f (x) = x2, [0, 1] 54. f (x) = x2, [−1, 5]
55. f (x) = 6x2 − 4, [2, 5] 56. f (x) = x2 + 7x, [6, 11]
57. f (x) = x3 − x, [0, 2]
58. f (x) = 2x3 + x2, [−2, 2]
59. f (x) = 2x + 1, [a, b] (a, b constants with a < b)

60. f (x) = x2, [a, b] (a, b constants with a < b)

In Exercises 61–64, describe the area represented by the limits.

61. lim
N→∞

1

N

N∑
j=1

(
j

N

)4
62. lim

N→∞
3

N

N∑
j=1

(
2 + 3j

N

)4

63. lim
N→∞

5

N

N−1∑
j=0

e−2+5j/N

64. lim
N→∞

π

2N

N∑
j=1

sin

(
π

3
− π

4N
+ jπ

2N

)

In Exercises 65–70, express the area under the graph as a limit using the
approximation indicated (in summation notation), but do not evaluate.

65. RN , f (x) = sin x over [0, π ]
66. RN , f (x) = x−1 over [1, 7]
67. LN , f (x) = √

2x + 1 over [7, 11]
68. LN , f (x) = cos x over

[
π
8 , π

4

]
69. MN , f (x) = tan x over

[ 1
2 , 1

]
70. MN , f (x) = x−2 over [3, 5]

71. Evaluate lim
N→∞

1

N

N∑
j=1

√
1 −

(
j

N

)2
by interpreting it as the area

of part of a familiar geometric figure.

In Exercises 72–74, let f (x) = x2 and let RN , LN , and MN be the
approximations for the interval [0, 1].

72. Show that RN = 1

3
+ 1

2N
+ 1

6N2
. Interpret the quantity

1

2N
+ 1

6N2
as the area of a region.

73. Show that

LN = 1

3
− 1

2N
+ 1

6N2
, MN = 1

3
− 1

12N2

Then rank the three approximations RN , LN , and MN in order of in-
creasing accuracy (use Exercise 72).

74. For each of RN , LN , and MN , find the smallest integer N for
which the error is less than 0.001.

In Exercises 75–80, use the Graphical Insight on page 291 to obtain
bounds on the area.

75. Let A be the area under f (x) = √
x over [0, 1]. Prove that 0.51 ≤

A ≤ 0.77 by computing R4 and L4. Explain your reasoning.

76. Use R5 and L5 to show that the area A under y = x−2 over [10, 13]
satisfies 0.0218 ≤ A ≤ 0.0244.

77. Use R4 and L4 to show that the area A under the graph of y = sin x

over
[
0, π

2

]
satisfies 0.79 ≤ A ≤ 1.19.

78. Show that the area A under f (x) = x−1 over [1, 8] satisfies

1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 ≤ A ≤ 1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 + 1
7

79. Show that the area A under y = x1/4 over [0, 1] satisfies
LN ≤ A ≤ RN for all N . Use a computer algebra system to calculate
LN and RN for N = 100 and 200, and determine A to two decimal
places.

80. Show that the area A under y = 4/(x2 + 1) over [0, 1]
satisfies RN ≤ A ≤ LN for all N . Determine A to at least three deci-
mal places using a computer algebra system. Can you guess the exact
value of A?
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81. In this exercise, we evaluate the area A under the graph of y = ex

over [0, 1] [Figure 19(A)] using the formula for a geometric sum (valid
for r 	= 1):

1 + r + r2 + · · · + rN−1 =
N−1∑
j=0

rj = rN − 1

r − 1
8

(a) Show that LN = 1

N

N−1∑
j=0

ej/N .

(b) Apply Eq. (8) with r = e1/N to prove LN = e − 1

N(e1/N − 1)
.

(c) Compute A = lim
N→∞ LN using L’Hôpital’s Rule.

82. Use the result of Exercise 81 to show that the area B under the graph
of f (x) = ln x over [1, e] is equal to 1. Hint: Relate B in Figure 19(B)
to the area A computed in Exercise 81.

y = ex

y = ln x

y

A B

3

y

2

e

1

1
x x

1 e

(A) (B)

1

FIGURE 19

Further Insights and Challenges
83. Although the accuracy of RN generally improves as N increases,
this need not be true for small values of N . Draw the graph of a positive
continuous function f (x) on an interval such that R1 is closer than R2
to the exact area under the graph. Can such a function be monotonic?

84. Draw the graph of a positive continuous function on an interval
such that R2 and L2 are both smaller than the exact area under the
graph. Can such a function be monotonic?

85. Explain graphically: The endpoint approximations are less
accurate when f ′(x) is large.

86. Prove that for any function f (x) on [a, b],

RN − LN = b − a

N
(f (b) − f (a)) 9

87. In this exercise, we prove that lim
N→∞ RN and lim

N→∞ LN

exist and are equal if f (x) is increasing [the case of f (x) decreasing
is similar]. We use the concept of a least upper bound discussed in
Appendix B.

(a) Explain with a graph why LN ≤ RM for all N, M ≥ 1.

(b) By (a), the sequence {LN } is bounded, so it has a least upper bound
L. By definition, L is the smallest number such that LN ≤ L for all N .
Show that L ≤ RM for all M .

(c) According to (b), LN ≤ L ≤ RN for all N . Use Eq. (9) to show
that lim

N→∞ LN = L and lim
N→∞ RN = L.

88. Use Eq. (9) to show that if f (x) is positive and monotonic,
then the area A under its graph over [a, b] satisfies

|RN − A| ≤ b − a

N
|f (b) − f (a)| 10

In Exercises 89–90, use Eq. (10) to find a value of N such that
|RN − A| < 10−4 for the given function and interval.

89. f (x) = √
x, [1, 4] 90. f (x) =

√
9 − x2, [0, 3]

91. Prove that if f (x) is positive and monotonic, then MN lies
between RN and LN and is closer to the actual area under the graph
than both RN and LN . Hint: In the case that f (x) is increasing, Figure
20 shows that the part of the error in RN due to the ith rectangle is the
sum of the areas A + B + D, and for MN it is |B − E|. On the other
hand, A ≥ E.

x
xi−1 xiMidpoint

A

F

D
E

B

C

FIGURE 20

5.2 The Definite Integral
In the previous section, we saw that if f (x) is continuous on an interval [a, b], then the
endpoint and midpoint approximations approach a common limit L as N → ∞:

L = lim
N→∞ RN = lim

N→∞ LN = lim
N→∞ MN 1
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When f (x) ≥ 0, L is the area under the graph of f (x). In a moment, we will state formally
that L is the definite integral of f (x) over [a, b]. Before doing so, we introduce more
general approximations called Riemann sums.

Recall that RN , LN , and MN use rectangles of equal width �x, whose heights are
the values of f (x) at the endpoints or midpoints of the subintervals. In Riemann sum
approximations, we relax these requirements: The rectangles need not have equal width,
and the height may be any value of f (x) within the subinterval.

To specify a Riemann sum, we choose a partition and a set of sample points:

• Partition P of size N : a choice of points that divides [a, b] into N subintervals.

P : a = x0 < x1 < x2 < · · · < xN = b

• Sample points C = {c1, . . . , cN }: ci belongs to the subinterval [xi−1, xi] for all i.

x0 = a x1

c1 c2

xN = bxi

ci cN

xi−1

�xi

FIGURE 1 Partition of size N and set of
sample points

See Figures 1 and 2(A). The length of the ith subinterval [xi−1, xi] is

�xi = xi − xi−1

The norm of P , denoted ‖P ‖, is the maximum of the lengths �xi .
Given P and C, we construct the rectangle of height f (ci) and base �xi over each

subinterval [xi−1, xi], as in Figure 2(B). This rectangle has area f (ci)�xi if f (ci) ≥ 0 .
If f (ci) < 0, the rectangle extends below the x-axis, and f (ci)�xi is the negative of its
area. The Riemann sum is the sumKeep in mind that RN , LN , and MN are

particular examples of Riemann sums in
which �xi = (b − a)/N for all i, and the
sample points ci are endpoints or
midpoints.

R(f, P, C) =
N∑

i=1

f (ci)�xi = f (c1)�x1 + f (c2)�x2 + · · · + f (cN)�xN 2

(B)  Construct rectangle above each
subinterval of height f (ci)

(C)  Rectangles corresponding to a
       Riemann sum with ||P|| small (a
       large number of rectangles)

(A)  Partition of [a, b] into subintervals

Largest subinterval

Rectangle has
area f (ci)�xi

ith sample point

x0 = a x1

c1 c2

x2 xN = bxi

ci cicN

xi−1 xi−1x1 xN = bxi

�xi

x0 = a

y = f (x)

FIGURE 2 Construction of R(f, P, C).

EXAMPLE 1 Calculate R(f, P, C), where f (x) = 8 + 12 sin x − 4x on [0, 4],y

10

5

−5

−10

−15

x
0.4

21.2
1 1.8

43.52.9

FIGURE 3 Rectangles defined by a Riemann
sum for f (x) = 8 + 12 sin x − 4x.

P : x0 = 0 < x1 = 1 < x2 = 1.8 < x3 = 2.9 < x4 = 4

C = {0.4, 1.2, 2, 3.5}
What is the norm ‖P ‖?

Solution The widths of the subintervals in the partition (Figure 3) are

�x1 = x1 − x0 = 1 − 0 = 1, �x2 = x2 − x1 = 1.8 − 1 = 0.8

�x3 = x3 − x2 = 2.9 − 1.8 = 1.1, �x4 = x4 − x3 = 4 − 2.9 = 1.1
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The norm of the partition is ‖P ‖ = 1.1 since the two longest subintervals have width 1.1.
Using a calculator, we obtain

R(f, P, C) = f (0.4)�x1 + f (1.2)�x2 + f (2)�x3 + f (3.5)�x4

≈ 11.07(1) + 14.38(0.8) + 10.91(1.1) − 10.2(1.1) ≈ 23.35

Note in Figure 2(C) that as the norm ‖P ‖ tends to zero (meaning that the rectangles
get thinner), the number of rectangles N tends to ∞ and they approximate the area under
the graph more closely. This leads to the following definition: f (x) is integrable over
[a, b] if all of the Riemann sums (not just the endpoint and midpoint approximations)
approach one and the same limit L as ‖P ‖ tends to zero. Formally, we write

L = lim‖P ‖→0
R(f, P, C) = lim‖P ‖→0

N∑
i=1

f (ci)�xi 3

if |R(f, P, C) − L| gets arbitrarily small as the norm ‖P ‖ tends to zero, no matter how
we choose the partition and sample points. The limit L is called the definite integral of
f (x) over [a, b].

The notation
∫

f (x) dx was introduced by
Leibniz in 1686. The symbol

∫
is an

elongated S standing for “summation.” The
differential dx corresponds to the length
�xi along the x-axis.

DEFINITION Definite Integral The definite integral of f (x) over [a, b] , denoted by
the integral sign, is the limit of Riemann sums:

∫ b

a

f (x) dx = lim‖P ‖→0
R(f, P, C) = lim‖P ‖→0

N∑
i=1

f (ci)�xi

When this limit exists, we say that f (x) is integrable over [a, b].

The definite integral is often called, more simply, the integral of f (x) over [a, b].
The process of computing integrals is called integration. The function f (x) is called the
integrand. The endpoints a and b of [a, b] are called the limits of integration. Finally,
we remark that any variable may be used as a variable of integration (this is a “dummy”
variable). Thus, the following three integrals all denote the same quantity:∫ b

a

f (x) dx,

∫ b

a

f (t) dt,

∫ b

a

f (u) du

One of the greatest mathematicians of the
nineteenth century and perhaps second
only to his teacher C. F. Gauss, Riemann
transformed the fields of geometry,
analysis, and number theory. Albert
Einstein based his General Theory of
Relativity on Riemann’s geometry. The
“Riemann hypothesis” dealing with prime
numbers is one of the great unsolved
problems in present-day mathematics. The
Clay Foundation has offered a $1 million
prize for its solution
(http://www.claymath.org/millennium).

CONCEPTUAL INSIGHT Keep in mind that a Riemann sum R(f, P, C) is nothing more
than an approximation to area based on rectangles, and that

∫ b

a
f (x) dx is the number

we obtain in the limit as we take thinner and thinner rectangles.
However, general Riemann sums (with arbitrary partitions and sample points) are

rarely used for computations. In practice, we use particular approximations such as MN ,
or the Fundamental Theorem of Calculus, as we’ll learn in the next section. If so, why
bother introducing Riemann sums? The answer is that Riemann sums play a theoretical
rather than a computational role. They are useful in proofs and for dealing rigorously
with certain discontinuous functions. In later sections, Riemann sums are used to show
that volumes and other quantities can be expressed as definite integrals.

Georg Friedrich Riemann (1826–1866)

The next theorem assures us that continuous functions (and even functions with
finitely many jump discontinuities) are integrable (seeAppendix D for a proof). In practice,
we rely on this theorem rather than attempting to prove directly that a given function is
integrable.
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THEOREM 1 If f (x) is continuous on [a, b], or if f (x) is continuous with at most
finitely many jump discontinuities, then f (x) is integrable over [a, b].

Interpretation of the Definite Integral as Signed Area
When f (x) ≥ 0, the definite integral defines the area under the graph. To interpret the
integral when f (x) takes on both positive and negative values, we define the notion
of signed area, where regions below the x-axis are considered to have “negative area”
(Figure 4); that is,

Signed area of a region = (area above x-axis) − (area below x-axis)

a b

+ +
+ +

+
− − −

− − −
− x

y

FIGURE 4 Signed area is the area above the
x-axis minus the area below the x-axis.

ci

f (ci)�xi = −(area of rectangle)

y = f (x)

x
a

b

y

FIGURE 5

Now observe that a Riemann sum is equal to the signed area of the corresponding rect-
angles:

R(f, C, P ) = f (c1)�x1 + f (c2)�x2 + · · · + f (cN)�xN

Indeed, if f (ci) < 0, then the corresponding rectangle lies below the x-axis and has signed
area f (ci)�xi (Figure 5). The limit of the Riemann sums is the signed area of the region
between the graph and the x-axis:

∫ b

a

f (x) dx = signed area of region between the graph and x-axis over [a, b]

EXAMPLE 2 Signed Area Calculate∫ 5

0
(3 − x) dx and

∫ 5

0
|3 − x| dx

Solution The region between y = 3 − x and the x-axis consists of two triangles of areas
9
2 and 2 [Figure 6(A)]. However, the second triangle lies below the x-axis, so it has signed
area −2. In the graph of y = |3 − x|, both triangles lie above the x-axis [Figure 6(B)].
Therefore,∫ 5

0
(3 − x) dx = 9

2
− 2 = 5

2

∫ 5

0
|3 − x| dx = 9

2
+ 2 = 13

2

(A)

−1

−2

(B)

y

x

2

1

1 2 3 4

3

5

y

x

2

1

1 2 3 4

3

5

y = 3 − x y = |3 − x|

−1

−2

− −
−

+ + + + +
+

+

+ +

+

+

Area

Signed area −2

+ +++

Area 2
9
2

Area 9
2

FIGURE 6
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Properties of the Definite Integral
In the rest of this section, we discuss some basic properties of definite integrals. First,
we note that the integral of a constant function f (x) = C over [a, b] is the signed area
C(b − a) of a rectangle (Figure 7).

C

a b

y

x

FIGURE 7

∫ b

a
C dx = C(b − a).

THEOREM 2 Integral of a Constant For any constant C,∫ b

a

C dx = C(b − a) 4

Next, we state the linearity properties of the definite integral.

THEOREM 3 Linearity of the Definite Integral If f and g are integrable over [a, b],
then f + g and Cf are integrable (for any constant C), and

•
∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a

f (x) dx +
∫ b

a

g(x) dx

•
∫ b

a

Cf (x) dx = C

∫ b

a

f (x) dx

Proof These properties follow from the corresponding linearity properties of sums and
limits. For example, Riemann sums are additive:

R(f + g, P, C) =
N∑

i=1

(
f (ci) + g(ci)

)
�xi =

N∑
i=1

f (ci)�xi +
N∑

i=1

g(ci)�xi

= R(f, P, C) + R(g, P, C)

By the additivity of limits,∫ b

a

(f (x) + g(x)) dx = lim||P ||→0
R(f + g, P, C)

= lim||P ||→0
R(f, P, C) + lim||P ||→0

R(g, P, C)

=
∫ b

a

f (x) dx +
∫ b

a

g(x) dx

The second property is proved similarly.

Eq. (5) was verified in Example 5 of
Section 5.1.

EXAMPLE 3 Calculate
∫ 3

0
(2x2 − 5) dx using the formula

∫ b

0
x2 dx = b3

3
5

Solution ∫ 3

0
(2x2 − 5) dx = 2

∫ 3

0
x2 dx +

∫ 3

0
(−5) dx (linearity)

= 2

(
33

3

)
− 5(3 − 0) = 3 [Eqs. (5) and (4)]
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So far we have used the notation
∫ b

a
f (x) dx with the understanding that a < b. It is

convenient to define the definite integral for arbitrary a and b.

According to Eq. (6), the integral changes
sign when the limits of integration are
reversed. Since we are free to define
symbols as we please, why have we chosen
to put the minus sign in Eq. (6)? Because
it is only with this definition that the
Fundamental Theorem of Calculus holds
true.

DEFINITION Reversing the Limits of Integration For a < b, we set

∫ a

b

f (x) dx = −
∫ b

a

f (x) dx 6

For example, by Eq. (5),∫ 0

5
x2 dx = −

∫ 5

0
x2 dx = −53

3
= −125

3

When a = b, the interval [a, b] = [a, a] has length zero and we define the definite integral
to be zero: ∫ a

a

f (x) dx = 0

EXAMPLE 4 Prove that, for all b (positive or negative),

0

y = xy

x
b

b

FIGURE 8 Here b < 0 and the signed area is
− 1

2b2.

∫ b

0
x dx = 1

2
b2 7

Solution If b > 0,
∫ b

0 x dx is the area 1
2b2 of a triangle of base b and height b. If b < 0,∫ 0

b
x dx is the signed area − 1

2b2 of the triangle in Figure 8, and Eq. (7) follows from the
rule for reversing limits of integration:∫ b

0
x dx = −

∫ 0

b

x dx = −
(

−1

2
b2

)
= 1

2
b2

Definite integrals satisfy an important additivity property: If f (x) is integrable and
a ≤ b ≤ c as in Figure 9, then the integral from a to c is equal to the integral from a to
b plus the integral from b to c. We state this in the next theorem (a formal proof can be
given using Riemann sums).

a b c

y

x

f (x)

FIGURE 9 The area over [a, c] is the sum of
the areas over [a, b] and [b, c].

THEOREM 4 Additivity for Adjacent Intervals Let a ≤ b ≤ c, and assume that f (x)

is integrable. Then ∫ c

a

f (x) dx =
∫ b

a

f (x) dx +
∫ c

b

f (x) dx

This theorem remains true as stated even if the condition a ≤ b ≤ c is not satisfied (Ex-
ercise 88).

EXAMPLE 5 Calculate
∫ 7

4
x2 dx.

Solution Before we can apply the formula
∫ b

0 x2dx = b3/3 from Example 3, we must
use the additivity property for adjacent intervals to write∫ 4

0
x2 dx +

∫ 7

4
x2 dx =

∫ 7

0
x2 dx
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Now we can compute our integral as a difference:∫ 7

4
x2 dx =

∫ 7

0
x2 dx −

∫ 4

0
x2 dx =

(
1

3

)
73 −

(
1

3

)
43 = 93

Another basic property of the definite integral is that larger functions have larger
integrals (Figure 10).

g(x)

f (x)

a b

y

x

FIGURE 10 The integral of f (x) is larger
than the integral of g(x).

THEOREM 5 Comparison Theorem If f and g are integrable and g(x) ≤ f (x) for x

in [a, b], then ∫ b

a

g(x) dx ≤
∫ b

a

f (x) dx

Proof If g(x) ≤ f (x), then for any partition and choice of sample points, we have
g(ci)�xi ≤ f (ci)�xi for all i. Therefore, the Riemann sums satisfy

N∑
i=1

g(ci)�xi ≤
N∑

i=1

f (ci)�xi

Taking the limit as the norm ‖P ‖ tends to zero, we obtain∫ b

a

g(x) dx = lim‖P ‖→0

N∑
i=1

g(ci)�xi ≤ lim‖P ‖→0

N∑
i=1

f (ci)�xi =
∫ b

a

f (x) dx

EXAMPLE 6 Prove the inequality:
∫ 4

1

1

x2
dx ≤

∫ 4

1

1

x
dx.

1 2 3 4

1

2

y

x

y = 1
x2

y = 1
x

FIGURE 11

Solution If x ≥ 1, then x2 ≥ x, and x−2 ≤ x−1 [Figure 11]. Therefore, the inequality
follows from the Comparison Theorem, applied with g(x) = x−2 and f (x) = x−1.

a b

M

m

y

x

FIGURE 12 The integral
∫ b
a f (x) dx lies

between the areas of the rectangles of
heights m and M .

Suppose there are numbers m and M such that m ≤ f (x) ≤ M for x in [a, b]. We
call m and M lower and upper bounds for f (x) on [a, b]. By the Comparison Theorem,∫ b

a

m dx ≤
∫ b

a

f (x) dx ≤
∫ b

a

M dx

m(b − a) ≤
∫ b

a

f (x) dx ≤ M(b − a) 8

This says simply that the integral of f (x) lies between the areas of two rectangles (Fig-
ure 12).

EXAMPLE 7 Prove the inequalities:
3

4
≤

∫ 2

1/2

1

x
dx ≤ 3.

2

2
y = x−1

y

x

1
2

1
2

FIGURE 13

Solution Because f (x) = x−1 is decreasing (Figure 13), its minimum value on
[ 1

2 , 2
]

is
m = f (2) = 1

2 and its maximum value is M = f
( 1

2

) = 2. By Eq. (8),

1

2

(
2 − 1

2

)
︸ ︷︷ ︸

m(b−a)

= 3

4
≤

∫ 2

1/2

1

x
dx ≤ 2

(
2 − 1

2

)
︸ ︷︷ ︸

M(b−a)

= 3
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5.2 SUMMARY

• A Riemann sum R(f, P, C) for the interval [a, b] is defined by choosing a partition

P : a = x0 < x1 < x2 < · · · < xN = b

and sample points C = {ci}, where ci ∈ [xi−1, xi]. Let �xi = xi − xi−1. Then

R(f, P, C) =
N∑

i=1

f (ci)�xi

• The maximum of the widths �xi is called the norm ‖P ‖ of the partition.
• The definite integral is the limit of the Riemann sums (if it exists):∫ b

a

f (x) dx = lim‖P ‖→0
R(f, P, C)

We say that f (x) is integrable over [a, b] if the limit exists.
• Theorem: If f (x) is continuous on [a, b], then f (x) is integrable over [a, b].
•

∫ b

a

f (x) dx = signed area of the region between the graph of f (x) and the x-axis.

• Properties of definite integrals:∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a

f (x) dx +
∫ b

a

g(x) dx

∫ b

a

Cf (x) dx = C

∫ b

a

f (x) dx for any constant C

∫ a

b

f (x) dx = −
∫ a

b

f (x) dx

∫ a

a

f (x) dx = 0

∫ b

a

f (x) dx +
∫ c

b

f (x) dx =
∫ c

a

f (x) dx for all a, b, c

• Formulas: ∫ b

a

C dx = C(b − a) (C any constant)

∫ b

0
x dx = 1

2
b2

∫ b

0
x2 dx = 1

3
b3

• Comparison Theorem: If f (x) ≤ g(x) on [a, b], then∫ b

a

f (x) dx ≤
∫ b

a

g(x) dx

If m ≤ f (x) ≤ M on [a, b], then

m(b − a) ≤
∫ b

a

f (x) dx ≤ M(b − a)
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5.2 EXERCISES

Preliminary Questions

1. What is
∫ 5

3
dx [the function is f (x) = 1]?

2. Let I =
∫ 7

2
f (x) dx, where f (x) is continuous. State whether true

or false:
(a) I is the area between the graph and the x-axis over [2, 7].
(b) If f (x) ≥ 0, then I is the area between the graph and the x-axis
over [2, 7].

(c) If f (x) ≤ 0, then −I is the area between the graph of f (x) and
the x-axis over [2, 7].

3. Explain graphically:
∫ π

0
cos x dx = 0.

4. Which is negative,
∫ −5

−1
8 dx or

∫ −1

−5
8 dx?

Exercises
In Exercises 1–10, draw a graph of the signed area represented by the
integral and compute it using geometry.

1.
∫ 3

−3
2x dx 2.

∫ 3

−2
(2x + 4) dx

3.
∫ 1

−2
(3x + 4) dx 4.

∫ 1

−2
4 dx

5.
∫ 8

6
(7 − x) dx 6.

∫ 3π/2

π/2
sin x dx

7.
∫ 5

0

√
25 − x2 dx 8.

∫ 3

−2
|x| dx

9.
∫ 2

−2
(2 − |x|) dx 10.

∫ 5

−2
(3 + x − 2|x|) dx

11. Calculate
∫ 10

0
(8 − x) dx in two ways:

(a) As the limit lim
N→∞ RN

(b) By sketching the relevant signed area and using geometry

12. Calculate
∫ 4

−1
(4x − 8) dx in two ways:As the limit lim

N→∞ RN and

using geometry.

In Exercises 13 and 14, refer to Figure 14.

13. Evaluate: (a)
∫ 2

0
f (x) dx (b)

∫ 6

0
f (x) dx

14. Evaluate: (a)
∫ 4

1
f (x) dx (b)

∫ 6

1
|f (x)| dx

y = f (x)

642

y

x

FIGURE 14 The two parts of the graph are semicircles.

In Exercises 15 and 16, refer to Figure 15.

15. Evaluate
∫ 3

0
g(t) dt and

∫ 5

3
g(t) dt .

16. Find a, b, and c such that
∫ a

0
g(t) dt and

∫ c

b
g(t) dt are as large

as possible.

1 2 3 4 5

2

1

−1

−2

y = g(t)

t

y

FIGURE 15

17. Describe the partition P and the set of sample points C for the
Riemann sum shown in Figure 16. Compute the value of the Riemann
sum.

x
1 32.5 3.220.5 4.5 5

34.25

20
15

8

y

FIGURE 16

18. Compute R(f, P, C) for f (x) = x2 + x for the partition P and
the set of sample points C in Figure 16.

In Exercises 19–22, calculate the Riemann sum R(f, P, C) for the given
function, partition, and choice of sample points. Also, sketch the graph
of f and the rectangles corresponding to R(f, P, C).

19. f (x) = x, P = {1, 1.2, 1.5, 2}, C = {1.1, 1.4, 1.9}
20. f (x) = 2x + 3, P = {−4, −1, 1, 4, 8}, C = {−3, 0, 2, 5}
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21. f (x) = x2 + x, P = {2, 3, 4.5, 5}, C = {2, 3.5, 5}
22. f (x) = sin x, P = {

0, π
6 , π

3 , π
2

}
, C = {0.4, 0.7, 1.2}

In Exercises 23–28, sketch the signed area represented by the integral.
Indicate the regions of positive and negative area.

23.
∫ 5

0
(4x − x2) dx 24.

∫ π/4

−π/4
tan x dx

25.
∫ 2π

π
sin x dx 26.

∫ 3π

0
sin x dx

27.
∫ 2

1/2
ln x dx 28.

∫ 1

−1
tan−1 x dx

In Exercises 29–32, determine the sign of the integral without calcu-
lating it. Draw a graph if necessary.

29.
∫ 1

−2
x4 dx 30.

∫ 1

−2
x3 dx

31.
∫ 2π

0
x sin x dx 32.

∫ 2π

0

sin x

x
dx

In Exercises 33–42, use properties of the integral and the formulas in
the summary to calculate the integrals.

33.
∫ 4

0
(6t − 3) dt 34.

∫ 2

−3
(4x + 7) dx

35.
∫ 9

0
x2 dx 36.

∫ 5

2
x2 dx

37.
∫ 1

0
(u2 − 2u) du 38.

∫ 1/2

0
(12y2 + 6y) dy

39.
∫ 1

−3
(7t2 + t + 1) dt 40.

∫ 3

−3
(9x − 4x2) dx

41.
∫ 1

−a
(x2 + x) dx 42.

∫ a2

a
x2 dx

In Exercises 43–47, calculate the integral, assuming that∫ 5

0
f (x) dx = 5,

∫ 5

0
g(x) dx = 12

43.
∫ 5

0
(f (x) + g(x)) dx 44.

∫ 5

0

(
2f (x) − 1

3
g(x)

)
dx

45.
∫ 0

5
g(x) dx 46.

∫ 5

0
(f (x) − x) dx

47. Is it possible to calculate
∫ 5

0
g(x)f (x) dx from the information

given?

48. Prove by computing the limit of right-endpoint approximations:

∫ b

0
x3 dx = b4

4
9

In Exercises 49–54, evaluate the integral using the formulas in the
summary and Eq. (9).

49.
∫ 3

0
x3 dx 50.

∫ 3

1
x3 dx

51.
∫ 3

0
(x − x3) dx 52.

∫ 1

0
(2x3 − x + 4) dx

53.
∫ 1

0
(12x3 + 24x2 − 8x) dx 54.

∫ 2

−2
(2x3 − 3x2) dx

In Exercises 55–58, calculate the integral, assuming that∫ 1

0
f (x) dx = 1,

∫ 2

0
f (x) dx = 4,

∫ 4

1
f (x) dx = 7

55.
∫ 4

0
f (x) dx 56.

∫ 2

1
f (x) dx

57.
∫ 1

4
f (x) dx 58.

∫ 4

2
f (x) dx

In Exercises 59–62, express each integral as a single integral.

59.
∫ 3

0
f (x) dx +

∫ 7

3
f (x) dx

60.
∫ 9

2
f (x) dx −

∫ 9

4
f (x) dx

61.
∫ 9

2
f (x) dx −

∫ 5

2
f (x) dx

62.
∫ 3

7
f (x) dx +

∫ 9

3
f (x) dx

In Exercises 63–66, calculate the integral, assuming that f is integrable

and
∫ b

1
f (x) dx = 1 − b−1 for all b > 0.

63.
∫ 5

1
f (x) dx 64.

∫ 5

3
f (x) dx

65.
∫ 6

1
(3f (x) − 4) dx 66.

∫ 1

1/2
f (x) dx

67. Explain the difference in graphical interpretation between∫ b

a
f (x) dx and

∫ b

a
|f (x)| dx.

68. Use the graphical interpretation of the definite integral to
explain the inequality∣∣∣∣∣

∫ b

a
f (x) dx

∣∣∣∣∣ ≤
∫ b

a
|f (x)| dx

where f (x) is continuous. Explain also why equality holds if and only
if either f (x) ≥ 0 for all x or f (x) ≤ 0 for all x.

69. Let f (x) = x. Find an interval [a, b] such that∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ = 1

2
and

∫ b

a
|f (x)| dx = 3

2
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70. Evaluate I =
∫ 2π

0
sin2 x dx and J =

∫ 2π

0
cos2 x dx

as follows. First show with a graph that I = J . Then prove that I +
J = 2π .

In Exercises 71–74, calculate the integral.

71.
∫ 6

0
|3 − x| dx 72.

∫ 3

1
|2x − 4| dx

73.
∫ 1

−1
|x3| dx 74.

∫ 2

0
|x2 − 1| dx

75. Use the Comparison Theorem to show that∫ 1

0
x5 dx ≤

∫ 1

0
x4 dx,

∫ 2

1
x4 dx ≤

∫ 2

1
x5 dx

76. Prove that
1

3
≤

∫ 6

4

1

x
dx ≤ 1

2
.

77. Prove that 0.0198 ≤ ∫ 0.3
0.2 sin x dx ≤ 0.0296. Hint: Show that

0.198 ≤ sin x ≤ 0.296 for x in [0.2, 0.3].

78. Prove that 0.277 ≤
∫ π/4

π/8
cos x dx ≤ 0.363.

79. Prove that 0 ≤
∫ π/2

π/4

sin x

x
dx ≤

√
2

2
.

80. Find upper and lower bounds for
∫ 1

0

dx√
5x3 + 4

.

81. Suppose that f (x) ≤ g(x) on [a, b]. By the Comparison

Theorem,
∫ b
a f (x) dx ≤ ∫ b

a g(x) dx. Is it also true that f ′(x) ≤ g′(x)

for x ∈ [a, b]? If not, give a counterexample.

82. State whether true or false. If false, sketch the graph of a
counterexample.

(a) If f (x) > 0, then
∫ b

a
f (x) dx > 0.

(b) If
∫ b

a
f (x) dx > 0, then f (x) > 0.

Further Insights and Challenges
83. Explain graphically: If f (x) is an odd function, then∫ a

−a
f (x) dx = 0.

84. Compute
∫ 1

−1
sin(sin(x))(sin2(x) + 1) dx.

85. Let k and b be positive. Show, by comparing the right-endpoint
approximations, that∫ b

0
xk dx = bk+1

∫ 1

0
xk dx

86. Verify for 0 ≤ b ≤ 1 by interpreting in terms of area:∫ b

0

√
1 − x2 dx = 1

2
b
√

1 − b2 + 1

2
sin−1 b

87. Suppose that f and g are continuous functions such that,
for all a, ∫ a

−a
f (x) dx =

∫ a

−a
g(x) dx

Give an intuitive argument showing that f (0) = g(0). Explain your
idea with a graph.

88. Theorem 4 remains true without the assumption a ≤ b ≤ c. Verify
this for the cases b < a < c and c < a < b.

5.3 The Fundamental Theorem of Calculus, Part I
The Fundamental Theorem of Calculus (FTC) reveals an unexpected connection between
the two main operations of calculus: differentiation and integration. The theorem has two

The FTC was first stated clearly by Isaac
Newton in 1666, although other
mathematicians, including Newton’s
teacher Isaac Barrow, had discovered
versions of it earlier.

parts. Although they are closely related, we discuss them in separate sections to emphasize
the different ways they are used.

REMINDER
F(x) is called an antiderivative of f (x) if
F ′(x) = f (x). We say also that F(x) is an
indefinite integral of f (x), and we use the
notation ∫

f (x) dx = F(x) + C

To explain FTC I, recall a result from Example 5 of Section 5.2:∫ 7

4
x2 dx =

(
1

3

)
73 −

(
1

3

)
43 = 93

Now observe that F(x) = 1
3x3 is an antiderivative of x2, so we can write

∫ 7

4
x2 dx = F(7) − F(4)

According to FTC I, this is no coincidence; this relation between the definite integral and
the antiderivative holds in general.
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THEOREM 1 The Fundamental Theorem of Calculus, Part I Assume that f (x) is
continuous on [a, b]. If F(x) is an antiderivative of f (x) on [a, b], then

∫ b

a

f (x) dx = F(b) − F(a) 1

Proof The quantity F(b) − F(a) is the total change in F (also called the “net change”)
over the interval [a, b]. Our task is to relate it to the integral of F ′(x) = f (x). There are
two main steps.

Step 1. Write total change as a sum of small changes.
Given any partition P of [a, b]:

P : x0 = a < x1 < x2 < · · · < xN = b

we can break up F(b) − F(a) as a sum of changes over the intervals [xi−1, xi]:
F(b) − F(a) = (

F(x1) − F(a)
) + (

F(x2) − F(x1)
) + · · · + (

F(b) − F(xN−1)
)

On the right-hand side, F(x1) is canceled by −F(x1) in the second term, F(x2) is
canceled by −F(x2), etc. (Figure 1). In summation notation,

F(b) − F(a) =
N∑

i=1

(
F(xi) − F(xi−1)

)
2

y

x
a = x0 x1 x2 x3 b = x4

F(b)
y = F(x)

F(x3)

F(x2)

F(x1)

F(a)

F(b) − F(x3)

F(x3) − F(x2)

F(x2) − F(x1)

F(x1) − F(a)

F(b) − F(a)

FIGURE 1 Note the cancelation when we
write F(b) − F(a) as a sum of small
changes F(xi) − F(xi−1).

Step 2. Interpret Eq. (2) as a Riemann sum.
The Mean Value Theorem tells us that there is a point c∗

i in [xi−1, xi] such that

F(xi) − F(xi−1) = F ′(c∗
i )(xi − xi−1) = f (c∗

i )(xi − xi−1) = f (c∗
i ) �xi

Therefore, Eq. (2) can be written

F(b) − F(a) =
N∑

i=1

f (c∗
i ) �xi

This sum is the Riemann sum R(f, P, C∗) with sample points C∗ = {c∗
i }.

Now, f (x) is integrable (Theorem 1, Section 5.2), so R(f, P, C∗) approaches∫ b

a
f (x) dx as the norm ‖P ‖ tends to zero. On the other hand, R(f, P, C∗) is equal to

F(b) − F(a) with our particular choice C∗ of sample points. This proves the desired
result:

F(b) − F(a) = lim‖P ‖→0
R(f, P, C∗) =

∫ b

a

f (x) dx



S E C T I O N 5.3 The Fundamental Theorem of Calculus, Part I 311

CONCEPTUAL INSIGHT A Tale of Two Graphs In the proof of FTC I, we used the MVT
to write a small change in F(x) in terms of the derivative F ′(x) = f (x):

F(xi) − F(xi−1) = f (c∗
i )�xi

But f (c∗
i )�xi is the area of a thin rectangle that approximates a sliver of area under

the graph of f (x) (Figure 2). This is the essence of the Fundamental Theorem: the total
change F(b) − F(a) is equal to the sum of small changes F(xi) − F(xi−1), which in
turn is equal to the sum of the areas of rectangles in a Riemann sum approximation for
f (x). We derive the Fundamental Theorem itself by taking the limit as the width of the
rectangles tends to zero.

y y

x
c∗

i

F(xi)

F(xi−1)
F(xi) − F(xi−1)

a xixi−1 b c∗
ia xixi−1 b

�xi

�xi

x

f (c∗
i )

This change is equal to the area f (c∗
i )�xi of this rectangle.

Graph of F(x)

Graph of f (x)

FIGURE 2

FTC I tells us that if we can find an antiderivative of f (x), then we can compute
the definite integral easily, without calculating any limits. It is for this reason that we use

the integral sign
∫

for both the definite integral
∫ b

a

f (x)dx and the indefinite integral

(antiderivative)
∫

f (x)dx.

Notation: F(b) − F(a) is denoted F(x)
∣∣b
a
. In this notation, the FTC reads∫ b

a

f (x) dx = F(x)
∣∣b
a

EXAMPLE 1 Calculate the area under the graph of f (x) = x3 over [2, 4].REMINDER The Power Rule for Integrals
(valid for n 	= −1) states:∫

xn dx = xn+1

n + 1
+ C

Solution Since F(x) = 1
4x4 is an antiderivative of f (x) = x3, FTC I gives us∫ 4

2
x3 dx = F(4) − F(2) = 1

4
x4

∣∣∣4

2
= 1

4
44 − 1

4
24 = 60

EXAMPLE 2 Find the area under g(x) = x−3/4 + 3x5/3 over [1, 3]
Solution The function G(x) = 4x1/4 + 9

8x8/3 is an antiderivative of g(x). The area (Fig-
ure 3) is equal to∫ 3

1
(x−3/4 + 3x5/3) dx = G(x)

∣∣∣3

1
=

(
4x1/4 + 9

8
x8/3

)∣∣∣∣3

1

=
(

4 · 31/4 + 9

8
· 38/3

)
−

(
4 · 11/4 + 9

8
· 18/3

)
≈ 26.325 − 5.125 = 21.2

321

20

x

y

FIGURE 3 Region under the graph of
g(x) = x−3/4 + 3x5/3 over [1, 3].
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EXAMPLE 3 Calculate
∫ π/4

−π/4
sec2 x dx and sketch the corresponding region.

x

y

− 2−2

3

2

1

π

4
π

4

FIGURE 4 Graph of y = sec2 x.

Solution Figure 4 shows the region. Recall that (tan x)′ = sec2 x. Therefore,∫ π/4

−π/4
sec2 x dx = tan x

∣∣π/4
−π/4 = tan

(π

4

)
− tan

(
−π

4

)
= 1 − (−1) = 2

We know that the definite integral is equal to the signed area between the graph and
the x-axis. Needless to say, the FTC “knows” this also: When you evaluate an integral
using the FTC, you obtain the signed area.

EXAMPLE 4 Evaluate (a)
∫ π

0
sin x dx and (b)

∫ 2π

0
sin x dx.

Solution

(a) Since (− cos x)′ = sin x, the area of one “hump” (Figure 5) is

2ππ

y = sin x

x

y

1

FIGURE 5 The area of one hump is 2. The
signed area over [0, 2π ] is zero.

∫ π

0
sin x dx = − cos x

∣∣π
0 = − cos π − (− cos 0) = −(−1) − (−1) = 2

(b) We expect the signed area over [0, 2π ] to be zero since the second hump lies below
the x-axis, and, indeed,∫ 2π

0
sin x dx = − cos x

∣∣2π

0 = (− cos(2π) − (− cos 0)) = −1 − (−1) = 0

EXAMPLE 5 Exponential Function Evaluate
∫ 0.6

−0.3
e3x−1 dx.

Solution The function F(x) = 1
3e3x−1 is an antiderivative of f (x) = e3x−1, so the

−0.3

2

4

0.6
x

y

y = e3x−1

FIGURE 6

definite integral (the shaded area in Figure 6) is∫ 0.6

−0.3
e3x−1 dx = 1

3
e3x−1

∣∣∣0.6

−0.3
= 1

3
e3(0.6)−1 − 1

3
e3(−0.3)−1

≈ 0.742 − 0.050 ≈ 0.692

Recall (Section 4.9) that F(x) = ln |x| is an antiderivative of f (x) = x−1 in the
domain {x : x 	= 0}. Therefore, the FTC yields the following formula [Figure 7(A)], which
is valid if both a and b are positive or both are negative.

∫ b

a

dx

x
= ln |b| − ln |a| = ln

b

a
3

EXAMPLE 6 The Logarithm as an Antiderivative Evaluate (a)
∫ 8

2

dx

x
and

(b)
∫ −2

−4

dx

x
.

Solution By Eq. (3),

(a)
∫ 8

2

dx

x
= ln

8

2
= ln 4 ≈ 1.39

(b)
∫ −2

−4

dx

x
= ln

(−2

−4

)
= ln

1

2
≈ −0.69

The areas represented by these integrals is shown in Figures 7(B) and (C).
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y

0.5

2

(B) (C)

x
2 4 6 8

y

x
2 4

−2−4

y

x
ba

y =

(A)

Area ln 4 Signed area ln

Area ln| |
1
x

y = 1
x y = 1

x

1
2

b
a

FIGURE 7

CONCEPTUAL INSIGHT Which Antiderivative? Antiderivatives are unique only to within
an additive constant (Section 4.9). Does it matter which antiderivative is used in the
FTC? The answer is no. If F(x) and G(x) are both antiderivatives of f (x), then F(x) =
G(x) + C for some constant C, and

F(b) − F(a) = (G(b) + C) − (G(a) + C)︸ ︷︷ ︸
The constant cancels

= G(b) − G(a)

The two antiderivatives yield the same value for the definite integral:∫ b

a

f (x) dx = F(b) − F(a) = G(b) − G(a)

5.3 SUMMARY

• The Fundamental Theorem of Calculus, Part I, states that∫ b

a

f (x) dx = F(b) − F(a)

where F(x) is an antiderivative of f (x). FTC I is used to evaluate definite integrals in
cases where we can find an antiderivative of the integrand.
• Basic antiderivative formulas for evaluating definite integrals:∫

xndx = xn+1

n + 1
+ C for n 	= −1

∫
ex dx = ex + C,

∫
dx

x
= ln |x| + C

∫
sin x dx = − cos x + C,

∫
cos x dx = sin x + C

∫
sec2 x dx = tan x + C,

∫
csc2 x dx = − cot x + C

∫
sec x tan x dx = sec x + C,

∫
csc x cot x dx = − csc x + C
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5.3 EXERCISES

Preliminary Questions
1. Suppose that F ′(x) = f (x) and F(0) = 3, F(2) = 7.

(a) What is the area under y = f (x) over [0, 2] if f (x) ≥ 0?
(b) What is the graphical interpretation of F(2) − F(0) if f (x) takes
on both positive and negative values?

2. Suppose that f (x) is a negative function with antiderivative F

such that F(1) = 7 and F(3) = 4. What is the area (a positive number)
between the x-axis and the graph of f (x) over [1, 3]?

3. Are the following statements true or false? Explain.

(a) FTC I is valid only for positive functions.

(b) To use FTC I, you have to choose the right antiderivative.

(c) If you cannot find an antiderivative of f (x), then the definite inte-
gral does not exist.

4. Evaluate
∫ 9

2
f ′(x) dx where f (x) is differentiable and f (2) =

f (9) = 4.

Exercises
In Exercises 1–4, sketch the region under the graph of the function and
find its area using FTC I.

1. f (x) = x2, [0, 1] 2. f (x) = 2x − x2, [0, 2]
3. f (x) = x−2, [1, 2] 4. f (x) = cos x,

[
0, π

2

]
In Exercises 5–42, evaluate the integral using FTC I.

5.
∫ 6

3
x dx 6.

∫ 9

0
2 dx

7.
∫ 1

0
(4x − 9x2) dx 8.

∫ 2

−3
u2 du

9.
∫ 2

0
(12x5 + 3x2 − 4x) dx 10.

∫ 2

−2
(10x9 + 3x5) dx

11.
∫ 0

3
(2t3 − 6t2) dt 12.

∫ 1

−1
(5u4 + u2 − u) du

13.
∫ 4

0

√
y dy 14.

∫ 8

1
x4/3 dx

15.
∫ 1

1/16
t1/4 dt 16.

∫ 1

4
t5/2 dt

17.
∫ 3

1

dt

t2
18.

∫ 4

1
x−4 dx

19.
∫ 1

1/2

8

x3
dx 20.

∫ −1

−2

1

x3
dx

21.
∫ 2

1
(x2 − x−2) dx 22.

∫ 9

1
t−1/2 dt

23.
∫ 27

1

t + 1√
t

dt 24.
∫ 1

8/27

10t4/3 − 8t1/3

t2
dt

25.
∫ 3π/4

π/4
sin θ dθ 26.

∫ 4π

2π
sin x dx

27.
∫ π/2

0
cos

(
1

3
θ

)
dθ 28.

∫ 5π/8

π/4
cos 2x dx

29.
∫ π/6

0
sec2

(
3t − π

6

)
dt 30.

∫ π/6

0
sec θ tan θ dθ

31.
∫ π/10

π/20
csc 5x cot 5x dx 32.

∫ π/14

π/28
csc2 7y dy

33.
∫ 1

0
ex dx 34.

∫ 5

3
e−4x dx

35.
∫ 3

0
e1−6t dt 36.

∫ 3

2
e4t−3 dt

37.
∫ 10

2

dx

x
38.

∫ −4

−12

dx

x

39.
∫ 1

0

dt

t + 1
40.

∫ 4

1

dt

5t + 4

41.
∫ 0

−2
(3x − 9e3x) dx 42.

∫ 6

2

(
x + 1

x

)
dx

In Exercises 43–48, write the integral as a sum of integrals without
absolute values and evaluate.

43.
∫ 1

−2
|x| dx 44.

∫ 5

0
|3 − x| dx

45.
∫ 3

−2
|x3| dx 46.

∫ 3

0
|x2 − 1| dx

47.
∫ π

0
|cos x| dx 48.

∫ 5

0
|x2 − 4x + 3| dx

In Exercises 49–54, evaluate the integral in terms of the constants.

49.
∫ b

1
x3 dx 50.

∫ a

b
x4 dx

51.
∫ b

1
x5 dx 52.

∫ x

−x
(t3 + t) dt
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53.
∫ 5a

a

dx

x
54.

∫ b2

b

dx

x

55. Calculate
∫ 3

−2
f (x) dx, where

f (x) =
{

12 − x2 for x ≤ 2

x3 for x > 2

56. Calculate
∫ 2π

0
f (x) dx, where

f (x) =
{

cos x for x ≤ π

cos x − sin 2x for x > π

57. Use FTC I to show that
∫ 1

−1
xn dx = 0 if n is an odd whole number.

Explain graphically.

58. Plot the functionf (x) = sin 3x − x. Find the positive root
of f (x) to three places and use it to find the area under the graph of
f (x) in the first quadrant.

59. Calculate F(4) given that F(1) = 3 and F ′(x) = x2. Hint: Express
F(4) − F(1) as a definite integral.

60. Calculate G(16), where dG/dt = t−1/2 and G(9) = −5.

61. Does
∫ 1

0
xn dx get larger or smaller as n increases? Ex-

plain graphically.

62. Show that the area of the shaded parabolic arch in Figure 8 is equal
to four-thirds the area of the triangle shown.

a b

y

x
a + b

2

FIGURE 8 Graph of y = (x − a)(b − x).

Further Insights and Challenges
63. Prove a famous result of Archimedes (generalizing Exercise 62):
For r < s, the area of the shaded region in Figure 9 is equal to four-
thirds the area of triangle �ACE, where C is the point on the parabola
at which the tangent line is parallel to secant line AE.

(a) Show that C has x-coordinate (r + s)/2.
(b) Show that ABDE has area (s − r)3/4 by viewing it as a parallel-
ogram of height s − r and base of length CF .
(c) Show that �ACE has area (s − r)3/8 by observing that it has the
same base and height as the parallelogram.
(d) Compute the shaded area as the area under the graph minus the
area of a trapezoid, and prove Archimedes’ result.

r s

y

B C D

A F E
x

r + s
2

FIGURE 9 Graph of f (x) = (x − a)(b − x).

64. (a) Apply the Comparison Theorem (Theorem 5 in Section 5.2) to
the inequality sin x ≤ x (valid for x ≥ 0) to prove that

1 − x2

2
≤ cos x ≤ 1

(b) Apply it again to prove that

x − x3

6
≤ sin x ≤ x (for x ≥ 0)

(c) Verify these inequalities for x = 0.3.

65. Use the method of Exercise 64 to prove that

1 − x2

2
≤ cos x ≤ 1 − x2

2
+ x4

24

x − x3

6
≤ sin x ≤ x − x3

6
+ x5

120
(for x ≥ 0)

Verify these inequalities for x = 0.1. Why have we specified x ≥ 0 for
sin x but not for cos x?

66. Calculate the next pair of inequalities for sin x and cos x by inte-
grating the results of Exercise 65. Can you guess the general pattern?

67. Use FTC I to prove that if |f ′(x)| ≤ K for x ∈ [a, b], then
|f (x) − f (a)| ≤ K|x − a| for x ∈ [a, b].
68. (a) Use Exercise 67 to prove that | sin a − sin b| ≤ |a − b| for all
a, b.

(b) Let f (x) = sin(x + a) − sin x. Use part (a) to show that the graph
of f (x) lies between the horizontal lines y = ±a.

(c) Plot f (x) and the lines y = ±a to verify (b) for a = 0.5
and a = 0.2.
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5.4 The Fundamental Theorem of Calculus, Part II
Part I of the Fundamental Theorem says that we can use antiderivatives to compute definite
integrals. Part II turns this relationship around: It tells us that we can use the definite integral
to construct antiderivatives.

To state Part II, we introduce the area function of f with lower limit a:
A(x) is sometimes called the cumulative
area function. In the definition of A(x), we
use t as the variable of integration to avoid
confusion with x, which is the upper limit
of integration. In fact, t is a dummy
variable and may be replaced by any other
variable.

A(x) =
∫ x

a

f (t) dt = signed area from a to x

In essence, we turn the definite integral into a function by treating the upper limit x as a
variable (Figure 1). Note that A(a) = 0 because A(a) = ∫ a

a
f (t) dt = 0.

In some cases we can find an explicit formula for A(x) [Figure 2].

a x
t

y

y = f (t)

A(x)

FIGURE 1 A(x) is the area under the graph
from a to x.

x

A(x)

7632 541

50

25

t

y

y = t2

FIGURE 2 The area under y = t2 from 3 to
x is A(x) = 1

3x3 − 9.

EXAMPLE 1 Find a formula for the area function A(x) =
∫ x

3
t2 dt .

Solution The function F(t) = 1
3 t3 is an antiderivative for f (t) = t2. By FTC I,

A(x) =
∫ x

3
t2 dt = F(x) − F(3) = 1

3
x3 − 1

3
· 33 = 1

3
x3 − 9

Note, in the previous example, that the derivative of A(x) is f (x) itself:

A′(x) = d

dx

(
1

3
x3 − 9

)
= x2

FTC II states that this relation always holds: The derivative of the area function is equal
to the original function.

THEOREM 1 Fundamental Theorem of Calculus, Part II Assume that f (x) is con-
tinuous on an open interval I and let a ∈ I . Then the area function

A(x) =
∫ x

a

f (t) dt

is an antiderivative of f (x) on I ; that is, A′(x) = f (x). Equivalently,

d

dx

∫ x

a

f (t) dt = f (x)

Furthermore, A(x) satisfies the initial condition A(a) = 0.
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Proof First, we use the additivity property of the definite integral to write the change in
A(x) over [x, x + h] as an integral:

A(x + h) − A(x) =
∫ x+h

a

f (t) dt −
∫ x

a

f (t) dt =
∫ x+h

x

f (t) dt

In other words, A(x + h) − A(x) is equal to the area of the thin sliver between the graph
and the x-axis from x to x + h in Figure 3.

x + hxa

This area equals
A(x + h) − A(x).

y = f (t)

t

y

FIGURE 3 The area of the thin sliver equals
A(x + h) − A(x).

f (x)
f (x + h)

y = f (t)

t

y

x + hxa

FIGURE 4 The shaded sliver lies between
the rectangles of heights f (x) and
f (x + h).

To simplify the rest of the proof, we assume that f (x) is increasing (see Exercise 50

In this proof,

A(x) =
∫ x

a

f (t) dt

A(x + h) − A(x) =
∫ x+h

x

f (t) dt

A′(x) = lim
h→0

A(x + h) − A(x)

h

for the general case). Then, if h > 0, this thin sliver lies between the two rectangles of
heights f (x) and f (x + h) in Figure 4, and we have

hf (x)︸ ︷︷ ︸
Area of smaller rectangle

≤ A(x + h) − A(x)︸ ︷︷ ︸
Area of sliver

≤ hf (x + h)︸ ︷︷ ︸
Area of larger rectangle

Now divide by h to squeeze the difference quotient between f (x) and f (x + h):

f (x) ≤ A(x + h) − A(x)

h
≤ f (x + h)

We have lim
h→0+ f (x + h) = f (x) because f (x) is continuous, and lim

h→0+ f (x) = f (x), so

the Squeeze Theorem gives us

lim
h→0+

A(x + h) − A(x)

h
= f (x) 1

A similar argument shows that for h < 0,

f (x + h) ≤ A(x + h) − A(x)

h
≤ f (x)

Again, the Squeeze Theorem gives us

lim
h→0−

A(x + h) − A(x)

h
= f (x) 2

Equations (1) and (2) show that A′(x) exists and A′(x) = f (x).

CONCEPTUAL INSIGHT Many applications (in the sciences, engineering, and statistics)
involve functions for which there is no explicit formula. Often, however, these functions
can be expressed as definite integrals (or as infinite series). This enables us to compute
their values numerically and create plots using a computer algebra system. Figure 5
shows a computer-generated graph of an antiderivative of f (x) = sin(x2), for which
there is no explicit formula.

1

y

x

y = F(x)

1

y

t
x

y = sin(t2)

−�π

−�π

FIGURE 5 Computer-generated graph of

F(x) =
∫ x

−√
π

sin(t2) dt .
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EXAMPLE 2 Antiderivative as an Integral Let F(x) be the particular antiderivative
of f (x) = sin(x2) satisfying F(−√

π) = 0. Express F(x) as an integral.

Solution According to FTC II, the area function with lower limit a = −√
π is an anti-

derivative satisfying F(−√
π) = 0:

F(x) =
∫ x

−√
π

sin(t2) dt

EXAMPLE 3 Differentiating an Integral Find the derivative of

A(x) =
∫ x

2

√
1 + t3 dt

and calculate A′(2), A′(3), and A(2).

Solution By FTC II, A′(x) = √
1 + x3. In particular,

A′(2) =
√

1 + 23 = 3 and A′(3) =
√

1 + 33 = √
28

On the other hand, A(2) =
∫ 2

2

√
1 + t3 dt = 0.

CONCEPTUAL INSIGHT The FTC shows that integration and differentiation are inverse
operations. By FTC II, if you start with a continuous function f (x) and form the integral∫ x

a
f (x) dx, then you get back the original function by differentiating:

f (x)
Integrate−→

∫ x

a

f (t) dt
Differentiate−→ d

dx

∫ x

a

f (t) dt = f (x)

On the other hand, by FTC I, if you differentiate first and then integrate, you also recover
f (x) [but only up to a constant f (a)]:

f (x)
Differentiate−→ f ′(x)

Integrate−→
∫ x

a

f ′(t) dt = f (x) − f (a)

When the upper limit of the integral is a function of x rather than x itself, we use
FTC II together with the Chain Rule to differentiate the integral.

EXAMPLE 4 The FTC and the Chain Rule Find the derivative of

G(x) =
∫ x2

−2
sin t dt

Solution FTC II does not apply directly because the upper limit is x2 rather than
x. It is necessary to recognize that G(x) is a composite function with outer function

A(x) =
∫ x

−2
sin t dt :

G(x) = A(x2) =
∫ x2

−2
sin t dt

FTC II tells us that A′(x) = sin x, so by the Chain Rule,

G′(x) = A′(x2) · (x2)′ = sin(x2) · (2x) = 2x sin(x2)

Alternatively, we may set u = x2 and use the Chain Rule as follows:

dG

dx
= d

dx

∫ x2

−2
sin t dt =

(
d

du

∫ u

−2
sin t dt

)
du

dx
= (sin u)2x = 2x sin(x2)
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GRAPHICAL INSIGHT Another Tale of Two Graphs FTC II tells us that A′(x) = f (x), or,
in other words, f (x) is the rate of change of A(x). If we did not know this result,
we might come to suspect it by comparing the graphs of A(x) and f (x). Consider the
following:

• Figure 6 shows that the increase in area �A for a given �x is larger at x2 than
at x1 because f (x2) > f (x1). So the size of f (x) determines how quickly A(x)

changes, as we would expect if A′(x) = f (x).
• Figure 7 shows that the sign of f (x) determines whether A(x) is increasing or

decreasing. If f (x) > 0, then A(x) is increasing because positive area is added as
we move to the right. When f (x) turns negative, A(x) begins to decrease because
we start adding negative area.

• A(x) has a local max at points where f (x) changes sign from + to − (the points
where the area turns negative), and has a local min when f (x) changes from − to
+. This agrees with the First Derivative Test.

These observations show that f (x) “behaves” like A′(x), as claimed by FTC II.

�A at x1

�A at x2

x1 x2

y

x

y = f (x)

FIGURE 6 The change in area �A for a
given �x is larger when f (x) is larger.

A(x)

Increasing

A(x)

Increasing

A(x) has
local max

Area increasing
here

A(x) has
local min

A(x)

Decreasing

y = A(x)

y = f (x)

+ + + +
− −

y

y

x

x

FIGURE 7 The sign of f (x) determines the
increasing/decreasing behavior of A(x).

5.4 SUMMARY

• The area function with lower limit a: A(x) =
∫ x

a

f (t) dt . It satisfies A(a) = 0.

• FTC II: A′(x) = f (x), or, equivalently,
d

dx

∫ x

a

f (t) dt = f (x).

• FTC II shows that every continuous function has an antiderivative—namely, its area
function (with any lower limit).

• To differentiate the function G(x) =
∫ g(x)

a

f (t) dt , write G(x) = A(g(x)), where

A(x) =
∫ x

a

f (t) dt . Then use the Chain Rule:

G′(x) = A′(g(x))g′(x) = f (g(x))g′(x)

5.4 EXERCISES

Preliminary Questions
1. Let G(x) =

∫ x

4

√
t3 + 1 dt .

(a) Is the FTC needed to calculate G(4)?
(b) Is the FTC needed to calculate G′(4)?

2. Which of the following is an antiderivative F(x) of f (x) = x2

satisfying F(2) = 0?

(a)
∫ x

2
2t dt (b)

∫ 2

0
t2 dt (c)

∫ x

2
t2 dt

3. Does every continuous function have an antiderivative? Explain.

4. Let G(x) =
∫ x3

4
sin t dt . Which of the following statements are

correct?

(a) G(x) is the composite function sin(x3).

(b) G(x) is the composite function A(x3), where

A(x) =
∫ x

4
sin(t) dt

(c) G(x) is too complicated to differentiate.

(d) The Product Rule is used to differentiate G(x).

(e) The Chain Rule is used to differentiate G(x).

(f) G′(x) = 3x2 sin(x3).
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Exercises
1. Write the area function of f (x) = 2x + 4 with lower limit a = −2

as an integral and find a formula for it.

2. Find a formula for the area function of f (x) = 2x + 4 with lower
limit a = 0.

3. Let G(x) = ∫ x
1 (t2 − 2) dt . Calculate G(1), G′(1) and G′(2). Then

find a formula for G(x).

4. Find F(0), F ′(0), and F ′(3), where F(x) =
∫ x

0

√
t2 + t dt .

5. Find G(1), G′(0), and G′(π/4), where G(x) =
∫ x

1
tan t dt .

6. Find H(−2) and H ′(−2), where H(x) =
∫ x

−2

du

u2 + 1
.

In Exercises 7–16, find formulas for the functions represented by the
integrals.

7.
∫ x

2
u4 du 8.

∫ x

2
(12t2 − 8t) dt

9.
∫ x

0
sin u du 10.

∫ x

−π/4
sec2 θ dθ

11.
∫ x

4
e3u du 12.

∫ 0

x
e−t dt

13.
∫ x2

1
t dt 14.

∫ x/4

x/2
sec2 u du

15.
∫ 9x+2

3x
e−u du 16.

∫ √
x

2

dt

t

In Exercises 17–20, express the antiderivative F(x) of f (x) satisfying
the given initial condition as an integral.

17. f (x) =
√

x3 + 1, F(5) = 0

18. f (x) = x + 1

x2 + 9
, F(7) = 0

19. f (x) = sec x, F(0) = 0

20. f (x) = e−x2
, F(−4) = 0

In Exercises 21–24, calculate the derivative.

21.
d

dx

∫ x

0
(t5 − 9t3) dt 22.

d

dθ

∫ θ

1
cot u du

23.
d

dt

∫ t

100
sec(5x − 9) dx 24.

d

ds

∫ s

−2
tan

(
1

1 + u2

)
du

25. Let A(x) =
∫ x

0
f (t) dt for f (x) in Figure 8.

(a) Calculate A(2), A(3), A′(2), and A′(3).

(b) Find formulas for A(x) on [0, 2] and [2, 4] and sketch the graph of
A(x).

4321

2

3

4

1

x

y

y = f (x)

FIGURE 8

26. Make a rough sketch of the graph of A(x) =
∫ x

0
g(t) dt for g(x)

in Figure 9.

4321

y = g(x)

x

y

FIGURE 9

27. Verify:
∫ x

0
|t | dt = 1

2
x|x|. Hint: Consider x ≥ 0 and x ≤ 0 sepa-

rately.

28. Find G′(1), where G(x) =
∫ x2

0

√
t3 + 3 dt .

In Exercises 29–34, calculate the derivative.

29.
d

dx

∫ x2

0

t dt

t + 1
30.

d

dx

∫ 1/x

1
cos3 t dt

31.
d

ds

∫ cos s

−6
u4 du 32.

d

dx

∫ x4

x2

√
t dt

Hint for Exercise 32: F(x) = A(x4) − A(x2).

33.
d

dx

∫ x2

√
x

tan t dt 34.
d

du

∫ 3u

−u

√
x2 + 1 dx

In Exercises 35–38, with f (x) as in Figure 10 let

A(x) =
∫ x

0
f (t) dt and B(x) =

∫ x

2
f (t) dt .

35. Find the min and max of A(x) on [0, 6].

36. Find the min and max of B(x) on [0, 6].

37. Find formulas for A(x) and B(x) valid on [2, 4].

38. Find formulas for A(x) and B(x) valid on [4, 5].
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x

y

63 4 521

2

1

0

−1

−2

y = f (x)

FIGURE 10

39. Let A(x) =
∫ x

0
f (t) dt , with f (x) as in Figure 11.

(a) Does A(x) have a local maximum at P ?
(b) Where does A(x) have a local minimum?
(c) Where does A(x) have a local maximum?
(d) True or false? A(x) < 0 for all x in the interval shown.

x

y

SR

Q

P
y = f (x)

FIGURE 11 Graph of f (x).

40. Determine f (x), assuming that
∫ x

0
f (t) dt = x2 + x.

41. Determine the function g(x) and all values of c such that∫ x

c
g(t) dt = x2 + x − 6

42. Find a ≤ b such that
∫ b

a
(x2 − 9) dx has minimal value.

In Exercises 43–44, let A(x) =
∫ x

a
f (t) dt .

43. Area Functions and Concavity Explain why the fol-
lowing statements are true. Assume f (x) is differentiable.

(a) If c is an inflection point of A(x), then f ′(c) = 0.
(b) A(x) is concave up if f (x) is increasing.
(c) A(x) is concave down if f (x) is decreasing.

44. Match the property of A(x) with the corresponding property of the
graph of f (x). Assume f (x) is differentiable.

Area function A(x)

(a) A(x) is decreasing.
(b) A(x) has a local maximum.
(c) A(x) is concave up.
(d) A(x) goes from concave up to concave down.

Graph of f (x)

(i) Lies below the x-axis.
(ii) Crosses the x-axis from positive to negative.

(iii) Has a local maximum.
(iv) f (x) is increasing.

45. Let A(x) =
∫ x

0
f (t) dt , with f (x) as in Figure 12. Determine:

(a) The intervals on which A(x) is increasing and decreasing

(b) The values x where A(x) has a local min or max

(c) The inflection points of A(x)

(d) The intervals where A(x) is concave up or concave down

2 4 6 8 10 12
x

y

y = f (x)

FIGURE 12

46. Let f (x) = x2 − 5x − 6 and F(x) =
∫ x

0
f (t) dt .

(a) Find the critical points of F(x) and determine whether they are
local minima or local maxima.

(b) Find the points of inflection of F(x) and determine whether the
concavity changes from up to down or from down to up.

(c) Plot f (x) and F(x) on the same set of axes and confirm
your answers to (a) and (b).

47. Sketch the graph of an increasing function f (x) such that both
f ′(x) and A(x) = ∫ x

0 f (t) dt are decreasing.

48. Figure 13 shows the graph of f (x) = x sin x. Let F(x) =∫ x

0
t sin t dt .

(a) Locate the local max and absolute max of F(x) on [0, 3π ].
(b) Justify graphically: F(x) has precisely one zero in [π, 2π ].
(c) How many zeros does F(x) have in [0, 3π ]?
(d) Find the inflection points of F(x) on [0, 3π ]. For each one, state
whether the concavity changes from up to down or from down to up.

−4

8

4

0 x

y

π π

2
3π 2π 3π

2
5π

2

FIGURE 13 Graph of f (x) = x sin x.

49. Find the smallest positive critical point of

F(x) =
∫ x

0
cos(t3/2) dt

and determine whether it is a local min or max. Then find the small-
est positive inflection point of F(x) and use a graph of y = cos(x3/2)

to determine whether the concavity changes from up to down or from
down to up.
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Further Insights and Challenges
50. Proof of FTC II The proof in the text assumes that f (x) is in-
creasing. To prove it for all continuous functions, let m(h) and M(h)

denote the minimum and maximum of f (t) on [x, x + h] (Figure 14).
The continuity of f (x) implies that lim

h→0
m(h) = lim

h→0
M(h) = f (x).

Show that for h > 0,

hm(h) ≤ A(x + h) − A(x) ≤ hM(h)

For h < 0, the inequalities are reversed. Prove that A′(x) = f (x).

x + hxa
t

y

M(h) m(h)

y = f (t)

FIGURE 14 Graphical interpretation of A(x + h) − A(x).

51. Proof of FTC I FTC I asserts that
∫ b
a f (t) dt = F(b) − F(a) if

F ′(x) = f (x). Use FTC II to give a new proof of FTC I as follows. Set
A(x) = ∫ x

a f (t) dt .

(a) Show that F(x) = A(x) + C for some constant.

(b) Show that F(b) − F(a) = A(b) − A(a) =
∫ b

a
f (t) dt .

52. Can Every Antiderivative Be Expressed as an Integral? The
area function

∫ x
a f (t) dt is an antiderivative of f (x) for every value of

a. However, not all antiderivatives are obtained in this way. The general
antiderivative of f (x) = x is F(x) = 1

2x2 + C. Show that F(x) is an
area function if C ≤ 0 but not if C > 0.

53. Prove the formula

d

dx

∫ v(x)

u(x)
f (t) dt = f (v(x))v′(x) − f (u(x))u′(x)

54. Use the result of Exercise 53 to calculate

d

dx

∫ ex

ln x
sin t dt

5.5 Net Change as the Integral of a Rate
So far we have focused on the area interpretation of the integral. In this section, we use
the integral to compute net change.

Consider the following problem: Water flows into an empty bucket at a rate of r(t)

liters per second. How much water is in the bucket after 4 seconds? If the rate of water
flow were constant—say, 1.5 liters/second—we would have

Quantity of water = flow rate × time elapsed = (1.5)4 = 6 liters

Suppose, however, that the flow rate r(t) varies as in Figure 1. Then the quantity of water
is equal to the area under the graph of r(t). To prove this, let s(t) be the amount of water
in the bucket at time t . Then s′(t) = r(t) because s′(t) is the rate at which the quantity of
water is changing. Furthermore, s(0) = 0 because the bucket is initially empty. By FTC I,

4321

r (liters/s)

t (s)

r(t)

1.5

1.0

0.5

FIGURE 1 The quantity of water in the
bucket is equal to the area under the graph
of the flow rate r(t).

∫ 4

0
s′(t) dt︸ ︷︷ ︸

Area under the graph
of the flow rate

= s(4) − s(0) = s(4)︸︷︷︸
Water in bucket

at t = 4

More generally, s(t2) − s(t1) is the net change in s(t) over the interval [t1, t2]. FTC I
yields the following result.

In Theorem 1, the variable t does not have
to be a time variable.

THEOREM 1 Net Change as the Integral of a Rate The net change in s(t) over an
interval [t1, t2] is given by the integral∫ t2

t1

s′(t) dt︸ ︷︷ ︸
Integral of the rate of change

= s(t2) − s(t1)︸ ︷︷ ︸
Net change over [t1,t2]
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EXAMPLE 1 Water leaks from a tank at a rate of 2 + 5t liters/hour, where t is the
number of hours after 7 am. How much water is lost between 9 and 11 am?

Solution Let s(t) be the quantity of water in the tank at time t . Then s ′(t) = −(2 + 5t),
where the minus sign occurs because s(t) is decreasing. Since 9 am and 11 am correspond
to t = 2 and t = 4, respectively, the net change in s(t) between 9 and 11 am is

s(4) − s(2) =
∫ 4

2
s′(t) dt = −

∫ 4

2
(2 + 5t) dt

= −
(

2t + 5

2
t2

)∣∣∣∣4

2
= (−48) − (−14) = −34 liters

The tank lost 34 liters between 9 and 11 am.

In the next example, we estimate an integral using numerical data. We shall compute
the average of the left- and right-endpoint approximations, because this is usually more
accurate than either endpoint approximation alone. (In Section 7.8, this average is called
the Trapezoidal Approximation.)

EXAMPLE 2 Traffic Flow The number of cars per hour passing an observation point
along a highway is called the traffic flow rate q(t) (in cars per hour).

(a) Which quantity is represented by the integral
∫ t2

t1

q(t) dt?

(b) The flow rate is recorded at 15-min intervals between 7:00 and 9:00 am. Estimate the
number of cars using the highway during this 2-hour period.

t 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00

q(t) 1044 1297 1478 1844 1451 1378 1155 802 542

Solution

(a) The integral
∫ t2
t1

q(t) dt represents the total number of cars that passed the observation
point during the time interval [t1, t2].
(b) The data values are spaced at intervals of �t = 0.25 hour. Thus,

LN = 0.25
(

1044 + 1297 + 1478 + 1844 + 1451 + 1378 + 1155 + 802
)

≈ 2612

RN = 0.25
(

1297 + 1478 + 1844 + 1451 + 1378 + 1155 + 802 + 542
)

≈ 2487

We estimate the number of cars that passed the observation point between 7 and 9 am by
taking the average of RN and LN :

In Example 2, LN is the sum of the values
of q(t) at the left endpoints

7:00, 7:15, . . . , 8:45

and RN is the sum of the values of q(t) at
the right endpoints

7:15, . . . , 8:45, 9:00

∫ 9

7
q(t) dt ≈ 1

2
(RN + LN) = 1

2
(2612 + 2487) ≈ 2550

Approximately 2550 cars used the highway between 7 and 9 am.

The Integral of Velocity
Let s(t) be the position at time t of an object in linear motion. Then the object’s velocity is
v(t) = s′(t), and the integral of v(t) is equal to the net change in position or displacement
over a time interval [t1, t2]:
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∫ t2

t1

v(t) dt =
∫ t2

t1

s′(t) dt = s(t2) − s(t1)︸ ︷︷ ︸
Displacement or net
change in position

We must distinguish between displacement and distance traveled. If you travel 10 km
and return to your starting point, your displacement is zero but your distance traveled is
20 km. To compute distance traveled rather than displacement, integrate the speed |v(t)|.

THEOREM 2 The Integral of Velocity For an object in linear motion with velocity
v(t), then

Displacement during [t1, t2] =
∫ t2

t1

v(t) dt

Distance traveled during [t1, t2] =
∫ t2

t1

|v(t)| dt

EXAMPLE 3 A particle has velocity v(t) = t3 − 10t2 + 24t m/s. Compute:

642

v(t) (m/s)

15

10

0

5

−5

t (s)

FIGURE 2 Graph of
v(t) = t3 − 10t2 + 24t . Over [4, 6], the
dashed curve is the graph of |v(t)|.

(a) Displacement over [0, 6] (b) Total distance traveled over [0, 6]
Indicate the particle’s trajectory with a motion diagram.

Solution First, we compute the indefinite integral:∫
v(t) dt =

∫
(t3 − 10t2 + 24t) dt = 1

4
t4 − 10

3
t3 + 12t2 + C

(a) The displacement over the time interval [0, 6] is

∫ 6

0
v(t) dt =

(
1

4
t4 − 10

3
t3 + 12t2

)∣∣∣∣6

0
= 36 m

(b) The factorization v(t) = t (t − 4)(t − 6) shows that v(t) changes sign at t = 4. It is
positive on [0, 4] and negative on [4, 6] as we see in Figure 2. Therefore, the total distance
traveled is ∫ 6

0
|v(t)| dt =

∫ 4

0
v(t) dt −

∫ 6

4
v(t) dt

We evaluate these two integrals separately:

[0, 4]:
∫ 4

0
v(t) dt =

(
1

4
t4 − 10

3
t3 + 12t2

)∣∣∣∣4

0
= 128

3
m

[4, 6]:
∫ 6

4
v(t) dt =

(
1

4
t4 − 10

3
t3 + 12t2

)∣∣∣∣6

4
= −20

3
m

The total distance traveled is 128
3 + 20

3 = 148
3 = 49 1

3 m.
Figure 3 is a motion diagram indicating the particle’s trajectory. The particle travels

128
3 m during the first 4 s and then backtracks 20

3 m over the next 2 s.

0

t = 0

t = 6
t = 4

36
Distance

128
3

FIGURE 3 Path of the particle along a
straight line.
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Total versus Marginal Cost
Consider the cost function C(x) of a manufacturer (the dollar cost of producing x units
of a particular product or commodity). The derivative C ′(x) is called the marginal cost.
The cost of increasing production from a to b is the net change C(b) − C(a), which isIn Section 3.4, we defined the marginal

cost at production level x0 as the cost

C(x0 + 1) − C(x0)

of producing one additional unit. Since this
marginal cost is approximated well by the
derivative C ′(x0), we often refer to C ′(x)

itself as the marginal cost.

equal to the integral of the marginal cost:

Cost of increasing production from a to b =
∫ b

a

C′(x) dx

EXAMPLE 4 The marginal cost of producing x computer chips (in units of 1000) is
C′(x) = 300x2 − 4000x + 40,000 (dollars per thousand chips).

(a) Find the cost of increasing production from 10,000 to 15,000 chips.

(b) Determine the total cost of producing 15,000 chips, assuming that it costs $30,000 to
set up the manufacturing run [that is, C(0) = 30,000].

Solution

(a) The cost of increasing production from 10,000 (x = 10) to 15,000 (x = 15) is

C(15) − C(10) =
∫ 15

10
(300x2 − 4000x + 40,000) dx

= (100x3 − 2000x2 + 40,000x)

∣∣∣15

10

= 487,500 − 300,000 = $187,500

(b) The cost of increasing production from 0 to 15,000 chips is

C(15) − C(0) =
∫ 15

0
(300x2 − 4000x + 40,000) dx

= (100x3 − 2000x2 + 40,000x)

∣∣∣15

0
= $487,500

The total cost of producing 15,000 chips includes the set-up costs of $30,000:

C(15) = C(0) + 487,500 = 30,000 + 487,500 = $517,500

5.5 SUMMARY

• Many applications are based on the following principle: The net change in a quantity
s(t) is equal to the integral of its rate of change:

s(t2) − s(t1)︸ ︷︷ ︸
Net change over [t1,t2]

=
∫ t2

t1

s′(t) dt

• For an object traveling in a straight line at velocity v(t),

Displacement during [t1, t2] =
∫ t2

t1

v(t) dt

Total distance traveled during [t1, t2] =
∫ t2

t1

|v(t)| dt
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• If C(x) is the cost of producing x units of a commodity, then C′(x) is the marginal cost
and

Cost of increasing production from a to b =
∫ b

a

C′(x) dx

5.5 EXERCISES

Preliminary Questions
1. Ahot metal object is submerged in cold water. The rate at which the

object cools (in degrees per minute) is a function f (t) of time. Which
quantity is represented by the integral

∫ T
0 f (t) dt?

2. A plane travels 560 km from Los Angeles to San Francisco in
1 hour. If the plane’s velocity at time t is v(t) km/h, what is the value
of

∫ 1
0 v(t) dt?

3. Which of the following quantities would be naturally represented
as derivatives and which as integrals?

(a) Velocity of a train

(b) Rainfall during a 6-month period

(c) Mileage per gallon of an automobile

(d) Increase in the U.S. population from 1990 to 2010

Exercises
1. Water flows into an empty reservoir at a rate of 3000 + 20t

liters per hour. What is the quantity of water in the reservoir after
5 hours?

2. A population of insects increases at a rate of 200 + 10t + 0.25t2

insects per day. Find the insect population after 3 days, assuming that
there are 35 insects at t = 0.

3. A survey shows that a mayoral candidate is gaining votes at a rate
of 2000t + 1000 votes per day, where t is the number of days since
she announced her candidacy. How many supporters will the candidate
have after 60 days, assuming that she had no supporters at t = 0?

4. A factory produces bicycles at a rate of 95 + 3t2 − t bicycles per
week. How many bicycles were produced from the beginning of week 2
to the end of week 3?

5. Find the displacement of a particle moving in a straight line with
velocity v(t) = 4t − 3 m/s over the time interval [2, 5].

6. Find the displacement over the time interval [1, 6] of a helicopter
whose (vertical) velocity at time t is v(t) = 0.02t2 + t m/s.

7. A cat falls from a tree (with zero initial velocity) at time t = 0.
How far does the cat fall between t = 0.5 and t = 1 s? Use Galileo’s
formula v(t) = −9.8t m/s.

8. Aprojectile is released with an initial (vertical) velocity of 100 m/s.
Use the formula v(t) = 100 − 9.8t for velocity to determine the dis-
tance traveled during the first 15 seconds.

In Exercises 9–12, a particle moves in a straight line with the given
velocity (in m/s). Find the displacement and distance traveled over the
time interval, and draw a motion diagram like Figure 3 (with distance
and time labels).

9. v(t) = 12 − 4t , [0, 5]
10. v(t) = 36 − 24t + 3t2, [0, 10]
11. v(t) = t−2 − 1, [0.5, 2] 12. v(t) = cos t , [0, 3π ]

13. Find the net change in velocity over [1, 4] of an object with
a(t) = 8t − t2 m/s2.

14. Show that if acceleration is constant, then the change in velocity
is proportional to the length of the time interval.

15. The traffic flow rate past a certain point on a highway is q(t) =
3000 + 2000t − 300t2 (t in hours), where t = 0 is 8 am. How many
cars pass by in the time interval from 8 to 10 am?

16. The marginal cost of producing x tablet computers is C′(x) =
120 − 0.06x + 0.00001x2 What is the cost of producing 3000 units if
the setup cost is $90,000? If production is set at 3000 units, what is the
cost of producing 200 additional units?

17. A small boutique produces wool sweaters at a marginal cost of
40 − 5[[x/5]] for 0 ≤ x ≤ 20, where [[x]] is the greatest integer func-
tion. Find the cost of producing 20 sweaters. Then compute the average
cost of the first 10 sweaters and the last 10 sweaters.

18. The rate (in liters per minute) at which water drains from a tank is
recorded at half-minute intervals. Compute the average of the left- and
right-endpoint approximations to estimate the total amount of water
drained during the first 3 minutes.

t (min) 0 0.5 1 1.5 2 2.5 3

r (l/min) 50 48 46 44 42 40 38

19. The velocity of a car is recorded at half-second intervals (in feet per
second). Use the average of the left- and right-endpoint approximations
to estimate the total distance traveled during the first 4 seconds.

t 0 0.5 1 1.5 2 2.5 3 3.5 4

v(t) 0 12 20 29 38 44 32 35 30
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20. To model the effects of a carbon tax on CO2 emissions, policy-
makers study the marginal cost of abatement B(x), defined as the cost
of increasing CO2 reduction from x to x + 1 tons (in units of ten thou-
sand tons—Figure 4). Which quantity is represented by the area under
the curve over [0, 3] in Figure 4?

321

B(x) ($/ton)

Tons reduced (in ten thousands)

75

100

50

25

x

FIGURE 4 Marginal cost of abatement B(x).

21. A megawatt of power is 106 W, or 3.6 × 109 J/hour. Which quan-
tity is represented by the area under the graph in Figure 5? Estimate the
energy (in joules) consumed during the period 4 pm to 8 pm.

18

19

20

21

22

23

24

25

26

27

28

00 02 04 06 08 10 12 14 16 18 20 22 24

Megawatts (in thousands)

Hour of the day

FIGURE 5 Power consumption over 1-day period in California
(February 2010).

22. Figure 6 shows the migration rate M(t) of Ireland in the
period 1988–1998. This is the rate at which people (in thousands per
year) move into or out of the country.

(a) Is the following integral positive or negative? What does this quan-
tity represent?

∫ 1998

1988
M(t) dt

(b) Did migration in the period 1988–1998 result in a net influx of
people into Ireland or a net outflow of people from Ireland?

(c) During which two years could the Irish prime minister announce,
“We’ve hit an inflection point. We are still losing population, but the
trend is now improving.”

2000199819961990 1992

1994

1988

30
M(t)

20
10
0

−50
−40
−30
−20
−10

FIGURE 6 Irish migration rate (in thousands per year).

23. Let N(d) be the number of asteroids of diameter ≤ d kilometers.
Data suggest that the diameters are distributed according to a piecewise
power law:

N ′(d) =
{

1.9 × 109d−2.3 for d < 70

2.6 × 1012d−4 for d ≥ 70

(a) Compute the number of asteroids with diameter between 0.1 and
100 km.

(b) Using the approximation N(d + 1) − N(d) ≈ N ′(d), estimate the
number of asteroids of diameter 50 km.

24. Heat Capacity The heat capacity C(T ) of a substance is the
amount of energy (in joules) required to raise the temperature of 1 g by
1◦C at temperature T .

(a) Explain why the energy required to raise the temperature from T1
to T2 is the area under the graph of C(T ) over [T1, T2].
(b) How much energy is required to raise the temperature from 50 to
100◦C if C(T ) = 6 + 0.2

√
T ?

25. Figure 7 shows the rate R(t) of natural gas consumption (in billions
of cubic feet per day) in the mid-Atlantic states (New York, New Jersey,
Pennsylvania). Express the total quantity of natural gas consumed in
2009 as an integral (with respect to time t in days). Then estimate this
quantity, given the following monthly values of R(t):

3.18, 2.86, 2.39, 1.49, 1.08, 0.80,
1.01, 0.89, 0.89, 1.20, 1.64, 2.52

Keep in mind that the number of days in a month varies with the month.

1

2

3

J A S O N DJ F M A M J

Natural gas consumption  (109 cubic ft/day)

FIGURE 7 Natural gas consumption in 2009 in the mid-Atlantic states
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26. Cardiac output is the rate R of volume of blood pumped
by the heart per unit time (in liters per minute). Doctors measure R by
injecting A mg of dye into a vein leading into the heart at t = 0 and
recording the concentration c(t) of dye (in milligrams per liter) pumped
out at short regular time intervals (Figure 8).

(a) Explain: The quantity of dye pumped out in a small time interval
[t, t + �t] is approximately Rc(t)�t .

Blood flow

Inject dye
here

Measure
concentration

here

t (s)

y = c(t)

c(t) (mg/l)

FIGURE 8

(b) Show that A = R
∫ T

0 c(t) dt , where T is large enough that all of
the dye is pumped through the heart but not so large that the dye returns
by recirculation.

(c) Assume A = 5 mg. Estimate R using the following values of c(t)

recorded at 1-second intervals from t = 0 to t = 10:

0, 0.4, 2.8, 6.5, 9.8, 8.9,
6.1, 4, 2.3, 1.1, 0

Exercises 27 and 28: A study suggests that the extinction rate r(t) of
marine animal families during the Phanerozoic Eon can be modeled
by the function r(t) = 3130/(t + 262) for 0 ≤ t ≤ 544, where t is time
elapsed (in millions of years) since the beginning of the eon 544 million
years ago. Thus, t = 544 refers to the present time, t = 540 is 4 million
years ago, and so on.

27. Compute the average of RN and LN with N = 5 to estimate the to-
tal number of families that became extinct in the periods 100 ≤ t ≤ 150
and 350 ≤ t ≤ 400.

28. Estimate the total number of extinct families from t = 0
to the present, using MN with N = 544.

Further Insights and Challenges
29. Show that a particle, located at the origin at t = 1 and moving along
the x-axis with velocity v(t) = t−2, will never pass the point x = 2.

30. Show that a particle, located at the origin at t = 1 and moving
along the x-axis with velocity v(t) = t−1/2 moves arbitrarily far from
the origin after sufficient time has elapsed.

5.6 Substitution Method
Integration (antidifferentiation) is generally more difficult than differentiation. There areThe term “integration” is used in two ways.

It refers to:

• The process of finding signed area
(computing a definite integral), and
also

• The process of finding an antiderivative
(evaluating an indefinite integral).

no sure-fire methods, and many antiderivatives cannot be expressed in terms of elementary
functions. However, there are a few important general techniques. One such technique is
the Substitution Method, which uses the Chain Rule “in reverse.”

Consider the integral
∫

2x cos(x2) dx. We can evaluate it if we remember the Chain
Rule calculation

d

dx
sin(x2) = 2x cos(x2)

This tells us that sin(x2) is an antiderivative of 2x cos(x2), and therefore,∫
2x︸︷︷︸

Derivative of
inside function

cos(x2)︸︷︷︸
Inside

function

dx = sin(x2) + C

A similar Chain Rule calculation shows that∫
(1 + 3x2)︸ ︷︷ ︸
Derivative of

inside function

cos(x + x3︸ ︷︷ ︸
Inside

function

) dx = sin(x + x3) + C

In both cases, the integrand is the product of a composite function and the derivative of

REMINDER A “composite function”
is a function of the form f (g(x)). For
convenience, we call g(x) the inside
function and f (u) the outside function. the inside function. The Chain Rule does not help if the derivative of the inside function is

missing. For instance, we cannot use the Chain Rule to compute
∫

cos(x + x3) dx because
the factor (1 + 3x2) does not appear.
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In general, if F ′(u) = f (u), then by the Chain Rule,

d

dx
F(u(x)) = F ′(u(x))u′(x) = f (u(x))u′(x)

This translates into the following integration formula:

THEOREM 1 The Substitution Method If F ′(x) = f (x), then

∫
f (u(x))u′(x) dx = F(u(x)) + C

Substitution Using Differentials
Before proceeding to the examples, we discuss the procedure for carrying out substitution
using differentials. Differentials are symbols such as du or dx that occur in the Leibniz
notations du/dx and

∫
f (x) dx. In our calculations, we shall manipulate them as though

they are related by an equation in which the dx “cancels”:

du = du

dx
dx

Equivalently, du and dx are related by

du = u′(x) dx 1

For example,

If u = x2, then du = 2x dx

If u = cos(x3), then du = −3x2 sin(x3) dx

Now when the integrand has the form f (u(x)) u′(x), we can use Eq. (1) to rewrite the
entire integral (including the dx term) in terms of u and its differential du:

The symbolic calculus of substitution using
differentials was invented by Leibniz and is
considered one of his most important
achievements. It reduces the otherwise
complicated process of transforming
integrals to a convenient set of rules.

∫
f (u(x))︸ ︷︷ ︸

f (u)

u′(x) dx︸ ︷︷ ︸
du

=
∫

f (u) du

This equation is called the Change of Variables Formula. It transforms an integral in the
variable x into a (hopefully simpler) integral in the new variable u.

EXAMPLE 1 Evaluate
∫

3x2 sin(x3) dx.

Solution The integrand contains the composite function sin(x3), so we set u = x3. TheIn substitution, the key step is to choose
the appropriate inside function u. differential du = 3x2 dx also appears, so we can carry out the substitution:∫

3x2 sin(x3) dx =
∫

sin(x3)︸ ︷︷ ︸
sin u

3x2 dx︸ ︷︷ ︸
du

=
∫

sin u du

Now evaluate the integral in the u-variable and replace u by x3 in the answer:∫
3x2 sin(x3) dx =

∫
sin u du = − cos u + C = − cos(x3) + C
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Let’s check our answer by differentiating:

d

dx
(− cos(x3)) = sin(x3)

d

dx
x3 = 3x2 sin(x3)

EXAMPLE 2 Multiplying du by a Constant Evaluate
∫

x(x2 + 9)5 dx.

Solution We let u = x2 + 9 because the composite u5 = (x2 + 9)5 appears in the inte-
grand. The differential du = 2x dx does not appear as is, but we can multiply by 1

2 to
obtain

1

2
du = x dx ⇒ 1

2
u5 du = x(x2 + 9)5 dx

Now we can apply substitution:

∫
x(x2 + 9)5 dx =

∫ u5︷ ︸︸ ︷
(x2 + 9)5

1
2 du︷︸︸︷

x dx = 1

2

∫
u5 du = 1

12
u6 + C

Finally, we express the answer in terms of x by substituting u = x2 + 9:∫
x(x2 + 9)5 dx = 1

12
u6 + C = 1

12
(x2 + 9)6 + C

EXAMPLE 3 Evaluate
∫

(x2 + 2x) dx

(x3 + 3x2 + 12)6
.Substitution Method:

(1) Choose u and compute du.

(2) Rewrite the integral in terms of u and
du, and evaluate.

(3) Express the final answer in terms of x.

Solution The appearance of (x3 + 3x2 + 12)−6 in the integrand suggests that we try
u = x3 + 3x2 + 12. With this choice,

du = (3x2 + 6x) dx = 3(x2 + 2x) dx ⇒ 1

3
du = (x2 + 2x) dx

∫
(x2 + 2x) dx

(x3 + 3x2 + 12)6
=

∫ u−6︷ ︸︸ ︷
(x3 + 3x2 + 12)−6

1
3 du︷ ︸︸ ︷

(x2 + 2x) dx

= 1

3

∫
u−6 du =

(
1

3

) (
u−5

−5

)
+ C

= − 1

15
(x3 + 3x2 + 12)−5 + C

CONCEPTUAL INSIGHT An integration method that works for a given function may fail
if we change the function even slightly. In the previous example, if we replace 2 by 2.1

and consider instead
∫

(x2 + 2.1x) dx

(x3 + 3x2 + 12)6
, the Substitution Method does not work. The

problem is that (x2 + 2.1x) dx is not a multiple of du = (3x2 + 6x) dx.

EXAMPLE 4 Evaluate
∫

sin(7θ + 5) dθ .

Solution Let u = 7θ + 5. Then du = 7 dθ and 1
7 du = dθ . We obtain∫

sin(7θ + 5) dθ = 1

7

∫
sin u du = −1

7
cos u + C = −1

7
cos(7θ + 5) + C
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EXAMPLE 5 Evaluate
∫

e−9t dt .

Solution Use the substitution u = −9t , du = −9 dt :∫
e−9t dt =

∫
eu

(
−1

9
du

)
= −1

9

∫
eu du = −1

9
eu + C = −1

9
e−9t + C

EXAMPLE 6 Integral of tan θ Evaluate
∫

tan θ dθ .

Solution In this case, the idea is to write tan θ dθ = sin θ dθ

cos θ
and to note that if u = cos θ .

Then du = − sin θ dθ and∫
tan θ dθ =

∫
sin θ dθ

cos θ
= −

∫
du

u
= − ln |u| + C = − ln |cos θ | + C

Now recall that − ln u = ln 1
u

. Thus, − ln |cos θ | = ln 1
|cos θ | , and we obtain∫

tan θ dθ = ln

∣∣∣∣ 1

cos θ

∣∣∣∣ + C = ln |sec θ | + C

EXAMPLE 7 Additional Step Necessary Evaluate
∫

x
√

5x + 1 dx.

Solution Since
√

5x + 1 appears, we are tempted to set u = 5x + 1. Then

du = 5dx ⇒ √
5x + 1 dx = 1

5
u1/2 du

Unfortunately, the integrand is not
√

5x + 1 but x
√

5x + 1. To take care of the extra factor
of x, we solve u = 5x + 1 to obtain x = 1

5 (u − 1). Then

x
√

5x + 1 dx =
(

1

5
(u − 1)

)
1

5
u1/2 du = 1

25
(u − 1) u1/2 du

∫
x
√

5x + 1 dx = 1

25

∫
(u − 1) u1/2 du = 1

25

∫
(u3/2 − u1/2) du

= 1

25

(
2

5
u5/2 − 2

3
u3/2

)
+ C

= 2

125
(5x + 1)5/2 − 2

75
(5x + 1)3/2 + C

The substitution method does not always
work, even when the integral looks
relatively simple. For example,∫

sin(x2) dx cannot be evaluated explicitly
by substitution, or any other method. With
experience, you will learn to recognize
when substitution is likely to be successful.

Change of Variables Formula for Definite Integrals
The Change of Variables Formula can be applied to definite integrals provided that the
limits of integration are changed, as indicated in the next theorem.

The new limits of integration with respect
to the u-variable are u(a) and u(b). Think
of it this way: As x varies from a to b, the
variable u = u(x) varies from u(a) to u(b).

Change of Variables Formula for Definite Integrals

∫ b

a

f (u(x))u′(x) dx =
∫ u(b)

u(a)

f (u) du 2
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Proof If F(x) is an antiderivative of f (x), then F(u(x)) is an antiderivative ofChange of Variables for definite integrals:∫ b

a

f (u(x))u′(x) dx =
∫ u(b)

u(a)

f (u) du

f (u(x))u′(x). FTC I shows that the two integrals are equal:∫ b

a

f (u(x))u′(x) dx = F(u(b)) − F(u(a))

∫ u(b)

u(a)

f (u) du = F(u(b)) − F(u(a))

21

12

x

y

y = x2�x3 + 1

FIGURE 1 Region represented by∫ 2

0
x2

√
x3 + 1 dx.

EXAMPLE 8 Evaluate
∫ 2

0
x2

√
x3 + 1 dx.

Solution Use the substitution u = x3 + 1, du = 3x2 dx:

x2
√

x3 + 1 dx = 1

3

√
u du

By Eq. (2), the new limits of integration

u(0) = 03 + 1 = 1 and u(2) = 23 + 1 = 9

Thus, ∫ 2

0
x2

√
x3 + 1 dx = 1

3

∫ 9

1

√
u du = 2

9
u3/2

∣∣∣∣9

1
= 52

9

This substitution shows that the area in Figure 1 is equal to one-third of the area in Figure 2

1 5 9

3

1
u

y

y = �u

FIGURE 2 Region represented by∫ 9

1

√
u du.

(but note that the figures are drawn to different scales).

In the previous example, we can avoid changing the limits of integration by evaluating
the integral in terms of x.∫

x2
√

x3 + 1 dx = 1

3

∫ √
u du = 2

9
u3/2 = 2

9
(x3 + 1)3/2

This leads to the same result:
∫ 2

0
x2

√
x3 + 1 dx = 2

9
(x3 + 1)3/2

∣∣∣2

0
= 52

9
.

EXAMPLE 9 Evaluate
∫ π/4

0
tan3 θ sec2 θ dθ .

Solution The substitution u = tan θ makes sense because du = sec2 θ dθ and therefore,
u3 du = tan3 θ sec2 θ dθ . The new limits of integration are

u(0) = tan 0 = 0 and u
(π

4

)
= tan

(π

4

)
= 1

Thus, ∫ π/4

0
tan3 θ sec2 θ dθ =

∫ 1

0
u3 du = u4

4

∣∣∣∣1

0
= 1

4

EXAMPLE 10 Calculate the area under the graph of y = x

x2 + 1
over [1, 3].

Solution The area (Figure 3) is equal to
∫ 3

1

x

x2 + 1
dx. We use the substitution

y

x
53−1−3 1

y = x
x2 + 1

FIGURE 3 Area under the graph of

y = x

x2 + 1
over [1, 3].

u = x2 + 1, du = 2x dx,
1

2

du

u
= x dx

x2 + 1
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The new limits of integration are u(1) = 12 + 1 = 2 and u(3) = 32 + 1 = 10, so∫ 3

1

x

x2 + 1
dx = 1

2

∫ 10

2

du

u
= 1

2
ln |u|

∣∣∣10

2
= 1

2
ln 10 − 1

2
ln 2 ≈ 0.805

5.6 SUMMARY

• Try the Substitution Method when the integrand has the form f (u(x)) u′(x). If F is an
antiderivative of f , then ∫

f (u(x)) u′(x) dx = F(u(x)) + C

• The differential of u(x) is related to dx by du = u′(x) dx.
• The Substitution Method is expressed by the Change of Variables Formula:∫

f (u(x)) u′(x) dx =
∫

f (u) du

• Change of Variables Formula for definite integrals:∫ b

a

f (u(x)) u′(x) dx =
∫ u(b)

u(a)

f (u) du

5.6 EXERCISES

Preliminary Questions
1. Which of the following integrals is a candidate for the Substitution

Method?

(a)
∫

5x4 sin(x5) dx (b)
∫

sin5 x cos x dx

(c)
∫

x5 sin x dx

2. Find an appropriate choice of u for evaluating the following inte-
grals by substitution:

(a)
∫

x(x2 + 9)4 dx (b)
∫

x2 sin(x3) dx

(c)
∫

sin x cos2 x dx

3. Which of the following is equal to
∫ 2

0
x2(x3 + 1) dx for a suitable

substitution?

(a)
1

3

∫ 2

0
u du (b)

∫ 9

0
u du (c)

1

3

∫ 9

1
u du

Exercises
In Exercises 1–6, calculate du.

1. u = x3 − x2 2. u = 2x4 + 8x−1

3. u = cos(x2) 4. u = tan x

5. u = e4x+1 6. u = ln(x4 + 1)

In Exercises 7–22, write the integral in terms of u and du. Then eval-
uate.

7.
∫

(x − 7)3 dx, u = x − 7

8.
∫

(x + 25)−2 dx, u = x + 25

9.
∫

t
√

t2 + 1 dt , u = t2 + 1

10.
∫

(x3 + 1) cos(x4 + 4x) dx, u = x4 + 4x

11.
∫

t3

(4 − 2t4)11
dt , u = 4 − 2t4

12.
∫ √

4x − 1 dx, u = 4x − 1

13.
∫

x(x + 1)9 dx, u = x + 1

14.
∫

x
√

4x − 1 dx, u = 4x − 1

15.
∫

x2√
x + 1 dx, u = x + 1
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16.
∫

sin(4θ − 7) dθ , u = 4θ − 7

17.
∫

sin2 θ cos θ dθ , u = sin θ

18.
∫

sec2 x tan x dx, u = tan x

19.
∫

xe−x2
dx, u = −x2

20.
∫

(sec2 t)etan t dt , u = tan t

21.
∫

(ln x)2 dx

x
, u = ln x

22.
∫

(tan−1 x)2 dx

x2 + 1
, u = tan−1 x

In Exercises 23–26, evaluate the integral in the form a sin(u(x)) + C

for an appropriate choice of u(x) and constant a.

23.
∫

x3 cos(x4) dx 24.
∫

x2 cos(x3 + 1) dx

25.
∫

x1/2 cos(x3/2) dx 26.
∫

cos x cos(sin x) dx

In Exercises 27–72, evaluate the indefinite integral.

27.
∫

(4x + 5)9 dx 28.
∫

dx

(x − 9)5

29.
∫

dt√
t + 12

30.
∫

(9t + 2)2/3 dt

31.
∫

x + 1

(x2 + 2x)3
dx

32.
∫

(x + 1)(x2 + 2x)3/4 dx

33.
∫

x√
x2 + 9

dx 34.
∫

2x2 + x

(4x3 + 3x2)2
dx

35.
∫

(3x2 + 1)(x3 + x)2 dx 36.
∫

5x4 + 2x

(x5 + x2)3
dx

37.
∫

(3x + 8)11 dx 38.
∫

x(3x + 8)11 dx

39.
∫

x2
√

x3 + 1 dx 40.
∫

x5
√

x3 + 1 dx

41.
∫

dx

(x + 5)3
42.

∫
x2 dx

(x + 5)3

43.
∫

z2(z3 + 1)12 dz

44.
∫

(z5 + 4z2)(z3 + 1)12 dz

45.
∫

(x + 2)(x + 1)1/4 dx 46.
∫

x3(x2 − 1)3/2 dx

47.
∫

sin(8 − 3θ) dθ 48.
∫

θ sin(θ2) dθ

49.
∫

cos
√

t√
t

dt 50.
∫

x2 sin(x3 + 1) dx

51.
∫

tan(4θ + 9) dθ 52.
∫

sin8 θ cos θ dθ

53.
∫

cot x dx 54.
∫

x−1/5 tan x4/5 dx

55.
∫

sec2(4x + 9) dx 56.
∫

sec2 x tan4 x dx

57.
∫

sec2(
√

x) dx√
x

58.
∫

cos 2x

(1 + sin 2x)2
dx

59.
∫

sin 4x
√

cos 4x + 1 dx 60.
∫

cos x(3 sin x − 1) dx

61.
∫

sec θ tan θ(sec θ − 1) dθ 62.
∫

cos t cos(sin t) dt

63.
∫

e14x−7 dx 64.
∫

(x + 1)ex2+2x dx

65.
∫

ex dx

(ex + 1)4
66.

∫
(sec2 θ) etan θ dθ

67.
∫

et dt

e2t + 2et + 1
68.

∫
dx

x(ln x)2

69.
∫

(ln x)4 dx

x
70.

∫
dx

x ln x

71.
∫

tan(ln x)

x
dx 72.

∫
(cot x) ln(sin x) dx

73. Evaluate
∫

dx

(1 + √
x)3

using u = 1 + √
x. Hint: Show that

dx = 2(u − 1)du.

74. Can They Both Be Right? Hannah uses the substitution u =
tan x and Akiva uses u = sec x to evaluate

∫
tan x sec2 x dx. Show that

they obtain different answers, and explain the apparent contradiction.

75. Evaluate
∫

sin x cos x dx using substitution in two different ways:
first using u = sin x and then using u = cos x. Reconcile the two dif-
ferent answers.

76. Some Choices Are Better Than Others Evaluate∫
sin x cos2 x dx

twice. First use u = sin x to show that∫
sin x cos2 x dx =

∫
u
√

1 − u2 du

and evaluate the integral on the right by a further substitution. Then
show that u = cos x is a better choice.
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77. What are the new limits of integration if we apply the substitution
u = 3x + π to the integral

∫ π
0 sin(3x + π) dx?

78. Which of the following is the result of applying the substitution
u = 4x − 9 to the integral

∫ 8
2 (4x − 9)20 dx?

(a)
∫ 8

2
u20 du (b)

1

4

∫ 8

2
u20 du

(c) 4
∫ 23

−1
u20 du (d)

1

4

∫ 23

−1
u20 du

In Exercises 79–90, use the Change-of-Variables Formula to evaluate
the definite integral.

79.
∫ 3

1
(x + 2)3 dx 80.

∫ 6

1

√
x + 3 dx

81.
∫ 1

0

x

(x2 + 1)3
dx 82.

∫ 2

−1

√
5x + 6 dx

83.
∫ 4

0
x
√

x2 + 9 dx 84.
∫ 2

1

4x + 12

(x2 + 6x + 1)2
dx

85.
∫ 1

0
(x + 1)(x2 + 2x)5 dx 86.

∫ 17

10
(x − 9)−2/3 dx

87.
∫ 1

0
θ tan(θ2) dθ 88.

∫ π/6

0
sec2

(
2x − π

6

)
dx

89.
∫ π/2

0
cos3 x sin x dx 90.

∫ π/2

π/3
cot2

x

2
csc2 x

2
dx

91. Evaluate
∫ 2

0
r

√
5 −

√
4 − r2 dr .

92. Find numbers a and b such that∫ b

a
(u2 + 1) du =

∫ π/4

−π/4
sec4 θ dθ

and evaluate. Hint: Use the identity sec2 θ = tan2 θ + 1.

93. Wind engineers have found that wind speed v (in meters/second)
at a given location follows a Rayleigh distribution of the type

W(v) = 1

32
ve−v2/64

This means that at a given moment in time, the probability that v lies
between a and b is equal to the shaded area in Figure 4.

(a) Show that the probability that v ∈ [0, b] is 1 − e−b2/64.

(b) Calculate the probability that v ∈ [2, 5].

20

0.05

0.1

a b

y = W(v)

v (m/s)

y

FIGURE 4 The shaded area is the probability that v lies between
a and b.

94. Evaluate
∫ π/2

0
sinn x cos x dx for n ≥ 0.

In Exercises 95–96, use substitution to evaluate the integral in terms
of f (x).

95.
∫

f (x)3 f ′(x) dx 96.
∫

f ′(x)

f (x)2
dx

97. Show that
∫ π/6

0
f (sin θ) dθ =

∫ 1/2

0
f (u)

1√
1 − u2

du.

Further Insights and Challenges
98. Use the substitution u = 1 + x1/n to show that

∫ √
1 + x1/n dx = n

∫
u1/2(u − 1)n−1 du

Evaluate for n = 2, 3.

99. Evaluate I =
∫ π/2

0

dθ

1 + tan6,000 θ
. Hint: Use substitution to

show that I is equal to J =
∫ π/2

0

dθ

1 + cot6,000 θ
and then check that

I + J =
∫ π/2

0
dθ .

100. Use substitution to prove that
∫ a

−a
f (x) dx = 0 if f is an odd

function.

101. Prove that
∫ b
a

1
x dx = ∫ b/a

1
1
x dx for a, b > 0. Then show that the

regions under the hyperbola over the intervals [1, 2], [2, 4], [4, 8], . . .
all have the same area (Figure 5).

1
2

1
8

1
4

1 2 4 8

1

x

y

y = 1
x

Equal area

FIGURE 5 The area under y = 1
x over [2n, 2n+1] is the same for all

n = 0, 1, 2, . . . .



336 C H A P T E R 5 THE INTEGRAL

102. Show that the two regions in Figure 6 have the same area. Then
use the identity cos2 u = 1

2 (1 + cos 2u) to compute the second area.

(A) (B)

x
1 1

1 1�1 − x2y =

u

y = cos2 u

y y

FIGURE 6

103. Area of an Ellipse Prove the formula A = πab for the area of
the ellipse with equation (Figure 7)

x2

a2
+ y2

b2
= 1

Hint: Use a change of variables to show that A is equal to ab times the
area of the unit circle.

x

y
b

−b

a−a

FIGURE 7 Graph of
x2

a2
+ y2

b2
= 1.

5.7 Further Transcendental Functions
In Section 5.3, we used FTC I to show∫ b

a

dx

x
= ln

b

a

We obtain a formula for ln x as a definite integral by setting a = 1 and b = x:

ln x =
∫ x

1

dt

t
for x > 0 1

Thus, ln x is equal to an area under the hyperbola y = 1/t (Figure 1).

y

t
x1

Area ln x

y = 1
t

FIGURE 1

It is possible (and mathematically, it is
more efficient) to take Eq. (1) as the
definition of ln x and to define ex as the
corresponding inverse function (see
Exercises 78-79).

In a similar fashion, we can express sin−1 x as a definite integral using the derivative
formula from Section 3.9 (Figure 2):

d

dx
sin−1 x = 1√

1 − x2
⇒

∫
dx√

1 − x2
= sin−1 x + C

Since sin−1 0 = 0, we have

sin−1 x =
∫ x

0

dt√
1 − t2

for −1 < x < 1

On the other hand, the derivative formulas from Section 3.8 yield integration formulas

−1 1

1

2

3

Area  sin−1 x

y

t
x

y = 1

�1 − t2

FIGURE 2

that are useful for evaluating new types of integrals.

Inverse Trigonometric Functions

d

dx
sin−1 x = 1√

1 − x2
,

∫
dx√

1 − x2
= sin−1 x + C 2

d

dx
tan−1 x = 1

x2 + 1
,

∫
dx

x2 + 1
= tan−1 x + C 3

d

dx
sec−1 x = 1

|x|√x2 − 1
,

∫
dx

|x|√x2 − 1
= sec−1 x + C 4
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In this list, we omit the integral formulas corresponding to the derivatives of cos−1 x,
cot−1 x, and csc−1 x because the integrals differ only by a minus sign from those already
on the list. For example,

d

dx
cos−1 x = − 1√

1 − x2
,

∫
dx√

1 − x2
= − cos−1 x + C

EXAMPLE 1 Evaluate
∫ 1

0

dx

x2 + 1
.

Solution This integral is the area of the region in Figure 3. By Eq. (3),

∫ 1

0

dx

x2 + 1
= tan−1 x

∣∣∣1

0
= tan−1 1 − tan−1 0 = π

4
− 0 = π

4

Area

y

1

x
531−3 −1−5

y = 1
x2 + 1

π

4

FIGURE 3 The shaded region has an area
equal to tan−1 1 = π

4 .

EXAMPLE 2 Using Substitution Evaluate
∫ 1

1/
√

2

dx

x
√

4x2 − 1
.

Solution Notice that
√

4x2 − 1 can be written as
√

(2x)2 − 1, so it makes sense to try
the substitution u = 2x, du = 2 dx. ThenIn substitution, we usually define u as a

function of x. Sometimes, it is more
convenient to define x as a function of u.
We do this here, where we set x = 2u.

u2 = 4x2 and
√

4x2 − 1 =
√

u2 − 1

The new limits of integration are u(1/
√

2) = 2(1/
√

2) = √
2 and u(1) = 2. By Eq. (4),

∫ 1

1/
√

2

dx

x
√

4x2 − 1
=

∫ 2

√
2

1
2 du

1
2u

√
u2 − 1

=
∫ 2

√
2

du

u
√

u2 − 1

= sec−1 2 − sec−1
√

2

= π

3
− π

4
= π

12

EXAMPLE 3 Using Substitution Evaluate
∫ 3/4

0

dx√
9 − 16x2

.

Solution Let us first rewrite the integrand:

√
9 − 16x2 =

√
9

(
1 − 16x2

9

)
= 3

√
1 −

(
4x

3

)2

Thus it makes sense to use the substitution u = 4
3x. Then du = 4

3dx and

x = 3

4
u, dx = 3

4
du,

√
9 − 16x2 = 3

√
1 − u2

The new limits of integration are u(0) = 0 and u
( 3

4

) = 1:

∫ 3/4

0

dx√
9 − 16x2

=
∫ 1

0

3
4 du

3
√

1 − u2
= 1

4
sin−1 x

∣∣∣1

0
= 1

4
(sin−1 1 − sin−1 0)

= 1

4

(π

2

)
= π

8
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Integrals Involving f (x) = bx

The exponential function f (x) = ex is particularly convenient because ex is both its own
derivative and its own antiderivative. For other bases b, we haveREMINDER

b = eln b, bx = e(ln b)x
d

dx
bx = d

dx
e(ln b)x = (ln b)e(ln b)x = (ln b)bx ⇒ d

dx

(
bx

ln b

)
= bx

This translates into the integral formula

∫
bx dx = bx

ln b
+ C 5

EXAMPLE 4 Evaluate
∫ 5

3
7x dx.

Solution Apply Eq. (5) with b = 7.

∫ 5

3
7x dx = 7x

ln 7

∣∣∣∣5

3
= 75 − 73

ln 7
≈ 8460.8

EXAMPLE 5 Evaluate
∫ π/2

0
(cos θ)10sin θ dθ .

Solution Use the substitution u = sin θ , du = cos θ dθ . The new limits of integration
become u(0) = 0 and u(π/2) = 1:∫ π/2

0
(cos θ)10sin θ dθ =

∫ 1

0
10u du = 10u

ln 10

∣∣∣∣1

0
= 101 − 100

ln 10
≈ 3.91

5.7 SUMMARY

• Integral formula for the natural logarithm:

ln x =
∫ x

1

dt

t

• Integral formulas: ∫
dx√

1 − x2
= sin−1 x + C

∫
dx

x2 + 1
= tan−1 x + C∫

dx

|x|√x2 − 1
= sec−1 x + C

• Integrals of exponential functions (b > 0, b 	= 1):∫
ex dx = ex + C,

∫
bx dx = bx

ln b
+ C
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5.7 EXERCISES

Preliminary Questions

1. Find b such that
∫ b

1

dx

x
is equal to

(a) ln 3 (b) 3

2. Find b such that
∫ b

0

dx

1 + x2
= π

3
.

3. Which integral should be evaluated using substitution?

(a)
∫

9 dx

1 + x2
(b)

∫
dx

1 + 9x2

4. Which relation between x and u yields
√

16 + x2 = 4
√

1 + u2?

Exercises
In Exercises 1–10, evaluate the definite integral.

1.
∫ 9

1

dx

x
2.

∫ 20

4

dx

x

3.
∫ e3

1

1

t
dt 4.

∫ −e

−e2

1

t
dt

5.
∫ 12

2

dt

3t + 4
6.

∫ e3

e

dt

t ln t

7.
∫ tan 8

tan 1

dx

x2 + 1
8.

∫ 7

2

x dx

x2 + 1

9.
∫ 1/2

0

dx√
1 − x2

10.
∫ −2/

√
3

−2

dx

|x|
√

x2 − 1

11. Use the substitution u = x/3 to prove∫
dx

9 + x2
= 1

3
tan−1 x

3
+ C

12. Use the substitution u = 2x to evaluate
∫

dx

4x2 + 1
.

In Exercises 13–32, calculate the integral.

13.
∫ 3

0

dx

x2 + 3
14.

∫ 4

0

dt

4t2 + 9

15.
∫

dt√
1 − 16t2

16.
∫ √

3

−1

dx√
4 − 25x2

17.
∫

dt√
5 − 3t2

18.
∫ 1/2

1/4

dx

x
√

16x2 − 1

19.
∫

dx

x
√

12x2 − 3
20.

∫
x dx

x4 + 1

21.
∫

dx

x
√

x4 − 1
22.

∫ 0

−1/2

(x + 1) dx√
1 − x2

23.
∫ 0

− ln 2

ex dx

1 + e2x
24.

∫
ln(cos−1 x) dx

(cos−1 x)
√

1 − x2

25.
∫

tan−1 x dx

1 + x2
26.

∫ √
3

1

dx

(tan−1 x)(1 + x2)

27.
∫ 1

0
3x dx 28.

∫ 1

0
3−x dx

29.
∫ log4(3)

0
4x dx 30.

∫ 1

0
t5t2

dt

31.
∫

9x sin(9x) dx 32.
∫

dx√
52x − 1

In Exercises 33–70, evaluate the integral using the methods covered in
the text so far.

33.
∫

yey2
dy 34.

∫
dx

3x + 5

35.
∫

x dx√
4x2 + 9

36.
∫

(x − x−2)2 dx

37.
∫

7−x dx 38.
∫

e9−12t dt

39.
∫

sec2 θ tan7 θ dθ 40.
∫

cos(ln t) dt

t

41.
∫

t dt√
7 − t2

42.
∫

2xe4x dx

43.
∫

(3x + 2) dx

x2 + 4
44.

∫
tan(4x + 1) dx

45.
∫

dx√
1 − 16x2

46.
∫

et
√

et + 1 dt

47.
∫

(e−x − 4x) dx 48.
∫

(7 − e10x) dx

49.
∫

e2x − e4x

ex
dx 50.

∫
dx

x
√

25x2 − 1

51.
∫

(x + 5) dx√
4 − x2

52.
∫

(t + 1)
√

t + 1 dt

53.
∫

ex cos(ex) dx 54.
∫

ex

√
ex + 1

dx

55.
∫

dx√
9 − 16x2

56.
∫

dx

(4x − 1) ln(8x − 2)

57.
∫

ex(e2x + 1)3 dx 58.
∫

dx

x(ln x)5

59.
∫

x2 dx

x3 + 2
60.

∫
(3x − 1) dx

9 − 2x + 3x2
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61.
∫

cot x dx 62.
∫

cos x

2 sin x + 3
dx

63.
∫

4 ln x + 5

x
dx 64.

∫
(sec θ tan θ)5sec θ dθ

65.
∫

x3x2
dx 66.

∫
ln(ln x)

x ln x
dx

67.
∫

cot x ln(sin x) dx 68.
∫

t dt√
1 − t4

69.
∫

t2√
t − 3 dt 70.

∫
cos x5−2 sin x dx

71. Use Figure 4 to prove∫ x

0

√
1 − t2 dt = 1

2
x
√

1 − x2 + 1

2
sin−1 x

x
x

y

1

FIGURE 4

72. Use the substitution u = tan x to evaluate∫
dx

1 + sin2 x
.

Hint: Show that

dx

1 + sin2 x
= du

1 + 2u2

73. Prove: ∫
sin−1 t dt =

√
1 − t2 + t sin−1 t .

74. (a) Verify for r 	= 0:

∫ T

0
tert dt = erT (rT − 1) + 1

r2
6

Hint: For fixed r , let F(T ) be the value of the integral on the left. By
FTC II, F ′(t) = tert and F(0) = 0. Show that the same is true of the
function on the right.
(b) Use L’Hôpital’s Rule to show that for fixed T , the limit as r → 0
of the right-hand side of Eq. (6) is equal to the value of the integral for
r = 0.

Further Insights and Challenges
75. Recall that if f (t) ≥ g(t) for t ≥ 0, then for all x ≥ 0,∫ x

0
f (t) dt ≥

∫ x

0
g(t) dt 7

The inequality et ≥ 1 holds for t ≥ 0 because e > 1. Use (7) to prove
that ex ≥ 1 + x for x ≥ 0. Then prove, by successive integration, the
following inequalities (for x ≥ 0):

ex ≥ 1 + x + 1

2
x2, ex ≥ 1 + x + 1

2
x2 + 1

6
x3

76. Generalize Exercise 75; that is, use induction (if you are familiar
with this method of proof) to prove that for all n ≥ 0,

ex ≥ 1 + x + 1

2
x2 + 1

6
x3 + · · · + 1

n!x
n (x ≥ 0)

77. Use Exercise 75 to show that ex/x2 ≥ x/6 and conclude that
lim

x→∞ ex/x2 = ∞. Then use Exercise 76 to prove more generally that

lim
x→∞ ex/xn = ∞ for all n.

Exercises 78–80 develop an elegant approach to the exponential and
logarithm functions. Define a function G(x) for x > 0:

G(x) =
∫ x

1

1

t
dt

78. Defining ln x as an Integral This exercise proceeds as if we
didn’t know that G(x) = ln x and shows directly that G(x) has all the
basic properties of the logarithm. Prove the following statements.

(a)
∫ ab
a

1
t dt = ∫ b

1
1
t dt for all a, b > 0. Hint: Use the substitution

u = t/a.

(b) G(ab) = G(a) + G(b). Hint: Break up the integral from 1 to ab

into two integrals and use (a).

(c) G(1) = 0 and G(a−1) = −G(a) for a > 0.

(d) G(an) = nG(a) for all a > 0 and integers n.

(e) G(a1/n) = 1

n
G(a) for all a > 0 and integers n 	= 0.

(f) G(ar ) = rG(a) for all a > 0 and rational numbers r .

(g) G(x) is increasing. Hint: Use FTC II.

(h) There exists a number a such that G(a) > 1. Hint: Show that
G(2) > 0 and take a = 2m for m > 1/G(2).

(i) lim
x→∞ G(x) = ∞ and lim

x→0+ G(x) = −∞
(j) There exists a unique number E such that G(E) = 1.

(k) G(Er) = r for every rational number r .

79. Defining ex Use Exercise 78 to prove the following statements.

(a) G(x) has an inverse with domain R and range {x : x > 0}. Denote
the inverse by F(x).

(b) F(x + y) = F(x)F (y) for all x, y. Hint: It suffices to show that
G(F(x)F (y)) = G(F(x + y)).

(c) F(r) = Er for all numbers. In particular, F(0) = 1.

(d) F ′(x) = F(x). Hint: Use the formula for the derivative of an in-
verse function.

This shows that E = e and F(x) is the function ex as defined in the
text.
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80. Defining bx Let b > 0 and let f (x) = F(xG(b)) with F as in
Exercise 79. Use Exercise 78 (f) to prove that f (r) = br for every ra-
tional number r . This gives us a way of defining bx for irrational x,
namely bx = f (x). With this definition, bx is a differentiable function
of x (because F is differentiable).

81. The formula
∫

xn dx = xn+1

n + 1
+ C is valid for n 	= −1. Show

that the exceptional case n = −1 is a limit of the general case by ap-
plying L’Hôpital’s Rule to the limit on the left.

lim
n→−1

∫ x

1
tn dt =

∫ x

1
t−1 dt (for fixed x > 0)

Note that the integral on the left is equal to
xn+1 − 1

n + 1
.

82. The integral on the left in Exercise 81 is equal to

fn(x) = xn+1 − 1

n + 1
. Investigate the limit graphically by plotting fn(x)

for n = 0, −0.3, −0.6, and −0.9 together with ln x on a single plot.

83. (a) Explain why the shaded region in Figure 5 has area∫ ln a
0 ey dy.

(b) Prove the formula
∫ a

1 ln x dx = a ln a − ∫ ln a
0 ey dy.

(c) Conclude that
∫ a

1 ln x dx = a ln a − a + 1.

(d) Use the result of (a) to find an antiderivative of ln x.

x

y

a

ln a

y = ln x

1

FIGURE 5

5.8 Exponential Growth and Decay
In this section, we explore some applications of the exponential function. Consider a
quantity P(t) that depends exponentially on time:

The constant k has units of “inverse time”;
if t is measured in days, then k has units of
(days)−1.

P(t) = P0e
kt

If k > 0, then P(t) grows exponentially and k is called the growth constant. Note that P0
is the initial size (the size at t = 0):

P(0) = P0e
k·0 = P0

We can also write P(t) = P0b
t with b = ek , because bt = (ek)t = ekt .

A quantity that decreases exponentially is said to have exponential decay. In this case,
we write P(t) = P0e

−kt with k > 0; k is then called the decay constant.
Population is a typical example of a quantity that grows exponentially, at least under

suitable conditions. To understand why, consider a cell colony with initial population
P0 = 100 and assume that each cell divides into two cells after 1 hour. Then population
P(t) doubles with each passing hour:

P(0) = 100 (initial population)

P(1) = 2(100) = 200 (population doubles)

P(2) = 2(200) = 400 (population doubles again)

After t hours, P(t) = (100)2t .

FIGURE 1 E. coli bacteria, found in the
human intestine.

Exponential growth cannot continue over
long periods of time. A colony starting with
one E. coli cell would grow to 5 × 1089

cells after 3 weeks—much more than the
estimated number of atoms in the
observable universe. In actual cell growth,
the exponential phase is followed by a
period in which growth slows and may
decline.

EXAMPLE 1 In the laboratory, the number of Escherichia coli bacteria (Figure 1)
grows exponentially with growth constant of k = 0.41 (hours)−1. Assume that 1000 bac-
teria are present at time t = 0.

(a) Find the formula for the number of bacteria P(t) at time t .

(b) How large is the population after 5 hours?

(c) When will the population reach 10,000?
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Solution The growth is exponential, so P(t) = P0e
kt .

(a) The initial size is P0 = 1000 and k = 0.41, so P(t) = 1000e0.41t (t in hours).

(b) After 5 hours, P(5) = 1000e0.41·5 = 1000e2.05 ≈ 7767.9. Because the number of
bacteria is a whole number, we round off the answer to 7768.

(c) The problem asks for the time t such that P(t) = 10,000, so we solve

5.62 4
t (h)

Bacteria population P(t)

1000

5000

10,000

FIGURE 2 Growth of E. coli population.

1000e0.41t = 10,000 ⇒ e0.41t = 10,000

1000
= 10

Taking the logarithm of both sides, we obtain ln
(
e0.41t

) = ln 10, or

0.41t = ln 10 ⇒ t = ln 10

0.41
≈ 5.62

Therefore, P(t) reaches 10,000 after approximately 5 hours, 37 minutes (Figure 2).

The important role played by exponential functions is best understood in terms of the
differential equation y′ = ky. The function y = P0e

kt satisfies this differential equation,
as we can check directly:

A differential equation is an equation
relating a function y = f (x) to its
derivative y ′ (or higher derivatives y ′, y ′′,
y ′′′, . . .).

y′ = d

dt

(
P0e

kt
) = kP0e

kt = ky

Theorem 1 goes further and asserts that the exponential functions are the only functions
that satisfy this differential equation.

THEOREM 1 If y(t) is a differentiable function satisfying the differential equation

y′ = ky

then y(t) = P0e
kt , where P0 is the initial value P0 = y(0).

Proof Compute the derivative of ye−kt . If y′ = ky, then

d

dt

(
ye−kt

) = y′e−kt − ke−kt y = (ky)e−kt − ke−kt y = 0

Because the derivative is zero, y(t)e−kt = P0 for some constant P0, and y(t) = P0e
kt as

claimed. The initial value is y(0) = P0e
0 = P0.

CONCEPTUAL INSIGHT Theorem 1 tells us that a process obeys an exponential law pre-
cisely when its rate of change is proportional to the amount present. This helps us
understand why certain quantities grow or decay exponentially.

A population grows exponentially because each organism contributes to growth
through reproduction, and thus the growth rate is proportional to the population size.
However, this is true only under certain conditions. If the organisms interact—say, by
competing for food or mates—then the growth rate may not be proportional to population
size and we cannot expect exponential growth.

Similarly, experiments show that radioactive substances decay exponentially. This
suggests that radioactive decay is a random process in which a fixed fraction of atoms,
randomly chosen, decays per unit time (Figure 3). If exponential decay were not ob-
served, we might suspect that the decay was influenced by some interaction between
the atoms.

FIGURE 3 Computer simulation of
radioactive decay as a random process. The
red squares are atoms that have not yet
decayed. A fixed fraction of red squares
turns white in each unit of time.
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EXAMPLE 2 Find all solutions of y′ = 3y. Which solution satisfies y(0) = 9?

Solution The solutions to y′ = 3y are the functions y(t) = Ce3t , where C is the initial
value C = y(0). The particular solution satisfying y(0) = 9 is y(t) = 9e3t .

EXAMPLE 3 Modeling Penicillin Pharmacologists have shown that penicillin leaves
a person’s bloodstream at a rate proportional to the amount present.

(a) Express this statement as a differential equation.

(b) Find the decay constant if 50 mg of penicillin remains in the bloodstream 7 hours
after an initial injection of 450 mg.

(c) Under the hypothesis of (b), at what time was 200 mg of penicillin present?

Solution

(a) Let A(t) be the quantity of penicillin present in the bloodstream at time t . Since the
rate at which penicillin leaves the bloodstream is proportional to A(t),

A′(t) = −kA(t) 1

where k > 0 because A(t) is decreasing.

(b) Eq. (1) and the condition A(0) = 450 tell us that A(t) = 450e−kt . The additional
condition A(7) = 50 enables us to solve for k:

A(7) = 450e−7k = 50 ⇒ e−7k = 1

9
⇒ −7k = ln

1

9

Thus, k = − 1
7 ln 1

9 ≈ 0.31.

(c) To find the time t at which 200 mg was present, we solve

A(t) = 450e−0.31t = 200 ⇒ e−0.31t = 4

9

Therefore, t = − 1
0.31 ln

( 4
9

) ≈ 2.62 hours (Figure 4).

4321
t (h)

100

200

300

400

Penicillin (mg)

2.62

FIGURE 4 The quantity of penicillin in the
bloodstream decays exponentially.

Quantities that grow exponentially possess an important property: There is a doubling

The constant k has units of time−1, so the
doubling time T = (ln 2)/k has units of
time, as we should expect. A similar
calculation shows that the tripling time is
(ln 3)/k, the quadrupling time is (ln 4)/k,
and, in general, the time to n-fold increase
is (ln n)/k.

time T such that P(t) doubles in size over every time interval of length T . To prove this,
let P(t) = P0e

kt and solve for T in the equation P(t + T ) = 2P(t).

P0e
k(t+T ) = 2P0e

kt

ekt ekT = 2ekt

ekT = 2

We obtain kT = ln 2 or T = (ln 2)/k.

Doubling Time If P(t) = P0e
kt with k > 0, then the doubling time of P is

Doubling time = ln 2

k

EXAMPLE 4 Spread of the Sapphire Worm Acomputer virus nicknamed the Sapphire

Number of hosts infected with Sapphire: 74855

FIGURE 5 Spread of the Sapphire computer
virus 30 minutes after release. The infected
hosts spewed billions of copies of the virus
into cyberspace, significantly slowing
Internet traffic and interfering with
businesses, flight schedules, and automated
teller machines.

Worm spread throughout the Internet on January 25, 2003 (Figure 5). Studies suggest
that during the first few minutes, the population of infected computer hosts increased
exponentially with growth constant k = 0.0815 s−1.
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(a) What was the doubling time of the virus?
(b) If the virus began in four computers, how many hosts were infected after 2 minutes?
After 3 minutes?

Solution

(a) The doubling time is (ln 2)/0.0815 ≈ 8.5 seconds (Figure 6).

8.5 10 20 30

4
8

16

32

t (s)

Number of infected computers

Doubling
time

FIGURE 6 Doubling (from 4 to 8 to 16, etc.)
occurs at equal time intervals.

(b) If P0 = 4, the number of infected hosts after t seconds is P(t) = 4e0.0815t . After 2
minutes (120 seconds), the number of infected hosts is

P(120) = 4e0.0815(120) ≈ 70,700

After 3 minutes, the number would have been P(180) = 4e0.0815(180) ≈ 9.4 million. How-
ever, it is estimated that a total of around 75,000 hosts were infected, so the exponential
phase of the virus could not have lasted much more than 2 minutes.

3.825 8.9

1

0.5

0.2

t (days)

Fraction present

Half-life

0

FIGURE 7 Fraction of radon-222 present at
time t .

In the situation of exponential decay P(t) = P0e
−kt , the half-life is the time it takes

for the quantity to decrease by a factor of 1
2 . The calculation similar to that of doubling

time above shows that

Half-life = ln 2

k

EXAMPLE 5 The isotope radon-222 decays exponentially with a half-life of 3.825
days. How long will it take for 80% of the isotope to decay?

Solution By the equation for half-life, k equals ln 2 divided by half-life:

k = ln 2

3.825
≈ 0.181

Therefore, the quantity of radon-222 at time t is R(t) = R0e
−0.181t , where R0 is the

amount present at t = 0 (Figure 7). When 80% has decayed, 20% remains, so we solve
for t in the equation R0e

−0.181t = 0.2R0:

e−0.181t = 0.2

−0.181t = ln(0.2) ⇒ t = ln(0.2)

−0.181
≈ 8.9 days

The quantity of radon-222 decreases by 80% after 8.9 days.

Carbon Dating
Carbon dating (Figure 8) relies on the fact that all living organisms contain carbon that

FIGURE 8 American chemist Willard Libby
(1908–1980) developed the technique of
carbon dating in 1946 to determine the age
of fossils and was awarded the Nobel Prize
in Chemistry for this work in 1960. Since
then the technique has been refined
considerably.

enters the food chain through the carbon dioxide absorbed by plants from the atmosphere.
Carbon in the atmosphere is made up of nonradioactive C12 and a minute amount of
radioactive C14 that decays into nitrogen. The ratio of C14 to C12 is approximately Ratm =
10−12.

The carbon in a living organism has the same ratio Ratm because this carbon originates
in the atmosphere, but when the organism dies, its carbon is no longer replenished. The
C14 begins to decay exponentially while the C12 remains unchanged. Therefore, the ratio
of C14 to C12 in the organism decreases exponentially. By measuring this ratio, we can
determine when the death occurred. The decay constant for C14 is k = 0.000121 yr−1, so

Ratio of C14 to C12 after t years = Ratme−0.000121t
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EXAMPLE 6 Cave Paintings In 1940, a remarkable gallery of prehistoric animal
paintings was discovered in the Lascaux cave in Dordogne, France (Figure 9). A charcoal
sample from the cave walls had a C14-to-C12 ratio equal to 15% of that found in the
atmosphere. Approximately how old are the paintings?

Solution The C14-to-C12 ratio in the charcoal is now equal to 0.15Ratm, so

Ratme−0.000121t = 0.15Ratm

where t is the age of the paintings. We solve for t :

e−0.000121t = 0.15

−0.000121t = ln(0.15) ⇒ t = ln(0.15)

0.000121
≈ 15,700

The cave paintings are approximately 16,000 years old (Figure 10).

FIGURE 9 Detail of bison and other animals
from a replica of the Lascaux cave mural.

t = years since organism died

t = 0 15,700
20,00010,0005000

t

1

0.15

Decay of C14

y = e−0.000121t

FIGURE 10 If only 15% of the C14 remains,
the object is approximately 16,000 years old.

Compound Interest and Present Value
Exponential functions are used extensively in financial calculations. Two basic applica-
tions are compound interest and present value.

When a sum of money P0, called the principal, is deposited into an interest-bearingConvention: Time t is measured in years
and interest rates are given as yearly rates,
either as a decimal or as a percentage.
Thus, r = 0.05 corresponds to an interest
rate of 5% per year.

account, the amount or balance in the account at time t depends on two factors: the
interest rate r and frequency with which interest is compounded. Interest paid out once
a year at the end of the year is said to be compounded annually. The balance increases by
the factor (1 + r) after each year, leading to exponential growth:

Principal + Interest = Balance

After 1 year P0 + rP0 = P0(1 + r)

After 2 years P0(1 + r) + rP0(1 + r) = P0(1 + r)2

· · · · · ·
After t years P0(1 + r)t−1 + rP0(1 + r)t−1 = P0(1 + r)t
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Suppose that interest is paid out quarterly (every 3 months). Then the interest earned
after 3 months is r

4P0 dollars and the balance increases by the factor
(
1 + r

4

)
. After one

year (4 quarters), the balance increases to P0
(
1 + r

4

)4 and after t years,

Balance after t years = P0

(
1 + r

4

)4t

For example, if P0 = 100 and r = 0.09, then the balance after one year is

100

(
1 + 0.09

12

)12

= 100(1.0075)12 ≈ 100(1.09381) ≈ 109.38

More generally,

Compound Interest If P0 dollars are deposited into an account earning interest at an
annual rate r , compounded M times yearly, then the value of the account after t years
is

P(t) = P0

(
1 + r

M

)Mt

The factor
(
1 + r

M

)M is called the yearly multiplier.

Table 1 shows the effect of more frequent compounding. What happens in the limit

TABLE 1 Compound Interest with
Principal P0 = $100 and r = 0.09

Principal after 1 Year

Annual 100(1 + 0.09) = $109

Quarterly 100
(
1 + 0.09

4

)4 ≈ $109.31

Monthly 100
(
1 + 0.09

12

)12 ≈ $109.38

Weekly 100
(
1 + 0.09

52

)52 ≈ $109.41

Daily 100
(
1 + 0.09

365

)365 ≈ $109.42

as M tends to infinity? This question is answered by the next theorem (a proof is given at
the end of this section).

2010
n

3

f (n)

2

1

e

FIGURE 11 The function f (n) = (
1 + 1

n

)n
approaches e as n → ∞.

THEOREM 2 Limit Formula for e and ex

e = lim
n→∞

(
1 + 1

n

)n

and ex = lim
n→∞

(
1 + x

n

)n

for all x

Figure 11 illustrates the first limit graphically. To compute the limit of the yearly
multiplier as M → ∞, we apply the second limit with x = r and n = M:

lim
M→∞

(
1 + r

M

)M = er 2

The multiplier after t years is (er )t = ert . This leads to the following definition.

Continuously Compounded Interest IfP0 dollars are deposited into an account earning
interest at an annual rate r , compounded continuously, then the value of the account
after t years is

P(t) = P0e
rt

EXAMPLE 7 A principal of P0 = � 100,000 (Japanese yen) is deposited into an ac-
count paying 6% interest. Find the balance after 3 years if interest is compounded quarterly
and if interest is compounded continuously.
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Solution After 3 years, the balance isNote: The mathematics of interest rates is
the same for all currencies (dollars, euros,
pesos, yen, etc.).

Quarterly compounding: 100,000

(
1 + 0.06

4

)4(3)

≈ � 119,562

Continuous compounding: 100,000e(0.06)3 ≈ � 119, 722

Present Value
The concept of present value (PV) is used in business and finance to compare payments
made at different times. Assume that there is an interest rate r (continuously compounded)
at which an investor can lend or borrow money. By definition, the PV of P dollars to be
received t years in the future is Pe−rt :

In the financial world there are many
different interest rates (federal funds rate,
prime rate, LIBOR, etc.). We simplify the
discussion by assuming that there is just
one rate.

The PV of P dollars received at time t is Pe−rt .

What is the reasoning behind this definition? When you invest at the rate r for t years,
your principal increases by the factor ert , so if you invest Pe−rt dollars, your principal
grows to (P e−rt )ert = P dollars at time t . The present value Pe−rt is the amount you
would have to invest today in order to have P dollars at time t .

EXAMPLE 8 Is it better to receive $2000 today or $2200 in 2 years? Consider r = 0.03
and r = 0.07.

Solution We compare $2000 today with the PV of $2200 received in 2 years.

• If r = 0.03, the PV is 2200e−(0.03)2 ≈ $2071.88. This is more than $2000, so a
payment of $2200 in 2 years is preferable to a $2000 payment today.

• If r = 0.07, the PV is 2200e−(0.07)2 ≈ $1912.59. This PV is less than $2000, so it
is better to receive $2000 today if r = 0.07.

EXAMPLE 9 Deciding Whether to Invest Chief Operating Officer Ryan Martinez
must decide whether to upgrade his company’s computer system. The upgrade costs
$400,000 and will save $150,000 a year for each of the next 3 years. Is this a good
investment if r = 7%?

Solution Ryan must compare today’s cost of the upgrade with the PV of the money saved.
For simplicity, assume that the annual savings of $150,000 is received as a lump sum at
the end of each year.

If r = 0.07, the PV of the savings over 3 years is

150,000e−(0.07) + 150,000e−(0.07)2 + 150,000e−(0.07)3 ≈ $391,850

The amount saved is less than the cost $400,000, so the upgrade is not worthwhile.

An income stream is a sequence of periodic payments that continue over an interval
of T years. Consider an investment that produces income at a rate of $800/year for 5 years.
A total of $4000 is paid out over 5 years, but the PV of the income stream is less. For
instance, if r = 0.06 and payments are made at the end of the year, then the PV is

800e−0.06 + 800e−(0.06)2 + 800e−(0.06)3 + 800e−(0.06)4 + 800e−(0.06)5 ≈ $3353.12
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It is more convenient mathematically to assume that payments are made continuously
at a rate of R(t) dollars per year. We can then calculate PV as an integral. Divide the time
interval [0, T ] into N subintervals of length �t = T/N . If �t is small, the amount paid
out between time t and t + �t is approximately

R(t)︸︷︷︸
Rate

× �t︸︷︷︸
Time interval

= R(t)�t

The PV of this payment is approximately e−rtR(t)�t . Setting ti = i�t , we obtain the
approximation

PV of income stream ≈
N∑

i=1

e−rti R(ti)�t

This is a Riemann sum whose value approaches
∫ T

0 R(t)e−rt dt as �t → 0.

PV of an Income Stream If the interest rate is r , the present value of an income stream
paying out R(t) dollars per year continuously for T years is

PV =
∫ T

0
R(t)e−rt dt 3

In April 1720, Isaac Newton doubled his
money by investing in the South Sea
Company, an English company set up to
conduct trade with the West Indies and
South America. Having gained 7000
pounds, Newton invested a second time,
but like many others, he did not realize
that the company was built on fraud and
manipulation. In what became known as
the South Sea Bubble, the stock lost 80%
of its value, and the famous scientist
suffered a loss of 20,000 pounds.

EXAMPLE 10 An investment pays out 800,000 Mexican pesos per year, continuously
for 5 years. Find the PV of the investment for r = 0.04 and r = 0.06.

Solution In this case, R(t) = 800,000. If r = 0.04, the PV of the income stream is equal
(in pesos) to

∫ 5

0
800,000e−0.04t dt = −800,000

e−0.04t

0.04

∣∣∣∣
5

0
≈ −16,374,615 − (−20,000,000)

= 3,625,385

If r = 0.06, the PV is equal (in pesos) to

∫ 5

0
800,000e−0.06t dt = −800,000

e−0.06t

0.06

∣∣∣∣
5

0
≈ −9,877,576 − (−13,333,333)

= 3,455,757

Proof of Theorem 2 Apply the formula ln b = ∫ b

1 t−1 dt with b = 1 + 1/n:

ln

(
1 + 1

n

)
=

∫ 1+1/n

1

dt

t

Figure 12 shows that the area represented by this integral lies between the areas of two

y = 1
t

1
n

1 1 +
t

y

1
n

n + 1

FIGURE 12

rectangles of heights n/(n + 1) and 1, both of base 1/n. These rectangles have areas
1/(n + 1) and 1/n, so

1

n + 1
≤ ln

(
1 + 1

n

)
≤ 1

n
4
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Multiply through by n, using the rule n ln a = ln an:

n

n + 1
≤ ln

((
1 + 1

n

)n
)

≤ 1

Since lim
n→∞

n
n+1 = 1, the middle quantity must approach 1 by the Squeeze Theorem:

lim
n→∞ ln

((
1 + 1

n

)n
)

= 1

Now we can apply ex (because it is continuous) to obtain the desired result:

e1 = e
lim

n→∞ ln
((

1+ 1
n

)n)
= lim

n→∞ e
ln

((
1+ 1

n

)n)
= lim

n→∞

(
1 + 1

n

)n

See Exercise 61 for a proof of the more general formula ex = lim
n→∞

(
1 + x

n

)n.

5.8 SUMMARY

• Exponential growth with growth constant k > 0: P(t) = P0e
kt .

• Exponential decay with decay constant k > 0: P(t) = P0e
−kt .

• The solutions of the differential equation y′ = ky are the exponential functions y =
Cekt , where C is a constant.
• A quantity P(t) grows exponentially if it grows at a rate proportional to its size—that
is, if P ′(t) = kP (t).
• The doubling time for exponential growth and the half-life for exponential decay are
both equal to (ln 2)/k.
• For use in carbon dating: the decay constant of C14 is k = 0.000121.
• Interest rate r , compounded M times per year:

P(t) = P0(1 + r/M)Mt

• Interest rate r , compounded continuously: P(t) = P0e
rt .

• The present value (PV) of P dollars (or other currency), to be paid t years in the future,
is Pe−rt .
• Present value of an income stream paying R(t) dollars per year continuously for T

years:

PV =
∫ T

0
R(t)e−rt dt

5.8 EXERCISES

Preliminary Questions
1. Two quantities increase exponentially with growth constants

k = 1.2 and k = 3.4, respectively. Which quantity doubles more
rapidly?

2. A cell population grows exponentially beginning with one cell.
Which takes longer: increasing from one to two cells or increasing
from 15 million to 20 million cells?

3. Referring to his popular book A Brief History of Time, the renowned
physicist Stephen Hawking said, “Someone told me that each equation I
included in the book would halve its sales.” Find a differential equation
satisfied by the function S(n), the number of copies sold if the book
has n equations.

4. The PV of N dollars received at time T is (choose the correct
answer):
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(a) The value at time T of N dollars invested today
(b) The amount you would have to invest today in order to receive N

dollars at time T

5. In one year, you will be paid $1. Will the PV increase or decrease
if the interest rate goes up?

Exercises
1. A certain population P of bacteria obeys the exponential growth

law P(t) = 2000e1.3t (t in hours).

(a) How many bacteria are present initially?

(b) At what time will there be 10,000 bacteria?

2. A quantity P obeys the exponential growth law P(t) = e5t (t in
years).

(a) At what time t is P = 10?

(b) What is the doubling time for P ?

3. Write f (t) = 5(7)t in the form f (t) = P0ekt for some P0 and k.

4. Write f (t) = 9e1.4t in the form f (t) = P0bt for some P0 and b.

5. A certain RNA molecule replicates every 3 minutes. Find the dif-
ferential equation for the number N(t) of molecules present at time t

(in minutes). How many molecules will be present after one hour if
there is one molecule at t = 0?

6. A quantity P obeys the exponential growth law P(t) = Cekt (t in
years). Find the formula for P(t), assuming that the doubling time is
7 years and P(0) = 100.

7. Find all solutions to the differential equation y′ = −5y. Which
solution satisfies the initial condition y(0) = 3.4?

8. Find the solution to y′ = √
2y satisfying y(0) = 20.

9. Find the solution to y′ = 3y satisfying y(2) = 1000.

10. Find the function y = f (t) that satisfies the differential equation
y′ = −0.7y and the initial condition y(0) = 10.

11. The decay constant of cobalt-60 is 0.13 year−1. Find its half-life.

12. The half-life radium-226 is 1622 years. Find its decay constant.

13. One of the world’s smallest flowering plants, Wolffia globosa (Fig-
ure 13), has a doubling time of approximately 30 hours. Find the growth
constant k and determine the initial population if the population grew
to 1000 after 48 hours.

FIGURE 13 The tiny plants are Wolffia, with plant bodies smaller than
the head of a pin.

14. A 10-kg quantity of a radioactive isotope decays to 3 kg after
17 years. Find the decay constant of the isotope.

15. The population of a city is P(t) = 2 · e0.06t (in millions), where t

is measured in years. Calculate the time it takes for the population to
double, to triple, and to increase seven-fold.

16. What is the differential equation satisfied by P(t), the number of
infected computer hosts in Example 4? Over which time interval would
P(t) increase one hundred-fold?

17. The decay constant for a certain drug is k = 0.35 day−1. Calculate
the time it takes for the quantity present in the bloodstream to decrease
by half, by one-third, and by one-tenth.

18. Light Intensity The intensity of light passing through an absorb-
ing medium decreases exponentially with the distance traveled. Sup-
pose the decay constant for a certain plastic block is k = 4 m−1. How
thick must the block be to reduce the intensity by a factor of one-third?

19. Assuming that population growth is approximately exponential,
which of the following two sets of data is most likely to represent the
population (in millions) of a city over a 5-year period?

Year 2000 2001 2002 2003 2004

Set I 3.14 3.36 3.60 3.85 4.11
Set II 3.14 3.24 3.54 4.04 4.74

20. The atmospheric pressure P(h) (in kilopascals) at a height h me-
ters above sea level satisfies a differential equation P ′ = −kP for some
positive constant k.

(a) Barometric measurements show that P(0) = 101.3 and
P(30, 900) = 1.013. What is the decay constant k?

(b) Determine the atmospheric pressure at h = 500.

21. Degrees in Physics One study suggests that from 1955 to 1970,
the number of bachelor’s degrees in physics awarded per year by U.S.
universities grew exponentially, with growth constant k = 0.1.

(a) If exponential growth continues, how long will it take for the num-
ber of degrees awarded per year to increase 14-fold?

(b) If 2500 degrees were awarded in 1955, in which year were 10,000
degrees awarded?

22. The Beer–Lambert Law is used in spectroscopy to determine the
molar absorptivity α or the concentration c of a compound dissolved in a
solution at low concentrations (Figure 14). The law states that the inten-
sity I of light as it passes through the solution satisfies ln(I/I0) = αcx,
where I0 is the initial intensity and x is the distance traveled by the
light. Show that I satisfies a differential equation dI/dx = −kI for
some constant k.
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Distance

Solution

Intensity I

0 x

I0

x

FIGURE 14 Light of intensity passing through a solution.

23. A sample of sheepskin parchment discovered by archaeologists
had a C14-to-C12 ratio equal to 40% of that found in the atmosphere.
Approximately how old is the parchment?

24. Chauvet Caves In 1994, three French speleologists (geologists
specializing in caves) discovered a cave in southern France containing
prehistoric cave paintings. A C14 analysis carried out by archeologist
Helene Valladas showed the paintings to be between 29,700 and 32,400
years old, much older than any previously known human art. Given that
the C14-to-C12 ratio of the atmosphere is R = 10−12, what range of
C14-to-C12 ratios did Valladas find in the charcoal specimens?

25. A paleontologist discovers remains of animals that appear to have
died at the onset of the Holocene ice age, between 10,000 and 12,000
years ago. What range of C14-to-C12 ratio would the scientist expect
to find in the animal remains?

26. Inversion of Sugar When cane sugar is dissolved in water, it con-
verts to invert sugar over a period of several hours. The percentage f (t)

of unconverted cane sugar at time t (in hours) satisfies f ′ = −0.2f .
What percentage of cane sugar remains after 5 hours? After 10 hours?

27. Continuing with Exercise 26, suppose that 50 grams of sugar are
dissolved in a container of water. After how many hours will 20 grams
of invert sugar be present?

28. Two bacteria colonies are cultivated in a laboratory. The first colony
has a doubling time of 2 hours and the second a doubling time of 3 hours.
Initially, the first colony contains 1000 bacteria and the second colony
3000 bacteria. At what time t will the sizes of the colonies be equal?

29. Moore’s Law In 1965, Gordon Moore predicted that the number
N of transistors on a microchip would increase exponentially.

(a) Does the table of data below confirm Moore’s prediction for the
period from 1971 to 2000? If so, estimate the growth constant k.

(b) Plot the data in the table.

(c) Let N(t) be the number of transistors t years after 1971. Find an
approximate formula N(t) ≈ Cekt , where t is the number of years after
1971.

(d) Estimate the doubling time in Moore’s Law for the period from
1971 to 2000.

(e) How many transistors will a chip contain in 2015 if Moore’s Law
continues to hold?

(f) Can Moore have expected his prediction to hold indefinitely?

Processor Year No. Transistors

4004 1971 2250
8008 1972 2500
8080 1974 5000
8086 1978 29,000
286 1982 120,000
386 processor 1985 275,000
486 DX processor 1989 1,180,000
Pentium processor 1993 3,100,000
Pentium II processor 1997 7,500,000
Pentium III processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000
Xeon processor 2008 1,900,000,000

30. Assume that in a certain country, the rate at which jobs are created
is proportional to the number of people who already have jobs. If there
are 15 million jobs at t = 0 and 15.1 million jobs 3 months later, how
many jobs will there be after 2 years?

31. The only functions with a constant doubling time are the exponen-
tial functions P0ekt with k > 0. Show that the doubling time of linear
function f (t) = at + b at time t0 is t0 + b/a (which increases with t0).
Compute the doubling times of f (t) = 3t + 12 at t0 = 10 and t0 = 20.

32. Verify that the half-life of a quantity that decays exponentially with
decay constant k is equal to (ln 2)/k.

33. Compute the balance after 10 years if $2000 is deposited in an
account paying 9% interest and interest is compounded (a) quarterly,
(b) monthly, and (c) continuously.

34. Suppose $500 is deposited into an account paying interest at a rate
of 7%, continuously compounded. Find a formula for the value of the
account at time t . What is the value of the account after 3 years?

35. A bank pays interest at a rate of 5%. What is the yearly multiplier
if interest is compounded

(a) three times a year? (b) continuously?

36. How long will it take for $4000 to double in value if it is deposited
in an account bearing 7% interest, continuously compounded?

37. How much must one invest today in order to receive $20,000 after
5 years if interest is compounded continuously at the rate r = 9%?

38. An investment increases in value at a continuously compounded
rate of 9%. How large must the initial investment be in order to build
up a value of $50,000 over a 7-year period?

39. Compute the PV of $5000 received in 3 years if the interest rate
is (a) 6% and (b) 11%. What is the PV in these two cases if the sum is
instead received in 5 years?

40. Is it better to receive $1000 today or $1300 in 4 years? Consider
r = 0.08 and r = 0.03.

41. Find the interest rate r if the PV of $8000 to be received in 1 year
is $7300.
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42. A company can earn additional profits of $500,000/year for 5 years
by investing $2 million to upgrade its factory. Is the investment worth-
while if the interest rate is 6%? (Assume the savings are received as a
lump sum at the end of each year.)

43. A new computer system costing $25,000 will reduce labor costs by
$7,000/year for 5 years.

(a) Is it a good investment if r = 8%?

(b) How much money will the company actually save?

44. After winning $25 million in the state lottery, Jessica learns that she
will receive five yearly payments of $5 million beginning immediately.

(a) What is the PV of Jessica’s prize if r = 6%?

(b) How much more would the prize be worth if the entire amount
were paid today?

45. Use Eq. (3) to compute the PV of an income stream paying out
R(t) = $5000/year continuously for 10 years, assuming r = 0.05.

46. Find the PV of an investment that pays out continuously at a rate
of $800/year for 5 years, assuming r = 0.08.

47. Find the PV of an income stream that pays out continuously at a
rate R(t) = $5000e0.1t /year for 7 years, assuming r = 0.05.

48. A commercial property generates income at the rate R(t). Suppose
that R(0) = $70,000/year and that R(t) increases at a continuously
compounded rate of 5%. Find the PV of the income generated in the
first 4 years if r = 6%.

49. Show that an investment that pays out R dollars per year continu-
ously for T years has a PV of R(1 − e−rT )/r .

50. Explain this statement: If T is very large, then the PV of
the income stream described in Exercise 49 is approximately R/r .

51. Suppose that r = 0.06. Use the result of Exercise 50 to estimate
the payout rate R needed to produce an income stream whose PV is
$20,000, assuming that the stream continues for a large number of
years.

52. Verify by differentiation:∫
te−rt dt = −e−rt (1 + rt)

r2
+ C 5

Use Eq. (5) to compute the PV of an investment that pays out income
continuously at a rate R(t) = (5000 + 1000t) dollars per year for 5
years, assuming r = 0.05.

53. Use Eq. (5) to compute the PV of an investment that pays out in-
come continuously at a rate R(t) = (5000 + 1000t)e0.02t dollars per
year for 10 years, assuming r = 0.08.

54. Banker’s Rule of 70 If you earn an interest rate of R

percent, continuously compounded, your money doubles after approx-
imately 70/R years. For example, at R = 5%, your money doubles
after 70/5 or 14 years. Use the concept of doubling time to justify the
Banker’s Rule. (Note: Sometimes, the rule 72/R is used. It is less ac-
curate but easier to apply because 72 is divisible by more numbers than
70.)

55. Drug Dosing Interval Let y(t) be the drug concentra-
tion (in mg/kg) in a patient’s body at time t . The initial concentration
is y(0) = L. Additional doses that increase the concentration by an
amount d are administered at regular time intervals of length T . In be-
tween doses, y(t) decays exponentially—that is, y′ = −ky. Find the
value of T (in terms of k and d) for which the the concentration varies
between L and L − d as in Figure 15.

L

L − d

t

y (mcg/ml)

T 2T 3T

Exponential decay

Dose administered

FIGURE 15 Drug concentration with periodic doses.

Exercises 56 and 57: The Gompertz differential equation

dy

dt
= ky ln

( y

M

)
6

(where M and k are constants) was introduced in 1825 by the English
mathematician Benjamin Gompertz and is still used today to model
aging and mortality.

56. Show that y = Meaekt
satisfies Eq. (6) for any constant a.

57. To model mortality in a population of 200 laboratory rats, a scientist
assumes that the number P(t) of rats alive at time t (in months) satisfies
Eq. (6) with M = 204 and k = 0.15 month−1 (Figure 16). Find P(t)

[note that P(0) = 200] and determine the population after 20 months.

40302010

Rat population P(t)

t (months)

100

200

FIGURE 16

58. Isotopes for Dating Which of the following would be
most suitable for dating extremely old rocks: carbon-14 (half-life 5570
years), lead-210 (half-life 22.26 years), or potassium-49 (half-life 1.3
billion years)? Explain why.

59. Let P = P(t) be a quantity that obeys an exponential growth law
with growth constant k. Show that P increases m-fold after an interval
of (ln m)/k years.
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Further Insights and Challenges
60. Average Time of Decay Physicists use the radioactive

decay law R = R0e−kt to compute the average or mean time M until
an atom decays. Let F(t) = R/R0 = e−kt be the fraction of atoms that
have survived to time t without decaying.

(a) Find the inverse function t (F ).
(b) By definition of t (F ), a fraction 1/N of atoms decays in the time
interval [

t

(
j

N

)
, t

(
j − 1

N

)]

Use this to justify the approximation M ≈ 1

N

N∑
j=1

t

(
j

N

)
. Then ar-

gue, by passing to the limit as N → ∞, that M = ∫ 1
0 t (F ) dF . Strictly

speaking, this is an improper integral because t (0) is infinite (it takes
an infinite amount of time for all atoms to decay). Therefore, we define
M as a limit

M = lim
c→0

∫ 1

c
t (F ) dF

(c) Verify the formula
∫

ln x dx = x ln x − x by differentiation and
use it to show that for c > 0,

M = lim
c→0

(
1

k
+ 1

k
(c ln c − c)

)

(d) Show that M = 1/k by evaluating the limit (use L’Hôpital’s Rule
to compute lim

c→0
c ln c).

(e) What is the mean time to decay for radon (with a half-life of 3.825
days)?

61. Modify the proof of the relation e = lim
n→∞

(
1 + 1

n

)n given in the

text to prove ex = lim
n→∞

(
1 + x

n

)n. Hint: Express ln(1 + xn−1) as an

integral and estimate above and below by rectangles.

62. Prove that, for n > 0,(
1 + 1

n

)n

≤ e ≤
(

1 + 1

n

)n+1

Hint: Take logarithms and use Eq. (4).

63. A bank pays interest at the rate r , compounded M times yearly. The
effective interest rate re is the rate at which interest, if compounded
annually, would have to be paid to produce the same yearly return.

(a) Find re if r = 9% compounded monthly.

(b) Show that re = (1 + r/M)M − 1 and that re = er − 1 if interest
is compounded continuously.

(c) Find re if r = 11% compounded continuously.

(d) Find the rate r that, compounded weekly, would yield an effective
rate of 20%.

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function f (x) whose graph is shown in
Figure 1.

1. Estimate L4 and M4 on [0, 4].
2. Estimate R4, L4, and M4 on [1, 3].
3. Find an interval [a, b] on which R4 is larger than

∫ b

a
f (x) dx.

Do the same for L4.

4. Justify
3

2
≤

∫ 2

1
f (x) dx ≤ 9

4
.

1

2

3

1 2 3 4

y

x

FIGURE 1

In Exercises 5–8, let f (x) = x2 + 3x.

5. Calculate R6, M6, and L6 for f (x) on the interval [2, 5]. Sketch
the graph of f (x) and the corresponding rectangles for each approxi-
mation.

6. Use FTC I to evaluate A(x) =
∫ x

−2
f (t) dt .

7. Find a formula for RN for f (x) on [2, 5] and compute∫ 5

2
f (x) dx by taking the limit.

8. Find a formula for LN for f (x) on [0, 2] and compute∫ 2

0
f (x) dx by taking the limit.

9. Calculate R5, M5, and L5 for f (x) = (x2 + 1)−1 on the interval
[0, 1].

10. Let RN be the N th right-endpoint approximation for f (x) = x3

on [0, 4] (Figure 2).

(a) Prove that RN = 64(N + 1)2

N2
.

(b) Prove that the area of the region within the right-endpoint rec-
tangles above the graph is equal to

64(2N + 1)

N2
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y

32

64

x
1 2 3 4

FIGURE 2 Approximation RN for f (x) = x3 on [0, 4].

11. Which approximation to the area is represented by the shaded
rectangles in Figure 3? Compute R5 and L5.

x

y

30

18

6

1 2 3 4 5

FIGURE 3

12. Calculate any two Riemann sums for f (x) = x2 on the inter-
val [2, 5], but choose partitions with at least five subintervals of un-
equal widths and intermediate points that are neither endpoints nor
midpoints.

In Exercises 13–16, express the limit as an integral (or multiple of an
integral) and evaluate.

13. lim
N→∞

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)

14. lim
N→∞

3

N

N−1∑
k=0

(
10 + 3k

N

)

15. lim
N→∞

5

N

N∑
j=1

√
4 + 5j/N

16. lim
N→∞

1k + 2k + · · · + Nk

Nk+1
(k > 0)

In Exercises 17–20, use the given substitution to evaluate the integral.

17.
∫ 2

0

dt

4t + 12
, u = 4t + 12

18.
∫

(x2 + 1) dx

(x3 + 3x)4
, u = x3 + 3x

19.
∫ π/6

0
sin x cos4 x dx, u = cos x

20.
∫

sec2(2θ) tan(2θ) dθ , u = tan(2θ)

In Exercises 21–70, evaluate the integral.

21.
∫

(20x4 − 9x3 − 2x) dx 22.
∫ 2

0
(12x3 − 3x2) dx

23.
∫

(2x2 − 3x)2 dx 24.
∫ 1

0
(x7/3 − 2x1/4) dx

25.
∫

x5 + 3x4

x2
dx 26.

∫ 3

1
r−4 dr

27.
∫ 3

−3
|x2 − 4| dx 28.

∫ 4

−2
|(x − 1)(x − 3)| dx

29.
∫ 3

1
[t] dt 30.

∫ 2

0
(t − [t])2 dt

31.
∫

(10t − 7)14 dt 32.
∫ 3

2

√
7y − 5 dy

33.
∫

(2x3 + 3x) dx

(3x4 + 9x2)5
34.

∫ −1

−3

x dx

(x2 + 5)2

35.
∫ 5

0
15x

√
x + 4 dx 36.

∫
t2√

t + 8 dt

37.
∫ 1

0
cos

(π

3
(t + 2)

)
dt 38.

∫ π

π/2
sin

(
5θ − π

6

)
dθ

39.
∫

t2 sec2(9t3 + 1) dt 40.
∫

sin2(3θ) cos(3θ) dθ

41.
∫

csc2(9 − 2θ) dθ 42.
∫

sin θ
√

4 − cos θ dθ

43.
∫ π/3

0

sin θ

cos2/3 θ
dθ 44.

∫
sec2 t dt

(tan t − 1)2

45.
∫

e9−2x dx 46.
∫ 3

1
e4x−3 dx

47.
∫

x2ex3
dx 48.

∫ ln 3

0
ex−ex

dx

49.
∫

ex10x dx 50.
∫

e−2x sin(e−2x) dx

51.
∫

e−x dx

(e−x + 2)3
52.

∫
sin θ cos θecos2 θ+1 dθ

53.
∫ π/6

0
tan 2θ dθ 54.

∫ 2π/3

π/3
cot

(
1

2
θ

)
dθ

55.
∫

dt

t (1 + (ln t)2)
56.

∫
cos(ln x) dx

x

57.
∫ e

1

ln x dx

x
58.

∫
dx

x
√

ln x

59.
∫

dx

4x2 + 9
60.

∫ 0.8

0

dx√
1 − x2
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61.
∫ 12

4

dx

x
√

x2 − 1
62.

∫ 3

0

x dx

x2 + 9

63.
∫ 3

0

dx

x2 + 9
64.

∫
dx√

e2x − 1

65.
∫

x dx√
1 − x4

66.
∫ 1

0

dx

25 − x2

67.
∫ 4

0

dx

2x2 + 1
68.

∫ 8

5

dx

x
√

x2 − 16

69.
∫ 1

0

(tan−1 x)3 dx

1 + x2
70.

∫
cos−1 t dt√

1 − t2

71. Combine to write as a single integral:∫ 8

0
f (x) dx +

∫ 0

−2
f (x) dx +

∫ 6

8
f (x) dx

72. Let A(x) = ∫ x
0 f (x) dx, where f (x) is the function shown in

Figure 4. Identify the location of the local minima, the local maxima,
and points of inflection of A(x) on the interval [0, E], as well as the
intervals where A(x) is increasing, decreasing, concave up, or concave
down. Where does the absolute max of A(x) occur?

x

y

A B C D E

FIGURE 4

73. Find the local minima, the local maxima, and the inflection points

of A(x) =
∫ x

3

t dt

t2 + 1
.

74. Aparticle starts at the origin at time t = 0 and moves with velocity
v(t) as shown in Figure 5.

(a) How many times does the particle return to the origin in the first
12 seconds?

(b) What is the particle’s maximum distance from the origin?

(c) What is particle’s maximum distance to the left of the origin?

2

4

−4

−2

5

10

v(t) (m/s)

t (s)

FIGURE 5

75. On a typical day, a city consumes water at the rate of r(t) =
100 + 72t − 3t2 (in thousands of gallons per hour), where t is the num-
ber of hours past midnight. What is the daily water consumption? How
much water is consumed between 6 pm and midnight?

76. The learning curve in a certain bicycle factory is L(x) = 12x−1/5

(in hours per bicycle), which means that it takes a bike mechanic L(n)

hours to assemble the nth bicycle. If a mechanic has produced 24 bi-
cycles, how long does it take her or him to produce the second batch
of 12?

77. Cost engineers at NASA have the task of projecting the cost P of
major space projects. It has been found that the cost C of developing
a projection increases with P at the rate dC/dP ≈ 21P−0.65, where
C is in thousands of dollars and P in millions of dollars. What is the
cost of developing a projection for a project whose cost turns out to be
P = $35 million?

78. An astronomer estimates that in a certain constellation, the num-
ber of stars per magnitude m, per degree-squared of sky, is equal to
A(m) = 2.4 × 10−6m7.4 (fainter stars have higher magnitudes). De-
termine the total number of stars of magnitude between 6 and 15 in a
one-degree-squared region of sky.

79. Evaluate
∫ 8

−8

x15 dx

3 + cos2 x
, using the properties of odd functions.

80. Evaluate
∫ 1

0 f (x) dx, assuming that f (x) is an even continuous
function such that

∫ 2

1
f (x) dx = 5,

∫ 1

−2
f (x) dx = 8

81. Plot the graph of f (x) = sin mx sin nx on [0, π ] for
the pairs (m, n) = (2, 4), (3, 5) and in each case guess the value of
I = ∫ π

0 f (x) dx. Experiment with a few more values (including two
cases with m = n) and formulate a conjecture for when I is zero.

82. Show that ∫
x f (x) dx = xF(x) − G(x)

where F ′(x) = f (x) and G′(x) = F(x). Use this to evaluate∫
x cos x dx.

83. Prove

2 ≤
∫ 2

1
2x dx ≤ 4 and

1

9
≤

∫ 2

1
3−x dx ≤ 1

3

84. Plot the graph of f (x) = x−2 sin x, and show that

0.2 ≤
∫ 2

1
f (x) dx ≤ 0.9.

85. Find upper and lower bounds for
∫ 1

0
f (x) dx, for f (x) in Fig-

ure 6.
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1

1

2

y

x

f (x)y = x2 + 1

y = x1/2 + 1

FIGURE 6

In Exercises 86–91, find the derivative.

86. A′(x), where A(x) =
∫ x

3
sin(t3) dt

87. A′(π), where A(x) =
∫ x

2

cos t

1 + t
dt

88.
d

dy

∫ y

−2
3x dx

89. G′(x), where G(x) =
∫ sin x

−2
t3 dt

90. G′(2), where G(x) =
∫ x3

0

√
t + 1 dt

91. H ′(1), where H(x) =
∫ 9

4x2

1

t
dt

92. Explain with a graph: If f (x) is increasing and concave
up on [a, b], then LN is more accurate than RN . Which is more accurate
if f (x) is increasing and concave down?

93. Explain with a graph: If f (x) is linear on [a, b], then the∫ b

a
f (x) dx = 1

2
(RN + LN) for all N .

94. In this exercise, we prove

x − x2

2
≤ ln(1 + x) ≤ x (for x > 0) 1

(a) Show that ln(1 + x) =
∫ x

0

dt

1 + t
for x > 0.

(b) Verify that 1 − t ≤ 1

1 + t
≤ 1 for all t > 0.

(c) Use (b) to prove Eq. (1).
(d) Verify Eq. (1) for x = 0.5, 0.1, and 0.01.

95. Let

F(x) = x
√

x2 − 1 − 2
∫ x

1

√
t2 − 1 dt

Prove that F(x) and cosh−1 x differ by a constant by showing that they
have the same derivative. Then prove they are equal by evaluating both
at x = 1.

96. Let f (x) be a positive increasing continuous function on
[a, b], where 0 ≤ a < b as in Figure 7. Show that the shaded region
has area

I = bf (b) − af (a) −
∫ b

a
f (x) dx 2

y

x
ba

y = f (x)

f (b)

f (a)

FIGURE 7

97. How can we interpret the quantity I in Eq. (2) if
a < b ≤ 0? Explain with a graph.

98. The isotope thorium-234 has a half-life of 24.5 days.

(a) What is the differential equation satisfied by y(t), the amount of
thorium-234 in a sample at time t?

(b) At t = 0, a sample contains 2 kg of thorium-234. How much re-
mains after 40 days?

99. The Oldest Snack Food? In Bat Cave, New Mexico, archae-
ologists found ancient human remains, including cobs of popping corn
whose C14-to-C12 ratio was approximately 48% of that found in living
matter. Estimate the age of the corn cobs.

100. The C14-to-C12 ratio of a sample is proportional to the disintegra-
tion rate (number of beta particles emitted per minute) that is measured
directly with a Geiger counter. The disintegration rate of carbon in a
living organism is 15.3 beta particles per minute per gram. Find the age
of a sample that emits 9.5 beta particles per minute per gram.

101. What is the interest rate if the PV of $50,000 to be delivered in 3
years is $43,000?

102. An equipment upgrade costing $1 million will save a company
$320,000 per year for 4 years. Is this a good investment if the interest
rate is r = 5%? What is the largest interest rate that would make the
investment worthwhile?Assume that the savings are received as a lump
sum at the end of each year.

103. Find the PV of an income stream paying out continuously at a rate
of 5000e−0.1t dollars per year for 5 years, assuming an interest rate of
r = 4%.

104. Calculate the limit:

(a) lim
n→∞

(
1 + 4

n

)n

(b) lim
n→∞

(
1 + 1

n

)4n

(c) lim
n→∞

(
1 + 4

n

)3n
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PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided.

1. C If
∫ 3

0
f (x) dx = 6 and

∫ 2

0
f (x) dx = 4, then∫ 2

3
f (x) dx =

(A) −10
(B) −2
(C) −1
(D) 2
(E) 10

2. C If
∫ 4

1
f (x) dx = 7, then

∫ 4

1
(2f (x) + 5) dx =

(A) 12
(B) 19
(C) 24
(D) 29
(E) 57

3. C If F ′(x) = √
1 + x3 and F(1) = 5, then F(3) =

(A) 1.230
(B) 3.585
(C) 6.230
(D) 8.535
(E) 11.230

4. If F(x) =
∫ x

2

√
t3 − 1 dt , then F ′(2) =

(A) 0
(B) 1

2
√

7

(C) 6√
7

(D)
√

7

(E) 12
√

7

5. If F(x) =
∫ √

π

3x

cos(t2) dt , then F ′(x) =
(A) −1 − cos(9x2)

(B) 3 cos(9x2)

(C) −3 cos(9x2)

(D) 3 sin(9x2)

(E) −3 sin(9x2)

6. C Use the following table to compute the left-hand Rie-

mann sum for
∫ 3

1
F(x) dx using four subintervals.

x 1 1.75 2 2.5 3
F(x) 4 12 6 12 2
F ′(x) −1 3 4 2 7

(A) 3

(B) 15

(C) 17

(D) 32

(E) 34

7. C Use the table above to compute
∫ 3

1
F ′(x) dx.

(A) −2

(B) 2

(C) 6

(D) 8

(E) 15
AP5-1
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8.
∫

6x sin(x2) dx =
(A) 3x2 cos(x2) + C

(B) 3 cos(x2) + C

(C) −3 cos(x2) + C

(D) 6 cos(x2) + C

(E) −12 cos(x2) + C

9. Water flows into a tank at (6t2 + 1) gallons per minute for
0 ≤ t ≤ 2, with t in minutes. If the tank held 32 gallons
when t = 2, how much water, in gallons, was in the tank
when t = 1?

(A) 7

(B) 14

(C) 15

(D) 17

(E) 18

10.
∫

4x
√

x − 1 dx =
(A) 8

5 (
√

x − 1)5 + 8
3 (

√
x − 1)3 + C

(B) 8
5 (

√
x − 1)5 + 2

3 (
√

x − 1)3 + C

(C) 3x2(x − 1)1/2 + C

(D) 2x2 + 3
2 (x − 1)3/2 + C

(E) 4(x − 1)3/2 + 4(x − 1)1/2 + C

11.
∫

dx

4 + 16x2
=

(A) ln
∣∣4 + 16x2

∣∣ + C

(B) 1
32 ln

∣∣4 + 16x2
∣∣ + C

(C) 1
8 arctan(2x) + C

(D) 1
4 arctan(2x) + C

(E) 1
4 arctan(4x) + C

12.
∫

dx

6x + 12
=

(A) 6 ln |6x + 12| + C

(B) 1
6 ln |x + 2| + C

(C) ln |x + 2| + C

(D) ln |6x + 12| + C

(E) 6 ln |x + 2| + C

13. If w = 2x, then
∫ 2

0
f (2x) dx =

(A)
∫ 2

0
f (w) dw

(B)
1

2

∫ 2

0
f (w) dw

(C)
1

2

∫ 4

0
f (w) dw

(D)
∫ 4

0
f (w) dw

(E) 2
∫ 1

0
f (w) dw

14. A population triples every 6 months. How long, in months,
does it take to double?
(A) 3
(B) 4

(C)
6 ln 2

ln 3
(D) 6 ln 2 − ln 3
(E) 6(ln 2 − ln 3)

15. C If g(x) =
∫ 2x

0
f (t) dt , use the table below to compute

g′(3).

x 0 3 6
f (x) 1 5 7
f ′(x) 9 11 −4

(A) −4
(B) 5
(C) 10
(D) 11
(E) 14

16.
∫

1√
4 − 9x2

dx =
(A) ln

√
4 − 9x2 + C

(B) 2
√

4 − 9x2 + C

(C) arcsin(3x) + C

(D) 1
3 arcsin(3x) + C

(E) 1
3 arcsin( 3x

2 ) + C

17. C The midpoint Riemann Sum to approximate
∫ 9

1
x2 dx

using four subintervals is
(A) 1 + 9 + 25 + 49
(B) 2(1 + 9 + 25 + 49)

(C) 2(4 + 16 + 36 + 64)

(D) 4 + 16 + 36 + 64
(E) 4(25)
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18. C A population P is growing at a continuous rate of 3%
per year. Which of the following equations represents this
information?

(A) P = P0e
1.03t

(B) P = P0e
3t

(C) dP
dt

= P0e
0.03t

(D) dP
dt

= 0.03P

(E) dP
dt

= 1.03P

19. A particle travels on the x-axis with velocity given by
v(t) = 6 sin

(
t
2

)
. If the particle is at x = 1 when t = 0, then

its position when t = π is x =
(A) −11

(B) −5

(C) −2

(D) 7

(E) 13

20.
∫

3x/2dx =

(A) 3x/2 + C

(B)
√

3 3x + C

(C)
2

ln 3
3x/2 + C

(D) (2 ln 3)3x/2 + C

(E)
ln 3

2
3x/2 + C

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work.

1. A particle travels on the x-axis so its velocity at time t is
given by v(t) = 1

2 − sin t , for 0 ≤ t ≤ 2π .

(a) For what values of t is the particle moving to the right?

(b) If the particle starts at x = 3, what is the final position
of the particle?

(c) What is the total distance traveled by the particle?

(d) When t = π
4 , is the speed of the particle increasing or

decreasing? Justify your answer.

2. Let g(x) =
∫ x2

0

√
t3 + 64 dt .

(a) What is the domain of g?

(b) Find the interval(s) on which g is increasing.

(c) What is g′′(0)?

3.

−2−3 −1
−2

2

4

y

x

−4

−6

21 3 4 5

The graph of f above consists of two straight line segments.

Let g(x) =
∫ x

2
f (t) dt for −3 ≤ x ≤ 5.

(a) Find values of x for which g has a local maximum.
Justify your answer.

(b) What is the maximum value of g(x) on the interval
[−3, 5]? Justify your answer.

(c) On what subinterval(s) of (−3, 5) is the graph of g

concave up? Justify your answer.
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4. C

4 8 10
x

y

−4

−2

(0, 0)

(1, 1)

(2, 0)

(4, −2)

(6, 0)

(10, 4)

2

4
The graph of f given here consists of two semi-circles and

one straight line segment. Let g(x) =
∫ x

1
f (t) dt , 0 ≤ x ≤

10.

(a) What is g(0)?

(b) For what x, 0 < x < 10, does g′(x) fail to exist?
Explain.

(c) For what x, 0 < x < 10, does g′′(x) fail to exist?
Explain.

(d) How many solutions are there to g(x) = 0 for 0 ≤ x ≤
10? Justify your answer.

Answers to odd-numbered questions can be found in the back of
the book.



Magnetic Resonance Image (MRI) of veins in a

patient’s heart. MRI scanners use the

mathematics of Fourier transforms to construct

two and three-dimensional images.

6 APPLICATIONS OF THE
INTEGRAL

I n the previous chapter, we used the integral to compute areas under curves and net
change. In this chapter, we discuss some of the other quantities that are represented by

integrals, including volume, average value, work, total mass, population, and fluid flow.

6.1 Area Between Two Curves
Sometimes we are interested in the area between two curves. Figure 1 shows projected
electric power generation in the U.S. through renewable resources (wind, solar, biofuels,
etc.) under two scenarios: with and without government stimulus spending. The area of
the shaded region between the two graphs represents the additional energy projected to
result from stimulus spending.

80

100

120

140

160

U. S. Renewable Generating Capacity
Forecast Through 2030

Gigawatts

2006 2010 2015 2020 2025 2030
Year

160 gigawatts with
stimulus spending

133 gigawatts without
stimulus spending

Today 114 gigawatts

FIGURE 1 The area of the shaded region
(which has units of power × time, or
energy) represents the additional energy
from renewable generating capacity
projected to result from government
stimulus spending in 2009–2010. Source:
Energy Information Agency.

Now suppose that we are given two functions y = f (x) and y = g(x) such that
f (x) ≥ g(x) for all x in an interval [a, b]. Then the graph of f (x) lies above the graph of
g(x) [Figure 2], and the area between the graphs is equal to the integral of f (x) − g(x):

Area between the graphs =
∫ b

a

f (x) dx −
∫ b

a

g(x) dx

=
∫ b

a

(
f (x) − g(x)

)
dx 1

Figure 2 illustrates this formula in the case that both graphs lie above the x-axis. We see
that the region between the graphs is obtained by removing the region under y = g(x)

from the region under y = f (x).

x

y

a b a b a b

Region between the graphs

x

y

x

y

== −−
f (x)

g(x)

f (x)

g(x)

f (x)

g(x)

FIGURE 2 The area between the graphs is a
difference of two areas.
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EXAMPLE 1 Find the area of the region between the graphs of the functions

f (x) = x2 − 4x + 10, g(x) = 4x − x2, 1 ≤ x ≤ 3

Solution First, we must determine which graph lies on top. Figure 3 shows that f (x) ≥

1 2 3 4

f (x) = x2 − 4x + 10

g(x) = 4x − x2

10

8

6

4

2

x

y

FIGURE 3

g(x), as we can verify directly by completing the square:

f (x) − g(x) = (x2 − 4x + 10) − (4x − x2) = 2x2 − 8x + 10 = 2(x − 2)2 + 2 > 0

Therefore, by Eq. (1), the area between the graphs is∫ 3

1

(
f (x) − g(x)

)
dx =

∫ 3

1

(
(x2 − 4x + 10) − (4x − x2)

)
dx

=
∫ 3

1
(2x2 − 8x + 10) dx =

(
2

3
x3 − 4x2 + 10x

)∣∣∣∣3

1
= 12 − 20

3
= 16

3

Before continuing with more examples, we note that Eq. (1) remains valid whenever
f (x) ≥ g(x), even if f (x) and g(x) are not assumed to be positive. Recall that the integral
is a limit of Riemann sums:∫ b

a

(
f (x) − g(x)

)
dx = lim‖P ‖→0

R(f − g, P, C) = lim
N→∞

N∑
i=1

(
f (ci) − g(ci)

)
�xi

where C = {c1, . . . , cN } is a set of sample points for a partition P of [a, b] and �xi =
x

y

ybot = g(x)

ytop = f (x)

xi−1 xicia b

Rectangle of height
f (ci) − g(ci) and width �xi = xi − xi−1

FIGURE 4 Riemann sum for f (x) − g(x).

xi − xi−1. The ith term in the sum is the area of a thin vertical rectangle (Figure 4):(
f (ci) − g(ci)

)
�xi = height × width

Therefore, R(f − g, P, C) is an approximation to the area between the graphs using
thin vertical rectangles. As the norm ‖P ‖ tends to zero, the rectangles get thinner and
the Riemann sum converges to the area between the graphs. Writing ytop = f (x) for the
upper graph and ybot = g(x) for the lower graph, we obtain

Keep in mind that (ytop − ybot) is the
height of a vertical slice of the region.

Area between the graphs =
∫ b

a

(ytop − ybot) dx =
∫ b

a

(
f (x) − g(x)

)
dx 2

EXAMPLE 2 Find the area between the graphs of f (x) = x2 − 5x − 7 and
g(x) = x − 12 over [−2, 5].
Solution First, we must determine which graph lies on top.

Step 1. Sketch the region (especially, find any points of intersection).
We know that y = f (x) is a parabola with y-intercept −7 and that y = g(x) is a line
with y-intercept −12 (Figure 5). To determine where the graphs intersect, we observe

f (x) = x2 − 5x − 7

g(x) = x − 12

x

y

1 5−2

−12

FIGURE 5

f (x) − g(x) = (x2 − 5x − 7) − (x − 12) = x2 − 6x + 5 = (x − 1)(x − 5)

The graphs intersect where (x − 1)(x − 5) = 0, that is, at x = 1 and x = 5.

Step 2. Set up the integrals and evaluate.
We also see that f (x) − g(x) ≤ 0 for 1 ≤ x < 5, and thus

f (x) ≥ g(x) on [−2, 1] and g(x) ≥ f (x) on [1, 5]
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Therefore, we write the area as a sum of integrals over the two intervals:In Example 2, we found the intersection
points of y = f (x) and y = g(x)

algebraically. For more complicated
functions, it may be necessary to use a
computer algebra system.

∫ 5

−2
(ytop − ybot) dx =

∫ 1

−2

(
f (x) − g(x)

)
dx +

∫ 5

1

(
g(x) − f (x)

)
dx

=
∫ 1

−2

(
(x2 − 5x − 7) − (x − 12)

)
dx +

∫ 5

1

(
(x − 12) − (x2 − 5x − 7)

)
dx

=
∫ 1

−2
(x2 − 6x + 5) dx +

∫ 5

1
(−x2 + 6x − 5) dx

=
(

1

3
x3 − 3x2 + 5x

)∣∣∣∣1

−2
+

(
−1

3
x3 + 3x2 − 5x

)∣∣∣∣5

1

=
(

7

3
− (−74)

3

)
+

(
25

3
− (−7)

3

)
= 113

3

EXAMPLE 3 Calculating Area by Dividing the Region Find the area of the region
bounded by the graphs of y = 8/x2, y = 8x, and y = x.

Solution

Step 1. Sketch the region (especially, find any points of intersection).
The curve y = 8/x2 cuts off a region in the sector between the two lines y = 8x and
y = x (Figure 6). We find the intersection of y = 8/x2 and y = 8x by solving

8

x2
= 8x ⇒ x3 = 1 ⇒ x = 1

and the intersection of y = 8/x2 and y = x by solving

8

x2
= x ⇒ x3 = 8 ⇒ x = 2

Step 2. Set up the integrals and evaluate.
Figure 6 shows that ybot = x, but ytop changes at x = 1 from ytop = 8x to ytop = 8/x2.
Therefore, we break up the regions into two parts, A and B, and compute their areas
separately.

Area of A =
∫ 1

0

(
ytop − ybot

)
dx =

∫ 1

0
(8x − x) dx =

∫ 1

0
7x dx = 7

2
x2

∣∣∣∣1

0
= 7

2

Area of B =
∫ 2

1

(
ytop − ybot

)
dx =

∫ 2

1

(
8

x2
− x

)
dx =

(
− 8

x
− 1

2
x2

) ∣∣∣∣2

1
= 5

2

The total area bounded by the curves is the sum 7
2 + 5

2 = 6.

y = 8x

y = x

y = 8x

y = x y = x

y = 8
x2

y = 8
x2

x

y

1 2

8

2

8

2

8

2

x

y

1 2
x

y

A B

1 2

== ++
FIGURE 6 Area bounded by y = 8/x2,
y = 8x, and y = x as a sum of two areas.



360 C H A P T E R 6 APPLICATIONS OF THE INTEGRAL

Integration Along the y -Axis
Suppose we are given x as a function of y, say, x = g(y). What is the meaning of the

integral
∫ d

c

g(y) dy? This integral can be interpreted as signed area, where regions to the

right of the y-axis have positive area and regions to the left have negative area:∫ d

c

g(y) dy = signed area between graph and y-axis for c ≤ y ≤ d

In Figure 7(A), the part of the shaded region to the left of the y-axis has negative signed
area. The signed area of the entire region is∫ 6

−6
(y2 − 9) dy︸ ︷︷ ︸

Area to the right of y-axis minus
area to the left of y-axis

=
(

1

3
y3 − 9y

) ∣∣∣∣6

−6
= 36

−

−

+

+

x = y2 − 9

d

c

y

�y

x

x

xright = g(y)

xright − xleft

xleft = h(y)

y

−3

−6

6

3

(A)  Region between  x = y2 − 9
        and the y-axis 

(B)  Region between  x = h(y)
        and x = g(y) 

FIGURE 7

More generally, if g(y) ≥ h(y) as in Figure 7(B), then the graph of x = g(y) lies to
the right of the graph of x = h(y). In this case, we write xright = g(y) and xleft = h(y).
The formula for area corresponding to Eq. (2) is

Area between the graphs =
∫ d

c

(xright − xleft) dy =
∫ d

c

(
g(y) − h(y)

)
dy 3

EXAMPLE 4 Calculate the area enclosed by the graphs of h(y) = y2 − 1 and
g(y) = y2 − 1

8y4 + 1.

−1 1

−2

2

y

x

x = y2 − 1

x = y2 − y4 + 11
8

FIGURE 8

Solution First, we find the points where the graphs intersect by solving g(y) = h(y)

for y:

y2 − 1

8
y4 + 1 = y2 − 1 ⇒ 1

8
y4 − 2 = 0 ⇒ y = ±2

Figure 8 shows that the enclosed region stretches from y = −2 to y = 2. On this interval,
g(y) ≥ h(y). Therefore xright = g(y), xleft = h(y), and

xright − xleft =
(

y2 − 1

8
y4 + 1

)
− (y2 − 1) = 2 − 1

8
y4



S E C T I O N 6.1 Area Between Two Curves 361

The enclosed area isIt would be more difficult to calculate the
area of the region in Figure 8 as an integral
with respect to x because the curves are
not graphs of functions of x.

∫ 2

−2
(xright − xleft) dy =

∫ 2

−2

(
2 − 1

8
y4

)
dy =

(
2y − 1

40
y5

) ∣∣∣∣2

−2

= 16

5
−

(
−16

5

)
= 32

5

6.1 SUMMARY

• If f (x) ≥ g(x) on [a, b], then the area between the graphs is

Area between the graphs =
∫ b

a

(
ytop − ybot

)
dx =

∫ b

a

(
f (x) − g(x)

)
dx

• To calculate the area between y = f (x) and y = g(x), sketch the region to find ytop. If
necessary, find points of intersection by solving f (x) = g(x).

• Integral along the y-axis:
∫ d

c

g(y) dy is equal to the signed area between the graph and

the y-axis for c ≤ y ≤ d. Area to the right of the y-axis is positive and area to the left is
negative.
• If g(y) ≥ h(y) on [c, d], then x = g(y) lies to the right of x = h(y) and

Area between the graphs =
∫ d

c

(
xright − xleft

)
dy =

∫ d

c

(
g(y) − h(y)

)
dy

6.1 EXERCISES

Preliminary Questions

1. What is the area interpretation of
∫ b

a

(
f (x) − g(x)

)
dx if

f (x) ≥ g(x)?

2. Is
∫ b

a

(
f (x) − g(x)

)
dx still equal to the area between the graphs

of f and g if f (x) ≥ 0 but g(x) ≤ 0?

3. Suppose that f (x) ≥ g(x) on [0, 3] and g(x) ≥ f (x) on [3, 5].
Express the area between the graphs over [0, 5] as a sum of integrals.

4. Suppose that the graph of x = f (y) lies to the left of the y-axis. Is∫ b
a f (y) dy positive or negative?

Exercises
1. Find the area of the region between y = 3x2 + 12 and y = 4x + 4

over [−3, 3] (Figure 9).

50

25

y

x

y = 3x2 + 12

y = 4x + 4

3−1−3 1 2

FIGURE 9

2. Find the area of the region between the graphs of f (x) = 3x + 8
and g(x) = x2 + 2x + 2 over [0, 2].

3. Find the area of the region enclosed by the graphs of f (x) = x2 + 2
and g(x) = 2x + 5 (Figure 10).

g(x) = 2x + 5

f (x) = x2 + 2

−1 1 2 3

10

y

x

FIGURE 10

4. Find the area of the region enclosed by the graphs of f (x) =
x3 − 10x and g(x) = 6x (Figure 11).
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−4 42−2

−20

20

x

y f (x) = x3 − 10x

g(x) = 6x

FIGURE 11

In Exercises 5 and 6, sketch the region between y = sin x and y = cos x

over the interval and find its area.

5.
[π

4
,
π

2

]
6. [0, π ]

In Exercises 7 and 8, let f (x) = 20 + x − x2 and g(x) = x2 − 5x.

7. Sketch the region enclosed by the graphs of f (x) and g(x) and
compute its area.

8. Sketch the region between the graphs of f (x) and g(x) over [4, 8]
and compute its area as a sum of two integrals.

9. Find the area between y = ex and y = e2x over [0, 1].
10. Find the area of the region bounded by y = ex and y = 12 − ex

and the y-axis.

11. Sketch the region bounded by the line y = 2 and the graph of
y = sec2 x for −π

2 < x < π
2 and find its area.

12. Sketch the region bounded by

y = 1√
1 − x2

and y = − 1√
1 − x2

for − 1
2 ≤ x ≤ 1

2 and find its area.

In Exercises 13–16, find the area of the shaded region in Figures 12–15.

13. y

x
2

y = 3x2 + 4x − 10

y = x3 − 2x2 + 10

−2

FIGURE 12

14.

1

−1
x

y

y = x�1 − x2

1
2

y = x

FIGURE 13

15.
π

6
�3
2 π

3
1
2

x

y

y = cos x

( )  ,
( )  ,

π

6
π

3
π

2

FIGURE 14

16.

y = sin x

y = cos 2x

π

6
5π

6
3π

2
2π

y

x

FIGURE 15

In Exercises 17 and 18, find the area between the graphs of x = sin y

and x = 1 − cos y over the given interval (Figure 16).

17. 0 ≤ y ≤ π

2
18. −π

2
≤ y ≤ π

2

x = 1 − cos y

x = sin y

x

y

−

π

2

π

2

FIGURE 16

19. Find the area of the region lying to the right of x = y2 + 4y − 22
and to the left of x = 3y + 8.

20. Find the area of the region lying to the right of x = y2 − 5 and to
the left of x = 3 − y2.

21. Figure 17 shows the region enclosed by x = y3 − 26y + 10 and
x = 40 − 6y2 − y3. Match the equations with the curves and compute
the area of the region.

x

y

3

−1

−5

FIGURE 17
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22. Figure 18 shows the region enclosed by y = x3 − 6x and y =
8 − 3x2. Match the equations with the curves and compute the area of
the region.

−4

−3

−1

2

−50

x

y

FIGURE 18 Region between y = x3 − 6x and y = 8 − 3x2.

In Exercises 23 and 24, find the area enclosed by the graphs in two
ways: by integrating along the x-axis and by integrating along the
y-axis.

23. x = 9 − y2, x = 5

24. The semicubical parabola y2 = x3 and the line x = 1.

In Exercises 25 and 26, find the area of the region using the method (in-
tegration along either the x- or the y-axis) that requires you to evaluate
just one integral.

25. Region between y2 = x + 5 and y2 = 3 − x

26. Region between y = x and x + y = 8 over [2, 3]
In Exercises 27–44, sketch the region enclosed by the curves and com-
pute its area as an integral along the x- or y-axis.

27. y = 4 − x2, y = x2 − 4

28. y = x2 − 6, y = 6 − x3, y-axis

29. x + y = 4, x − y = 0, y + 3x = 4

30. y = 8 − 3x, y = 6 − x, y = 2

31. y = 8 − √
x, y = √

x, x = 0

32. y = x

x2 + 1
, y = x

5
33. x = |y|, x = 1 − |y|

34. y = |x|, y = x2 − 6

35. x = y3 − 18y, y + 2x = 0

36. y = x
√

x − 2, y = −x
√

x − 2, x = 4

37. x = 2y, x + 1 = (y − 1)2

38. x + y = 1, x1/2 + y1/2 = 1

39. y = cos x, y = cos 2x, x = 0, x = 2π

3

40. x = tan x, y = − tan x, x = π

4

41. y = sin x, y = csc2 x, x = π

4

42. x = sin y, x = 2

π
y

43. y = ex , y = e−x , y = 2

44. y = ln x

x
, y = (ln x)2

x

45. Plot

y = x√
x2 + 1

and y = (x − 1)2

on the same set of axes. Use a computer algebra system to find the
points of intersection numerically and compute the area between the
curves.

46. Sketch a region whose area is represented by

∫ √
2/2

−√
2/2

(√
1 − x2 − |x|) dx

and evaluate using geometry.

47. Athletes 1 and 2 run along a straight track with velocities
v1(t) and v2(t) (in m/s) as shown in Figure 19.

(a) Which of the following is represented by the area of the shaded
region over [0, 10]?

i. The distance between athletes 1 and 2 at time t = 10 s.
ii. The difference in the distance traveled by the athletes over the time

interval [0, 10].
(b) Does Figure 19 give us enough information to determine who is
ahead at time t = 10 s?
(c) If the athletes begin at the same time and place, who is ahead at
t = 10 s? At t = 25 s?

v1

v2

5 10 15 20 25 30

1
2
3
4
5
6
7

(m/s)

t (s)

FIGURE 19

48. Express the area (not signed) of the shaded region in Figure 20 as
a sum of three integrals involving f (x) and g(x).

x

y

g(x)

f (x)

3 5 9

FIGURE 20

49. Find the area enclosed by the curves y = c − x2 and y = x2 − c

as a function of c. Find the value of c for which this area is equal to 1.
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50. Set up (but do not evaluate) an integral that expresses the area
between the circles x2 + y2 = 2 and x2 + (y − 1)2 = 1.

51. Set up (but do not evaluate) an integral that expresses the area
between the graphs of y = (1 + x2)−1 and y = x2.

52. Find a numerical approximation to the area above
y = 1 − (x/π) and below y = sin x (find the points of intersection
numerically).

53. Find a numerical approximation to the area above y = |x|
and below y = cos x.

54. Use a computer algebra system to find a numerical ap-
proximation to the number c (besides zero) in

[
0, π

2

]
, where the curves

y = sin x and y = tan2 x intersect. Then find the area enclosed by the
graphs over [0, c].
55. The back of Jon’s guitar (Figure 21) is 19 inches long. Jon mea-
sured the width at 1-in. intervals, beginning and ending 1

2 in. from the
ends, obtaining the results

6, 9, 10.25, 10.75, 10.75, 10.25, 9.75, 9.5, 10, 11.25,

12.75, 13.75, 14.25, 14.5, 14.5, 14, 13.25, 11.25, 9

Use the midpoint rule to estimate the area of the back.

10
.7

5

11
.2

5
9

10
.2

5
96

FIGURE 21 Back of guitar.

56. Referring to Figure 1 at the beginning of this section, estimate the
projected number of additional joules produced in the years 2009–2030
as a result of government stimulus spending in 2009–2010. Note: One
watt is equal to one joule per second, and one gigawatt is 109 watts.

Exercises 57 and 58 use the notation and results of Exercises 49–51
of Section 3.4. For a given country, F(r) is the fraction of total in-
come that goes to the bottom rth fraction of households. The graph of
y = F(r) is called the Lorenz curve.

57. Let A be the area between y = r and y = F(r) over the
interval [0, 1] (Figure 22). The Gini index is the ratio G = A/B, where
B is the area under y = r over [0, 1].
(a) Show that G = 2

∫ 1

0
(r − F(r)) dr.

(b) Calculate G if

F(r) =
{ 1

3 r for 0 ≤ r ≤ 1
2

5
3 r − 2

3 for 1
2 ≤ r ≤ 1

(c) The Gini index is a measure of income distribution, with a lower
value indicating a more equal distribution. Calculate G if F(r) = r (in
this case, all households have the same income by Exercise 51(b) of
Section 3.4).

(d) What is G if all of the income goes to one household? Hint: In this
extreme case, F(r) = 0 for 0 ≤ r < 1.

58. Calculate the Gini index of the United States in the year 2001 from
the Lorenz curve in Figure 22, which consists of segments joining the
data points in the following table.

r 0 0.2 0.4 0.6 0.8 1
F(r) 0 0.035 0.123 0.269 0.499 1

0.8

1

0.4 0.6 10.2

0.8

0.4

0.6

0.2

y

x

y = F(r)y = r

FIGURE 22 Lorenz Curve for U.S. in 2001.

Further Insights and Challenges
59. Find the line y = mx that divides the area under the curve y =
x(1 − x) over [0, 1] into two regions of equal area.

60. Let c be the number such that the area under y = sin x

over [0, π ] is divided in half by the line y = cx (Figure 23). Find an
equation for c and solve this equation numerically using a computer
algebra system.

y = sin x
y = cx1

y

π

2
π

x

FIGURE 23

61. Explain geometrically (without calculation):

∫ 1

0
xn dx +

∫ 1

0
x1/n dx = 1 (for n > 0)

62. Let f (x) be an increasing function with inverse g(x). Ex-
plain geometrically:

∫ a

0
f (x) dx +

∫ f (a)

f (0)
g(x) dx = af (a)
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6.2 Setting Up Integrals: Volume, Density, Average Value
Which quantities are represented by integrals? Roughly speaking, integrals represent quan-
tities that are the “total amount” of something such as area, volume, or total mass. There
is a two-step procedure for computing such quantities: (1) Approximate the quantity by a
sum of N terms, and (2) Pass to the limit as N → ∞ to obtain an integral. We’ll use this
procedure often in this and other sections.

Volume
Our first example is the volume of a solid body. Before proceeding, let’s recall that theThe term “solid” or “solid body” refers to a

solid three-dimensional object. volume of a right cylinder (Figure 1) is Ah, where A is the area of the base and h is the
height, measured perpendicular to the base. Here we use the “right cylinder” in the general
sense; the base does not have to be circular, but the sides are perpendicular to the base.

Suppose that the solid body extends from height y = a to y = b along the y-axis as in
Figure 2. Let A(y) be the area of the horizontal cross section at height y (the intersection
of the solid with the horizontal plane at height y).

h

Base has area A

FIGURE 1 The volume of a right cylinder is
Ah.

�y

Volume of
ith slice ≈ A(yi−1)�y

Cross section
at height yi−1

  has area A(yi−1) 

y0 = a

yN = b

y1

yi
yi−1

x

y

FIGURE 2 Divide the solid into thin horizontal slices. Each slice is
nearly a right cylinder whose volume can be approximated as area
times height.

To compute the volume V of the body, divide the body into N horizontal slices of
thickness �y = (b − a)/N . The ith slice extends from yi−1 to yi , where yi = a + i�y.
Let Vi be the volume of the slice.

If N is very large, then �y is very small and the slices are very thin. In this case,
the ith slice is nearly a right cylinder of base A(yi−1) and height �y, and therefore
Vi ≈ A(yi−1)�y. Summing up, we obtain

V =
N∑

i=1

Vi ≈
N∑

i=1

A(yi−1)�y

The sum on the right is a left-endpoint approximation to the integral
∫ b

a

A(y) dy. If we

assume that A(y) is a continuous function, then the approximation improves in accuracy
and converges to the integral as N → ∞. We conclude that the volume of the solid is
equal to the integral of its cross-sectional area.

Volume as the Integral of Cross-Sectional Area Let A(y) be the area of the horizontal
cross section at height y of a solid body extending from y = a to y = b. Then

Volume of the solid body =
∫ b

a

A(y) dy 1
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EXAMPLE 1 Volume of a Pyramid Calculate the volume V of a pyramid of height
12 m whose base is a square of side 4 m.

Solution To use Eq. (1), we need a formula for the horizontal cross section A(y).

s

s
12 − y

12

2
0

y

B

C

A
4

1
2

FIGURE 3 A horizontal cross section of the
pyramid is a square.

Step 1. Find a formula for A(y).
Figure 3 shows that the horizontal cross section at height y is a square. To find the
side s of this square, apply the law of similar triangles to �ABC and to the triangle of
height 12 − y whose base of length 1

2 s lies on the cross section:

Base

Height
= 2

12
=

1
2 s

12 − y
⇒ 2(12 − y) = 6s

We find that s = 1
3 (12 − y) and therefore A(y) = s2 = 1

9 (12 − y)2.

Step 2. Compute V as the integral of A(y).

V =
∫ 12

0
A(y) dy =

∫ 12

0

1

9
(12 − y)2 dy = − 1

27
(12 − y)3

∣∣∣12

0
= 64 m3

This agrees with the result obtained using the formula V = 1
3Ah for the volume of a

pyramid of base A and height h, since 1
3Ah = 1

3 (42)(12) = 64.

EXAMPLE 2 Compute the volume V of the solid in Figure 4, whose base is the region
between the inverted parabola y = 4 − x2 and the x-axis, and whose vertical cross sections
perpendicular to the y-axis are semicircles.

x
y

y

x
4y

y

Length �4 − y

y = 4 − x2

Cross section is a semicircle
of radius �4 − y

�4 − y

FIGURE 4

Solution To find a formula for the area A(y) of the cross section, observe that y = 4 − x2

can be written x = ±√
4 − y. We see in Figure 4 that the cross section at y is a semicircle

of radius r = √
4 − y. This semicircle has area A(y) = 1

2πr2 = π
2 (4 − y). Therefore

V =
∫ 4

0
A(y) dy = π

2

∫ 4

0
(4 − y) dy = π

2

(
4y − 1

2
y2

) ∣∣∣∣4

0
= 4π

In the next example, we compute volume using vertical rather than horizontal cross
sections. This leads to an integral with respect to x rather than y.

EXAMPLE 3 Volume of a Sphere: Vertical Cross Sections Compute the volume of a
sphere of radius R.

Solution As we see in Figure 5, the vertical cross section of the sphere at x is a circle

x

y

−R R

r = �R2 − x2

R

x

FIGURE 5

whose radius r satisfies x2 + r2 = R2 or r = √
R2 − x2. The area of the cross section is

A(x) = πr2 = π(R2 − x2). Therefore, the sphere has volume

∫ R

−R

π(R2 − x2) dx = π

(
R2x − x3

3

) ∣∣∣∣R−R

= 2

(
πR3 − π

R3

3

)
= 4

3
πR3
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CONCEPTUAL INSIGHT Cavalieri’s principle states: Solids with equal cross-sectional
areas have equal volume. It is often illustrated convincingly with two stacks of coins

(Figure 6). Our formula V =
∫ b

a

A(y) dy includes Cavalieri’s principle, because the

volumes V are certainly equal if the cross-sectional areas A(y) are equal.

FIGURE 6 The two stacks of coins have
equal cross-sections, hence equal volumes
by Cavalieri’s principle.

Density
Next, we show that the total mass of an object can be expressed as the integral of its mass

The symbol ρ (lowercase Greek letter rho)
is used often to denote density.

density. Consider a rod of length �. The rod’s linear mass density ρ is defined as the mass
per unit length. If ρ is constant, then by definition,

Total mass = linear mass density × length = ρ · � 2

For example, if � = 10 cm and ρ = 9 g/cm, then the total mass is ρ� = 9 · 10 = 90 g.
Now consider a rod extending along the x-axis from x = a to x = b whose density

ρ(x) is a continuous function of x, as in Figure 7. To compute the total mass M , we break
up the rod into N small segments of length �x = (b − a)/N . Then M = ∑N

i=1 Mi , where
Mi is the mass of the ith segment.

Density ρ

x
b = xN

ρ(x)

x0 = a

Rod

Mass ≈ ρ(ci)�x 
x1

xixi−1

xixi−1

ci

FIGURE 7 The total mass of the rod is equal
to the area under the graph of mass
density ρ.

We cannot use Eq. (2) because ρ(x) is not constant, but we can argue that if �x is
small, then ρ(x) is nearly constant along the ith segment. If the ith segment extends from
xi−1 to xi and ci is any sample point in [xi−1, xi], then Mi ≈ ρ(ci)�x and

Total mass M =
N∑

i=1

Mi ≈
N∑

i=1

ρ(ci)�x

As N → ∞, the accuracy of the approximation improves. However, the sum on the right
is a Riemann sum whose value approaches

∫ b

a
ρ(x) dx, and thus it makes sense to define

the total mass of a rod as the integral of its linear mass density:

Total mass M =
∫ b

a

ρ(x) dx 3

Note the similarity in the way we use thin slices to compute volume and small pieces
to compute total mass.

EXAMPLE 4 Total Mass Find the total mass M of a 2-m rod of linear density
ρ(x) = 1 + x(2 − x) kg/m, where x is the distance from one end of the rod.

Solution

M =
∫ 2

0
ρ(x) dx =

∫ 2

0

(
1 + x(2 − x)

)
dx =

(
x + x2 − 1

3
x3

) ∣∣∣∣2

0
= 10

3
kg
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In some situations, density is a function of distance to the origin. For example, in
the study of urban populations, it might be assumed that the population density ρ(r) (in
people per square kilometer) depends only on the distance r from the center of a city. Such
a density function is called a radial density function.

In general, density is a function ρ(x, y)

that depends not just on the distance to
the origin but also on the coordinates
(x, y). Total mass or population is then
computed using double integration, a topic
in multivariable calculus.

We now derive a formula for the total population P within a radius R of the city
center assuming a radial density ρ(r). First, divide the circle of radius R into N thin rings
of equal width �r = R/N as in Figure 8.

r1 r2 ri R

Ring of
width �r,
Area ≈ 2πri�r

FIGURE 8 Dividing the circle of radius R

into N thin rings of width �r = R/N .

Let Pi be the population within the ith ring, so that P =
N∑

i=1

Pi . If the outer radius of

the ith ring is ri , then the circumference is 2πri , and if �r is small, the area of this ring
is approximately 2πri�r (outer circumference times width). Furthermore, the population
density within the thin ring is nearly constant with value ρ(ri). With these approximations,

Pi ≈ 2πri�r︸ ︷︷ ︸
Area of ring

× ρ(ri)︸ ︷︷ ︸
Population

density

= 2πriρ(ri)�r

P =
N∑

i=1

Pi ≈ 2π

N∑
i=1

riρ(ri)�r

This last sum is a right-endpoint approximation to the integral 2π

∫ R

0
rρ(r) dr .As N tends

to ∞, the approximation improves in accuracy and the sum converges to the integral. Thus,
for a population with a radial density function ρ(r),Remember that for a radial density

function, the total population is obtained
by integrating 2πrρ(r) rather than ρ(r).

Population P within a radius R = 2π

∫ R

0
rρ(r) dr 4

EXAMPLE 5 Computing Total Population The population in a certain city has radial
density function ρ(r) = 15(1 + r2)−1/2, where r is the distance from the city center in
kilometers and ρ has units of thousands per square kilometer. How many people live in
the ring between 10 and 30 km from the city center?

Solution The population P (in thousands) within the ring is

P = 2π

∫ 30

10
r
(
15(1 + r2)−1/2) dr = 2π(15)

∫ 30

10

r

(1 + r2)1/2
dr

Now use the substitution u = 1 + r2, du = 2r dr . The limits of integration become
u(10) = 101 and u(30) = 901:

P = 30π

∫ 901

101
u−1/2

(
1

2

)
du = 30πu1/2

∣∣∣901

101
≈ 1881 thousand

In other words, the population is approximately 1.9 million people.

Flow Rate
When fluid flows through a tube, the flow rate Q is the volume per unit time of fluid
passing through the tube (Figure 9). The flow rate depends on the velocity of the fluid par-
ticles. If all particles of the fluid travel with the same velocity v (say, in units of cm3/min),
and the tube has radius R, then

Flow rate Q︸ ︷︷ ︸
Volume per unit time

= cross-sectional area × velocity = πR2v cm3/min
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Why is this formula true? Let’s fix an observation point P in the tube and ask: Which fluid
particles flow past P in a 1-min interval? A particle travels v centimeters each minute, so
it flows past P during this minute if it is located not more than v centimeters to the left of
P (assuming the fluid flows from left to right). Therefore, the column of fluid flowing past
P in a 1-min interval is a cylinder of radius R, length v, and volume πR2v (Figure 9).

v cm

R

P

FIGURE 9 The column of fluid flowing past
P in one unit of time is a cylinder of
volume πR2v.

In reality, the fluid particles do not all travel at the same velocity because of friction.
However, for a slowly moving fluid, the flow is laminar, by which we mean that the
velocity v(r) depends only on the distance r from the center of the tube. The particles at
the center of the tube travel most quickly, and the velocity tapers off to zero near the walls
of the tube (Figure 10).

Rr

PFIGURE 10 Laminar flow: Velocity of fluid
increases toward the center of the tube.

If the flow is laminar, we can express the flow rate Q as an integral. We divide
the circular cross-section of the tube into N thin concentric rings of width �r = R/N

(Figure 11). The area of the ith ring is approximately 2πri�r and the fluid particles

ri

v(ri)

Ring of
width �r,
Area ≈ 2πri�r

FIGURE 11 In a laminar flow, the fluid
particles passing through a thin ring at
distance ri from the center all travel at
nearly the same velocity v(ri ).

flowing past this ring have velocity that is nearly constant with value v(ri). Therefore, we
can approximate the flow rate Qi through the ith ring by

Qi ≈ cross-sectional area × velocity ≈ (2πri�r)v(ri)

We obtain

Q =
N∑

i=1

Qi ≈ 2π

N∑
i=1

riv(ri)�r

The sum on the right is a right-endpoint approximation to the integral 2π

∫ R

0
rv(r) dr .

Once again, we let N tend to ∞ to obtain the formula

Flow rate Q = 2π

∫ R

0
rv(r) dr 5

Note the similarity of this formula and its derivation to that of population with a radial
density function.

EXAMPLE 6 Laminar Flow According to Poiseuille’s Law, the velocity of bloodThe French physician Jean Poiseuille
(1799–1869) discovered the law of
laminar flow that cardiologists use to study
blood flow in humans. Poiseuille’s Law
highlights the danger of cholesterol buildup
in blood vessels: The flow rate through a
blood vessel of radius R is proportional to
R4, so if R is reduced by one-half, the flow
is reduced by a factor of 16.

flowing in a blood vessel of radius R cm is v(r) = k(R2 − r2), where r is the distance
from the center of the vessel (in centimeters) and k is a constant. Calculate the flow rate
Q as function of R, assuming that k = 0.5 (cm-s)−1.

Solution By Eq. (5),

Q = 2π

∫ R

0
(0.5)r(R2 − r2) dr = π

(
R2 r2

2
− r4

4

) ∣∣∣∣R
0

= π

4
R4 cm3/s

Note that Q is proportional to R4 (this is true for any value of k).
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Average Value
As a final example, we discuss the average value of a function. Recall that the average of
N numbers a1, a2, . . . , aN is the sum divided by N :

a1 + a2 + · · · + aN

N
= 1

N

N∑
j=1

aj

For example, the average of 18, 25, 22, and 31 is 1
4 (18 + 25 + 22 + 31) = 24.

We cannot define the average value of a function f (x) on an interval [a, b] as a sum
because there are infinitely many values of x to consider. But recall the formula for the
right-endpoint approximation RN (Figure 12):

y

x

f (x1)
f (x2)

f (xN)

.  .  .x1 x2 b = xNa = x0

FIGURE 12 The average of the values of
f (x) at the points x1, x2, . . . , xN is equal

to
RN

b − a
.

RN = b − a

N

(
f (x1) + f (x2) + · · · + f (xN)

)
where xi = a + i

(
b − a

N

)
. We see that RN divided by (b − a) is equal to the average of

the equally spaced function values f (xi):

1

b − a
RN = f (x1) + f (x2) + · · · + f (xN)

N︸ ︷︷ ︸
Average of the function values

If N is large, it is reasonable to think of this quantity as an approximation to the average
of f (x) on [a, b]. Therefore, we define the average value itself as the limit:

Average value = lim
N→∞

1

b − a
RN(f ) = 1

b − a

∫ b

a

f (x) dx

DEFINITION Average Value The average value of an integrable function f (x) on
[a, b] is the quantity

Average value = 1

b − a

∫ b

a

f (x) dx 6

The average value of a function is also called the mean value.

GRAPHICAL INSIGHT Think of the average value M of a function as the average height
of its graph (Figure 13). The region under the graph has the same signed area as the

rectangle of height M , because
∫ b

a

f (x) dx = M(b − a).
x

y

y = sin x
1

M = π
2

π

FIGURE 13 The area under the graph is
equal to the area of the rectangle whose
height is the average value M .

EXAMPLE 7 Find the average value of f (x) = sin x on [0, π ].
Solution The average value of sin x on [0, π ] is

1

π

∫ π

0
sin x dx = − 1

π
cos x

∣∣∣∣π
0

= 1

π

(−(−1) − (−1)
) = 2

π
≈ 0.637

This answer is reasonable because sin x varies from 0 to 1 on the interval [0, π ] and the
average 0.637 lies somewhere between the two extremes (Figure 13).
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EXAMPLE 8 Vertical Jump of a Bushbaby The bushbaby (Galago senegalensis) is a
small primate with remarkable jumping ability (Figure 14). Find the average speed during
a jump if the initial vertical velocity is v0 = 600 cm/s. Use Galileo’s formula for the height
h(t) = v0t − 1

2gt2 (in centimeters, where g = 980 cm/s2).

Solution The bushbaby’s height is h(t) = v0t − 1
2gt2 = t

(
v0 − 1

2gt
)
. The height is zero

FIGURE 14 A bushbaby can jump as high as
2 meters (its center of mass rises more than
five bodylengths). By contrast, Michael
Jordan rises at most 0.6 body length when
executing a slam dunk.

at t = 0 and at t = 2v0/g = 1200
980 = 6

4.9 s, when jump ends.
The bushbaby’s velocity is h′(t) = v0 = gt = 600 − 980t . The velocity is negative

for t > v0/g = 6
9.8 , so as we see in Figure 15, the integral of speed |h′(t)| is equal to the

sum of the areas of two triangles of base 6
9.8 and height 600:

∫ 6/4.9

0
|600 − 980t | dt = 1

2

(
6

9.8

)
(600) + 1

2

(
6

9.8

)
(600) = 3600

9.8

The average speed s is

s = 1
6

4.9

∫ 6/4.9

0
|600 − 980t | dt = 1

6
4.9

(
3600

9.8

)
= 300 cm/s

0.5 1

200
400
600

−200
−400
−600

Speed (cm/s)

t (s)

Velocity

Speed

6
9.8

6
4.9

FIGURE 15 Graph of speed
|h′(t)| = |600 − 980t |.

There is an important difference between the average of a list of numbers and the
average value of a continuous function. If the average score on an exam is 84, then 84 lies
between the highest and lowest scores, but it is possible that no student received a score
of 84. By contrast, the Mean Value Theorem (MVT) for Integrals asserts that a continuous
function always takes on its average value somewhere in the interval (Figure 16).

For example, the average of f (x) = sin x on [0, π ] is 2/π by Example 7. We have

x
ba

M

Points where f (x) takes on
its average value

y

FIGURE 16 The function f (x) takes on its
average value M at the points where the
upper edge of the rectangle intersects the
graph.

f (c) = 2/π for c = sin−1(2/π) ≈ 0.69. Since 0.69 lies in [0, π ], f (x) = sin x indeed
takes on its average value at a point in the interval.

THEOREM 1 Mean Value Theorem for Integrals If f (x) is continuous on [a, b], then
there exists a value c ∈ [a, b] such that

f (c) = 1

b − a

∫ b

a

f (x) dx

Proof Let M = 1

b − a

∫ b

a

f (x) be the average value. Because f (x) is continuous, we

can apply Theorem 1 of Section 4.2 to conclude that f takes on a minimum value mmin
and a maximum value Mmax on the closed interval [a, b]. Furthermore, by Eq. (8) of
Section 5.2,

mmin(b − a) ≤
∫ b

a

f (x) dx ≤ Mmax(b − a)

Dividing by (b − a), we find

mmin ≤ M ≤ Mmax

In other words, the average value M lies between mmin and Mmax. The Intermediate Value
Theorem guarantees that f (x) takes on every value between its min and max, so f (c) = M

for some c in [a, b].



372 C H A P T E R 6 APPLICATIONS OF THE INTEGRAL

6.2 SUMMARY

• Formulas

Volume V =
∫ b

a

A(y) dy A(y) = cross-sectional area

Total Mass M =
∫ b

a

ρ(x) dx ρ(x) = linear mass density

Total Population P = 2π

∫ R

0
rρ(r) dr ρ(r) = radial density

Flow Rate Q = 2π

∫ R

0
rv(r) dr v(r) = velocity at radius r

Average value M = 1

b − a

∫ b

a

f (x) dx f (x) any continuous function

• The MVT for Integrals: If f (x) is continuous on [a, b] with average (or mean) value
M , then f (c) = M for some c ∈ [a, b].

6.2 EXERCISES

Preliminary Questions
1. What is the average value of f (x) on [0, 4] if the area between the

graph of f (x) and the x-axis is equal to 12?

2. Find the volume of a solid extending from y = 2 to y = 5 if every
cross section has area A(y) = 5.

3. What is the definition of flow rate?

4. Which assumption about fluid velocity did we use to compute the
flow rate as an integral?

5. The average value of f (x) on [1, 4] is 5. Find
∫ 4

1
f (x) dx.

Exercises
1. Let V be the volume of a pyramid of height 20 whose base is a

square of side 8.

(a) Use similar triangles as in Example 1 to find the area of the hori-
zontal cross section at a height y.

(b) Calculate V by integrating the cross-sectional area.

2. Let V be the volume of a right circular cone of height 10 whose
base is a circle of radius 4 [Figure 17(A)].

(a) Use similar triangles to find the area of a horizontal cross section
at a height y.

(b) Calculate V by integrating the cross-sectional area.

3. Use the method of Exercise 2 to find the formula for the volume
of a right circular cone of height h whose base is a circle of radius R

[Figure 17(B)].

4. Calculate the volume of the ramp in Figure 18 in three ways by
integrating the area of the cross sections:

(a) Perpendicular to the x-axis (rectangles).

(b) Perpendicular to the y-axis (triangles).

(c) Perpendicular to the z-axis (rectangles).

10

(A) (B)

0

y

4
0

y

h

R

FIGURE 17 Right circular cones.

2

6

y

x

z

4

FIGURE 18 Ramp of length 6, width 4, and height 2.
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5. Find the volume of liquid needed to fill a sphere of radius R to
height h (Figure 19).

R

y

h

FIGURE 19 Sphere filled with liquid to height h.

6. Find the volume of the wedge in Figure 20(A) by integrating the
area of vertical cross sections.

68

(A) (B)

4

ba

c

xx

FIGURE 20

7. Derive a formula for the volume of the wedge in Figure 20(B) in
terms of the constants a, b, and c.

8. Let B be the solid whose base is the unit circle x2 + y2 = 1
and whose vertical cross sections perpendicular to the x-axis are
equilateral triangles. Show that the vertical cross sections have area
A(x) = √

3(1 − x2) and compute the volume of B.

In Exercises 9–14, find the volume of the solid with the given base and
cross sections.

9. The base is the unit circle x2 + y2 = 1, and the cross sections per-
pendicular to the x-axis are triangles whose height and base are equal.

10. The base is the triangle enclosed by x + y = 1, the x-axis, and the
y-axis. The cross sections perpendicular to the y-axis are semicircles.

11. The base is the semicircle y =
√

9 − x2, where −3 ≤ x ≤ 3. The
cross sections perpendicular to the x-axis are squares.

12. The base is a square, one of whose sides is the interval [0, �] along
the x-axis. The cross sections perpendicular to the x-axis are rectangles
of height f (x) = x2.

13. The base is the region enclosed by y = x2 and y = 3. The cross
sections perpendicular to the y-axis are squares.

14. The base is the region enclosed by y = x2 and y = 3. The cross
sections perpendicular to the y-axis are rectangles of height y3.

15. Find the volume of the solid whose base is the region |x| + |y| ≤ 1
and whose vertical cross sections perpendicular to the y-axis are semi-
circles (with diameter along the base).

16. Show that a pyramid of height h whose base is an equilateral tri-

angle of side s has volume
√

3
12 hs2.

17. The area of an ellipse is πab, where a and b are the lengths of the
semimajor and semiminor axes (Figure 21). Compute the volume of a
cone of height 12 whose base is an ellipse with semimajor axis a = 6
and semiminor axis b = 4.

18. Find the volume V of a regular tetrahedron (Figure 22) whose
face is an equilateral triangle of side s. The tetrahedron has height
h = √

2/3s.

Ellipse

12

64

FIGURE 21

s

s

FIGURE 22

19. A frustum of a pyramid is a pyramid with its top cut off [Figure
23(A)]. Let V be the volume of a frustum of height h whose base is a
square of side a and whose top is a square of side b with a > b ≥ 0.

(a) Show that if the frustum were continued to a full pyramid, it would
have height ha/(a − b) [Figure 23(B)].

(b) Show that the cross section at height x is a square of side
(1/h)(a(h − x) + bx).

(c) Show that V = 1
3h(a2 + ab + b2). A papyrus dating to the year

1850 bce indicates that Egyptian mathematicians had discovered this
formula almost 4000 years ago.

(B)(A)

h

a

b

FIGURE 23

20. A plane inclined at an angle of 45◦ passes through a diameter of
the base of a cylinder of radius r . Find the volume of the region within
the cylinder and below the plane (Figure 24).

FIGURE 24
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21. The solid S in Figure 25 is the intersection of two cylinders of
radius r whose axes are perpendicular.

(a) The horizontal cross section of each cylinder at distance y from the
central axis is a rectangular strip. Find the strip’s width.

(b) Find the area of the horizontal cross section of S at distance y.

(c) Find the volume of S as a function of r .

S

y

FIGURE 25 Two cylinders intersecting at right angles.

22. Let S be the intersection of two cylinders of radius r whose axes
intersect at an angle θ . Find the volume of S as a function of r and θ .

23. Calculate the volume of a cylinder inclined at an angle θ = 30◦
with height 10 and base of radius 4 (Figure 26).

30°

4

10

FIGURE 26 Cylinder inclined at an angle θ = 30◦.

24. The areas of cross sections of Lake Nogebow at 5-meter intervals
are given in the table below. Figure 27 shows a contour map of the lake.
Estimate the volume V of the lake by taking the average of the right-
and left-endpoint approximations to the integral of cross-sectional area.

Depth (m) 0 5 10 15 20

Area (million m2) 2.1 1.5 1.1 0.835 0.217

0
5

10
20

15

FIGURE 27 Depth contour map of Lake Nogebow.

25. Find the total mass of a 1-m rod whose linear density function is
ρ(x) = 10(x + 1)−2 kg/m for 0 ≤ x ≤ 1.

26. Find the total mass of a 2-m rod whose linear density function is
ρ(x) = 1 + 0.5 sin(πx) kg/m for 0 ≤ x ≤ 2.

27. A mineral deposit along a strip of length 6 cm has density s(x) =
0.01x(6 − x) g/cm for 0 ≤ x ≤ 6. Calculate the total mass of the de-
posit.

28. Charge is distributed along a glass tube of length 10 cm with linear
charge density ρ(x) = x(x2 + 1)−2 × 10−4 coulombs per centimeter
for 0 ≤ x ≤ 10. Calculate the total charge.

29. Calculate the population within a 10-mile radius of the city center
if the radial population density is ρ(r) = 4(1 + r2)1/3 (in thousands
per square mile).

30. Odzala National Park in the Republic of the Congo has a high den-
sity of gorillas. Suppose that the radial population density is ρ(r) =
52(1 + r2)−2 gorillas per square kilometer, where r is the distance
from a grassy clearing with a source of water. Calculate the number of
gorillas within a 5-km radius of the clearing.

31. Table 1 lists the population density (in people per square kilome-
ter) as a function of distance r (in kilometers) from the center of a rural
town. Estimate the total population within a 1.2-km radius of the center
by taking the average of the left- and right-endpoint approximations.

TABLE 1 Population Density

r ρ(r) r ρ(r)

0.0 125.0 0.8 56.2
0.2 102.3 1.0 46.0
0.4 83.8 1.2 37.6
0.6 68.6

32. Find the total mass of a circular plate of radius 20 cm whose mass
density is the radial function ρ(r) = 0.03 + 0.01 cos(πr2) g/cm2.

33. The density of deer in a forest is the radial function ρ(r) =
150(r2 + 2)−2 deer per square kilometer, where r is the distance (in
kilometers) to a small meadow. Calculate the number of deer in the
region 2 ≤ r ≤ 5 km.

34. Show that a circular plate of radius 2 cm with radial mass density
ρ(r) = 4

r g/cm2 has finite total mass, even though the density becomes
infinite at the origin.

35. Find the flow rate through a tube of radius 4 cm, assuming that
the velocity of fluid particles at a distance r cm from the center is
v(r) = (16 − r2) cm/s.

36. The velocity of fluid particles flowing through a tube of radius 5 cm
is v(r) = (10 − 0.3r − 0.34r2) cm/s, where r cm is the distance from
the center. What quantity per second of fluid flows through the portion
of the tube where 0 ≤ r ≤ 2?
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37. A solid rod of radius 1 cm is placed in a pipe of radius 3 cm so
that their axes are aligned. Water flows through the pipe and around the
rod. Find the flow rate if the velocity of the water is given by the radial
function v(r) = 0.5(r − 1)(3 − r) cm/s.

38. Let v(r) be the velocity of blood in an arterial capillary of ra-
dius R = 4 × 10−5 m. Use Poiseuille’s Law (Example 6) with k =
106 (m-s)−1 to determine the velocity at the center of the capillary and
the flow rate (use correct units).

In Exercises 39–48, calculate the average over the given interval.

39. f (x) = x3, [0, 4] 40. f (x) = x3, [−1, 1]
41. f (x) = cos x,

[
0, π

6

]
42. f (x) = sec2 x,

[
π
6 , π

3

]
43. f (s) = s−2, [2, 5] 44. f (x) = sin(π/x)

x2
, [1, 2]

45. f (x) = 2x3 − 6x2, [−1, 3] 46. f (x) = 1

x2 + 1
, [−1, 1]

47. f (x) = xn for n ≥ 0, [0, 1] 48. f (x) = e−nx , [−1, 1]
49. The temperature (in ◦C) at time t (in hours) in an art museum varies
according to T (t) = 20 + 5 cos

(
π
12 t

)
. Find the average over the time

periods [0, 24] and [2, 6].
50. A ball thrown in the air vertically from ground level with initial
velocity 18 m/s has height h(t) = 18t − 9.8t2 at time t (in seconds).
Find the average height and the average speed over the time interval
extending from the ball’s release to its return to ground level.

51. Find the average speed over the time interval [1, 5] of a particle
whose position at time t is s(t) = t3 − 6t2 m/s.

52. An object with zero initial velocity accelerates at a constant rate of
10 m/s2. Find its average velocity during the first 15 seconds.

53. The acceleration of a particle is a(t) = 60t − 4t3 m/s2. Compute
the average acceleration and the average speed over the time interval
[2, 6], assuming that the particle’s initial velocity is zero.

54. What is the average area of the circles whose radii vary from 0
to R?

55. Let M be the average value of f (x) = x4 on [0, 3]. Find a value
of c in [0, 3] such that f (c) = M .

56. Let f (x) = √
x. Find a value of c in [4, 9] such that f (c) is equal

to the average of f on [4, 9].
57. Let M be the average value of f (x) = x3 on [0, A], where A > 0.
Which theorem guarantees that f (c) = M has a solution c in [0, A]?
Find c.

58. Let f (x) = 2 sin x − x. Use a computer algebra system
to plot f (x) and estimate:

(a) The positive root α of f (x).

(b) The average value M of f (x) on [0, α].
(c) A value c ∈ [0, α] such that f (c) = M .

59. Which of f (x) = x sin2 x and g(x) = x2 sin2 x has a larger aver-
age value over [0, 1]? Over [1, 2]?
60. Find the average of f (x) = ax + b over the interval [−M, M],
where a, b, and M are arbitrary constants.

61. Sketch the graph of a function f (x) such that f (x) ≥ 0
on [0, 1] and f (x) ≤ 0 on [1, 2], whose average on [0, 2] is negative.

62. Give an example of a function (necessarily discontinuous) that does
not satisfy the conclusion of the MVT for Integrals.

Further Insights and Challenges
63. An object is tossed into the air vertically from ground level with
initial velocity v0 ft/s at time t = 0. Find the average speed of the object
over the time interval [0, T ], where T is the time the object returns to
earth.

64. Review the MVT stated in Section 4.3 (Theorem 1, p. 226)
and show how it can be used, together with the Fundamental Theorem
of Calculus, to prove the MVT for Integrals.

6.3 Volumes of Revolution
A solid of revolution is a solid obtained by rotating a region in the plane about an axis.We use the terms “revolve” and “rotate”

interchangeably. The sphere and right circular cone are familiar examples of such solids. Each of these is
“swept out” as a plane region revolves around an axis (Figure 1).

Suppose that f (x) ≥ 0 for a ≤ x ≤ b. The solid obtained by rotating the region under
This method for computing the volume is
referred to as the disk method because the
vertical slices of the solid are circular disks.

the graph about the x-axis has a special feature: All vertical cross sections are circles
(Figure 2). In fact, the vertical cross section at location x is a circle of radius R = f (x)

and thus

Area of the vertical cross section = πR2 = πf (x)2

We know from Section 6.2 that the total volume V is equal to the integral of cross-sectional

area. Therefore, V =
∫ b

a

πf (x)2 dx.
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y

yy

y

x xx x

FIGURE 1 The right circular cone and the sphere are solids of revolution.

bxa bxa bxa

f (x)

f (x)y y y

x x x

(A)   (B) Cross section is a circle
       of radius f (x).

(C) Solid of revolution   

FIGURE 2

Volume of Revolution: Disk Method If f (x) is continuous and f (x) ≥ 0 on [a, b],
then the solid obtained by rotating the region under the graph about the x-axis has
volume [with R = f (x)]

V = π

∫ b

a

R2 dx = π

∫ b

a

f (x)2 dx 1

The cross sections of a solid of revolution
are circles of radius R = f (x) and area
πR2 = πf (x)2. The volume, given by
Eq. (1), is the integral of cross-sectional
area.

EXAMPLE 1 Calculate the volume V of the solid obtained by rotating the region
under y = x2 about the x-axis for 0 ≤ x ≤ 2.

2
x

2x

y

y = x2

y = x2

x

y

x

FIGURE 3 Region under y = x2 rotated
about the x-axis.

Solution The solid is shown in Figure 3. By Eq. (1) with f (x) = x2, its volume is

V = π

∫ 2

0
R2 dx = π

∫ 2

0
(x2)2 dx = π

∫ 2

0
x4 dx = π

x5

5

∣∣∣∣2

0
= π

25

5
= 32

5
π

There are some useful variations on the formula for a volume of revolution. First,
consider the region between two curves y = f (x) and y = g(x), where f (x) ≥ g(x) ≥ 0
as in Figure 5(A). When this region is rotated about the x-axis, segment AB sweeps out
the washer shown in Figure 5(B). The inner and outer radii of this washer (also called an
annulus; see Figure 4) are

Router = f (x), Rinner = g(x)
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The washer has area πR2
outer − πR2

inner or π(f (x)2 − g(x)2), and the volume of the solid
of revolution [Figure 5(C)] is the integral of this cross-sectional area:

Router

Rinner

Area = π(R2
outer − R2

inner)

FIGURE 4 The region between two
concentric circles is called an
annulus, or more informally,
a washer.

V = π

∫ b

a

(
R2

outer − R2
inner

)
dx = π

∫ b

a

(
f (x)2 − g(x)2) dx 2

Keep in mind that the integrand is (f (x)2 − g(x)2), not (f (x) − g(x))2.

Washer

x

(A) (B)

y

x
bxa

B

A

y

x

f (x)

g(x)

bxa ba

B

A

y

x

f (x)

g(x)

(C)

FIGURE 5 AB generates a washer when rotated about the x-axis.

EXAMPLE 2 Region Between Two Curves Find the volume V obtained by revolving
the region between y = x2 + 4 and y = 2 about the x-axis for 1 ≤ x ≤ 3.

Solution The graph of y = x2 + 4 lies above the graph of y = 2 (Figure 6). Therefore,
Router = x2 + 4 and Rinner = 2. By Eq. (2),

V = π

∫ 3

1

(
R2

outer − R2
inner

)
dx = π

∫ 3

1

(
(x2 + 4)2 − 22) dx

= π

∫ 3

1

(
x4 + 8x2 + 12

)
dx = π

(
1

5
x5 + 8

3
x3 + 12x

) ∣∣∣∣3

1
= 2126

15
π

32

2

10

1
x

y

x

yy = x2 + 4

y = 2

FIGURE 6 The area between y = x2 + 4
and y = 2 over [1, 3] rotated about the
x-axis.

In the next example we calculate a volume of revolution about a horizontal axis
parallel to the x-axis.
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EXAMPLE 3 Revolving About a Horizontal Axis Find the volume V of the “wedding
band” [Figure 7(C)] obtained by rotating the region between the graphs of f (x) = x2 + 2
and g(x) = 4 − x2 about the horizontal line y = −3.

(C)

xx

yy

(A)

1−1
x

x

y

A

B

f (x) = x2 + 2

Rinner = f (x) + 3

y = −3

Axis of
rotation

g(x) = 4 − x2

−3

Router = g(x) + 3

−3
3

(B) The inner and outer radii
       are 3 units longer.

FIGURE 7

Solution First, let’s find the points of intersection of the two graphs by solvingWhen you set up the integral for a volume
of revolution, visualize the cross sections.
These cross sections are washers (or disks)
whose inner and outer radii depend on the
axis of rotation.

f (x) = g(x) ⇒ x2 + 2 = 4 − x2 ⇒ x2 = 1 ⇒ x = ±1

Figure 7(A) shows that g(x) ≥ f (x) for −1 ≤ x ≤ 1.
If we wanted to revolve about the x-axis, we would use Eq. (2). Since we want to

revolve around y = −3, we must determine how the radii are affected. Figure 7(B) shows
that when we rotate about y = −3, AB generates a washer whose outer and inner radii
are both 3 units longer:

• Router = g(x) − (−3) = (4 − x2) + 3 = 7 − x2

• Rinner = f (x) − (−3) = (x2 + 2) + 3 = x2 + 5

The volume of revolution is equal to the integral of the area of this washer:

We get Router by subtracting y = −3 from
y = g(x) because vertical distance is the
difference of the y-coordinates. Similarly,
we subtract −3 from f (x) to get Rinner.

V (about y = −3) = π

∫ 1

−1

(
R2

outer − R2
inner

)
dx = π

∫ 1

−1

(
(g(x) + 3)2 − (f (x) + 3)2

)
dx

= π

∫ 1

−1

(
(7 − x2)2 − (x2 + 5)2) dx

= π

∫ 1

−1

(
(49 − 14x2 + x4) − (x4 + 10x2 + 25)

)
dx

= π

∫ 1

−1
(24 − 24x2) dx = π(24x − 8x3)

∣∣∣1

−1
= 32π

EXAMPLE 4 Find the volume obtained by rotating the graphs of f (x) = 9 − x2 and
y = 12 for 0 ≤ x ≤ 3 about

(a) the line y = 12 (b) the line y = 15.

Solution To set up the integrals, let’s visualize the cross section. Is it a disk or a washer?

(a) Figure 8(B) shows that AB rotated about y = 12 generates a disk of radiusIn Figure 8, the length of AB is 12 − f (x)

rather than f (x) − 12 because the line
y = 12 lies above the graph of f (x). R = length of AB = 12 − f (x) = 12 − (9 − x2) = 3 + x2
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12
15

9

x
x

y

3

12
9

x
xx

y

3

(B) Rotation about the line y = 12(A)  f (x) = 9 − x2 (C) Rotation about the line y = 15

R = 12 − f (x)
Router = 15 − f (x)

Rinner = 3
A

B

f (x)

12
15

9

x

y

3

FIGURE 8 Segment AB generates a disk when rotated about y = 12, but it generates a washer when rotated about y = 15.

The volume when we rotate about y = 12 is

V = π

∫ 3

0
R2 dx = π

∫ 3

0
(3 + x2)2 dx = π

∫ 3

0
(9 + 6x2 + x4) dx

= π

(
9x + 2x3 + 1

5
x5

) ∣∣∣∣3

0
= 648

5
π

(b) Figure 8(C) shows that AB rotated about y = 15 generates a washer. The outer radius
of this washer is the distance from B to the line y = 15:

Router = 15 − f (x) = 15 − (9 − x2) = 6 + x2

The inner radius is Rinner = 3, so the volume of revolution about y = 15 is

V = π

∫ 3

0

(
R2

outer − R2
inner

)
dx = π

∫ 3

0

(
(6 + x2)2 − 32) dx

= π

∫ 3

0
(36 + 12x2 + x4 − 9) dx

= π

(
27x + 4x3 + 1

5
x5

) ∣∣∣∣3

0
= 1188

5
π

We can use the disk and washer methods for solids of revolution about vertical axes,
but it is necessary to describe the graph as a function of y—that is, x = g(y).

EXAMPLE 5 Revolving About a Vertical Axis Find the volume of the solid obtained
by rotating the region under the graph of f (x) = 9 − x2 for 0 ≤ x ≤ 3 about the vertical
axis x = −2.

Solution Figure 9 shows that AB sweeps out a horizontal washer when rotated about the
vertical line x = −2. We are going to integrate with respect to y, so we need the inner
and outer radii of this washer as functions of y. Solving for x in y = 9 − x2, we obtain
x2 = 9 − y, or x = √

9 − y (since x ≥ 0). Therefore,

Router = √
9 − y + 2, Rinner = 2

R2
outer − R2

inner = (√
9 − y + 2

)2 − 22 = (9 − y) + 4
√

9 − y + 4 − 4

= 9 − y + 4
√

9 − y
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y

x
3−2 30

9

A By

y

x
0

A B

−2
x

Rinner = 2

Axis
x = −2

−2

y

Router

Rinner

x

y = 9 − x2

Router = �9 − y + 2

FIGURE 9

The region extends from y = 0 to y = 9 along the y-axis, so

V = π

∫ 9

0

(
R2

outer − R2
inner

)
dy = π

∫ 9

0

(
9 − y + 4

√
9 − y

)
dy

= π

(
9y − 1

2
y2 − 8

3
(9 − y)3/2

) ∣∣∣∣9

0
= 225

2
π

6.3 SUMMARY

• Disk method When you rotate the region between two graphs about an axis, the seg-
ments perpendicular to the axis generate disks or washers. The volume V of the solid of
revolution is the integral of the areas of these disks or washers.
• Sketch the graphs to visualize the disks or washers.
• Figure 10(A): Region between y = f (x) and the x-axis, rotated about the x-axis.

– Vertical cross section: a circle of radius R = f (x) and area πR2 = πf (x)2:

V = π

∫ b

a

R2 dx = π

∫ b

a

f (x)2 dx

• Figure 10(B): Region between y = f (x) and y = g(x), rotated about the x-axis.

– Vertical cross section: a washer of outer radius Router = f (x) and inner radius
Rinner = g(x):

V = π

∫ b

a

(
R2

outer − R2
inner

)
dx = π

∫ b

a

(
f (x)2 − g(x)2) dx

• To rotate about a horizontal line y = c, modify the radii appropriately:

– Figure 10(C): c ≥ f (x) ≥ g(x):

Router = c − g(x), Rinner = c − f (x)

– Figure 10(D): f (x) ≥ g(x) ≥ c:

Router = f (x) − c, Rinner = g(x) − c

• To rotate about a vertical line x = c, express Router and Rinner as functions of y and
integrate along the y axis.
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f (x)

y = c
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f (x)

y = c

g(x)

FIGURE 10

6.3 EXERCISES

Preliminary Questions
1. Which of the following is a solid of revolution?

(a) Sphere (b) Pyramid (c) Cylinder (d) Cube

2. True or false? When the region under a single graph is rotated about
the x-axis, the cross sections of the solid perpendicular to the x-axis
are circular disks.

3. True or false? When the region between two graphs is rotated about
the x-axis, the cross sections to the solid perpendicular to the x-axis
are circular disks.

4. Which of the following integrals expresses the volume obtained by
rotating the area between y = f (x) and y = g(x) over [a, b] around
the x-axis? [Assume f (x) ≥ g(x) ≥ 0.]

(a) π

∫ b

a

(
f (x) − g(x)

)2
dx

(b) π

∫ b

a

(
f (x)2 − g(x)2)

dx

Exercises
In Exercises 1–4, (a) sketch the solid obtained by revolving the region
under the graph of f (x) about the x-axis over the given interval, (b) de-
scribe the cross section perpendicular to the x-axis located at x, and
(c) calculate the volume of the solid.

1. f (x) = x + 1, [0, 3] 2. f (x) = x2, [1, 3]

3. f (x) = √
x + 1, [1, 4] 4. f (x) = x−1, [1, 4]

In Exercises 5–12, find the volume of revolution about the x-axis for
the given function and interval.

5. f (x) = x2 − 3x, [0, 3] 6. f (x) = 1

x2
, [1, 4]

7. f (x) = x5/3, [1, 8] 8. f (x) = 4 − x2, [0, 2]

9. f (x) = 2

x + 1
, [1, 3] 10. f (x) =

√
x4 + 1, [1, 3]

11. f (x) = ex , [0, 1]

12. f (x) = √
cos x sin x,

[
0, π

2

]
In Exercises 13 and 14, R is the shaded region in Figure 11.

13. Which of the integrands (i)–(iv) is used to compute the volume
obtained by rotating region R about y = −2?

(i) (f (x)2 + 22) − (g(x)2 + 22)

(ii) (f (x) + 2)2 − (g(x) + 2)2

(iii) (f (x)2 − 22) − (g(x)2 − 22)

(iv) (f (x) − 2)2 − (g(x) − 2)2

14. Which of the integrands (i)–(iv) is used to compute the volume
obtained by rotating R about y = 9?

(i) (9 + f (x))2 − (9 + g(x))2

(ii) (9 + g(x))2 − (9 + f (x))2

(iii) (9 − f (x))2 − (9 − g(x))2

(iv) (9 − g(x))2 − (9 − f (x))2

x

y

a b

y = f (x)

9

−2

y = g(x)

R

FIGURE 11

In Exercises 15–20, (a) sketch the region enclosed by the curves, (b) de-
scribe the cross section perpendicular to the x-axis located at x, and
(c) find the volume of the solid obtained by rotating the region about
the x-axis.

15. y = x2 + 2, y = 10 − x2 16. y = x2, y = 2x + 3

17. y = 16 − x, y = 3x + 12, x = −1
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18. y = 1

x
, y = 5

2
− x

19. y = sec x, y = 0, x = −π

4
, x = π

4

20. y = sec x, y = 0, x = 0, x = π

4

In Exercises 21–24, find the volume of the solid obtained by rotating the
region enclosed by the graphs about the y-axis over the given interval.

21. x = √
y, x = 0; 1 ≤ y ≤ 4

22. x = √
sin y, x = 0; 0 ≤ y ≤ π

23. x = y2, x = √
y

24. x = 4 − y, x = 16 − y2

25. Rotation of the region in Figure 12 about the y-axis produces a
solid with two types of different cross sections. Compute the volume as
a sum of two integrals, one for −12 ≤ y ≤ 4 and one for 4 ≤ y ≤ 12.

y

2

−12

12

4
x

y

y = 12 − 4x

y = 8x − 12

FIGURE 12

26. Let R be the region enclosed by y = x2 + 2, y = (x − 2)2 and the
axes x = 0 and y = 0. Compute the volume V obtained by rotating R

about the x-axis. Hint: Express V as a sum of two integrals.

In Exercises 27–32, find the volume of the solid obtained by rotating
region A in Figure 13 about the given axis.

27. x-axis 28. y = −2 29. y = 2

30. y-axis 31. x = −3 32. x = 2

x

y

1 2

6

2

y = x2 + 2

A

B

FIGURE 13

In Exercises 33–38, find the volume of the solid obtained by rotating
region B in Figure 13 about the given axis.

33. x-axis 34. y = −2

35. y = 6 36. y-axis

Hint for Exercise 36: Express the volume as a sum of two integrals
along the y-axis or use Exercise 30.

37. x = 2 38. x = −3

In Exercises 39–52, find the volume of the solid obtained by rotating
the region enclosed by the graphs about the given axis.

39. y = x2, y = 12 − x, x = 0, about y = −2

40. y = x2, y = 12 − x, x = 0, about y = 15

41. y = 16 − 2x, y = 6, x = 0, about x-axis

42. y = 32 − 2x, y = 2 + 4x, x = 0, about y-axis

43. y = sec x, y = 1 + 3

π
x, about x-axis

44. x = 2, x = 3, y = 16 − x4, y = 0, about y-axis

45. y = 2
√

x, y = x, about x = −2

46. y = 2
√

x, y = x, about y = 4

47. y = x3, y = x1/3, for x ≥ 0, about y-axis

48. y = x2, y = x1/2, about x = −2

49. y = 9

x2
, y = 10 − x2, x ≥ 0, about y = 12

50. y = 9

x2
, y = 10 − x2, x ≥ 0, about x = −1

51. y = e−x , y = 1 − e−x , x = 0, about y = 4

52. y = cosh x, x = ±2, about x-axis

53. The bowl in Figure 14(A) is 21 cm high, obtained by rotating the
curve in Figure 14(B) as indicated. Estimate the volume capacity of the
bowl shown by taking the average of right- and left-endpoint approxi-
mations to the integral with N = 7.

24186 12 30

(A) (B)

21 cm

y

x

19

25

16

21

12
9

30

FIGURE 14

54. The region between the graphs of f (x) and g(x) over [0, 1] is re-
volved about the line y = −3. Use the midpoint approximation with
values from the following table to estimate the volume V of the result-
ing solid.

x 0.1 0.3 0.5 0.7 0.9
f (x) 8 7 6 7 8
g(x) 2 3.5 4 3.5 2
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55. Find the volume of the cone obtained by rotating the region under
the segment joining (0, h) and (r, 0) about the y-axis.

56. The torus (doughnut-shaped solid) in Figure 15 is obtained by ro-
tating the circle (x − a)2 + y2 = b2 around the y-axis (assume that
a > b). Show that it has volume 2π2ab2. Hint: Evaluate the integral
by interpreting it as the area of a circle.

y

x
a + ba

FIGURE 15 Torus obtained by rotating a circle about the y-axis.

57. Sketch the hypocycloid x2/3 + y2/3 = 1 and find the vol-
ume of the solid obtained by revolving it about the x-axis.

58. The solid generated by rotating the region between the branches
of the hyperbola y2 − x2 = 1 about the x-axis is called a hyperboloid
(Figure 16). Find the volume of the hyperboloid for −a ≤ x ≤ a.

x

y

−a a

1

−1

FIGURE 16 The hyperbola with equation y2 − x2 = 1.

59. A “bead” is formed by removing a cylinder of radius r from the
center of a sphere of radius R (Figure 17). Find the volume of the bead
with r = 1 and R = 2.

y

x

h

r

y

x
R

FIGURE 17 A bead is a sphere with a cylinder removed.

Further Insights and Challenges
60. Find the volume V of the bead (Figure 17) in terms of r

and R. Then show that V = π
6 h3, where h is the height of the bead.

This formula has a surprising consequence: Since V can be expressed
in terms of h alone, it follows that two beads of height 1 cm, one formed
from a sphere the size of an orange and the other from a sphere the size
of the earth, would have the same volume! Can you explain intuitively
how this is possible?

61. The solid generated by rotating the region inside the ellipse with

equation
(
x
a

)2 + ( y
b

)2 = 1 around the x-axis is called an ellipsoid.

Show that the ellipsoid has volume 4
3πab2. What is the volume if the

ellipse is rotated around the y-axis?

62. The curve y = f (x) in Figure 18, called a tractrix, has the fol-
lowing property: the tangent line at each point (x, y) on the curve has
slope

dy

dx
= −y√

1 − y2

Let R be the shaded region under the graph of 0 ≤ x ≤ a in Figure 18.
Compute the volume V of the solid obtained by revolving R around
the x-axis in terms of the constant c = f (a). Hint: Use the substitution
u = f (x) to show that

V = π

∫ 1

c
u
√

1 − u2 du

1

2

y

x

y = f (x)Rc

a

FIGURE 18 The tractrix.

63. Verify the formula∫ x2

x1

(x − x1)(x − x2) dx = 1

6
(x1 − x2)3 3

Then prove that the solid obtained by rotating the shaded region in Fig-
ure 19 about the x-axis has volume V = π

6 BH 2, with B and H as in the

figure. Hint: Let x1 and x2 be the roots of f (x) = ax + b − (mx + c)2,
where x1 < x2. Show that

V = π

∫ x2

x1

f (x) dx

and use Eq. (3).



384 C H A P T E R 6 APPLICATIONS OF THE INTEGRAL

x

y

B

y = mx + c

y2 = ax + b

H

FIGURE 19 The line y = mx + c intersects the parabola y2 = ax + b

at two points above the x-axis.

64. Let R be the region in the unit circle lying above the cut with the
line y = mx + b (Figure 20). Assume the points where the line inter-
sects the circle lie above the x-axis. Use the method of Exercise 63 to
show that the solid obtained by rotating R about the x-axis has volume
V = π

6 hd2, with h and d as in the figure.

x2 + y2 = 1

y = mx + b

R d

h

y

x

FIGURE 20

6.4 The Method of Cylindrical Shells
In the previous two sections, we computed volumes by integrating cross-sectional area.
The Shell Method, based on cylindrical shells, is more convenient in some cases.

Consider a cylindrical shell (Figure 1) of height h, with outer radius R and inner

r
R

Width �r

h

FIGURE 1 The volume of the cylindrical
shell is approximately

2πRh�r

where �r = R − r .

radius r . Because the shell is obtained by removing a cylinder of radius r from the wider
cylinder of radius R, it has volume

πR2h − πr2h = πh(R2 − r2) = πh(R + r)(R − r) = πh(R + r)�r

where �r = R − r is the width of the shell. If the shell is very thin, then R and r are
nearly equal and we may replace (R + r) by 2R to obtain

Volume of shell ≈ 2πRh�r = 2π(radius) × (height of shell) × (thickness) 1

Now, let us rotate the region under y = f (x) from x = a to x = b about the y-
axis as in Figure 2. The resulting solid can be divided into thin concentric shells. More
precisely, we divide [a, b] into N subintervals of length �x = (b − a)/N with endpoints
x0, x1, . . . , xN . When we rotate the thin strip of area above [xi−1, xi] about the y-axis,
we obtain a thin shell whose volume we denote by Vi . The volume of the solid is equal to
the sum V = ∑N

i=1 Vi .

The top rim of the ith thin shell in Figure 2 is curved. However, when �x is small,
we can approximate this thin shell by the cylindrical shell (with flat rim) of height f (xi).

x

y

y = f (x)

x0 = a xi − 1 xi xi

xN = b
x

y = f (x)

y

x

i th shell

y = f (x)

y

i th shell

FIGURE 2 The shaded strip, when rotated about the y-axis, generates a “thin shell.”
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Then, using Eq. (1), we obtain

Vi ≈ 2πxif (xi)�x = 2π(radius)(height of shell)(thickness)

V =
N∑

i=1

Vi ≈ 2π

N∑
i=1

xif (xi)�x

The sum on the right is the volume of a cylindrical approximation that converges to V

as N → ∞ (Figure 3). This sum is also a right-endpoint approximation that converges to

2π

∫ b

a

xf (x) dx. Thus we obtain Eq. (2) for the volume of the solid.

(A)

x

y

(B)

x

y

(C)

x

y

y = f (x) y = f (x) y = f (x)

FIGURE 3 Cylindrical shell approximations as N → ∞.

Volume of Revolution: The Shell Method The solid obtained by rotating the region
under y = f (x) over the interval [a, b] about the y-axis has volume

V = 2π

∫ b

a

(
radius

)(
height of shell

)
dx = 2π

∫ b

a

xf (x) dx 2

Note: In the Shell Method, we integrate
with respect to x when the region is rotated
about the y-axis.

EXAMPLE 1 Find the volume V of the solid obtained by rotating the region under
the graph of f (x) = 1 − 2x + 3x2 − 2x3 over [0, 1] about the y-axis.

Solution The solid is shown in Figure 4. By Eq. (2),

V = 2π

∫ 1

0
xf (x) dx = 2π

∫ 1

0
x(1 − 2x + 3x2 − 2x3) dx

= 2π

(
1

2
x2 − 2

3
x3 + 3

4
x4 − 2

5
x5

) ∣∣∣∣1

0
= 11

30
π

x 1 x 1

1

f (x)

1

x x

y y

FIGURE 4 The graph of
f (x) = 1 − 2x + 3x2 − 2x3 rotated about
the y-axis.
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CONCEPTUAL INSIGHT Shells versus Disks and Washers Some volumes can be com-
puted equally well using either the Shell Method or the Disk and Washer Method, but in
Example 1, the Shell Method is much easier. To use the Disk Method, we would need
to know the radius of the disk generated at height y because we’re rotating about the
y-axis (Figure 5). This would require finding the inverse g(y) = f −1(y). In general:
Use the Shell Method if finding the shell height (which is parallel to the axis of rotation)
is easier than finding the disk radius (which is perpendicular to the axis of rotation).
Use the Disk Method when finding the disk radius is easier.

x 1

1

x

y

This segment generates
a disk of radius R = g(y).

y

This segment generates 
a shell of height f (x).

y = f (x) or
x = g(y)

FIGURE 5 For rotation about the y-axis, the
Shell Method uses y = f (x) but the Disk
Method requires the inverse function
x = g(y).

When we rotate the region between the graphs of two functions f (x) and g(x) sat-
isfying f (x) ≥ g(x), the vertical segment at location x generates a cylindrical shell of
radius x and height f (x) − g(x) (Figure 6). Therefore, the volume is

V = 2π

∫ b

a

(radius)(Height of shell) dx = 2π

∫ b

a

x
(
f (x) − g(x)

)
dx 3

x
x

y

f (x)

f (x) − g(x)

g(x)

x
x

y

FIGURE 6 The vertical segment at location
x generates a shell of radius x and height
f (x) − g(x).

EXAMPLE 2 Region Between Two Curves Find the volume V obtained by rotating
the region enclosed by the graphs of f (x) = x(5 − x) and g(x) = 8 − x(5 − x) about
the y-axis.

Solution First, find the points of intersection by solving x(5 − x) = 8 − x(5 − x). We

1 4 5

2

4

6

x

y

x

f (x) = x(5 − x)

g(x) = 8 − x(5 − x)

FIGURE 7

obtain x2 − 5x + 4 = (x − 1)(x − 4) = 0, so the curves intersect at x = 1, 4. Sketching
the graphs (Figure 7), we see that f (x) ≥ g(x) on the interval [1, 4] and

Height of shell = f (x) − g(x) = x(5 − x) − (
8 − x(5 − x)

) = 10x − 2x2 − 8

V = 2π

∫ 4

1
(radius)(height of shell) dx = 2π

∫ 4

1
x(10x − 2x2 − 8) dx

= 2π

(
10

3
x3 − 1

2
x4 − 4x2

) ∣∣∣∣4

1
= 2π

(
64

3
−

(
−7

6

))
= 45π

EXAMPLE 3 Rotating About a Vertical Axis Use the Shell Method to calculate the
volume V obtained by rotating the region under the graph of f (x) = x−1/2 over [1, 4]
about the axis x = −3.

Solution If we were rotating this region about the y-axis (that is, x = 0), we would use

The reasoning in Example 3 shows that if
we rotate the region under y = f (x) over
[a, b] about the vertical line x = c, then
the volume is

V = 2π

∫ b

a

(x − c)f (x) dx if c ≤ a

V = 2π

∫ b

a

(c − x)f (x) dx if c ≥ b Eq. (3). To rotate it around the line x = −3, we must take into account that the radius of
revolution is now 3 units longer.
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Figure 8 shows that the radius of the shell is now x − (−3) = x + 3. The height of
the shell is still f (x) = x−1/2, so

V = 2π

∫ 4

1
(radius)(height of shell) dx

= 2π

∫ 4

1
(x + 3)x−1/2 dx = 2π

(
2

3
x3/2 + 6x1/2

) ∣∣∣∣4

1
= 64π

3

x

y

x

y
Axis

x = −3

x x41−3

−3

4

y = x−1/2y = x−1/2

Radius
x + 3

1

FIGURE 8 Rotation about the axis x = −3.

The method of cylindrical shells can be applied to rotations about horizontal axes,
but in this case, the graph must be described in the form x = g(y).

EXAMPLE 4 Rotating About the x-Axis Use the Shell Method to compute the volume
V obtained by rotating the region under y = 9 − x2 over [0, 3] about the x-axis.

Solution When we rotate about the x-axis, the cylindrical shells are generated by hori-
zontal segments and the Shell Method gives us an integral with respect to y. Therefore,
we solve y = 9 − x2 for x to obtain x = √

9 − y.
Segment AB in Figure 9 generates a cylindrical shell of radius y and height

√
9 − y

(we use the term “height” even though the shell is horizontal). Using the substitution
u = 9 − y, du = −dy in the resulting integral, we obtain

REMINDER After making the
substitution u = 9 − y, the limits of
integration must be changed. Since
u(0) = 9 and u(9) = 0, we change∫ 9

0
to

∫ 0

9
.

V = 2π

∫ 9

0
(radius)(height of shell) dy = 2π

∫ 9

0
y

√
9 − y dy = −2π

∫ 0

9
(9 − u)

√
u du

= 2π

∫ 9

0
(9u1/2 − u3/2) du = 2π

(
6u3/2 − 2

5
u5/2

) ∣∣∣∣9

0
= 648

5
π

y
BA

3 3

y = 9 − x2 y = 9 − x29

y y

x x

x = �9 − y

FIGURE 9 Shell generated by a horizontal
segment in the region under the graph of
y = 9 − x2.
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6.4 SUMMARY

• Shell Method When you rotate the region between two graphs about an axis, the seg-
ments parallel to the axis generate cylindrical shells [Figure 10(A)]. The volume V of the
solid of revolution is the integral of the areas of these shells:

area of shell = 2π(radius)(height of shell)

• Sketch the graphs to visualize the shells.
• Figure 10(B): Region between y = f (x) (with f (x) ≥ 0) and the y-axis, rotated about
the y-axis.

V = 2π

∫ b

a

(radius)(height of shell) dx = 2π

∫ b

a

xf (x) dx

• Figure 10(C): Region between y = f (x) and y = g(x) (with f (x) ≥ g(x) ≥ 0), rotated
about the y-axis.

V = 2π

∫ b

a

(radius)(height of shell) dx = 2π

∫ b

a

x(f (x) − g(x)) dx

• Rotation about a vertical axis x = c.

– Figure 10(D): c ≤ a, radius of shell is (x − c):

V = 2π

∫ b

a

(x − c)f (x) dx

– Figure 10(E): c ≥ a, radius of shell is (c − x):

V = 2π

∫ b

a

(c − x)f (x) dx

• Rotation about the x-axis using the Shell Method: Write the graph as x = g(y):

V = 2π

∫ d

c

(radius)(height of shell) dy = 2π

∫ d

c

yg(y) dy

a x b

f (x) x = c

a x b a x b

yyy

xxx

(B) (C) (D) (E)

(A)

f (x) f (x)x = c

a x
x

y

b

f (x)

g(x)

r

h

Area = 2πrh

FIGURE 10
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6.4 EXERCISES

Preliminary Questions
1. Consider the region R under the graph of the constant function

f (x) = h over the interval [0, r]. Give the height and the radius of the
cylinder generated when R is rotated about:

(a) the x-axis (b) the y-axis

2. Let V be the volume of a solid of revolution about the y-axis.

(a) Does the Shell Method for computing V lead to an integral with
respect to x or y?

(b) Does the Disk or Washer Method for computing V lead to an inte-
gral with respect to x or y?

Exercises
In Exercises 1–6, sketch the solid obtained by rotating the region un-
derneath the graph of the function over the given interval about the
y-axis, and find its volume.

1. f (x) = x3, [0, 1] 2. f (x) = √
x, [0, 4]

3. f (x) = x−1, [1, 3] 4. f (x) = 4 − x2, [0, 2]

5. f (x) =
√

x2 + 9, [0, 3] 6. f (x) = x√
1 + x3

, [1, 4]

In Exercises 7–12, use the Shell Method to compute the volume obtained
by rotating the region enclosed by the graphs as indicated, about the
y-axis.

7. y = 3x − 2, y = 6 − x, x = 0

8. y = √
x, y = x2

9. y = x2, y = 8 − x2, x = 0, for x ≥ 0

10. y = 8 − x3, y = 8 − 4x, for x ≥ 0

11. y = (x2 + 1)−2, y = 2 − (x2 + 1)−2, x = 2

12. y = 1 − |x − 1|, y = 0

In Exercises 13 and 14, use a graphing utility to find the points of in-
tersection of the curves numerically and then compute the volume of
rotation of the enclosed region about the y-axis.

13. y = 1
2x2, y = sin(x2)

14. y = e−x2/2, y = x, x = 0

In Exercises 15–20, sketch the solid obtained by rotating the region
underneath the graph of f (x) over the interval about the given axis,
and calculate its volume using the Shell Method.

15. f (x) = x3, [0, 1], about x = 2

16. f (x) = x3, [0, 1], about x = −2

17. f (x) = x−4, [−3, −1], about x = 4

18. f (x) = 1√
x2 + 1

, [0, 2], about x = 0

19. f (x) = a − x with a > 0, [0, a], about x = −1

20. f (x) = 1 − x2, [−1, 1], x = c with c > 1

In Exercises 21–26, sketch the enclosed region and use the Shell Method
to calculate the volume of rotation about the x-axis.

21. x = y, y = 0, x = 1

22. x = 1
4y + 1, x = 3 − 1

4y, y = 0

23. x = y(4 − y), y = 0

24. x = y(4 − y), x = (y − 2)2

25. y = 4 − x2, x = 0, y = 0

26. y = x1/3 − 2, y = 0, x = 27

27. Use both the Shell and Disk Methods to calculate the volume ob-
tained by rotating the region under the graph of f (x) = 8 − x3 for
0 ≤ x ≤ 2 about:

(a) the x-axis (b) the y-axis

28. Sketch the solid of rotation about the y-axis for the region under the
graph of the constant function f (x) = c (where c > 0) for 0 ≤ x ≤ r .

(a) Find the volume without using integration.
(b) Use the Shell Method to compute the volume.

29. The graph in Figure 11(A) can be described by both y = f (x) and
x = h(y), where h is the inverse of f . Let V be the volume obtained
by rotating the region under the graph about the y-axis.

(a) Describe the figures generated by rotating segments AB and CB

about the y-axis.
(b) Set up integrals that compute V by the Shell and Disk Methods.

x

y

x

y

1.3

A´ B´A B

C´C

(B)(A)

y = g(x)y = f (x)
x = h(y)

22

FIGURE 11

30. Let W be the volume of the solid obtained by rotating the
region under the graph in Figure 11(B) about the y-axis.

(a) Describe the figures generated by rotating segments A′B ′ and A′C′
about the y-axis.
(b) Set up an integral that computes W by the Shell Method.
(c) Explain the difficulty in computing W by the Washer Method.
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31. Let R be the region under the graph of y = 9 − x2 for 0 ≤ x ≤ 2.
Use the Shell Method to compute the volume of rotation of R about
the x-axis as a sum of two integrals along the y-axis. Hint: The shells
generated depend on whether y ∈ [0, 5] or y ∈ [5, 9].
32. Let R be the region under the graph of y = 4x−1 for 1 ≤ y ≤ 4.
Use the Shell Method to compute the volume of rotation of R about the
y-axis as a sum of two integrals along the x-axis.

In Exercises 33–38, use the Shell Method to find the volume obtained
by rotating region A in Figure 12 about the given axis.

33. y-axis 34. x = −3

35. x = 2 36. x-axis

37. y = −2 38. y = 6

x

y

6

2

y = x2 + 2

A

B

1 2

FIGURE 12

In Exercises 39–44, use the most convenient method (Disk or Shell
Method) to find the volume obtained by rotating region B in Figure 12
about the given axis.

39. y-axis 40. x = −3

41. x = 2 42. x-axis

43. y = −2 44. y = 8

In Exercises 45–50, use the most convenient method (Disk or Shell
Method) to find the given volume of rotation.

45. Region between x = y(5 − y) and x = 0, rotated about the y-axis

46. Region between x = y(5 − y) and x = 0, rotated about the x-axis

47. Region in Figure 13, rotated about the x-axis

48. Region in Figure 13, rotated about the y-axis

x

y

y = x − x12

1

FIGURE 13

x

y

y = x3 + 2

y = 4 − x2

1 2

FIGURE 14

49. Region in Figure 14, rotated about x = 4

50. Region in Figure 14, rotated about y = −2

In Exercises 51–54, use the Shell Method to find the given volume of
rotation.

51. A sphere of radius r

52. The “bead” formed by removing a cylinder of radius r from the
center of a sphere of radius R (compare with Exercise 59 in Section
6.3)

53. The torus obtained by rotating the circle (x − a)2 + y2 = b2 about
the y-axis, where a > b (compare with Exercise 53 in Section 5.3).
Hint: Evaluate the integral by interpreting part of it as the area of a
circle.

54. The “paraboloid” obtained by rotating the region between y = x2

and y = c (c > 0) about the y-axis

Further Insights and Challenges
55. The surface area of a sphere of radius r is 4πr2. Use this
to derive the formula for the volume V of a sphere of radius R in a new
way.

(a) Show that the volume of a thin spherical shell of inner radius r and
thickness �r is approximately 4πr2�r .

(b) Approximate V by decomposing the sphere of radius R into N thin
spherical shells of thickness �r = R/N .

(c) Show that the approximation is a Riemann sum that converges to
an integral. Evaluate the integral.

56. Show that the solid (an ellipsoid) obtained by rotating the region
R in Figure 15 about the y-axis has volume 4

3πa2b.

57. The bell-shaped curve y = f (x) in Figure 16 satisfies dy/dx =
−xy. Use the Shell Method and the substitution u = f (x) to show that
the solid obtained by rotating the region R about the y-axis has volume
V = 2π(1 − c), where c = f (a). Observe that as c → 0, the region R

becomes infinite but the volume V approaches 2π .

x

y

R

b

a

FIGURE 15 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

1

y = f (x)

R
c

y

x
a

FIGURE 16 The bell-shaped curve.
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6.5 Work and Energy
All physical tasks, from running up a hill to turning on a computer, require an expenditure“For those who want some proof that

physicists are human, the proof is in the
idiocy of all the different units which they
use for measuring energy.”

—Richard Feynman,
The Character of Physical Law

of energy. When a force is applied to an object to move it, the energy expended is called
work. When a constant force F is applied to move the object a distance d in the direction
of the force, the work W is defined as “force times distance” (Figure 1):

A Distance d B

Force F

FIGURE 1 The work expended to move the
object from A to B is W = F · d .

W = F · d 1

The SI unit of force is the newton (abbreviated N), defined as 1 kg-m/s2. Energy and work
are both measured in units of the joule (J), equal to 1 N-m. In the British system, the
unit of force is the pound, and both energy and work are measured in foot-pounds (ft-lb).
Another unit of energy is the calorie. One ft-lb is approximately 0.738 J or 3.088 calories.

To become familiar with the units, let’s calculate the work W required to lift a 2-kg
stone 3 m above the ground. Gravity pulls down on the stone of mass m with a force equal
to −mg, where g = 9.8 m/s2. Therefore, lifting the stone requires an upward vertical force
F = mg, and the work expended is

W = (mg)h︸ ︷︷ ︸
F · d

= (2 kg)(9.8 m/s2)(3 m) = 58.8 J

The kilogram is a unit of mass, but the pound is a unit of force. Therefore, the factor g

does not appear when work against gravity is computed in the British system. The work
required to lift a 2-lb stone 3 ft is

W = (2 lb)(3 ft)︸ ︷︷ ︸
F · d

= 6 ft-lb

We are interested in the case where the force F(x) varies as the object moves from
a to b along the x-axis. Eq. (1) does not apply directly, but we can break up the task into
a large number of smaller tasks for which Eq. (1) gives a good approximation. Divide
[a, b] into N subintervals of length �x = (b − a)/N as in Figure 2 and let Wi be the
work required to move the object from xi−1 to xi . If �x is small, then the force F(x) is

xi−1x1 xia = x0 xN = b

FIGURE 2 The work to move an object from
xi−1 to xi is approximately F(xi)�x.

nearly constant on the interval [xi−1, xi] with value F(xi), so Wi ≈ F(xi)�x. Summing
the contributions, we obtain

W =
N∑

i=1

Wi ≈
N∑

i=1

F(xi)�x

︸ ︷︷ ︸
Right-endpoint approximation

The sum on the right is a right-endpoint approximation that converges to
∫ b

a
F (x) dx. This

leads to the following definition.

DEFINITION Work The work performed in moving an object along the x-axis from
a to b by applying a force of magnitude F(x) is

W =
∫ b

a

F (x) dx 2
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One typical calculation involves finding the work required to stretch a spring. Assume
that the free end of the spring has position x = 0 at equilibrium, when no force is acting
(Figure 3). According to Hooke’s Law, when the spring is stretched (or compressed) to
position x, it exerts a restoring force of magnitude −kx in the opposite direction, where
k is the spring constant. If we want to stretch the spring further, we must apply a force

x0

Equilibrium
position

Restoring
force −kx

FIGURE 3 Hooke’s Law.

F(x) = kx to counteract the force exerted by the spring.

EXAMPLE 1 Hooke’s Law Assuming a spring constant of k = 400 N/m, find the work
required to

(a) Stretch the spring 10 cm beyond equilibrium.

(b) Compress the spring 2 cm more when it is already compressed 3 cm.

Solution A force F(x) = 400x N is required to stretch the spring (with x in meters). Note
that centimeters must be converted to meters.

Hooke’s Law is named after the English
scientist, inventor, and architect Robert
Hooke (1635–1703), who made important
discoveries in physics, astronomy,
chemistry, and biology. He was a pioneer in
the use of the microscope to study
organisms. Unfortunately, Hooke was
involved in several bitter disputes with
other scientists, most notably with his
contemporary Isaac Newton. Newton was
furious when Hooke criticized his work on
optics. Later, Hooke told Newton that he
believed Kepler’s Laws would follow from
an inverse square law of gravitation, but
Newton refused to acknowledge Hooke’s
contributions in his masterwork Principia.
Shortly before his death in 1955, Albert
Einstein commented on Newton’s behavior:
“That, alas, is vanity. You find it in so many
scientists... it has always hurt me to think
that Galileo did not acknowledge the work
of Kepler”.

(a) The work required to stretch the spring 10 cm (0.1 m) beyond equilibrium is

W =
∫ 0.1

0
400x dx = 200x2

∣∣∣0.1

0
= 2 J

(b) If the spring is at position x = −3 cm, then the work W required to compress it further
to x = −5 cm is

W =
∫ −0.05

−0.03
400x dx = 200x2

∣∣∣−0.05

−0.03
= 0.5 − 0.18 = 0.32 J

Observe that we integrate from the starting point x = −0.03 to the ending point
x = −0.05 (even though the lower limit of the integral is larger than the upper limit
in this case).

In the next two examples, we are not moving a single object through a fixed distance,
so we cannot apply Eq. (2). Rather, each thin layer of the object is moved through a
different distance. The work performed is computed by “summing” (i.e., integrating) the
work performed on the thin layers.

EXAMPLE 2 Building a Cement Column Compute the work (against gravity) requiredOn the earth’s surface, work against gravity
is equal to the force mg times the vertical
distance through which the object is lifted.
No work against gravity is done when an
object is moved sideways.

to build a cement column of height 5 m and square base of side 2 m. Assume that cement
has density 1500 kg/m3.

Solution Think of the column as a stack of n thin layers of width �y = 5/n. The work
consists of lifting up these layers and placing them on the stack (Figure 4), but the work
performed on a given layer depends on how high we lift it. First, let us compute the

5

2
2

y

FIGURE 4 Total work is the sum of the work
performed on each layer of the column.

gravitational force on a thin layer of width �y:

Volume of layer = area × width = 4�y m3

Mass of layer = density × volume = 1500 · 4�y kg

Force on layer = g × mass = 9.8 · 1500 · 4�y = 58,800 �y N

The work performed in lifting this layer to height y is equal to the force times the distance
y, which is (58,800�y)y. Setting L(y) = 58,800y, we have

Work lifting layer to height y ≈ (58,800�y)y = L(y)�y
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This is only an approximation (although a very good one if �y is small) because the layer
has nonzero width and the cement particles at the top have been lifted a little bit higher
than those at the bottom. The ith layer is lifted to height yi , so the total work performed is

W ≈
n∑

i=1

L(yi) �y

This sum is a right-endpoint approximation to
∫ 5

0 L(y) dy. Letting n → ∞, we obtain

W =
∫ 5

0
L(y) dy =

∫ 5

0
58,800y dy = 58,800

y2

2

∣∣∣∣5

0
= 735,000 J

EXAMPLE 3 Pumping Water out of a Tank A spherical tank of radius R meters isIn Examples 2 and 3, the work performed
on a thin layer is written

L(y)�y

When we take the sum and let �y

approach zero, we obtain the integral of
L(y). Symbolically, the �y “becomes” the
dy of the integral. Note that

L(y) = g × density × A(y)

× (vertical distance lifted)

where A(y) is the area of the cross section.

filled with water. Calculate the work W performed (against gravity) in pumping out the
water through a small hole at the top. The density of water is 1000 kg/m3.

Solution The first step, as in the previous example, is to compute the work against gravity
performed on a thin layer of water of width �y. We place the origin of our coordinate
system at the center of the sphere because this leads to a simple formula for the radius r

of the cross section at height y (Figure 5).

Step 1. Compute work performed on a layer.
Figure 5 shows that the cross section at height y is a circle of radius r = √

R2 − y2

and area A(y) = πr2 = π(R2 − y2). A thin layer has volume A(y)�y, and to lift it,
we must exert a force against gravity equal to

Force on layer = g ×
mass︷ ︸︸ ︷

density × A(y)�y ≈ (9.8)1000π(R2 − y2)�y

The layer has to be lifted a vertical distance R − y, so

Work on layer ≈
Force against gravity︷ ︸︸ ︷

9800π(R2 − y2)�y ×
Vertical distance lifted︷ ︸︸ ︷

(R − y) = L(y)�y

where L(y) = 9800π(R3 − R2y − Ry2 + y3).
Step 2. Compute total work.

Now divide the sphere into N layers and let yi be the height of the ith layer. The work
performed on ith layer is approximately L(yi) �y, and therefore

W ≈
N∑

i=1

L(yi) �y

R y

This layer is pumped up 
a vertical distance R − y.

Water exits from
hole at the top.

y = 0

Radius at height y is
r = �R2 − y2.

yi−1

y1

y0 = −R 

yN = R 

yi

y = 0

y
�y

y0 = −R

y = R 

FIGURE 5 The sphere is divided into N thin
layers.
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This sum approaches the integral of L(y) as N → ∞ (that is, �y → 0), so

W =
∫ R

−R

L(y) dy = 9800π

∫ R

−R

(R3 − R2y − Ry2 + y3) dy

= 9800π

(
R3y − 1

2
R2y2 − 1

3
Ry3 + 1

4
y4

) ∣∣∣∣R−R

= 39,200π

3
R4 J

Note that the integral extends from −R to R because the y-coordinate along the sphere
varies from −R to R.

A liter of gasoline has an energy content of approximately 3.4 × 107 joules. The
previous example shows that the work required to pump water out of a sphere of radius
R = 5 meters is

W =
(

39,200π

3

)
54 ≈ 2.6 × 107 J

or the energy content of roughly three-fourths of a liter of gasoline.

6.5 SUMMARY

• Work performed to move an object:

Constant force: W = F · d, Variable force: W =
∫ b

a

F (x) dx

• Hooke’s Law: A spring stretched x units past equilibrium exerts a restoring force of
magnitude −kx. A force F(x) = kx is required to stretch the spring further.
• To compute work against gravity by decomposing an object into N thin layers of thick-
ness �y, express the work performed on a thin layer as L(y)�y, where

L(y) = g × density × A(y) × (vertical distance lifted)

The total work performed is W =
∫ b

a

L(y) dy.

6.5 EXERCISES

Preliminary Questions
1. Why is integration needed to compute the work performed in

stretching a spring?

2. Why is integration needed to compute the work performed in pump-
ing water out of a tank but not to compute the work performed in lifting
up the tank?

3. Which of the following represents the work required to stretch a
spring (with spring constant k) a distance x beyond its equilibrium
position: kx, −kx, 1

2mk2, 1
2kx2, or 1

2mx2?

Exercises
1. How much work is done raising a 4-kg mass to a height of 16 m

above ground?

2. How much work is done raising a 4-lb mass to a height of 16 ft
above ground?

In Exercises 3–6, compute the work (in joules) required to stretch
or compress a spring as indicated, assuming a spring constant of
k = 800 N/m.

3. Stretching from equilibrium to 12 cm past equilibrium
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4. Compressing from equilibrium to 4 cm past equilibrium

5. Stretching from 5 cm to 15 cm past equilibrium

6. Compressing 4 cm more when it is already compressed 5 cm

7. If 5 J of work are needed to stretch a spring 10 cm beyond equilib-
rium, how much work is required to stretch it 15 cm beyond equilib-
rium?

8. To create images of samples at the molecular level, atomic force
microscopes use silicon micro-cantilevers that obey Hooke’s Law
F(x) = −kx, where x is the distance through which the tip is deflected
(Figure 6). Suppose that 10−17 J of work are required to deflect the tip
a distance 10−8 m. Find the deflection if a force of 10−9 N is applied
to the tip.

Surface
Tip

Cantilever

Laser beam

10000 nm

FIGURE 6

9. A spring obeys a force law F(x) = −kx1.1 with k = 100 N/m.
Find the work required to stretch a spring 0.3 m past equilibrium.

10. Show that the work required to stretch a spring from po-

sition a to position b is 1
2k(b2 − a2), where k is the spring constant.

How do you interpret the negative work obtained when |b| < |a|?
In Exercises 11–14, use the method of Examples 2 and 3 to calculate the
work against gravity required to build the structure out of a lightweight
material of density 600 kg/m3.

11. Box of height 3 m and square base of side 2 m

12. Cylindrical column of height 4 m and radius 0.8 m

13. Right circular cone of height 4 m and base of radius 1.2 m

14. Hemisphere of radius 0.8 m

15. Built around 2600 bce, the Great Pyramid of Giza in Egypt (Figure
7) is 146 m high and has a square base of side 230 m. Find the work
(against gravity) required to build the pyramid if the density of the stone
is estimated at 2000 kg/m3.

FIGURE 7 The Great Pyramid in Giza, Egypt.

16. Calculate the work (against gravity) required to build a box of
height 3 m and square base of side 2 m out of material of variable density,
assuming that the density at height y is f (y) = 1000 − 100y kg/m3.

In Exercises 17–22, calculate the work (in joules) required to pump all
of the water out of a full tank. Distances are in meters, and the density
of water is 1000 kg/m3.

17. Rectangular tank in Figure 8; water exits from a small hole at the
top.

8
4

5

Water exits here. 1

FIGURE 8

18. Rectangular tank in Figure 8; water exits through the spout.

19. Hemisphere in Figure 9; water exits through the spout.

102

FIGURE 9

20. Conical tank in Figure 10; water exits through the spout.

10

52

FIGURE 10

21. Horizontal cylinder in Figure 11; water exits from a small hole at
the top. Hint: Evaluate the integral by interpreting part of it as the area
of a circle.

r

Water exits here.

FIGURE 11
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22. Trough in Figure 12; water exits by pouring over the sides.

a

b c

h

FIGURE 12

23. Find the work W required to empty the tank in Figure 8 through
the hole at the top if the tank is half full of water.

24. Assume the tank in Figure 8 is full of water and let W be
the work required to pump out half of the water through the hole at
the top. Do you expect W to equal the work computed in Exercise 23?
Explain and then compute W .

25. Assume the tank in Figure 10 is full. Find the work required to
pump out half of the water. Hint: First, determine the level H at which
the water remaining in the tank is equal to one-half the total capacity
of the tank.

26. Assume that the tank in Figure 10 is full.

(a) Calculate the work F(y) required to pump out water until the water
level has reached level y.
(b) Plot F(y).

(c) What is the significance of F ′(y) as a rate of change?

(d) If your goal is to pump out all of the water, at which water
level y0 will half of the work be done?

27. Calculate the work required to lift a 10-m chain over the side of
a building (Figure 13) Assume that the chain has a density of 8 kg/m.
Hint: Break up the chain into N segments, estimate the work performed
on a segment, and compute the limit as N → ∞ as an integral.

Segment of
length �y

y

FIGURE 13 The small segment of the chain of length �y located y

meters from the top is lifted through a vertical distance y.

28. How much work is done lifting a 3-m chain over the side of a
building if the chain has mass density 4 kg/m?

29. A6-m chain has mass 18 kg. Find the work required to lift the chain
over the side of a building.

30. A 10-m chain with mass density 4 kg/m is initially coiled on the
ground. How much work is performed in lifting the chain so that it is
fully extended (and one end touches the ground)?

31. How much work is done lifting a 12-m chain that has mass density
3 kg/m (initially coiled on the ground) so that its top end is 10 m above
the ground?

32. A500-kg wrecking ball hangs from a 12-m cable of density 15 kg/m
attached to a crane. Calculate the work done if the crane lifts the ball
from ground level to 12 m in the air by drawing in the cable.

33. Calculate the work required to lift a 3-m chain over the side of a
building if the chain has variable density of ρ(x) = x2 − 3x + 10 kg/m
for 0 ≤ x ≤ 3.

34. A 3-m chain with linear mass density ρ(x) = 2x(4 − x) kg/m lies
on the ground. Calculate the work required to lift the chain so that its
bottom is 2 m above ground.

Exercises 35–37: The gravitational force between two objects of mass
m and M , separated by a distance r , has magnitude GMm/r2, where
G = 6.67 × 10−11 m3kg−1s−1.

35. Show that if two objects of mass M and m are separated by a dis-
tance r1, then the work required to increase the separation to a distance
r2 is equal to W = GMm(r−1

1 − r−1
2 ).

36. Use the result of Exercise 35 to calculate the work required to place
a 2000-kg satellite in an orbit 1200 km above the surface of the earth.
Assume that the earth is a sphere of radius Re = 6.37 × 106 m and
mass Me = 5.98 × 1024 kg. Treat the satellite as a point mass.

37. Use the result of Exercise 35 to compute the work required to move
a 1500-kg satellite from an orbit 1000 to an orbit 1500 km above the
surface of the earth.

38. The pressure P and volume V of the gas in a cylinder of length
0.8 meters and radius 0.2 meters, with a movable piston, are related by
PV 1.4 = k, where k is a constant (Figure 14). When the piston is fully
extended, the gas pressure is 2000 kilopascals (one kilopascal is 103

newtons per square meter).

(a) Calculate k.

(b) The force on the piston is PA, where A is the piston’s area. Calcu-
late the force as a function of the length x of the column of gas.

(c) Calculate the work required to compress the gas column from 1.5
m to 1.2 m.

x

0.2

FIGURE 14 Gas in a cylinder with a piston.
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Further Insights and Challenges
39. Work-Energy Theorem An object of mass m moves from x1
to x2 during the time interval [t1, t2] due to a force F(x) acting in the
direction of motion. Let x(t), v(t), and a(t) be the position, velocity,
and acceleration at time t . The object’s kinetic energy is KE = 1

2mv2.

(a) Use the change-of-variables formula to show that the work per-
formed is equal to

W =
∫ x2

x1

F(x) dx =
∫ t2

t1

F(x(t))v(t) dt

(b) Use Newton’s Second Law, F(x(t)) = ma(t), to show that

d

dt

(
1

2
mv(t)2

)
= F(x(t))v(t)

(c) Use the FTC to prove the Work-Energy Theorem: The change in
kinetic energy during the time interval [t1, t2] is equal to the work
performed.

40. A model train of mass 0.5 kg is placed at one end of a straight
3-m electric track. Assume that a force F(x) = (3x − x2) N acts on
the train at distance x along the track. Use the Work-Energy Theorem
(Exercise 39) to determine the velocity of the train when it reaches the
end of the track.

41. With what initial velocity v0 must we fire a rocket so it attains a
maximum height r above the earth? Hint: Use the results of Exercises
35 and 39. As the rocket reaches its maximum height, its KE decreases
from 1

2mv2
0 to zero.

42. With what initial velocity must we fire a rocket so it attains a max-
imum height of r = 20 km above the surface of the earth?

43. Calculate escape velocity, the minimum initial velocity of an ob-
ject to ensure that it will continue traveling into space and never fall
back to earth (assuming that no force is applied after takeoff). Hint:
Take the limit as r → ∞ in Exercise 41.

CHAPTER REVIEW EXERCISES

1. Compute the area of the region in Figure 1(A) enclosed by y =
2 − x2 and y = −2.

2. Compute the area of the region in Figure 1(B) enclosed by y =
2 − x2 and y = x.

y

x
2−2 −2

−2 −2

y

x
1

y = 2 − x2 y = 2 − x2

y = x

(A) (B)

y = −2

FIGURE 1

In Exercises 3–12, find the area of the region enclosed by the graphs of
the functions.

3. y = x3 − 2x2 + x, y = x2 − x

4. y = x2 + 2x, y = x2 − 1, h(x) = x2 + x − 2

5. x = 4y, x = 24 − 8y, y = 0

6. x = y2 − 9, x = 15 − 2y

7. y = 4 − x2, y = 3x, y = 4

8. x = 1

2
y, x = y

√
1 − y2, 0 ≤ y ≤ 1

9. y = sin x, y = cos x, 0 ≤ x ≤ 5π

4

10. f (x) = sin x, g(x) = sin 2x,
π

3
≤ x ≤ π

11. y = ex , y = 1 − x, x = 1

12. y = cosh 1 − cosh x, y = cosh x − cosh 1

13. Use a graphing utility to locate the points of intersection

of y = e−x and y = 1 − x2 and find the area between the two curves
(approximately).

14. Figure 2 shows a solid whose horizontal cross section at height y

is a circle of radius (1 + y)−2 for 0 ≤ y ≤ H . Find the volume of the
solid.

y

H

FIGURE 2

15. The base of a solid is the unit circle x2 + y2 = 1, and its cross
sections perpendicular to the x-axis are rectangles of height 4. Find its
volume.

16. The base of a solid is the triangle bounded by the axes and the line
2x + 3y = 12, and its cross sections perpendicular to the y-axis have
area A(y) = (y + 2). Find its volume.

17. Find the total mass of a rod of length 1.2 m with linear density
ρ(x) = (1 + 2x + 2

9x3) kg/m.

18. Find the flow rate (in the correct units) through a pipe of diameter
6 cm if the velocity of fluid particles at a distance r from the center of
the pipe is v(r) = (3 − r) cm/s.
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In Exercises 19–24, find the average value of the function over the
interval.

19. f (x) = x3 − 2x + 2, [−1, 2] 20. f (x) = |x|, [−4, 4]

21. f (x) = x cosh(x2), [0, 1] 22. f (x) = ex

1 + e2x
,

[
0,

1

2

]

23. f (x) =
√

9 − x2, [0, 3] Hint: Use geometry to evaluate the
integral.

24. f (x) = x[x], [0, 3], where [x] is the greatest integer function.

25. Find
∫ 5

2
g(t) dt if the average value of g(t) on [2, 5] is 9.

26. The average value of R(x) over [0, x] is equal to x for all x. Use
the FTC to determine R(x).

27. Use the Washer Method to find the volume obtained by rotating
the region in Figure 3 about the x-axis.

y = x2

y = mx

y

x

FIGURE 3

28. Use the Shell Method to find the volume obtained by rotating the
region in Figure 3 about the x-axis.

In Exercises 29–40, use any method to find the volume of the solid ob-
tained by rotating the region enclosed by the curves about the given
axis.

29. y = x2 + 2, y = x + 4, x-axis

30. y = x2 + 6, y = 8x − 1, y-axis

31. x = y2 − 3, x = 2y, axis y = 4

32. y = 2x, y = 0, x = 8, axis x = −3

33. y = x2 − 1, y = 2x − 1, axis x = −2

34. y = x2 − 1, y = 2x − 1, axis y = 4

35. y = −x2 + 4x − 3, y = 0, axis y = −1

36. y = −x2 + 4x − 3, y = 0, axis x = 4

37. x = 4y − y3, x = 0, y ≥ 0, x-axis

38. y2 = x−1, x = 1, x = 3, axis y = −3

39. y = e−x2/2, y = −e−x2/2, x = 0, x = 1, y-axis

40. y = sec x, y = csc x, y = 0, x = 0, x = π

2
, x-axis

In Exercises 41–44, find the volume obtained by rotating the region
about the given axis. The regions refer to the graph of the hyperbola
y2 − x2 = 1 in Figure 4.

41. The shaded region between the upper branch of the hyperbola and
the x-axis for −c ≤ x ≤ c, about the x-axis.

42. The region between the upper branch of the hyperbola and the
x-axis for 0 ≤ x ≤ c, about the y-axis.

43. The region between the upper branch of the hyperbola and the line
y = x for 0 ≤ x ≤ c, about the x-axis.

44. The region between the upper branch of the hyperbola and y = 2,
about the y-axis.

x

y

−c c

3

2

1

−1

−2

−3

y = x

y2 − x2 = 1

FIGURE 4

45. Let R be the intersection of the circles of radius 1 centered at (1, 0)

and (0, 1). Express as an integral (but do not evaluate): (a) the area of
R and (b) the volume of revolution of R about the x-axis.

46. Let a > 0. Show that the volume obtained when the region be-

tween y = a
√

x − ax2 and the x-axis is rotated about the x-axis is
independent of the constant a.

47. If 12 J of work are needed to stretch a spring 20 cm beyond equi-
librium, how much work is required to compress it 6 cm beyond equi-
librium?

48. A spring whose equilibrium length is 15 cm exerts a force of 50 N
when it is stretched to 20 cm. Find the work required to stretch the
spring from 22 to 24 cm.

49. If 18 ft-lb of work are needed to stretch a spring 1.5 ft beyond
equilibrium, how far will the spring stretch if a 12-lb weight is attached
to its end?

50. Let W be the work (against the sun’s gravitational force) required
to transport an 80-kg person from Earth to Mars when the two planets
are aligned with the sun at their minimal distance of 55.7 × 106 km.
Use Newton’s Universal Law of Gravity (see Exercises 35–37 in Sec-
tion 6.5) to express W as an integral and evaluate it. The sun has mass
Ms = 1.99 × 1030 kg, and the distance from the sun to the earth is
149.6 × 106 km.
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In Exercises 51 and 52, water is pumped into a spherical tank of radius
2 m from a source located 1 m below a hole at the bottom (Figure 5).
The density of water is 1000 kg/m3.

51. Calculate the work required to fill the tank.

52. Calculate the work F(h) required to fill the tank to level h meters
in the sphere.

53. A tank of mass 20 kg containing 100 kg of water (density
1000 kg/m3) is raised vertically at a constant speed of 100 m/min for
one minute, during which time it leaks water at a rate of 40 kg/min.
Calculate the total work performed in raising the container.

2

1

Water source

FIGURE 5



CHAPTER 6 APPLICATIONS
OF THE INTEGRAL
PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided.

1. The area between the graphs of y = x3 and y = 4x is

(A) −8

(B) −4

(C) 0

(D) 4

(E) 8

2. The area between the graph of y = |x| and the line 2y −
x − 3 = 0 is

(A) 3
4

(B) 6
4

(C) 9
4

(D) 3

(E) 4

3. The area between the curves x = y2 and y = x − 2 is

(A) 7
6

(B) 10
3

(C) 9
2

(D) 16
3

(E) 39
2

4. The average value of f (x) = x2 on the interval [1, 3] is

(A) 2

(B) 4

(C) 13
3

(D) 26
3

(E) 8

5. C If f is continuous on [a, b], which of the following
must be true? There is a c in [a, b] with

I f (c) = 0

II f ′(c) = f (b) − f (a)

b − a

III f (c) =
∫ b

a
f (x) dx

b − a
(A) II only

(B) III only

(C) I and II only

(D) II and III only

(E) I, II, and III

6. Asolid has as base the inside of the ellipse 4x2 + 9y2 = 36,
and cross sections perpendicular to the x-axis are squares.
The total volume of the solid is

(A) 16

(B) 32

(C) 64

(D) 72

(E) 576

7. Fluid is flowing in a tube that has a radius of 3 centimeters.
Water is flowing through a circular cross section at a rate
of 9 − r2 cm/s, where r is the distance from the center of
the cross section. What is the total amount (in cubic cen-
timeters) of water that flows through the cross section in 4
seconds?

(A) 18

(B) 81
4

(C) 72

(D) 81π
4

(E) 162π

AP6-1
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8. The region under the graph y = √
x and above the x-axis

over the interval 4 ≤ x ≤ 9 is rotated about the x-axis. The
resulting volume is
(A) 38

3

(B) 38π
3

(C) 65
2

(D) 65π
2

(E) 76π
3

9. The region below the graph y = x2 and above the line
y = −1 over the interval 1 ≤ x ≤ 4 is rotated about the
line y = −1. The resulting volume is
(A) 21π

(B) 24π

(C) 1248π
5

(D) 828π
5

(E) 1038π
5

10. The region bounded by the y-axis and the graphs y = 3 and
y = √

x is rotated about the y-axis. The resulting volume
is
(A) 9π

(B) 81π
2

(C) 243π
5

(D) 81π

(E) 243π

11. C The region bounded by the graphs y = √
2x + 1 and

2y − x = 2 is rotated about the line x = 5. The resulting
volume is
(A) 4
(B) 4.266
(C) 12.566
(D) 13.404
(E) 90.933

12. C A solid has base given by the triangle with vertices
(−4, 0), (0, 8), and (4, 0). Cross sections perpendicular to
the y-axis are semi-circles with diameter in the plane. The
volume of the solid is given by

(A)
∫ 4

0
π(8 − 2x)2 dx

(B)
π

2

(∫ 0

−4
(2x + 8)2 dx +

∫ 4

0
(8 − 2x)2 dx

)

(C)
∫ 8

0

π

8
(8 − y)2 dy

(D)
∫ 8

0

π

4
(8 − y)2 dy

(E)
∫ 8

0

π

2
(8 − y)2 dy

13. C The solid bounded by the graphs of y = 8 − x2 and
y − 3x = 8 is rotated around the line x = 4. The volume is
given by

(A) π

∫ 0

−3
(8 − x2)

2 − (8 + 3x)2 dx

(B) π

∫ 0

−3

(
8 − x2 − (8 + 3x)

)2
dx

(C) π

∫ 8

−1

(
4 + √

8 − y
)2 −

(
y − 20

3

)2

dy

(D) π

∫ 8

−1

(
4 − √

8 − y
)2 −

(
y − 20

3

)2

dy

(E) π

∫ 8

−1

(
4 + √

8 − y −
(

y − 20

3

))2

dy

14. C What integral gives the volume of a solid with base a
circle of diameter 6 with center at the origin if cross sections
perpendicular to the x-axis are equilateral triangles?

(A)
∫ 3

−3

√
3

4
(9 − x2) dx

(B)
∫ 6

0

√
3

4
(9 − x2) dx

(C)
∫ 6

−6
4
√

3(36 − x2) dx

(D)
∫ 3

−3
4
√

3(9 − x2) dx

(E)
∫ 3

−3

√
3(9 − x2) dx

15. C Circle City has a population density of ρ(r) =√
4 + r2 for 0 ≤ r ≤ 3, where r is the distance in miles

from the center of the city, and ρ(r) is in thousands of peo-
ple/square mile. Which of the following gives the total pop-
ulation of Circle City?

(A)
∫ 3

0
2πr

√
4 + r2 dr

(B)
∫ 3

−3
2πr

√
4 + r2 dr

(C)
∫ 3

−3
π(4 + r2) dr

(D)
∫ 6

0
2πr

√
4 + r2 dr

(E)
∫ 3

−3

√
4 + r2 dr
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16. A solid cylindrical rod has length 7 inches and radius 0.5
inches. The density of the rod at a point x inches from one
end is 2x oz/in.3. Note, as the units indicate, that if W is
weight, then density is the derivative of W with respect to
volume. In ounces, what is the total weight of the rod?
(A) 14
(B) 49
(C) 49π

4

(D) 49π
2

(E) 49π

Use the following table to solve questions 17 and 18.

x = 0 0 < x < 1 x = 1 1 < x < 2 x = 2
f (0) = 3 f is increasing f (1) = 10 f is decreasing f (2) = 6
f ′(0) = 0 f ′(x) > 0 f ′(1) = 0 f ′(x) < 0 f ′(2) = 0

17. C Use the table to find the area between the graph of f ′
and the x-axis for 0 ≤ x ≤ 2. The area is
(A) 0
(B) 3
(C) 4
(D) 11
(E) 19

18. C Use the table to find the average value of f ′ on [0, 2].
(A) 1.5
(B) 3
(C) 5.5
(D) 6.333
(E) 9.5

19. C A container in the shape of a sphere of radius R con-
tains water whose depth is H . If the origin is placed at the
center of the sphere, then the volume of water is given by
which of the following integrals? (The density of water is
62.4 lb/ft3.)

(A)
∫ −H

−R

πR2 dy (D)
∫ −H

−R

62.4π(R2 − y2) dy

(B)
∫ −H

−R

π(R2 − y2) dy (E)
∫ −R+H

−R

π(R2 − y2) dy

(C)
∫ H

0
π(R2 − y2) dy

20. C Let R be the region bounded above by y = 8 − x2 and
below by y = x2. What integral gives the volume of the
solid obtained by rotating R about the line y = −1?

(A)
∫ 2

−2
2πx(8 − 2x2) dx

(B)
∫ 2

−2
π

[
(9 − x2)2 − (1 + x2)2

]
dx

(C)
∫ 2

−2
π(8 − 2x2)

2
dx

(D)
∫ 8

0
2πy(8 − 2y2) dy

(E)
∫ 8

0
π(8 − 2y2)2 dy

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work.

1. A particle travels on the x-axis with acceleration given by
a(t) = 6 − 2t for 0 ≤ t ≤ 10, where t is in seconds and dis-
tance is in feet. When t = 0, the particle is at x(0) = 2 with
velocity v(0) = 7. Include units in your answers.

(a) What is the average acceleration of the particle during
these 10 seconds?

(b) What is the average velocity during these 10 seconds?

(c) What is the average speed during these 10 seconds?

2. Let R be the region in the first quadrant bounded above by
y = 4x and below by y = x3. Set up, but do not evaluate
an integral expression for each of the following.

(a) the area of R

(b) the volume of the solid obtained by rotating R about
the y-axis

(c) the volume of the solid obtained by rotating R about
the line y = 20



PREPARING FOR THE AP EXAM AP6-4

3. An empty bowl is in the form of a hemisphere with radius
6 feet.
(a) Water starts to be pumped into the bowl at the steady

rate of 4 cubic feet per minute. How fast is the depth
of the water rising when the depth is 2 feet?

(b) The pumping of the water stops when the depth of the
water is 5 feet. What is the total time that water was
pumped into the bowl?

4. An old urn is discovered that looks like a cylinder except
that the side is wavy. The urn is 6 inches high. Scientists
want to estimate the volume of the urn so they measure
its circumference at intervals of 2 inches, and produce the
following data, measuring to the nearest tenth of an inch.

y 0 2 4 6
C(y) 36.1 34.8 32.2 38.6

(a) Use a left-hand Riemann sum to estimate the volume
of the cylinder.

(b) Someone suggests that the scientists model the vol-
ume as being obtained by rotating the curve x =
6 + 0.4 sin(5y) about the y-axis. Set up, but do not
evaluate, an integral expression that gives that volume.

Answers to odd-numbered questions can be found in the back of
the book.



Computer simulation of the Indonesian tsunami

of December 26, 2004 (8 minutes after the

earthquake), created using models of wave

motion based on advanced calculus by Steven

Ward, University of California at Santa Cruz.

7 TECHNIQUES OF
INTEGRATION

I n Section 5.6 we introduced substitution, one of the most important techniques of
integration. In this section, we develop a second fundamental technique, Integration

by Parts, as well as several techniques for treating particular classes of functions such as
trigonometric and rational functions. However, there is no surefire method, and in fact,
many important antiderivatives cannot be expressed in elementary terms. Therefore, we
discuss numerical integration in the last section. Every definite integral can be approxi-
mated numerically to any desired degree of accuracy.

7.1 Integration by Parts
The Integration by Parts formula is derived from the Product Rule:(

u(x)v(x)
)′ = u(x)v′(x) + u′(x)v(x)

According to this formula, u(x)v(x) is an antiderivative of the right-hand side, so

u(x)v(x) =
∫

u(x)v′(x) dx +
∫

u′(x)v(x) dx

Moving the second integral on the right to the other side, we obtain:

The Integration by Parts formula is often
written using differentials:∫

u dv = uv −
∫

v du

where dv = v′(x) dx and du = u′(x) dx.

Integration by Parts Formula

∫
u(x)v′(x) dx = u(x)v(x) −

∫
u′(x)v(x) dx 1

Because the Integration by Parts formula applies to a product u(x)v′(x), we should
consider using it when the integrand is a product of two functions.

EXAMPLE 1 Evaluate
∫

x cos x dx.

Solution The integrand is a product, so we try writing x cos x = uv′ with

u(x) = x, v′(x) = cos x

In this case, u′(x) = 1 and v(x) = sin x. By the Integration by Parts formula,In applying Eq. (1), any antiderivative v(x)

of v′(x) may be used. ∫
x cos x︸ ︷︷ ︸

uv′
dx = x sin x︸ ︷︷ ︸

uv

−
∫

sin x︸︷︷︸
u′v

dx = x sin x + cos x + C

Let’s check the answer by taking the derivative:

d

dx
(x sin x + cos x + C) = x cos x + sin x − sin x = x cos x

400
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The key step in Integration by Parts is deciding how to write the integrand as a product
uv′. Keep in mind that Integration by Parts expresses

∫
uv′ dx in terms of uv and

∫
u′v dx.

This is useful if u′v is easier to integrate than uv′. Here are two guidelines:

• Choose u so that u′ is “simpler” than u itself.

• Choose v′ so that v =
∫

v′ dx can be evaluated.

EXAMPLE 2 Good Versus Bad Choices of u and v′ Evaluate
∫

xex dx.

Solution Based on our guidelines, it makes sense to write xex = uv′ with

• u = x (since u′ = 1 is simpler)

• v′ = ex (since we can evaluate v =
∫

ex dx = ex + C)

Integration by Parts gives us∫
xex dx = u(x)v(x) −

∫
u′(x)v(x) dx = xex −

∫
ex dx = xex − ex + C

Let’s see what happens if we write xex = uv′ with u = ex , v′ = x. Then

u′(x) = ex, v(x) =
∫

x dx = 1

2
x2 + C

∫
xex︸︷︷︸
uv′

dx = 1

2
x2ex︸ ︷︷ ︸
uv

−
∫

1

2
x2ex︸ ︷︷ ︸
u′v

dx

This is a poor choice of u and v′ because the integral on the right is more complicated
than our original integral.

EXAMPLE 3 Integrating by Parts More Than Once Evaluate
∫

x2 cos x dx.

Solution Apply Integration by Parts a first time with u = x2 and v′ = cos x:In Example 3, it makes sense to take
u = x2 because Integration by Parts
reduces the integration of x2 cos x to the
integration of 2x sin x, which is easier.

∫
x2 cos x︸ ︷︷ ︸

uv′
dx = x2 sin x︸ ︷︷ ︸

uv

−
∫

2x sin x︸ ︷︷ ︸
u′v

dx = x2 sin x − 2
∫

x sin x dx 2

Now apply it again to the integral on the right, this time with u = x and v′ = sin x:∫
x sin x︸ ︷︷ ︸

uv′
dx = −x cos x︸ ︷︷ ︸

uv

−
∫

(− cos x)︸ ︷︷ ︸
u′v

dx = −x cos x + sin x + C

Using this result in Eq. (2), we obtain∫
x2 cos x dx = x2 sin x − 2

∫
x sin x dx = x2 sin x − 2(−x cos x + sin x) + C

= x2 sin x + 2x cos x − 2 sin x + C

Integration by Parts applies to definite integrals:

∫ b

a

u(x)v′(x) dx = u(x)v(x)

∣∣∣∣b
a

−
∫ b

a

u′(x)v(x) dx
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EXAMPLE 4 Taking v′ = 1 Evaluate
∫ 3

1
ln x dx.

Solution The integrand is not a product, so at first glance, this integral does not look likeSurprisingly, the choice v′ = 1 is effective
in some cases. Using it as in Example 4,
we find that∫

ln x dx = x ln x − x + C

This choice also works for the inverse
trigonometric functions (see Exercise 6).

a candidate for Integration by Parts. However, we are free to add a factor of 1 and write
ln x = (ln x) · 1 = uv′. Then

u = ln x, v′ = 1

u′ = x−1, v = x

∫ 3

1
ln x︸︷︷︸
uv′

dx = x ln x︸ ︷︷ ︸
uv

∣∣∣∣3

1
−

∫ 3

1
1︸︷︷︸

u′v

dx = (3 ln 3 − 0) − 2 = 3 ln 3 − 2

EXAMPLE 5 Going in a Circle? Evaluate
∫

ex cos x dx.

Solution There are two reasonable ways of writing ex cos x as uv′. Let’s try u = cos x

and v′ = ex . ThenIn Example 5, the choice u = ex ,
v′ = cos x works equally well. ∫

ex cos x︸ ︷︷ ︸
uv′

dx = ex cos x︸ ︷︷ ︸
uv

+
∫

ex sin x︸ ︷︷ ︸
−u′v

dx 3

Now use Integration by Parts to the integral on the right with u = sin x and v′ = ex :∫
ex sin x dx = ex sin x −

∫
ex cos x dx 4

Eq. (4) brings us back to our original integral of ex cos x, so it looks as if we’re going in
a circle. But we can substitute Eq. (4) in Eq. (3) and solve for the integral of ex cos x:∫

ex cos x dx = ex cos x +
∫

ex sin x dx = ex cos x + ex sin x −
∫

ex cos x dx

2
∫

ex cos x dx = ex cos x + ex sin x + C∫
ex cos x dx = 1

2
ex(cos x + sin x) + C

Integration by Parts can be used to derive reduction formulas for integrals that

depend on a positive integer n such as
∫

xnex dx or
∫

lnn x dx.

A reduction formula (also called a recursive
formula) expresses the integral for a given
value of n in terms of a similar integral for
a smaller value of n. The desired integral is
evaluated by applying the reduction
formula repeatedly.

EXAMPLE 6 A Reduction Formula Derive the reduction formula∫
xnex dx = xnex − n

∫
xn−1ex dx 5

Then evaluate
∫

x3ex dx.

Solution We apply Integration by Parts with u = xn and v′ = ex :∫
xnex dx = uv −

∫
u′v dx = xnex − n

∫
xn−1ex dx

To evaluate
∫

x3ex dx, we’ll need to use the reduction formula for n = 3, 2, 1:

In general,

∫
xnex dx = Pn(x)ex + C,

where Pn(x) is a polynomial of degree n

(see Exercise 78).
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x3ex dx = x3ex − 3

∫
x2ex dx

= x3ex − 3

(
x2ex − 2

∫
xex dx

)

= x3ex − 3x2ex + 6
∫

xex dx

= x3ex − 3x2ex + 6

(
xex −

∫
ex dx

)
= x3ex − 3x2ex + 6xex − 6ex + C

= (x3 − 3x2 + 6x − 6)ex + C

7.1 SUMMARY

• Integration by Parts formula:
∫

u(x)v′(x) dx = u(x)v(x) −
∫

u′(x)v(x) dx.

• The key step is deciding how to write the integrand as a product uv′. Keep in mind that
Integration by Parts is useful when u′v is easier (or, at least, not more difficult) to integrate
than uv′. Here are some guidelines:

– Choose u so that u′ is simpler than u itself.

– Choose v′ so that v =
∫

v′ dx can be evaluated.

– Sometimes, v′ = 1 is a good choice.

7.1 EXERCISES

Preliminary Questions
1. Which derivative rule is used to derive the Integration by Parts

formula?

2. For each of the following integrals, state whether substitution or
Integration by Parts should be used:

∫
x cos(x2) dx,

∫
x cos x dx,

∫
x2ex dx,

∫
xex2

dx

3. Why is u = cos x, v′ = x a poor choice for evaluating∫
x cos x dx?

Exercises
In Exercises 1–6, evaluate the integral using the Integration by Parts
formula with the given choice of u and v′.

1.
∫

x sin x dx; u = x, v′ = sin x

2.
∫

xe2x dx; u = x, v′ = e2x

3.
∫

(2x + 9)ex dx; u = 2x + 9, v′ = ex

4.
∫

x cos 4x dx; u = x, v′ = cos 4x

5.
∫

x3 ln x dx; u = ln x, v′ = x3

6.
∫

tan−1 x dx; u = tan−1 x, v′ = 1

In Exercises 7–36, evaluate using Integration by Parts.

7.
∫

(4x − 3)e−x dx 8.
∫

(2x + 1)ex dx

9.
∫

x e5x+2 dx 10.
∫

x2ex dx

11.
∫

x cos 2x dx 12.
∫

x sin(3 − x) dx

13.
∫

x2 sin x dx 14.
∫

x2 cos 3x dx

15.
∫

e−x sin x dx 16.
∫

ex sin 2x dx



404 C H A P T E R 7 TECHNIQUES OF INTEGRATION

17.
∫

e−5x sin x dx 18.
∫

e3x cos 4x dx

19.
∫

x ln x dx 20.
∫

ln x

x2
dx

21.
∫

x2 ln x dx 22.
∫

x−5 ln x dx

23.
∫

(ln x)2 dx 24.
∫

x(ln x)2 dx

25.
∫

x sec2 x dx 26.
∫

x tan x sec x dx

27.
∫

cos−1 x dx 28.
∫

sin−1 x dx

29.
∫

sec−1 x dx 30.
∫

x5x dx

31.
∫

3x cos x dx 32.
∫

x sinh x dx

33.
∫

x2 cosh x dx 34.
∫

cos x cosh x dx

35.
∫

tanh−1 4x dx 36.
∫

sinh−1 x dx

In Exercises 37–38, evaluate using substitution and then Integration by
Parts.

37.
∫

e
√

x dx Hint: Let u = x1/2 38.
∫

x3ex2
dx

In Exercises 39–48, evaluate using Integration by Parts, substitution,
or both if necessary.

39.
∫

x cos 4x dx 40.
∫

ln(ln x) dx

x

41.
∫

x dx√
x + 1

42.
∫

x2(x3 + 9)15 dx

43.
∫

cos x ln(sin x) dx 44.
∫

sin
√

x dx

45.
∫ √

xe
√

x dx 46.
∫

tan
√

x dx√
x

47.
∫

ln(ln x) ln x dx

x
48.

∫
sin(ln x) dx

In Exercises 49–54, compute the definite integral.

49.
∫ 3

0
xe4x dx 50.

∫ π/4

0
x sin 2x dx

51.
∫ 2

1
x ln x dx 52.

∫ e

1

ln x dx

x2

53.
∫ π

0
ex sin x dx 54.

∫ 1

0
tan−1 x dx

55. Use Eq. (5) to evaluate
∫

x4ex dx.

56. Use substitution and then Eq. (5) to evaluate
∫

x4e7x dx.

57. Find a reduction formula for
∫

xne−x dx similar to Eq. (5).

58. Evaluate
∫

xn ln x dx for n �= −1. Which method should be used
to evaluate

∫
x−1 ln x dx?

In Exercises 59–66, indicate a good method for evaluating the integral
(but do not evaluate). Your choices are algebraic manipulation, sub-
stitution (specify u and du), and Integration by Parts (specify u and
v′). If it appears that the techniques you have learned thus far are not
sufficient, state this.

59.
∫ √

x ln x dx 60.
∫

x2 − √
x

2x
dx

61.
∫

x3 dx√
4 − x2

62.
∫

dx√
4 − x2

63.
∫

x + 2

x2 + 4x + 3
dx 64.

∫
dx

(x + 2)(x2 + 4x + 3)

65.
∫

x sin(3x + 4) dx 66.
∫

x cos(9x2) dx

67. Evaluate
∫

(sin−1 x)2 dx. Hint: Use Integration by Parts first and

then substitution.

68. Evaluate
∫

(ln x)2 dx

x2
. Hint: Use substitution first and then Inte-

gration by Parts.

69. Evaluate
∫

x7 cos(x4) dx.

70. Find f (x), assuming that∫
f (x)ex dx = f (x)ex −

∫
x−1ex dx

71. Find the volume of the solid obtained by revolving the region under
y = ex for 0 ≤ x ≤ 2 about the y-axis.

72. Find the area enclosed by y = ln x and y = (ln x)2.

73. Recall that the present value (PV) of an investment that pays out

income continuously at a rate R(t) for T years is
∫ T

0
R(t)e−rt dt ,

where r is the interest rate. Find the PV if R(t) = 5000 + 100t $/year,
r = 0.05 and T = 10 years.

74. Derive the reduction formula∫
(ln x)k dx = x(ln x)k − k

∫
(ln x)k−1 dx 6

75. Use Eq. (6) to calculate
∫

(ln x)k dx for k = 2, 3.

76. Derive the reduction formulas∫
xn cos x dx = xn sin x − n

∫
xn−1 sin x dx

∫
xn sin x dx = −xn cos x + n

∫
xn−1 cos x dx

77. Prove that
∫

xbx dx = bx

(
x

ln b
− 1

ln2 b

)
+ C.

78. Define Pn(x) by∫
xnex dx = Pn(x) ex + C

Use Eq. (5) to prove that Pn(x) = xn − nPn−1(x). Use this recursion
relation to find Pn(x) for n = 1, 2, 3, 4. Note that P0(x) = 1.
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Further Insights and Challenges
79. The Integration by Parts formula can be written∫

u(x)v(x) dx = u(x)V (x) −
∫

u′(x)V (x) dx 7

where V (x) satisfies V ′(x) = v(x).
(a) Show directly that the right-hand side of Eq. (7) does not change
if V (x) is replaced by V (x) + C, where C is a constant.

(b) Use u = tan−1 x and v = x in Eq. (7) to calculate
∫

x tan−1 x dx,

but carry out the calculation twice: first with V (x) = 1
2x2 and then with

V (x) = 1
2x2 + 1

2 . Which choice of V (x) results in a simpler calcula-
tion?

80. Prove in two ways that∫ a

0
f (x) dx = af (a) −

∫ a

0
xf ′(x) dx 8

First use Integration by Parts. Then assume f (x) is increasing. Use the

substitution u = f (x) to prove that
∫ a

0
xf ′(x) dx is equal to the area

of the shaded region in Figure 1 and derive Eq. (8) a second time.

0 a
x

y y = f (x)

f (a)

f (0)

FIGURE 1

81. Assume that f (0) = f (1) = 0 and that f ′′ exists. Prove

∫ 1

0
f ′′(x)f (x) dx = −

∫ 1

0
f ′(x)2 dx 9

Use this to prove that if f (0) = f (1) = 0 and f ′′(x) = λf (x) for some
constant λ, then λ < 0. Can you think of a function satisfying these con-
ditions for some λ?

82. Set I (a, b) =
∫ 1

0
xa(1 − x)b dx, where a, b are whole numbers.

(a) Use substitution to show that I (a, b) = I (b, a).

(b) Show that I (a, 0) = I (0, a) = 1

a + 1
.

(c) Prove that for a ≥ 1 and b ≥ 0,

I (a, b) = a

b + 1
I (a − 1, b + 1)

(d) Use (b) and (c) to calculate I (1, 1) and I (3, 2).

(e) Show that I (a, b) = a! b!
(a + b + 1)! .

83. Let In =
∫

xn cos(x2) dx and Jn =
∫

xn sin(x2) dx.

(a) Find a reduction formula that expresses In in terms of Jn−2. Hint:
Write xn cos(x2) as xn−1(x cos(x2)).

(b) Use the result of (a) to show that In can be evaluated ex-
plicitly if n is odd.

(c) Evaluate I3.

7.2 Trigonometric Integrals
Many trigonometric functions can be integrated by combining substitution and Integration
by Parts with the appropriate trigonometric identities. First, consider∫

sinm x cosn x dx

where m, n are whole numbers. The easier case is when at least one of m, n is odd.

EXAMPLE 1 Odd Power of sin x Evaluate
∫

sin3 x dx.

Solution Because sin3 x is an odd power, the identity sin2 x = 1 − cos2 x allows us to
split off a factor of sin x dx:

sin3 x dx = sin2 x(sin x dx) = (1 − cos2 x) sin x dx

and use the substitution u = cos x, du = − sin x dx:∫
sin3 x dx =

∫
(1 − cos2 x) sin x dx = −

∫
(1 − u2) du

= u3

3
− u + C = cos3 x

3
− cos x + C
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The strategy of the previous example works when sinm x appears with m odd. Simi-Integrating sinm x cosn x

Case 1: m = 2k + 1 odd

Write sin2k+1 x as (1 − cos2 x)k sin x.
Then

∫
sin2k+1 x cosn x dx becomes∫
sin x(1 − cos2 x)k cosn x dx

Substitute u = cos x, −du = sin x dx.

Case 2: n = 2k + 1 odd

Write cos2k+1 x as (1 − sin2 x)k cos x

Then
∫

sinm x cos2k+1 x dx becomes∫
sinm x(1 − sin2 x)k cos x dx

Substitute u = sin x, du = cos x dx.

Case 3: m, n both even

Use reduction formulas (1) or (2) as
described below or use the method of
Exercises 65–68.

larly, if n is odd, write cosn x as a power of (1 − sin2 x) times cos x.

EXAMPLE 2 Odd Power of sin x or cos x Evaluate
∫

sin4 x cos5 x dx.

Solution We take advantage of the fact that cos5 x is an odd power to write

sin4 x cos5 x dx = sin4 x cos4 x(cos x dx) = sin4 x(1 − sin2 x)2(cos x dx)

This allows us to use the substitution u = sin x, du = cos x dx:∫
sin4 x cos5 x dx =

∫
(sin4 x)(1 − sin2 x)2 cos x dx

=
∫

u4(1 − u2)2 du =
∫

(u4 − 2u6 + u8) du

= u5

5
− 2u7

7
+ u9

9
+ C = sin5 x

5
− 2 sin7 x

7
+ sin9 x

9
+ C

The following reduction formulas can be used to integrate sinn x and cosn x for any
exponent n, even or odd (their proofs are left as exercises; see Exercise 64).

Reduction Formulas for Sine and Cosine∫
sinn x dx = −1

n
sinn−1 x cos x + n − 1

n

∫
sinn−2 x dx 1

∫
cosn x dx = 1

n
cosn−1 x sin x + n − 1

n

∫
cosn−2 x dx 2

EXAMPLE 3 Evaluate
∫

sin4 x dx.

Solution Apply Eq. (1) with n = 4,∫
sin4 x dx = −1

4
sin3 x cos x + 3

4

∫
sin2 x dx 3

Then apply Eq. (1) again, with n = 2, to the integral on the right:∫
sin2 x dx = −1

2
sin x cos x + 1

2

∫
dx = −1

2
sin x cos x + 1

2
x + C 4

Using Eq. (4) in Eq. (3), we obtain∫
sin4 x dx = −1

4
sin3 x cos x − 3

8
sin x cos x + 3

8
x + C

Trigonometric integrals can be expressed in many different ways because trigono-
metric functions satisfy a large number of identities. For example, a computer algebra
system might evaluate the integral in the previous example as∫

sin4 x dx = 1

32
(x − 8 sin 2x + sin 4x) + C

You can check that this agrees with the result in Example 3 (Exercise 61).
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More work is required to integrate sinm x cosn x when both m and n are even. First
of all, we have the following formulas, which are verified using the identities recalled in
the margin.

REMINDER Useful Identities:

sin2 x = 1

2
(1 − cos 2x)

cos2 x = 1

2
(1 + cos 2x)

sin 2x = 2 sin x cos x

cos 2x = cos2 x − sin2 x

∫
sin2 x dx = x

2
− sin 2x

4
+ C = x

2
− 1

2
sin x cos x + C

∫
cos2 x dx = x

2
+ sin 2x

4
+ C = x

2
+ 1

2
sin x cos x + C

Here is a method for integrating sinm x cosn x when both m and n are even. Another
method is used in Exercises 65–68.

• If m ≤ n, use the identity sin2 x = 1 − cos2 x to write∫
sinm x cosn x dx =

∫
(1 − cos2 x)m/2 cosn x dx

Expand the integral on the right to obtain a sum of integrals of powers of cos x and
use reduction formula (2).

• If m ≥ n, use the identity cos2 x = 1 − sin2 x to write∫
sinm x cosn x dx =

∫
(sinm x)(1 − sin2 x)n/2 dx

Expand the integral on the right to obtain a sum of integrals of powers of sin x, and
again evaluate using reduction formula (1).

EXAMPLE 4 Even Powers of sin x and cos x Evaluate
∫

sin2 x cos4 x dx.

Solution Here m = 2 and n = 4. Since m < n, we replace sin2 x by 1 − cos2 x:∫
sin2 x cos4 x dx =

∫
(1 − cos2 x) cos4 x dx =

∫
cos4 x dx −

∫
cos6 x dx 5

The reduction formula for n = 6 gives∫
cos6 x dx = 1

6
cos5 x sin x + 5

6

∫
cos4 x dx

Using this result in the right-hand side of Eq. (5), we obtain∫
sin2 x cos4 x dx =

∫
cos4 x dx −

(
1

6
cos5 x sin x + 5

6

∫
cos4 x dx

)

= −1

6
cos5 x sin x + 1

6

∫
cos4 x dx

Next, we evaluate
∫

cos4 x dx using the reduction formulas for n = 4 and n = 2:∫
cos4 x dx = 1

4
cos3 x sin x + 3

4

∫
cos2 x dx

= 1

4
cos3 x sin x + 3

4

(
1

2
cos x sin x + 1

2
x

)
+ C

= 1

4
cos3 x sin x + 3

8
cos x sin x + 3

8
x + C
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Altogether,As we have noted, trigonometric integrals
can be expressed in more than one way.
According to Mathematica,∫

sin2 x cos4 x dx

= 1
16 x + 1

64 sin 2x − 1
64 sin 4x − 1

192 sin 6x

Trigonometric identities show that this
agrees with Eq. (6).

∫
sin2 x cos4 x dx = −1

6
cos5 x sin x + 1

6

(
1

4
cos3 x sin x + 3

8
cos x sin x + 3

8
x

)
+ C

= −1

6
cos5 x sin x + 1

24
cos3 x sin x + 1

16
cos x sin x + 1

16
x + C

6

We turn now to the integrals of the remaining trigonometric functions.

EXAMPLE 5 Integral of the Tangent and Secant Derive the formulas∫
tan x dx = ln | sec x| + C,

∫
sec x dx = ln

∣∣sec x + tan x
∣∣ + C

Solution To integrate tan x, use the substitution u = cos x, du = − sin x dx:The integral

∫
sec x dx was first computed

numerically in the 1590s by the English
mathematician Edward Wright, decades
before the invention of calculus. Although
he did not invent the concept of an
integral, Wright realized that the sums that
approximate the integral hold the key to
understanding the Mercator map
projection, of great importance in sea
navigation because it enabled sailors to
reach their destinations along lines of fixed
compass direction. The formula for the
integral was first proved by James Gregory
in 1668.

∫
tan x dx =

∫
sin x

cos x
dx = −

∫
du

u
= − ln |u| + C = − ln |cos x| + C

= ln
1

|cos x| + C = ln |sec x| + C

To integrate sec x, we employ a clever substitution: u = sec x + tan x. Then

du = (sec x tan x + sec2 x) dx = (sec x) (tan x + sec x)︸ ︷︷ ︸
u

dx = (sec x)u dx

Thus du = (sec x)u dx, and dividing by u gives du/u = sec x dx. We obtain∫
sec x dx =

∫
du

u
= ln |u| + C = ln

∣∣ sec x + tan x
∣∣ + C

The table of integrals at the end of this section (page 410) contains a list of additional
trigonometric integrals and reduction formulas.

EXAMPLE 6 Using a Table of Integrals Evaluate
∫ π/4

0
tan3 x dx.

Solution We use reduction formula (16) in the table with k = 3.

∫ π/4

0
tan3 x dx = tan2 x

2

∣∣∣∣π/4

0
−

∫ π/4

0
tan x dx =

(
1

2
tan2 x − ln | sec x|

) ∣∣∣∣π/4

0

=
(

1

2
tan2 π

4
− ln

∣∣∣sec
π

4

∣∣∣) −
(

1

2
tan2 0 − ln | sec 0|

)

=
(

1

2
(1)2 − ln

√
2

)
−

(
1

2
02 − ln |1|

)
= 1

2
− ln

√
2

In the margin we describe a method for integrating tanm x secn x.
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EXAMPLE 7 Evaluate
∫

tan2 x sec3 x dx.

Solution Our integral is covered by Case 3 in the marginal note, because the integrandIntegrating tanm x secn x

Case 1: m = 2k + 1 odd and n ≥ 1

Use the identity tan2 x = sec2 x − 1 to
write tan2k+1 x secn x as

(sec2 x − 1)k(secn−1 x)(sec x tan x)

Then substitute u = sec x,
du = sec x tan x dx to obtain an integral
involving only powers of u.

Case 2: n = 2k even

Use the identity sec2 x = 1 + tan2 x to
write tanm x secn x as

(tanm x)(1 + tan2 x)k−1 sec2 x

Then substitute u = tan x, du = sec2 x dx

to obtain an integral involving only powers
of u.

Case 3: m even and n odd

Use the identity tan2 x = sec2 x − 1 to
write tanm x secn x as

(sec2 x − 1)m/2 secn x

Expand to obtain an integral involving only
powers of sec x and use the reduction
formula (20).

is tanm x secn x, with m = 2 and n = 3.
The first step is to use the identity tan2 x = sec2 x − 1:∫

tan2 x sec3 x dx =
∫

(sec2 x − 1) sec3 x dx =
∫

sec5 x dx −
∫

sec3 x dx 7

Next, use the reduction formula (20) in the table on page 410 with m = 5:

∫
sec5 x dx = tan x sec3 x

4
+ 3

4

∫
sec3 x dx

Substitute this result in Eq. (7):

∫
tan2 x sec3 x dx =

(
tan x sec3 x

4
+ 3

4

∫
sec3 x dx

)
−

∫
sec3 x dx

= 1

4
tan x sec3 x − 1

4

∫
sec3 x dx 8

and use the reduction formula (20) again with m = 3 and formula (19):∫
sec3 x dx = tan x sec x

2
+ 1

2

∫
sec x dx

= 1

2
tan x sec x + 1

2
ln |sec x + tan x| + C

Then Eq. (8) becomes∫
tan2 x sec3 x dx = 1

4
tan x sec3 x − 1

4

(
1

2
tan x sec x + 1

2
ln | sec x + tan x|

)
+ C

= 1

4
tan x sec3 x − 1

8
tan x sec x − 1

8
ln |sec x + tan x| + C

Formulas (23)–(25) in the table describe the integrals of the products sin mx sin nx,
cos mx cos nx, and sin mx cos nx. These integrals appear in the theory of Fourier Series,
which is a fundamental technique used extensively in engineering and physics.

EXAMPLE 8 Integral of sin mx cos nx Evaluate
∫ π

0
sin 4x cos 3x dx.

Solution Apply reduction formula (24), with m = 4 and n = 3:

∫ π

0
sin 4x cos 3x dx =

(
−cos(4 − 3)x

2(4 − 3)
− cos(4 + 3)x

2(4 + 3)

) ∣∣∣∣π
0

=
(

−cos x

2
− cos 7x

14

) ∣∣∣∣π
0

=
(

1

2
+ 1

14

)
−

(
−1

2
− 1

14

)
= 8

7
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TABLE OF TRIGONOMETRIC INTEGRALS

∫
sin2 x dx = x

2
− sin 2x

4
+ C = x

2
− 1

2
sin x cos x + C 9

∫
cos2 x dx = x

2
+ sin 2x

4
+ C = x

2
+ 1

2
sin x cos x + C 10

∫
sinn x dx = − sinn−1 x cos x

n
+ n − 1

n

∫
sinn−2 x dx 11

∫
cosn x dx = cosn−1 x sin x

n
+ n − 1

n

∫
cosn−2 x dx 12

∫
sinm x cosn x dx = sinm+1 x cosn−1 x

m + n
+ n − 1

m + n

∫
sinm x cosn−2 x dx 13

∫
sinm x cosn x dx = − sinm−1 x cosn+1 x

m + n
+ m − 1

m + n

∫
sinm−2 x cosn x dx 14

∫
tan x dx = ln |sec x| + C = − ln |cos x| + C 15

∫
tanm x dx = tanm−1 x

m − 1
−

∫
tanm−2 x dx 16

∫
cot x dx = − ln |csc x| + C = ln |sin x| + C 17

∫
cotm x dx = −cotm−1 x

m − 1
−

∫
cotm−2 x dx 18

∫
sec x dx = ln

∣∣sec x + tan x
∣∣ + C 19

∫
secm x dx = tan x secm−2 x

m − 1
+ m − 2

m − 1

∫
secm−2 x dx 20

∫
csc x dx = ln

∣∣csc x − cot x
∣∣ + C 21

∫
cscm x dx = −cot x cscm−2 x

m − 1
+ m − 2

m − 1

∫
cscm−2 x dx 22

∫
sin mx sin nx dx = sin(m − n)x

2(m − n)
− sin(m + n)x

2(m + n)
+ C (m �= ±n) 23

∫
sin mx cos nx dx = −cos(m − n)x

2(m − n)
− cos(m + n)x

2(m + n)
+ C (m �= ±n) 24

∫
cos mx cos nx dx = sin(m − n)x

2(m − n)
+ sin(m + n)x

2(m + n)
+ C (m �= ±n) 25

7.2 SUMMARY

• To integrate an odd power of sin x times cosn x, write∫
sin2k+1 x cosn x dx =

∫
(1 − cos2 x)k cosn x sin x dx

Then use the substitution u = cos x, du = − sin x dx.
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• To integrate an odd power of cos x times sinm x, write∫
sinm x cos2k+1 x dx =

∫
(sinm x)(1 − sin2 x)k cos x dx

Then use the substitution u = sin x, du = cos x dx.
• If both sin x and cos x occur to an even power, write∫

sinm x cosn x dx =
∫

(1 − cos2 x)m/2 cosn x dx (if m ≤ n)∫
sinm x cosn x dx =

∫
sinm x(1 − sin2 x)n/2 dx (if m ≥ n)

Expand the right-hand side to obtain a sum of powers of cos x or powers of sin x. Then
use the reduction formulas∫

sinn x dx = −1

n
sinn−1 x cos x + n − 1

n

∫
sinn−2 x dx∫

cosn x dx = 1

n
cosn−1 x sin x + n − 1

n

∫
cosn−2 x dx

• The integral
∫

tanm x secn x dx can be evaluated by substitution. See the marginal note
on page 409.

7.2 EXERCISES

Preliminary Questions
1. Describe the technique used to evaluate

∫
sin5 x dx.

2. Describe a way of evaluating
∫

sin6 x dx.

3. Are reduction formulas needed to evaluate
∫

sin7 x cos2 x dx?
Why or why not?

4. Describe a way of evaluating
∫

sin6 x cos2 x dx.

5. Which integral requires more work to evaluate?∫
sin798 x cos x dx or

∫
sin4 x cos4 x dx

Explain your answer.

Exercises
In Exercises 1–6, use the method for odd powers to evaluate the
integral.

1.
∫

cos3 x dx 2.
∫

sin5 x dx

3.
∫

sin3 θ cos2 θ dθ 4.
∫

sin5 x cos x dx

5.
∫

sin3 t cos3 t dt 6.
∫

sin2 x cos5 x dx

7. Find the area of the shaded region in Figure 1.

8. Use the identity sin2 x = 1 − cos2 x to write
∫

sin2 x cos2 x dx as
a sum of two integrals, and then evaluate using the reduction formula.

In Exercises 9–12, evaluate the integral using methods employed in
Examples 3 and 4.

9.
∫

cos4 y dy 10.
∫

cos2 θ sin2 θ dθ

x

y

y = cos3 x
1

−1

π π

2
3π

2

FIGURE 1 Graph of y = cos3 x.

11.
∫

sin4 x cos2 x dx 12.
∫

sin2 x cos6 x dx

In Exercises 13 and 14, evaluate using Eq. (13).

13.
∫

sin3 x cos2 x dx 14.
∫

sin2 x cos4 x dx
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In Exercises 15–18, evaluate the integral using the method described
on page 409 and the reduction formulas on page 410 as necessary.

15.
∫

tan3 x sec x dx 16.
∫

tan2 x sec x dx

17.
∫

tan2 x sec4 x dx 18.
∫

tan8 x sec2 x dx

In Exercises 19–22, evaluate using methods similar to those that apply
to integral tanm x secn.

19.
∫

cot3 x dx 20.
∫

sec3 x dx

21.
∫

cot5 x csc2 x dx 22.
∫

cot4 x csc x dx

In Exercises 23–46, evaluate the integral.

23.
∫

cos5 x sin x dx 24.
∫

cos3(2 − x) sin(2 − x) dx

25.
∫

cos4(3x + 2) dx 26.
∫

cos7 3x dx

27.
∫

cos3(πθ) sin4(πθ) dθ 28.
∫

cos498 y sin3 y dy

29.
∫

sin4(3x) dx 30.
∫

sin2 x cos6 x dx

31.
∫

csc2(3 − 2x) dx 32.
∫

csc3 x dx

33.
∫

tan x sec2 x dx 34.
∫

tan3 θ sec3 θ dθ

35.
∫

tan5 x sec4 x dx 36.
∫

tan4 x sec x dx

37.
∫

tan6 x sec4 x dx 38.
∫

tan2 x sec3 x dx

39.
∫

cot5 x csc5 x dx 40.
∫

cot2 x csc4 x dx

41.
∫

sin 2x cos 2x dx 42.
∫

cos 4x cos 6x dx

43.
∫

t cos3(t2) dt 44.
∫

tan3(ln t)

t
dt

45.
∫

cos2(sin t) cos t dt 46.
∫

ex tan2(ex) dx

In Exercises 47–60, evaluate the definite integral.

47.
∫ 2π

0
sin2 x dx 48.

∫ π/2

0
cos3 x dx

49.
∫ π/2

0
sin5 x dx 50.

∫ π/2

0
sin2 x cos3 x dx

51.
∫ π/4

0

dx

cos x
52.

∫ π/2

π/4

dx

sin x

53.
∫ π/3

0
tan x dx 54.

∫ π/4

0
tan5 x dx

55.
∫ π/4

−π/4
sec4 x dx 56.

∫ 3π/2

π/4
cot4 x csc2 x dx

57.
∫ π

0
sin 3x cos 4x dx 58.

∫ π

0
sin x sin 3x dx

59.
∫ π/6

0
sin 2x cos 4x dx 60.

∫ π/4

0
sin 7x cos 2x dx

61. Use the identities for sin 2x and cos 2x on page 407 to verify that
the following formulas are equivalent.∫

sin4 x dx = 1

32
(12x − 8 sin 2x + sin 4x) + C

∫
sin4 x dx = −1

4
sin3 x cos x − 3

8
sin x cos x + 3

8
x + C

62. Evaluate
∫

sin2 x cos3 x dx using the method described in the text
and verify that your result is equivalent to the following result produced
by a computer algebra system.∫

sin2 x cos3 x dx = 1

30
(7 + 3 cos 2x) sin3 x + C

63. Find the volume of the solid obtained by revolving y = sin x for
0 ≤ x ≤ π about the x-axis.

64. Use Integration by Parts to prove Eqs. (1) and (2).

In Exercises 65–68, use the following alternative method for evaluating
the integral J = ∫

sinm x cosn x dx when m and n are both even. Use
the identities

sin2 x = 1

2
(1 − cos 2x), cos2 x = 1

2
(1 + cos 2x)

to write J = 1
4

∫
(1 − cos 2x)m/2(1 + cos 2x)n/2 dx, and expand the

right-hand side as a sum of integrals involving smaller powers of sine
and cosine in the variable 2x.

65.
∫

sin2 x cos2 x dx 66.
∫

cos4 x dx

67.
∫

sin4 x cos2 x dx 68.
∫

sin6 x dx

69. Prove the reduction formula∫
tank x dx = tank−1 x

k − 1
−

∫
tank−2 x dx

Hint: tank x = (sec2 x − 1) tank−2 x.

70. Use the substitution u = csc x − cot x to evaluate
∫

csc x dx (see
Example 5).

71. Let Im =
∫ π/2

0
sinm x dx.

(a) Show that I0 = π
2 and I1 = 1.

(b) Prove that, for m ≥ 2,

Im = m − 1

m
Im−2

(c) Use (a) and (b) to compute Im for m = 2, 3, 4, 5.

72. Evaluate
∫ π

0
sin2 mx dx for m an arbitrary integer.

73. Evaluate
∫

sin x ln(sin x) dx. Hint: Use Integration by Parts as a
first step.
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74. Total Energy A 100-W light bulb has resistance R = 144 �

(ohms) when attached to household current, where the voltage varies
as V = V0 sin(2πf t) (V0 = 110 V, f = 60 Hz). The energy (in joules)
expended by the bulb over a period of T seconds is

U =
∫ T

0
P(t) dt

where P = V 2/R (J/s) is the power. Compute U if the bulb remains
on for 5 hours.

75. Let m, n be integers with m �= ±n. Use Eqs. (23)–(25) to prove the
so-called orthogonality relations that play a basic role in the theory
of Fourier Series (Figure 2):∫ π

0
sin mx sin nx dx = 0

∫ π

0
cos mx cos nx dx = 0

∫ 2π

0
sin mx cos nx dx = 0

y = sin 2x sin 4x

y

x
π

y = sin 3x cos 4x

y

π
x

2π

FIGURE 2 The integrals are zero by the orthogonality relations.

Further Insights and Challenges
76. Use the trigonometric identity

sin mx cos nx = 1

2

(
sin(m − n)x + sin(m + n)x

)
to prove Eq. (24) in the table of integrals on page 410.

77. Use Integration by Parts to prove that (for m �= 1)∫
secm x dx = tan x secm−2 x

m − 1
+ m − 2

m − 1

∫
secm−2 x dx

78. Set Im =
∫ π/2

0
sinm x dx. Use Exercise 71 to prove that

I2m = 2m − 1

2m

2m − 3

2m − 2
· · · 1

2
· π

2

I2m+1 = 2m

2m + 1

2m − 2

2m − 1
· · · 2

3

Conclude that

π

2
= 2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)

I2m

I2m+1

79. This is a continuation of Exercise 78.

(a) Prove that I2m+1 ≤ I2m ≤ I2m−1. Hint:

sin2m+1 x ≤ sin2m x ≤ sin2m−1 x for 0 ≤ x ≤ π
2

(b) Show that
I2m−1

I2m+1
= 1 + 1

2m
.

(c) Show that 1 ≤ I2m

I2m+1
≤ 1 + 1

2m
.

(d) Prove that lim
m→∞

I2m

I2m+1
= 1.

(e) Finally, deduce the infinite product for π
2 discovered by English

mathematician John Wallis (1616–1703):

π

2
= lim

m→∞
2

1
· 2

3
· 4

3
· 4

5
· · · 2m · 2m

(2m − 1)(2m + 1)

7.3 Trigonometric Substitution
Our next goal is to integrate functions involving one of the square root expressions:√

a2 − x2,
√

x2 + a2,
√

x2 − a2

In each case, a substitution transforms the integral into a trigonometric integral.

EXAMPLE 1 Evaluate
∫ √

1 − x2 dx.

Solution

Step 1. Substitute to eliminate the square root.
The integrand is defined for −1 ≤ x ≤ 1, so we may set x = sin θ , where −π

2 ≤ θ ≤ π
2 .
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Because cos θ ≥ 0 for such θ , we obtain the positive square root√
1 − x2 =

√
1 − sin2 θ =

√
cos2 θ = cos θ 1

Step 2. Evaluate the trigonometric integral.
Since x = sin θ , we have dx = cos θ dθ , and

√
1 − x2 dx = cos θ(cos θ dθ). Thus

REMINDER∫
cos2 θ dθ = 1

2
θ + 1

2
sin θ cos θ + C

∫ √
1 − x2 dx =

∫
cos2 θ dθ = 1

2
θ + 1

2
sin θ cos θ + C

Step 3. Convert back to the original variable.
It remains to express the answer in terms of x:

x = sin θ, θ = sin−1 x,
√

1 − x2 = cos θ

∫ √
1 − x2 dx = 1

2
θ + 1

2
sin θ cos θ + C = 1

2
sin−1 x + 1

2
x
√

1 − x2 + C

Note: If x = a sin θ and a > 0, then

a2 − x2 = a2(1 − sin2 θ) = a2 cos2 θ

For − π
2 ≤ θ ≤ π

2 , cos θ ≥ 0 and thus√
a2 − x2 = a cos θ

Integrals Involving
√

a2 − x2 If
√

a2 − x2 occurs in an integral where a > 0, try the
substitution

x = a sin θ, dx = a cos θ dθ,
√

a2 − x2 = a cos θ

The next example shows that trigonometric substitution can be used with integrands
involving (a2 − x2)n/2, where n is any integer.

EXAMPLE 2 Integrand Involving (a2 − x2)3/2 Evaluate
∫

x2

(4 − x2)3/2
dx.

Solution

Step 1. Substitute to eliminate the square root.
In this case, a = 2 since

√
4 − x2 = √

22 − x2. Therefore, we use

x = 2 sin θ, dx = 2 cos θ dθ,
√

4 − x2 = 2 cos θ∫
x2

(4 − x2)3/2
dx =

∫
4 sin2 θ

23 cos3 θ
2 cos θ dθ =

∫
sin2 θ

cos2 θ
dθ =

∫
tan2 θ dθ

Step 2. Evaluate the trigonometric integral.
Use the reduction formula in the marginal note with m = 2:REMINDER∫

tanm x dx = tanm−1 x

m − 1
−

∫
tanm−2 x dx

∫
tan2 θ dθ = tan θ −

∫
dθ = tan θ − θ + C

We can also evaluate the integral using the identity tan2 θ = sec2 θ − 1.
Step 3. Convert back to the original variable.

We must write tan θ and θ in terms of x. By definition, x = 2 sin θ , so

θ

2
x

	4 − x2

FIGURE 1 Right triangle with sin θ = x
2 .

sin θ = x

2
, θ = sin−1 x

2

To express tan θ in terms of x, we use the right triangle in Figure 1. The angle θ satisfies

sin θ = x

2
and

tan θ = opposite

adjacent
= x√

4 − x2
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Thus we have

∫
x2

(4 − x2)3/2
dx = tan θ − θ + C = x√

4 − x2
− sin−1 x

2
+ C

When the integrand involves
√

x2 + a2, try the substitution x = a tan θ . Then

x2 + a2 = a2 tan2 θ + a2 = a2(1 + tan2 θ) = a2 sec2 θ

and thus
√

x2 + a2 = a sec θ .

In the substitution x = a tan θ , we choose
− π

2 < θ < π
2 . Therefore, a sec θ is the

positive square root
√

x2 + a2.

Integrals Involving
√

x2 + a2 If
√

x2 + a2 occurs in an integral where a > 0, try the
substitution

x = a tan θ, dx = a sec2 θ dθ,
√

x2 + a2 = a sec θ

EXAMPLE 3 Evaluate
∫ √

4x2 + 20 dx.

Solution First factor out a constant:∫ √
4x2 + 20 dx =

∫ √
4(x2 + 5) dx = 2

∫ √
x2 + 5 dx

Thus we have the form
√

x2 + a2 with a = √
5.

Step 1. Substitute to eliminate the square root.

x = √
5 tan θ, dx = √

5 sec2 θ dθ,
√

x2 + 5 = √
5 sec θ

2
∫ √

x2 + 5 dx = 2
∫ (√

5 sec θ
) √

5 sec2 θ dθ = 10
∫

sec3 θ dθ

Step 2. Evaluate the trigonometric integral.
Apply the reduction formula recalled in the margin with m = 3:REMINDER∫

secm x dx = tan x secm−2 x

m − 1

+ m − 2

m − 1

∫
secm−2 x dx

∫ √
4x2 + 20 dx = 10

∫
sec3 θ dθ = 10

tan θ sec θ

2
+ 10

(
1

2

) ∫
sec θ dx

= 5 tan θ sec θ + 5 ln(sec θ + tan θ) + C

Note: It is not necessary to write ln | sec θ + tan θ | with the absolute value because our
substitution x = √

5 tan θ assumes that −π
2 < θ < π

2 , where sec θ + tan θ > 0.

Step 3. Convert back to the original variable.
Since x = √

5 tan θ , we use the right triangle in Figure 2.

θ

x
	x2 + 5

	5

FIGURE 2

tan θ = opposite

adjacent
= x√

5
, sec θ = hypotenuse

adjacent
=

√
x2 + 5√

5∫ √
4x2 + 20 dx = 5

x√
5

√
x2 + 5√

5
+ 5 ln

(√
x2 + 5√

5
+ x√

5

)
+ C

= x
√

x2 + 5 + 5 ln

(√
x2 + 5 + x√

5

)
+ C
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The logarithmic term can be rewritten as

5 ln

(√
x2 + 5 + x√

5

)
+ C = 5 ln

(√
x2 + 5 + x

)
− 5 ln

√
5 + C︸ ︷︷ ︸

Constant

Since the constant C is arbitrary, we can absorb −5 ln
√

5 into C and write∫ √
4x2 + 20 dx = x

√
x2 + 5 + 5 ln

(√
x2 + 5 + x

)
+ C

Our last trigonometric substitution x = a sec θ transforms
√

x2 − a2 into a tan θ be-
cause

x2 − a2 = a2 sec2 θ − a2 = a2(sec2 θ − 1) = a2 tan2 θ

In the substitution x = a sec θ , we choose
0 ≤ θ < π

2 if x ≥ a and π ≤ θ < 3π
2 if

x ≤ −a. With these choices, a tan θ is the
positive square root

√
x2 − a2.

Integrals Involving
√

x2 − a2 If
√

x2 − a2 occurs in an integral where a > 0, try the
substitution

x = a sec θ, dx = a sec θ tan θ dθ,
√

x2 − a2 = a tan θ

EXAMPLE 4 Evaluate
∫

dx

x2
√

x2 − 9
.

Solution In this case, make the substitution

x = 3 sec θ, dx = 3 sec θ tan θ dθ,
√

x2 − 9 = 3 tan θ

∫
dx

x2
√

x2 − 9
=

∫
3 sec θ tan θ dθ

(9 sec2 θ)(3 tan θ)
= 1

9

∫
cos θ dθ = 1

9
sin θ + C

Since x = 3 sec θ , we use the right triangle in Figure 3:

θ

x 	x2 − 9

3

FIGURE 3

sec θ = hypotenuse

adjacent
= x

3
, sin θ = opposite

hypotenuse
=

√
x2 − 9

x

Therefore, ∫
dx

x2
√

x2 − 9
= 1

9
sin θ + C =

√
x2 − 9

9x
+ C

So far we have dealt with the expressions
√

x2 ± a2 and
√

a2 − x2. By completing
the square (Section 1.2), we can treat the more general form

√
ax2 + bx + c.

EXAMPLE 5 Completing the Square Evaluate
∫

dx

(x2 − 6x + 11)2
.

Solution

Step 1. Complete the square.

x2 − 6x + 11 = (x2 − 6x + 9) + 2 = (x − 3)2︸ ︷︷ ︸
u2

+2
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Step 2. Use substitution.
Let u = x − 3, du = dx:∫

dx

(x2 − 6x + 11)2
=

∫
du

(u2 + 2)2
2

Step 3. Trigonometric substitution.
Evaluate the u-integral using trigonometric substitution:

REMINDER∫
cos2 θ dθ = θ

2
+ sin θ cos θ

2
+ C

u = √
2 tan θ,

√
u2 + 2 = √

2 sec θ, du = √
2 sec2 θ dθ∫

du

(u2 + 2)2
=

∫ √
2 sec2 θ dθ

4 sec4 θ
= 1

2
√

2

∫
cos2 θ dθ

= 1

2
√

2

(
θ

2
+ sin θ cos θ

2

)
+ C 3

Since θ = tan−1 u√
2

, we use the right triangle in Figure 4 to obtain

θ

u
	u2 + 2

	2

FIGURE 4

sin θ cos θ =
(

opposite

hypotenuse

) (
adjacent

hypotenuse

)
= u√

u2 + 2
·

√
2√

u2 + 2
=

√
2u

u2 + 2

Thus, Eq. (3) becomes∫
du

(u2 + 2)2
= 1

4
√

2

(
tan−1 u√

2
+

√
2 u

u2 + 2

)
+ C

= 1

4
√

2
tan−1 u√

2
+ u

4(u2 + 2)
+ C 4

Step 4. Convert to the original variable.
Since u = x − 3 and u2 + 2 = x2 − 6x + 11, Eq. (4) becomes∫

du

(u2 + 2)2
= 1

4
√

2
tan−1 x − 3√

2
+ x − 3

4(x2 − 6x + 11)
+ C

This is our final answer by Eq. (2):∫
dx

(x2 − 6x + 11)2
= 1

4
√

2
tan−1 x − 3√

2
+ x − 3

4(x2 − 6x + 11)
+ C

7.3 SUMMARY

• Trigonometric substitution:

Square root form
in integrand Trigonometric substitution
√

a2 − x2 x = a sin θ , dx = a cos θ dθ ,
√

a2 − x2 = a cos θ√
x2 + a2 x = a tan θ , dx = a sec2 θ dθ ,

√
x2 + a2 = a sec θ√

x2 − a2 x = a sec θ , dx = a sec θ tan θ dθ ,
√

x2 − a2 = a tan θ

Step 1. Substitute to eliminate the square root.
Step 2. Evaluate the trigonometric integral.
Step 3. Convert back to the original variable.
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• The three trigonometric substitutions correspond to three right triangles (Figure 5) that
we use to express the trigonometric functions of θ in terms of x.
• Integrands involving

√
x2 + bx + c are treated by completing the square (see Ex-

ample 5).

x = a tan θ

a

x

x = a sin θ

x

x = a sec θ

a

θ

a

θ θ

x

	a2 − x2

	x2 + a2

	x2 − a2

FIGURE 5

7.3 EXERCISES

Preliminary Questions
1. State the trigonometric substitution appropriate to the given inte-

gral:

(a)
∫ √

9 − x2 dx (b)
∫

x2(x2 − 16)3/2 dx

(c)
∫

x2(x2 + 16)3/2 dx (d)
∫

(x2 − 5)−2 dx

2. Is trigonometric substitution needed to evaluate
∫

x
√

9 − x2 dx?

3. Express sin 2θ in terms of x = sin θ .

4. Draw a triangle that would be used together with the substitution
x = 3 sec θ .

Exercises
In Exercises 1–4, evaluate the integral by following the steps given.

1. I =
∫

dx√
9 − x2

(a) Show that the substitution x = 3 sin θ transforms I into
∫

dθ , and

evaluate I in terms of θ .
(b) Evaluate I in terms of x.

2. I =
∫

dx

x2
√

x2 − 2
(a) Show that the substitution x = √

2 sec θ transforms the integral I

into
1

2

∫
cos θdθ , and evaluate I in terms of θ .

(b) Use a right triangle to show that with the above substitution,

sin θ =
√

x2 − 2/x.
(c) Evaluate I in terms of x.

3. I =
∫

dx√
4x2 + 9

(a) Show that the substitution x = 3
2 tan θ transforms I into

1

2

∫
sec θ dθ .

(b) Evaluate I in terms of θ (refer to the table of integrals on page 410
in Section 7.2 if necessary).
(c) Express I in terms of x.

4. I =
∫

dx

(x2 + 4)2

(a) Show that the substitution x = 2 tan θ transforms the integral I

into
1

8

∫
cos2 θ dθ .

(b) Use the formula
∫

cos2 θ dθ = 1

2
θ + 1

2
sin θ cos θ to evaluate I

in terms of θ .

(c) Show that sin θ = x√
x2 + 4

and cos θ = 2√
x2 + 4

.

(d) Express I in terms of x.

In Exercises 5–10, use the indicated substitution to evaluate the inte-
gral.

5.
∫ √

16 − 5x2 dx, x = 4√
5

sin θ

6.
∫ 1/2

0

x2√
1 − x2

dx, x = sin θ

7.
∫

dx

x
√

x2 − 9
, x = 3 sec θ

8.
∫ 1

1/2

dx

x2
√

x2 + 4
, x = 2 tan θ

9.
∫

dx

(x2 − 4)3/2
, x = 2 sec θ

10.
∫ 1

0

dx

(4 + 9x2)2
, x = 2

3 tan θ

11. Evaluate
∫

x dx√
x2 − 4

in two ways: using the direct substitution

u = x2 − 4 and by trigonometric substitution.
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12. Is the substitution u = x2 − 4 effective for evaluating the integral∫
x2 dx√
x2 − 4

? If not, evaluate using trigonometric substitution.

13. Evaluate using the substitution u = 1 − x2 or trigonometric sub-
stitution.

(a)
∫

x√
1 − x2

dx (b)
∫

x2
√

1 − x2 dx

(c)
∫

x3
√

1 − x2 dx (d)
∫

x4√
1 − x2

dx

14. Evaluate:

(a)
∫

dt

(t2 + 1)3/2
(b)

∫
t dt

(t2 + 1)3/2

In Exercises 15–32, evaluate using trigonometric substitution. Refer to
the table of trigonometric integrals as necessary.

15.
∫

x2 dx√
9 − x2

16.
∫

dt

(16 − t2)3/2

17.
∫

dx

x
√

x2 + 16
18.

∫ √
12 + 4t2 dt

19.
∫

dx√
x2 − 9

20.
∫

dt

t2
√

t2 − 25

21.
∫

dy

y2
√

5 − y2
22.

∫
x3

√
9 − x2 dx

23.
∫

dx√
25x2 + 2

24.
∫

dt

(9t2 + 4)2

25.
∫

dz

z3
√

z2 − 4
26.

∫
dy√

y2 − 9

27.
∫

x2 dx

(6x2 − 49)1/2
28.

∫
dx

(x2 − 4)2

29.
∫

dt

(t2 + 9)2
30.

∫
dx

(x2 + 1)3

31.
∫

x2 dx

(x2 − 1)3/2
32.

∫
x2 dx

(x2 + 1)3/2

33. Prove for a > 0:∫
dx

x2 + a
= 1√

a
tan−1 x√

a
+ C

34. Prove for a > 0:∫
dx

(x2 + a)2
= 1

2a

(
x

x2 + a
+ 1√

a
tan−1 x√

a

)
+ C

35. Let I =
∫

dx√
x2 − 4x + 8

.

(a) Complete the square to show that x2 − 4x + 8 = (x − 2)2 + 4.

(b) Use the substitution u = x − 2 to show that I =
∫

du√
u2 + 22

.
Evaluate the u-integral.

(c) Show that I = ln
∣∣∣√(x − 2)2 + 4 + x − 2

∣∣∣ + C.

36. Evaluate
∫

dx√
12x − x2

. First complete the square to write

12x − x2 = 36 − (x − 6)2.

In Exercises 37–42, evaluate the integral by completing the square and
using trigonometric substitution.

37.
∫

dx√
x2 + 4x + 13

38.
∫

dx√
2 + x − x2

39.
∫

dx√
x + 6x2

40.
∫ √

x2 − 4x + 7 dx

41.
∫ √

x2 − 4x + 3 dx 42.
∫

dx

(x2 + 6x + 6)2

In Exercises 43–52, indicate a good method for evaluating the inte-
gral (but do not evaluate). Your choices are: substitution (specify u and
du), Integration by Parts (specify u and v′), a trigonometric method, or
trigonometric substitution (specify). If it appears that these techniques
are not sufficient, state this.

43.
∫

x dx√
12 − 6x − x2

44.
∫ √

4x2 − 1 dx

45.
∫

sin3 x cos3 x dx 46.
∫

x sec2 x dx

47.
∫

dx√
9 − x2

48.
∫ √

1 − x3 dx

49.
∫

sin3/2 x dx 50.
∫

x2√
x + 1 dx

51.
∫

dx

(x + 1)(x + 2)3
52.

∫
dx

(x + 12)4

In Exercises 53–56, evaluate using Integration by Parts as a first step.

53.
∫

sec−1 x dx 54.
∫

sin−1 x

x2
dx

55.
∫

ln(x2 + 1) dx 56.
∫

x2 ln(x2 + 1) dx

57. Find the average height of a point on the semicircle y =
√

1 − x2

for −1 ≤ x ≤ 1.

58. Find the volume of the solid obtained by revolving the graph of

y = x
√

1 − x2 over [0, 1] about the y-axis.

59. Find the volume of the solid obtained by revolving the region be-
tween the graph ofy2 − x2 = 1 and the liney = 2 about the liney = 2.

60. Find the volume of revolution for the region in Exercise 59, but
revolve around y = 3.

61. Compute
∫

dx

x2 − 1
in two ways and verify that the answers agree:

first via trigonometric substitution and then using the identity

1

x2 − 1
= 1

2

(
1

x − 1
− 1

x + 1

)
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62. You want to divide an 18-inch pizza equally among three
friends using vertical slices at ±x as in Figure 6. Find an equation satis-
fied by x and find the approximate value of x using a computer algebra
system.

x

y

9−9 −x x

FIGURE 6 Dividing a pizza into three equal parts.

63. A charged wire creates an electric field at a point P located at a
distance D from the wire (Figure 7). The component E⊥ of the field

perpendicular to the wire (in N/C) is

E⊥ =
∫ x2

x1

kλD

(x2 + D2)3/2
dx

where λ is the charge density (coulombs per meter), k = 8.99 ×
109 N·m2/C2 (Coulomb constant), and x1, x2 are as in the figure. Sup-
pose that λ = 6 × 10−4 C/m, and D = 3 m. Find E⊥ if (a) x1 = 0 and
x2 = 30 m, and (b) x1 = −15 m and x2 = 15 m.

x1 x2

P

D

y

x

FIGURE 7

Further Insights and Challenges

64. Let Jn =
∫

dx

(x2 + 1)n
. Use Integration by Parts to prove

Jn+1 =
(

1 − 1

2n

)
Jn +

(
1

2n

)
x

(x2 + 1)n

Then use this recursion relation to calculate J2 and J3.

65. Prove the formula∫ √
1 − x2 dx = 1

2
sin−1 x + 1

2
x
√

1 − x2 + C

using geometry by interpreting the integral as the area of part of the
unit circle.

7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
In Section 1.6, we noted the similarities between hyperbolic and trigonometric functions.
We also saw in Section 3.9 that the formulas for their derivatives resemble each other, dif-
fering in at most a sign. The derivative formulas for the hyperbolic functions are equivalent
to the following integral formulas.

REMINDER

sinh x = ex − e−x

2
cosh x = ex + e−x

2

d

dx
sinh x = cosh x

d

dx
cosh x = sinh x

d

dx
tanh x = sech2 x

d

dx
coth x = − csch2 x

d

dx
sech x = − sech x tanh x

d

dx
csch x = − csch x coth x

Hyperbolic Integral Formulas∫
sinh x dx = cosh x + C,

∫
cosh x dx = sinh x + C∫

sech2 x dx = tanh x + C,

∫
csch2 x dx = − coth x + C∫

sech x tanh x dx = − sech x + C,

∫
csch x coth x dx = − csch x + C

EXAMPLE 1 Calculate
∫

x cosh(x2) dx.

Solution The substitution u = x2, du = 2x dx yields∫
x cosh(x2) dx = 1

2

∫
cosh u du = 1

2
sinh u + C = 1

2
sinh(x2) + C
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The techniques for computing trigonometric integrals discussed in Section 7.2 applyHyperbolic Identities

cosh2 x − sinh2 x = 1,

cosh2 x = 1 + sinh2 x

cosh2 x = 1
2 (cosh 2x + 1),

sinh2 x = 1
2 (cosh 2x − 1)

sinh 2x = 2 sinh x cosh x,

cosh 2x = cosh2 x + sinh2 x

with little change to hyperbolic integrals. In place of trigonometric identities, we use the
corresponding hyperbolic identities (see margin).

EXAMPLE 2 Powers of sinh x and cosh x Calculate: (a)
∫

sinh4 x cosh5 x dx

and (b)
∫

cosh2 x dx.

Solution

(a) Since cosh x appears to an odd power, use cosh2 x = 1 + sinh2 x to write

cosh5 x = cosh4 x · cosh x = (sinh2 x + 1)2 cosh x

Then use the substitution u = sinh x, du = cosh x dx:∫
sinh4 x cosh5 x dx =

∫
sinh4 x︸ ︷︷ ︸

u4

(sinh2 x + 1)2︸ ︷︷ ︸
(u2+1)2

cosh x dx︸ ︷︷ ︸
du

=
∫

u4(u2 + 1)2 du =
∫

(u8 + 2u6 + u4) du

= u9

9
+ 2u7

7
+ u5

5
+ C = sinh9 x

9
+ 2 sinh7 x

7
+ sinh5 x

5
+ C

(b) Use the identity cosh2 x = 1

2
(cosh 2x + 1):∫

cosh2 x dx = 1

2

∫
(cosh 2x + 1) dx = 1

2

(
sinh 2x

2
+ x

)
+ C

= 1

4
sinh 2x + 1

2
x + C

Hyperbolic substitution may be used as an alternative to trigonometric substitution
to integrate functions involving the following square root expressions:

In trigonometric substitution, we treat√
x2 + a2 using the substitution

x = a tan θ and
√

x2 − a2 using
x = a sec θ . Identities can be used to show
that the results coincide with those
obtained from hyperbolic substitution (see
Exercises 31–35).

Square root form Hyperbolic substitution√
x2 + a2 x = a sinh u, dx = a cosh u,

√
x2 + a2 = a cosh u√

x2 − a2 x = a cosh u, dx = a sinh u,
√

x2 − a2 = a sinh u

EXAMPLE 3 Hyperbolic Substitution Calculate
∫ √

x2 + 16 dx.

Solution

Step 1. Substitute to eliminate the square root.
Use the hyperbolic substitution x = 4 sinh u, dx = 4 cosh u du. Then

x2 + 16 = 16(sinh2 u + 1) = (4 cosh u)2

Furthermore, 4 cosh u > 0, so
√

x2 + 16 = 4 cosh u and thus,∫ √
x2 + 16 dx =

∫
(4 cosh u)4 cosh u du = 16

∫
cosh2 u du
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Step 2. Evaluate the hyperbolic integral.
We evaluated the integral of cosh2 u in Example 2(b):∫ √

x2 + 16 dx = 16
∫

cosh2 u du = 16

(
1

4
sinh 2u + 1

2
u + C

)

= 4 sinh 2u + 8u + C 1

Step 3. Convert back to original variable.
To write the answer in terms of the original variable x, we note that

sinh u = x

4
, u = sinh−1 x

4

Use the identities recalled in the margin to write

4 sinh 2u = 4(2 sinh u cosh u) = 8 sinh u

√
sinh2 u + 1

= 8
(x

4

) √(x

4

)2 + 1 = 2x

√
x2

16
+ 1 = 1

2
x
√

x2 + 16

Then Eq. (1) becomes

REMINDER

sinh 2u = 2 sinh u cosh u

cosh u =
√

sinh2 u + 1

∫ √
x2 + 16 dx = 4 sinh 2u + 8u + C = 1

2
x
√

x2 + 16 + 8 sinh−1 x

4
+ C

The next theorem states the integral formulas corresponding to the derivative formulas
for the inverse hyperbolic functions recorded in Section 3.9. Each formula is valid on the
domain where the integrand and inverse hyperbolic function are defined.

THEOREM 1 Integrals Involving Inverse Hyperbolic Functions∫
dx√

x2 + 1
= sinh−1 x + C

∫
dx√

x2 − 1
= cosh−1 x + C (for x > 1)

∫
dx

1 − x2
= tanh−1 x + C (for |x| < 1)∫

dx

1 − x2
= coth−1 x + C (for |x| > 1)∫

dx

x
√

1 − x2
= − sech−1 x + C (for 0 < x < 1)

∫
dx

|x|√1 + x2
= − csch−1 x + C (for x �= 0)

EXAMPLE 4 Evaluate: (a)
∫ 4

2

dx√
x2 − 1

and (b)
∫ 0.6

0.2

x dx

1 − x4
.If your calculator does not provide values of

inverse hyperbolic functions, you can use
an online resource such as
http://wolframalpha.com.

Solution

(a) By Theorem 1,∫ 4

2

dx√
x2 − 1

= cosh−1 x

∣∣∣4

2
= cosh−1 4 − cosh−1 2 ≈ 0.75
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(b) First use the substitution u = x2, du = 2x du. The new limits of integration become
u = (0.2)2 = 0.04 and u = (0.6)2 = 0.36, so

∫ 0.6

0.2

x dx

1 − x4
=

∫ 0.36

0.04

1
2du

1 − u2
= 1

2

∫ 0.36

0.04

du

1 − u2

By Theorem 1, both tanh−1 u and coth−1 u are antiderivatives of f (u) = (1 − u2)−1. We
use tanh−1 u because the interval of integration [0.04, 0.36] is contained in the domain
(−1, 1) of tanh−1 u. If the limits of integration were contained in (1, ∞) or (−∞, −1),
we would use coth−1 u. The result is

1

2

∫ 0.36

0.04

du

1 − u2
= 1

2

(
tanh−1(0.36) − tanh−1(0.04)

) ≈ 0.1684

Excursion: A Leap of Imagination
The terms “hyperbolic sine” and “hyperbolic cosine” suggest a connection between the
hyperbolic and trigonometric functions. This excursion explores the source of this con-
nection, which leads us to complex numbers and a famous formula of Euler (Figure 1).

Recall that y = et satisfies the differential equation y′ = y. In fact, we know that
every solution is of the form y = Cet for some constant C. Observe that both y = et and
y = e−t satisfy the second-order differential equation

This differential equation is called
“second-order” because it involves the
second derivative y ′′.

y′′ = y 2

Indeed, (et )′′ = et and (e−t )′′ = (−e−t )′ = e−t . Furthermore, every solution of Eq. (2)
has the form y = Aet + Be−t for some constants A and B (Exercise 44).

Now let’s see what happens when we change Eq. (2) by a minus sign:

FIGURE 1 Leonhard Euler (1707–1783).
Euler (pronounced “oil-er”) ranks among
the greatest mathematicians of all time. His
work (printed in more than 70 volumes)
contains fundamental contributions to
almost every aspect of the mathematics and
physics of his time. The French
mathematician Pierre Simon de Laplace
once declared: “Read Euler, he is our
master in everything.”

y′′ = −y 3

In this case, y = sin t and y = cos t are solutions because

(sin t)′′ = (cos t)′ = − sin t, (cos t)′′ = (− sin t)′ = − cos t

And as before, every solution of Eq. (3) has the form

y = A cos t + B sin t

This might seem to be the end of the story. However, we can also write down solutions
of Eq. (3) using the exponential functions y = eit and y = e−it . Here

i = √−1

is the imaginary complex number satisfying i2 = −1. Since i is not a real number, eit is
not defined without further explanation. But let’s assume that eit can be defined and that
the usual rules of calculus apply:

(eit )′ = ieit

(eit )′′ = (ieit )′ = i2eit = −eit
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This shows that y = eit is a solution of y′′ = −y, so there must exist constants A and B

such that

eit = A cos t + B sin t 4

The constants are determined by initial conditions. First, set t = 0 in Eq. (4):

1 = ei0 = A cos 0 + B sin 0 = A

Then take the derivative of Eq. (4) and set t = 0:

ieit = d

dt
eit = A cos′ t + B sin′ t = −A sin t + B cos t

i = iei0 = −A sin 0 + B cos 0 = B

Thus A = 1 and B = i, and Eq. (4) yields Euler’s Formula:

eit = cos t + i sin t

Euler proved his formula using power series, which may be used to define eit in a precise
fashion. At t = π , Euler’s Formula yields

eiπ = −1

Here we have a simple but surprising relation among the four important numbers e, i, π ,
and −1.

Euler’s Formula also reveals the source of the analogy between hyperbolic and
trigonometric functions. Let us calculate the hyperbolic cosine at x = it :

cosh(it) = eit + e−it

2
= cos t + i sin t

2
+ cos(−t) + i sin(−t)

2
= cos t

A similar calculation shows that sinh(it) = i sin t . In other words, the hyperbolic and
trigonometric functions are not merely analogous—once we introduce complex numbers,
we see that they are very nearly the same functions.

7.4 SUMMARY

• Integrals of hyperbolic functions:

∫
sinh x dx = cosh x + C,

∫
cosh x dx = sinh x + C∫

sech2 x dx = tanh x + C,

∫
csch2 x dx = − coth x + C∫

sech x tanh x dx = − sech x + C,

∫
csch x coth x dx = − csch x + C
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• Integrals involving inverse hyperbolic functions:∫
dx√

x2 + 1
= sinh−1 x + C

∫
dx√

x2 − 1
= cosh−1 x + C (for x > 1)

∫
dx

1 − x2
= tanh−1 x + C (for |x| < 1)∫

dx

1 − x2
= coth−1 x + C (for |x| > 1)∫

dx

x
√

1 − x2
= − sech−1 x + C (for 0 < x < 1)

∫
dx

|x|√1 + x2
= − csch−1 x + C (for x �= 0)

7.4 EXERCISES

Preliminary Questions
1. Which hyperbolic substitution can be used to evaluate the follow-

ing integrals?

(a)
∫

dx√
x2 + 1

(b)
∫

dx√
x2 + 9

(c)
∫

dx√
9x2 + 1

2. Which two of the hyperbolic integration formulas differ from their
trigonometric counterparts by a minus sign?

3. Which antiderivative of y = (1 − x2)−1 should we use to evaluate

the integral
∫ 5

3
(1 − x2)−1 dx?

Exercises
In Exercises 1–16, calculate the integral.

1.
∫

cosh(3x) dx 2.
∫

sinh(x + 1) dx

3.
∫

x sinh(x2 + 1) dx 4.
∫

sinh2 x cosh x dx

5.
∫

sech2(1 − 2x) dx 6.
∫

tanh(3x) sech(3x) dx

7.
∫

tanh x sech2 x dx 8.
∫

cosh x

3 sinh x + 4
dx

9.
∫

tanh x dx 10.
∫

x csch(x2) coth(x2) dx

11.
∫

cosh x

sinh x
dx 12.

∫
cosh x

sinh2 x
dx

13.
∫

sinh2(4x − 9) dx 14.
∫

sinh3 x cosh6 x dx

15.
∫

sinh2 x cosh2 x dx 16.
∫

tanh3 x dx

In Exercises 17–30, calculate the integral in terms of the inverse hy-
perbolic functions.

17.
∫

dx√
x2 − 1

18.
∫

dx√
9x2 − 4

19.
∫

dx√
16 + 25x2

20.
∫

dx√
1 + 3x2

21.
∫ √

x2 − 1 dx 22.
∫

x2 dx√
x2 + 1

23.
∫ 1/2

−1/2

dx

1 − x2
24.

∫ 5

4

dx

1 − x2

25.
∫ 1

0

dx√
1 + x2

26.
∫ 10

2

dx

4x2 − 1

27.
∫ −1

−3

dx

x
√

x2 + 16
28.

∫ 0.8

0.2

dx

x
√

1 − x2

29.
∫ √

x2 − 1 dx

x2
30.

∫ 9

1

dx

x
√

x4 + 1

31. Verify the formulas

sinh−1 x = ln |x +
√

x2 + 1|
cosh−1 x = ln |x +

√
x2 − 1| (for x ≥ 1)

32. Verify that tanh−1 x = 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ for |x| < 1.

33. Evaluate
∫ √

x2 + 16 dx using trigonometric substitution. Then

use Exercise 31 to verify that your answer agrees with the answer in
Example 3.
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34. Evaluate
∫ √

x2 − 9 dx in two ways: using trigonometric substi-

tution and using hyperbolic substitution. Then use Exercise 31 to verify
that the two answers agree.

35. Prove the reduction formula for n ≥ 2:∫
coshn x dx = 1

n
coshn−1 x sinh x + n − 1

n

∫
coshn−2 x dx 5

36. Use Eq. (5) to evaluate
∫

cosh4 x dx.

In Exercises 37–40, evaluate the integral.

37.
∫

tanh−1 x dx

x2 − 1
38.

∫
sinh−1 x dx

39.
∫

tanh−1 x dx 40.
∫

x tanh−1 x dx

Further Insights and Challenges
41. Show that if u = tanh(x/2), then

cosh x = 1 + u2

1 − u2
, sinh x = 2u

1 − u2
, dx = 2du

1 − u2

Hint: For the first relation, use the identities

sinh2
(x

2

)
= 1

2
(cosh x − 1), cosh2

(x

2

)
= 1

2
(cosh x + 1)

Exercises 42 and 43: evaluate using the substitution of Exercise 41.

42.
∫

sech x dx 43.
∫

dx

1 + cosh x

44. Suppose that y = f (x) satisfies y′′ = y. Prove:

(a) f (x)2 − (f ′(x))2 is constant.

(b) If f (0) = f ′(0) = 0, then f (x) is the zero function.

(c) f (x) = f (0) cosh x + f ′(0) sinh x.

Exercises 45–48 refer to the function gd(y) = tan−1(sinh y), called
the gudermannian. In a map of the earth constructed by Mercator pro-

jection, points located y radial units from the equator correspond to
points on the globe of latitude gd(y).

45. Prove that
d

dy
gd(y) = sech y.

46. Let f (y) = 2 tan−1(ey) − π/2. Prove that gd(y) = f (y). Hint:
Show that gd ′(y) = f ′(y) and f (0) = g(0).

47. Let t (y) = sinh−1(tan y) Show that t (y) is the inverse of gd(y)

for 0 ≤ y < π/2.

48. Verify that t (y) in Exercise 47 satisfies t ′(y) = sec y, and find a
value of a such that

t (y) =
∫ y

a

dt

cos t

49. The relations cosh(it) = cos t and sinh(it) = i sin t were dis-
cussed in the Excursion. Use these relations to show that the iden-
tity cos2 t + sin2 t = 1 results from setting x = it in the identity
cosh2 x − sinh2 x = 1.

7.5 The Method of Partial Fractions
The Method of Partial Fractions is used to integrate rational functions

f (x) = P(x)

Q(x)

where P(x) and Q(x) are polynomials. The idea is to write f (x) as a sum of simpler
rational functions that can be integrated directly. For example, in the simplest case we use
the identity

1

x2 − 1
=

1
2

x − 1
−

1
2

x + 1

to evaluate the integral∫
dx

x2 − 1
= 1

2

∫
dx

x − 1
− 1

2

∫
dx

x + 1
= 1

2
ln |x − 1| − 1

2
ln |x + 1|

A rational function P(x)/Q(x) is called proper if the degree of P(x) [denoted
It is a fact from algebra (known as the
“Fundamental Theorem of Algebra”) that
every polynomial Q(x) with real
coefficients can be written as a product of
linear and quadratic factors with real
coefficients. However, it is not always
possible to find these factors explicitly.

deg(P )] is less than the degree of Q(x). For example,

x2 − 3x + 7

x4 − 16︸ ︷︷ ︸
Proper

,
2x2 + 7

x − 5
,

x − 2

x − 5︸ ︷︷ ︸
Not proper
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Suppose first that P(x)/Q(x) is proper and that the denominator Q(x) factors as a
product of distinct linear factors. In other words,

P(x)

Q(x)
= P(x)

(x − a1)(x − a2) · · · (x − an)

where the roots a1, a2, . . . , an are all distinct and deg(P ) < n. Then there is a partial
fraction decomposition:

Each distinct linear factor (x − a) in the
denominator contributes a term

A

x − a

to the partial fraction decomposition.

P(x)

Q(x)
= A1

(x − a1)
+ A2

(x − a2)
+ · · · + An

(x − an)

for suitable constants A1, . . . , An. For example,

5x2 + x − 28

(x + 1)(x − 2)(x − 3)
= − 2

x + 1
+ 2

x − 2
+ 5

x − 3

Once we have found the partial fraction decomposition, we can integrate the individual
terms.

EXAMPLE 1 Finding the Constants Evaluate
∫

dx

x2 − 7x + 10
.

Solution The denominator factors as x2 − 7x + 10 = (x − 2)(x − 5), so we look for a
partial fraction decomposition:

1

(x − 2)(x − 5)
= A

x − 2
+ B

x − 5

To find A and B, first multiply by (x − 2)(x − 5) to clear denominators:

1 = (x − 2)(x − 5)

(
A

x − 2
+ B

x − 5

)

1 = A(x − 5) + B(x − 2) 1

This equation holds for all values of x (including x = 2 and x = 5, by continuity). We
determine A by setting x = 2 (this makes the second term disappear):

1 = A(2 − 5) + B(2 − 2)︸ ︷︷ ︸
This is zero

= −3A ⇒ A = −1

3

Similarly, to calculate B, set x = 5 in Eq. (1):

1 = A(5 − 5) + B(5 − 2) = 3B ⇒ B = 1

3

The resulting partial fraction decomposition is

1

(x − 2)(x − 5)
= − 1

3

x − 2
+

1
3

x − 5
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The integration can now be carried out:∫
dx

(x − 2)(x − 5)
= −1

3

∫
dx

x − 2
+ 1

3

∫
dx

x − 5

= −1

3
ln |x − 2| + 1

3
ln |x − 5| + C

EXAMPLE 2 Evaluate
∫

x2 + 2

(x − 1)(2x − 8)(x + 2)
dx.

Solution

Step 1. Find the partial fraction decomposition.
The decomposition has the formIn Eq. (2), the linear factor 2x − 8 does

not have the form (x − a) used previously,
but the partial fraction decomposition can
be carried out in the same way.

x2 + 2

(x − 1)(2x − 8)(x + 2)
= A

x − 1
+ B

2x − 8
+ C

x + 2
2

As before, multiply by (x − 1)(2x − 8)(x + 2) to clear denominators:

x2 + 2 = A(2x − 8)(x + 2) + B(x − 1)(x + 2) + C(x − 1)(2x − 8) 3

Since A goes with the factor (x − 1), we set x = 1 in Eq. (3) to compute A:

12 + 2 = A(2 − 8)(1 + 2) +
Zero︷ ︸︸ ︷

B(1 − 1)(1 + 2) + C(1 − 1)(2 − 8)

3 = −18A ⇒ A = −1

6

Similarly, 4 is the root of 2x − 8, so we compute B by setting x = 4 in Eq. (3):

42 + 2 = A(8 − 8)(4 + 2) + B(4 − 1)(4 + 2) + C(4 − 1)(8 − 8)

18 = 18B ⇒ B = 1

Finally, C is determined by setting x = −2 in Eq. (3):

(−2)2 + 2 = A(−4 − 8)(−2 + 2) + B(−2 − 1)(−2 + 2) + C(−2 − 1)(−4 − 8)

6 = 36C ⇒ C = 1

6

The result is

x2 + 2

(x − 1)(2x − 8)(x + 2)
= −

1
6

x − 1
+ 1

2x − 8
+

1
6

x + 2

Step 2. Carry out the integration.∫
x2 + 2

(x − 1)(2x − 8)(x + 2)
dx = −1

6

∫
dx

x − 1
+

∫
dx

2x − 8
+ 1

6

∫
dx

x + 2

= −1

6
ln

∣∣x − 1
∣∣ + 1

2
ln

∣∣2x − 8
∣∣ + 1

6
ln

∣∣x + 2
∣∣ + C
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If P(x)/Q(x) is not proper—that is, if deg(P ) ≥ deg(Q)—we use long division to
write

P(x)

Q(x)
= g(x) + R(x)

Q(x)

where g(x) is a polynomial and R(x)/Q(x) is proper. We may then integrate P(x)/Q(x)

using the partial fraction decomposition of R(x)/Q(x).

EXAMPLE 3 Long Division Necessary Evaluate
∫

x3 + 1

x2 − 4
dx.Long division:

x

x2 − 4 x3 + 1
x3 − 4x

4x + 1

The quotient
x3 + 1

x2 − 4
is equal to x with

remainder 4x + 1.

Solution Using long division, we write

x3 + 1

x2 − 4
= x + 4x + 1

x2 − 4
= x + 4x + 1

(x − 2)(x + 2)

It is not hard to show that the second term has a partial fraction decomposition:

4x + 1

(x − 2)(x + 2)
=

9
4

x − 2
+

7
4

x + 2

Therefore, ∫
(x3 + 1) dx

x2 − 4
=

∫
x dx + 9

4

∫
dx

x − 2
+ 7

4

∫
dx

x + 2

= 1

2
x2 + 9

4
ln

∣∣x − 2
∣∣ + 7

4
ln

∣∣x + 2
∣∣ + C

Now suppose that the denominator has repeated linear factors:

P(x)

Q(x)
= P(x)

(x − a1)M1(x − a2)M2 · · · (x − an)Mn

Each factor (x − ai)
Mi contributes the following sum of terms to the partial fraction

decomposition:

B1

(x − ai)
+ B2

(x − ai)2
+ · · · + BMi

(x − ai)Mi

EXAMPLE 4 Repeated Linear Factors Evaluate
∫

3x − 9

(x − 1)(x + 2)2
dx.

Solution We are looking for a partial fraction decomposition of the form

3x − 9

(x − 1)(x + 2)2
= A

x − 1
+ B1

x + 2
+ B2

(x + 2)2

Let’s clear denominators to obtain

3x − 9 = A(x + 2)2 + B1(x − 1)(x + 2) + B2(x − 1) 4

We compute A and B2 by substituting in Eq. (4) in the usual way:

• Set x = 1: This gives −6 = 9A, or A = −2

3
.

• Set x = −2: This gives −15 = −3B2, or B2 = 5 .
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With these constants, Eq. (4) becomes

3x − 9 = −2

3
(x + 2)2 + B1(x − 1)(x + 2) + 5(x − 1) 5

We cannot determine B1 in the same way as A and B2. Here are two ways to proceed.

• First method (substitution): There is no use substituting x = 1 or x = −2 in
Eq. (5) because the term involving B1 drops out. But we are free to plug in any
other value of x. Let’s try x = 2 in Eq. (5):

3(2) − 9 = −2

3
(2 + 2)2 + B1(2 − 1)(2 + 2) + 5(2 − 1)

−3 = −32

3
+ 4B1 + 5

B1 = 1

4

(
−8 + 32

3

)
= 2

3

• Second method (undetermined coefficients): Expand the terms in Eq. (5):

3x − 9 = −2

3
(x2 + 4x + 4) + B1(x

2 + x − 2) + 5(x − 1)

The coefficients of the powers of x on each side of the equation must be equal.
Since x2 does not occur on the left-hand side, 0 = − 2

3 + B1, or B1 = 2
3 .

Either way, we have shown that

3x − 9

(x − 1)(x + 2)2
= −

2
3

x − 1
+

2
3

x + 2
+ 5

(x + 2)2

∫
3x − 9

(x − 1)(x + 2)2
dx = −2

3

∫
dx

x − 1
+ 2

3

∫
dx

x + 2
+ 5

∫
dx

(x + 2)2

= −2

3
ln

∣∣x − 1
∣∣ + 2

3
ln

∣∣x + 2
∣∣ − 5

x + 2
+ C

Quadratic Factors

A quadratic polynomial ax2 + bx + c is called irreducible if it cannot be written as a
product of two linear factors (without using complex numbers). A power of an irreducible
quadratic factor (ax2 + bx + c)M contributes a sum of the following type to a partial
fraction decomposition:

A1x + B1

ax2 + bx + c
+ A2x + B2

(ax2 + bx + c)2
+ · · · + AMx + BM

(ax2 + bx + c)M

For example,

4 − x

x(x2 + 4x + 2)2
= 1

x
− x + 4

x2 + 4x + 2
− 2x + 9

(x2 + 4x + 2)2

You may need to use trigonometric substitution to integrate these terms. In particular, the
following result may be useful (see Exercise 33 in Section 7.3).REMINDER If b > 0, then x2 + b is

irreducible, but x2 − b is reducible
because

x2 − b = (
x + √

b
)(

x − √
b
)

∫
dx

x2 + a
= 1√

a
tan−1

(
x√
a

)
+ C (for a > 0) 6
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EXAMPLE 5 Irreducible versus Reducible Quadratic Factors Evaluate

(a)
∫

18

(x + 3)(x2 + 9)
dx (b)

∫
18

(x + 3)(x2 − 9)
dx

Solution

(a) The quadratic factor x2 + 9 is irreducible, so the partial fraction decomposition has
the form

18

(x + 3)(x2 + 9)
= A

x + 3
+ Bx + C

x2 + 9

Clear denominators to obtain

18 = A(x2 + 9) + (Bx + C)(x + 3) 7

To find A, set x = −3:

18 = A
(
(−3)2 + 9

) + 0 ⇒ A = 1

Then substitute A = 1 in Eq. (7) to obtain

18 = (x2 + 9) + (Bx + C)(x + 3) = (B + 1)x2 + (C + 3B)x + (9 + 3C)

Equating coefficients, we get B + 1 = 0 and 9 + 3C = 18. Hence (see margin):

B = −1, C = 3

∫
18 dx

(x + 3)(x2 + 9)
=

∫
dx

x + 3
+

∫
(−x + 3) dx

x2 + 9

=
∫

dx

x + 3
−

∫
x dx

x2 + 9
+

∫
3 dx

x2 + 9

= ln
∣∣x + 3

∣∣ − 1

2
ln(x2 + 9) + tan−1 x

3
+ C

In the second equality, we use∫
x dx

x2 + 9
= 1

2

∫
du

u
= 1

2
ln(x2 + 9) + C

and Eq. (6):

∫
dx

x2 + 9
= 1

3
tan−1 x

3
+ C

(b) The polynomial x2 − 9 is not irreducible because x2 − 9 = (x − 3)(x + 3). There-
fore, the partial fraction decomposition has the form

18

(x + 3)(x2 − 9)
= 18

(x + 3)2(x − 3)
= A

x − 3
+ B

x + 3
+ C

(x + 3)2

Clear denominators:

18 = A(x + 3)2 + B(x + 3)(x − 3) + C(x − 3)

For x = 3, this yields 18 = (62)A, and for x = −3, this yields 18 = −6C. Therefore,

A = 1

2
, C = −3 ⇒ 18 = 1

2
(x + 3)2 + B(x + 3)(x − 3) − 3(x − 3)
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To solve for B, we can plug in any value of x other than ±3. The choice x = 2 yields
18 = 1

2 (25) − 5B + 3, or B = − 1
2 , and∫

18

(x + 3)(x2 − 9)
dx = 1

2

∫
dx

x − 3
− 1

2

∫
dx

x + 3
− 3

∫
dx

(x + 3)2

= 1

2
ln

∣∣x − 3
∣∣ − 1

2
ln

∣∣x + 3
∣∣ + 3(x + 3)−1 + C

EXAMPLE 6 Repeated Quadratic Factor Evaluate
∫

4 − x

x(x2 + 2)2
dx.

Solution The partial fraction decomposition has the form

4 − x

x(x2 + 2)2
= A

x
+ Bx + C

x2 + 2
+ Dx + E

(x2 + 2)2

Clear denominators by multiplying through by x(x2 + 2)2:

4 − x = A(x2 + 2)2 + (Bx + C)
(
x(x2 + 2)

) + (Dx + E)x 8

We compute A directly by setting x = 0. Then Eq. (8) reduces to 4 = 4A, or A = 1. We
find the remaining coefficients by the method of undetermined coefficients. Set A = 1 in
Eq. (8) and expand:

4 − x = (x4 + 4x2 + 4) + (Bx4 + 2Bx2 + Cx3 + 2C) + (Dx2 + Ex)

= (1 + B)x4 + Cx3 + (4 + 2B + D)x2 + Ex + 2C + 4

Now equate the coefficients on the two sides of the equation:

1 + B = 0 (Coefficient of x4)

C = 0 (Coefficient of x3)

4 + 2B + D = 0 (Coefficient of x2)

E = −1 (Coefficient of x)

2C + 4 = 4 (Constant term)

These equations yield B = −1, C = 0, D = −2, and E = −1. Thus,∫
(4 − x) dx

x(x2 + 2)2
=

∫
dx

x
−

∫
x dx

x2 + 2
−

∫
(2x + 1) dx

(x2 + 2)2

= ln |x| − 1

2
ln(x2 + 2) −

∫
(2x + 1)dx

(x2 + 2)2

The middle integral was evaluated using the substitution u = x2 + 2, du = 2x dx. The
third integral breaks up as a sum:

∫
(2x + 1) dx

(x2 + 2)2
=

Use substitution u = x2 + 2︷ ︸︸ ︷∫
2x dx

(x2 + 2)2
+

∫
dx

(x2 + 2)2

= −(x2 + 2)−1 +
∫

dx

(x2 + 2)2
9

To evaluate the integral in Eq. (9), we use the trigonometric substitution

x = √
2 tan θ, dx = √

2 sec2 θ dθ, x2 + 2 = 2 tan2 θ + 2 = 2 sec2 θ
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Referring to Figure 1, we obtain

θ

x
	x2 + 2

	2

FIGURE 1

∫
dx

(x2 + 2)2
=

∫ √
2 sec2 θ dθ

(2 tan2 θ + 2)2
=

∫ √
2 sec2 θ dθ

4 sec4 θ

=
√

2

4

∫
cos2 θ dθ =

√
2

4

(
1

2
θ + 1

2
sin θ cos θ

)
+ C

=
√

2

8
tan−1 x√

2
+

√
2

8

x√
x2 + 2

√
2√

x2 + 2
+ C

= 1

4
√

2
tan−1 x√

2
+ 1

4

x

x2 + 2
+ C

Collecting all the terms, we have∫
4 − x

x(x2 + 2)2
dx = ln |x| − 1

2
ln(x2 + 2) + 1 − 1

4x

x2 + 2
− 1

4
√

2
tan−1 x√

2
+ C

CONCEPTUAL INSIGHT The examples in this section illustrate a general fact: The integral
of a rational function can be expressed as a sum of rational functions, arctangents of linear
or quadratic polynomials, and logarithms of linear or quadratic polynomials (provided
that we can factor the denominator). Other types of functions, such as exponential and
trigonometric functions, do not appear.

Using a Computer Algebra System
Finding partial fraction decompositions often requires laborious computation. Fortunately,
most computer algebra systems have a command that produces partial fraction decompo-
sitions (with names such as “Apart” or “parfrac”). For example, the command

Apart[(xˆ2 − 2)/((x + 2)(xˆ2 + 4)ˆ3)]

produces the partial fraction decomposition

x2 − 2

(x + 2)(x2 + 4)3
= 1

256(2 + x)
+ 3(x − 2)

4(4 + x2)3
+ 2 − x

32(4 + x2)2
+ 2 − x

256(4 + x2)

However, a computer algebra system cannot produce a partial fraction decomposition in

The polynomial x5 + 2x + 2 cannot be
factored explicitly, so the command

Apart[1/(xˆ5 + 2x + 2)]

returns the useless response

1

x5 + 2x + 2 cases where Q(x) cannot be factored explicitly.

7.5 SUMMARY

Method of Partial Fractions: Assume first that P(x)/Q(x) is a proper rational function
[that is, deg(P ) < deg(Q)] and that Q(x) can be factored explicitly as a product of linear
and irreducible quadratic terms.

• If Q(x) = (x − a1)(x − a2) · · · (x − an), where the roots aj are distinct, then

P(x)

(x − a1)(x − a2) · · · (x − an)
= A1

x − a1
+ A2

x − a2
+ · · · + An

x − an

To calculate the constants, clear denominators and substitute, in turn, the values x = a1,

a2, . . . , an.
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• If Q(x) is equal to a product of powers of linear factors (x − a)M and irreducible
quadratic factors (x2 + b)N with b > 0, then the partial fraction decomposition of
P(x)/Q(x) is a sum of terms of the following type:

(x − a)M contributes
A1

x − a
+ A2

(x − a)2
+ · · · + AM

(x − a)M

(x2 + b)N contributes
A1x + B1

x2 + b
+ A2x + B2

(x2 + b)2
+ · · · + ANx + BN

(x2 + b)N

Substitution and trigonometric substitution may be needed to integrate the terms corre-
sponding to (x2 + b)N (see Example 6).
• If P(x)/Q(x) is improper, use long division (see Example 3).

7.5 EXERCISES

Preliminary Questions
1. Suppose that

∫
f (x) dx = ln x + √

x + 1 + C. Can f (x) be a ra-
tional function? Explain.

2. Which of the following are proper rational functions?

(a)
x

x − 3
(b)

4

9 − x

(c)
x2 + 12

(x + 2)(x + 1)(x − 3)
(d)

4x3 − 7x

(x − 3)(2x + 5)(9 − x)

3. Which of the following quadratic polynomials are irreducible? To
check, complete the square if necessary.

(a) x2 + 5 (b) x2 − 5

(c) x2 + 4x + 6 (d) x2 + 4x + 2

4. Let P(x)/Q(x) be a proper rational function where Q(x) factors
as a product of distinct linear factors (x − ai). Then∫

P(x) dx

Q(x)

(choose the correct answer):

(a) is a sum of logarithmic terms Ai ln(x − ai) for some constants Ai .

(b) may contain a term involving the arctangent.

Exercises
1. Match the rational functions (a)–(d) with the corresponding partial

fraction decompositions (i)–(iv).

(a)
x2 + 4x + 12

(x + 2)(x2 + 4)
(b)

2x2 + 8x + 24

(x + 2)2(x2 + 4)

(c)
x2 − 4x + 8

(x − 1)2(x − 2)2
(d)

x4 − 4x + 8

(x + 2)(x2 + 4)

(i) x − 2 + 4

x + 2
− 4x − 4

x2 + 4

(ii)
−8

x − 2
+ 4

(x − 2)2
+ 8

x − 1
+ 5

(x − 1)2

(iii)
1

x + 2
+ 2

(x + 2)2
+ −x + 2

x2 + 4
(iv)

1

x + 2
+ 4

x2 + 4

2. Determine the constants A, B:

2x − 3

(x − 3)(x − 4)
= A

x − 3
+ B

x − 4

3. Clear denominators in the following partial fraction decomposition
and determine the constant B (substitute a value of x or use the method
of undetermined coefficients).

3x2 + 11x + 12

(x + 1)(x + 3)2
= 1

x + 1
− B

x + 3
− 3

(x + 3)2

4. Find the constants in the partial fraction decomposition

2x + 4

(x − 2)(x2 + 4)
= A

x − 2
+ Bx + C

x2 + 4

In Exercises 5–8, evaluate using long division first to write f (x) as the
sum of a polynomial and a proper rational function.

5.
∫

x dx

3x − 4
6.

∫
(x2 + 2) dx

x + 3

7.
∫

(x3 + 2x2 + 1) dx

x + 2
8.

∫
(x3 + 1) dx

x2 + 1

In Exercises 9–44, evaluate the integral.

9.
∫

dx

(x − 2)(x − 4)
10.

∫
(x + 3) dx

x + 4

11.
∫

dx

x(2x + 1)
12.

∫
(2x − 1) dx

x2 − 5x + 6

13.
∫

x2 dx

x2 + 9
14.

∫
dx

(x − 2)(x − 3)(x + 2)

15.
∫

(x2 + 3x − 44) dx

(x + 3)(x + 5)(3x − 2)
16.

∫
3 dx

(x + 1)(x2 + x)

17.
∫

(x2 + 11x) dx

(x − 1)(x + 1)2
18.

∫
(4x2 − 21x) dx

(x − 3)2(2x + 3)
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19.
∫

dx

(x − 1)2(x − 2)2
20.

∫
(x2 − 8x) dx

(x + 1)(x + 4)3

21.
∫

8 dx

x(x + 2)3
22.

∫
x2 dx

x2 + 3

23.
∫

dx

2x2 − 3
24.

∫
dx

(x − 4)2(x − 1)

25.
∫

4x2 − 20

(2x + 5)3
dx 26.

∫
3x + 6

x2(x − 1)(x − 3)
dx

27.
∫

dx

x(x − 1)3
28.

∫
(3x2 − 2) dx

x − 4

29.
∫

(x2 − x + 1) dx

x2 + x
30.

∫
dx

x(x2 + 1)

31.
∫

(3x2 − 4x + 5) dx

(x − 1)(x2 + 1)
32.

∫
x2

(x + 1)(x2 + 1)
dx

33.
∫

dx

x(x2 + 25)
34.

∫
dx

x2(x2 + 25)

35.
∫

(6x2 + 2) dx

x2 + 2x − 3
36.

∫
6x2 + 7x − 6

(x2 − 4)(x + 2)
dx

37.
∫

10 dx

(x − 1)2(x2 + 9)
38.

∫
10 dx

(x + 1)(x2 + 9)2

39.
∫

dx

x(x2 + 8)2
40.

∫
100x dx

(x − 3)(x2 + 1)2

41.
∫

dx

(x + 2)(x2 + 4x + 10)
42.

∫
9 dx

(x + 1)(x2 − 2x + 6)

43.
∫

25 dx

x(x2 + 2x + 5)2
44.

∫
(x2 + 3) dx

(x2 + 2x + 3)2

In Exercises 45–48, evaluate by using first substitution and then partial
fractions if necessary.

45.
∫

x dx

x4 + 1
46.

∫
x dx

(x + 2)4

47.
∫

ex dx

e2x − ex
48.

∫
sec2 θ dθ

tan2 θ − 1

49. Evaluate
∫ √

x dx

x − 1
. Hint: Use the substitution u = √

x (some-

times called a rationalizing substitution).

50. Evaluate
∫

dx

x1/2 − x1/3
.

51. Evaluate
∫

dx

x2 − 1
in two ways: using partial fractions and using

trigonometric substitution. Verify that the two answers agree.

52. Graph the equation (x − 40)y2 = 10x(x − 30) and find the
volume of the solid obtained by revolving the region between the graph
and the x-axis for 0 ≤ x ≤ 30 around the x-axis.

In Exercises 53–66, evaluate the integral using the appropriate method
or combination of methods covered thus far in the text.

53.
∫

dx

x2
√

4 − x2
54.

∫
dx

x(x − 1)2

55.
∫

cos2 4x dx 56.
∫

x sec2 x dx

57.
∫

dx

(x2 + 9)2
58.

∫
θ sec−1 θ dθ

59.
∫

tan5 x sec x dx 60.
∫

(3x2 − 1) dx

x(x2 − 1)

61.
∫

ln(x4 − 1) dx 62.
∫

x dx

(x2 − 1)3/2

63.
∫

x2 dx

(x2 − 1)3/2
64.

∫
(x + 1) dx

(x2 + 4x + 8)2

65.
∫ √

x dx

x3 + 1
66.

∫
x1/2 dx

x1/3 + 1

67. Show that the substitution θ = 2 tan−1 t (Figure 2) yields the for-
mulas

cos θ = 1 − t2

1 + t2
, sin θ = 2t

1 + t2
, dθ = 2 dt

1 + t2
10

This substitution transforms the integral of any rational function of cos θ

and sin θ into an integral of a rational function of t (which can then be

evaluated using partial fractions). Use it to evaluate
∫

dθ

cos θ + 3
4 sin θ

.

θ/2

t
	1 + t2 

1

FIGURE 2

68. Use the substitution of Exercise 67 to evaluate
∫

dθ

cos θ + sin θ
.

Further Insights and Challenges
69. Prove the general formula

∫
dx

(x − a)(x − b)
= 1

a − b
ln

x − a

x − b
+ C

where a, b are constants such that a �= b.

70. The method of partial fractions shows that

∫
dx

x2 − 1
= 1

2
ln

∣∣x − 1
∣∣ − 1

2
ln

∣∣x + 1
∣∣ + C

The computer algebra system Mathematica evaluates this integral as



436 C H A P T E R 7 TECHNIQUES OF INTEGRATION

− tanh−1 x, where tanh−1 x is the inverse hyperbolic tangent function.
Can you reconcile the two answers?

71. Suppose that Q(x) = (x − a)(x − b), where a �= b, and let
P(x)/Q(x) be a proper rational function so that

P(x)

Q(x)
= A

(x − a)
+ B

(x − b)

(a) Show that A = P(a)

Q′(a)
and B = P(b)

Q′(b)
.

(b) Use this result to find the partial fraction decomposition for P(x) =
3x − 2 and Q(x) = x2 − 4x − 12.

72. Suppose that Q(x) = (x − a1)(x − a2) · · · (x − an), where the
roots aj are all distinct. Let P(x)/Q(x) be a proper rational function
so that

P(x)

Q(x)
= A1

(x − a1)
+ A2

(x − a2)
+ · · · + An

(x − an)

(a) Show that Aj = P(aj )

Q′(aj )
for j = 1, . . . , n.

(b) Use this result to find the partial fraction decomposition for P(x) =
2x2 − 1, Q(x) = x3 − 4x2 + x + 6 = (x + 1)(x − 2)(x − 3).

7.6 Improper Integrals
The integrals we have studied so far represent signed areas of bounded regions. However,
areas of unbounded regions (Figure 1) also arise in applications and are represented by
improper integrals.

y

x

1

1 2−1−2

y = e−x2/2

FIGURE 1 Bell-shaped curve. The region
extends infinitely far in both directions, but
the total area is finite.

There are two ways an integral can be improper: (1) The interval of integration may
be infinite, or (2) the integrand may tend to infinity. We deal first with improper integrals
over infinite intervals. One or both endpoints may be infinite:

∫ a

−∞
f (x) dx,

∫ ∞

a

f (x) dx,

∫ ∞

−∞
f (x) dx

How can an unbounded region have finite area? To answer this question, we must
specify what we mean by the area of an unbounded region. Consider the area [Figure
2(A)] under the graph of f (x) = e−x over the finite interval [0, R]:

∫ R

0
e−x dx = −e−x

∣∣∣∣R
0

= −e−R + e0 = 1 − e−R

As R → ∞, this area approaches a finite value [Figure 2(B)]:

∫ ∞

0
e−x dx = lim

R→∞

∫ R

0
e−x dx = lim

R→∞
(
1 − e−R

) = 1 1

It seems reasonable to take this limit as the definition of the area under the graph over the

The great British mathematician G. H.
Hardy (1877–1947) observed that in
calculus, we learn to ask, not “ What is it?”
but rather “How shall we define it?” We saw
that tangent lines and areas under curves
have no clear meaning until we define them
precisely using limits. Here again, the key
question is “How shall we define the area
of an unbounded region?” infinite interval [0, ∞). Thus, the unbounded region in Figure 2(C) has area 1.

1

R

y

x

1

y

x

1

y

x

(A) Finite region has area 1 − e−R (B) Area approaches 1 as R → ∞ (C) Unbounded region has area 1

R

y = e−x y = e−x y = e−x

FIGURE 2
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DEFINITION Improper Integral Fix a number a and assume that f (x) is integrable
over [a, b] for all b > a. The improper integral of f (x) over [a, ∞) is defined as the
following limit (if it exists):∫ ∞

a

f (x) dx = lim
R→∞

∫ R

a

f (x) dx

We say that the improper integral converges if the limit exists (and is finite) and that it
diverges if the limit does not exist.

Similarly, we define ∫ a

−∞
f (x) dx = lim

R→−∞

∫ a

R

f (x) dx

A doubly infinite improper integral is defined as a sum (provided that both integrals on
the right converge): ∫ ∞

−∞
f (x) dx =

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx 2

EXAMPLE 1 Show that
∫ ∞

2

dx

x3
converges and compute its value.

Solution

y

2
x

f (x) = 1
x3

FIGURE 3 The area over [2, ∞) is equal
to 1

8 .

Step 1. Integrate over a finite interval [2, R].

∫ R

2

dx

x3
= −1

2
x−2

∣∣∣∣R
2

= −1

2

(
R−2) + 1

2

(
2−2) = 1

8
− 1

2R2

Step 2. Compute the limit as R → ∞.

∫ ∞

2

dx

x3
= lim

R→∞

∫ R

2

dx

x3
= lim

R→∞

(
1

8
− 1

2R2

)
= 1

8

We conclude that the infinite shaded region in Figure 3 has area 1
8 .

EXAMPLE 2 Determine whether
∫ −1

−∞
dx

x
converges.

Solution First, we evaluate the definite integral over a finite interval [R, −1] Since the
lower limit of the integral is −∞, we take R < −1:∫ −1

R

dx

x
= ln |x|

∣∣∣∣−1

R

= ln |−1| − ln |R| = − ln |R|

Then we compute the limit as R → −∞:

y

x
−1

FIGURE 4 The integral of f (x) = x−1 over
(−∞, −1] is infinite.

lim
R→−∞

∫ −1

R

dx

x
= lim

R→−∞ (− ln |R|) = − lim
R→−∞ ln |R| = −∞

The limit is infinite, so the improper integral diverges. We conclude that the area of the
unbounded region in Figure 4 is infinite.

zxy34
放置图像
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CONCEPTUAL INSIGHT If you compare the unbounded shaded regions in Figures 3 and
4, you may wonder why one has finite area and the other has infinite area. Convergence
of an improper integral depends on how rapidly the function f (x) tends to zero as
x → ∞ (or x → −∞). Our calculations show that x−2 decreases rapidly enough for
convergence, whereas x−1 does not.

An improper integral of a power function f (x) = x−p is called a p-integral. Note
that f (x) = x−p decreases more rapidly as p gets larger. Interestingly, our next the-
orem shows that the exponent p = −1 is the dividing line between convergence and
divergence.

THEOREM 1 The p-Integral over [a, ∞) For a > 0,

∫ ∞

a

dx

xp
=

⎧⎪⎨
⎪⎩

a1−p

p − 1
if p > 1

diverges if p ≤ 1

Proof Denote the p-integral by J . Then

p-integrals are particularly important
because they are often used to determine
the convergence or divergence of more
complicated improper integrals by means
of the Comparison Test (see Example 8).

J = lim
R→∞

∫ R

a

x−p dx = lim
R→∞

x1−p

1 − p

∣∣∣∣R
a

= lim
R→∞

(
R1−p

1 − p
− a1−p

1 − p

)

If p > 1, then 1 − p < 0 and R1−p tends to zero as R → ∞. In this case, J = a1−p

p − 1
. If

p < 1, then 1 − p > 0 and R1−p tends to ∞. In this case, J diverges. If p = 1, then J

diverges because lim
R→∞

∫ R

a

x−1 dx = lim
R→∞(ln R − ln a) = ∞.

Sometimes it is necessary to use L’Hôpital’s Rule to determine the limits that arise in
improper integrals.

EXAMPLE 3 Using L’Hôpital’s Rule Calculate
∫ ∞

0
xe−x dx.

Solution First, use Integration by Parts with u = x and v′ = e−x :

∫
xe−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x = −(x + 1)e−x + C

∫ R

0
xe−x dx = −(x + 1)e−x

∣∣∣∣R
0

= −(R + 1)e−R + 1 = 1 − R + 1

eR

Then compute the improper integral as a limit using L’Hôpital’s Rule:

∫ ∞

0
xe−x dx = 1 − lim

R→∞
R + 1

eR
= 1 − lim

R→∞
1

eR︸ ︷︷ ︸
L’Hôpital’s Rule

= 1 − 0 = 1
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Improper integrals arise in applications when it makes sense to treat certain large
quantities as if they were infinite. For example, an object launched with escape velocity
never falls back to earth but rather, travels “infinitely far” into space.

EXAMPLE 4 Escape Velocity The earth exerts a gravitational force of magnitudeIn physics, we speak of moving an object
“infinitely far away.” In practice this means
“very far away,” but it is more convenient
to work with an improper integral.

F(r) = GMem/r2 on an object of mass m at distance r from the center of the earth.

(a) Find the work required to move the object infinitely far from the earth.

(b) Calculate the escape velocity vesc on the earth’s surface.

Solution This amounts to computing a p-integral with p = 2. Recall that work is the
integral of force as a function of distance (Section 6.5).REMINDER The mass of the earth is

Me ≈ 5.98 · 1024 kg

The radius of the earth is

re ≈ 6.37 · 106 m

The universal gravitational constant is

G ≈ 6.67 · 10−11 N-m2/kg2

A newton is 1 kg-m/s2 and a joule is
1 N-m.

(a) The work required to move an object from the earth’s surface (r = re) to a distance
R from the center is

∫ R

re

GMem

r2
dr = −GMem

r

∣∣∣∣R
re

= GMem

(
1

re
− 1

R

)
joules

The work moving the object “infinitely far away” is the improper integral

GMem

∫ ∞

re

dr

r2
= lim

R→∞ GMem

(
1

re
− 1

R

)
= GMem

re
joules

(b) By the principle of Conservation of Energy, an object launched with velocity v0 will
escape the earth’s gravitational field if its kinetic energy 1

2mv2
0 is at least as large as the

work required to move the object to infinity—that is, if

1

2
mv2

0 ≥ GMem

re
⇒ v0 ≥

(
2GMe

re

)1/2

Using the values recalled in the marginal note, we find that v0 ≥ 11,200 m/s. The minimal
Escape velocity in miles per hour is
approximately 25,000 mph.

velocity is the escape velocity vesc = 11,200 m/s.

EXAMPLE 5 Perpetual Annuity An investment pays a dividend continuously at a rateIn practice, the word “forever” means “a
long but unspecified length of time.” For
example, if the investment pays out
dividends for 100 years, then its present
value is∫ 100

0
6000e−0.04t dt ≈ $147,253

The improper integral ($150,000) gives a
useful and convenient approximation to
this value.

of $6000/year. Compute the present value of the income stream if the interest rate is 4%
and the dividends continue forever.

Solution Recall from Section 5.8 that the present value (PV) after T years at interest rate

r = 0.04 is
∫ T

0
6000e−0.04t dt . Over an infinite time interval,

PV =
∫ ∞

0
6000e−0.04t dt = lim

T →∞
6000e−0.04t

−0.04

∣∣∣∣T
0

= 6000

0.04
= $150,000

Although an infinite number of dollars are paid out during the infinite time interval, their
total present value is finite.
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Infinite Discontinuities at the Endpoints
An integral over a finite interval [a, b] is improper if the integrand becomes infinite at one or
both of the endpoints of the interval. In this case, the region in question is unbounded in the

vertical direction. For example,
∫ 1

0

dx√
x

is improper because the integrand f (x) = x−1/2

tends to ∞ as x → 0+ (Figure 5). Improper integrals of this type are defined as one-sided

y

1
x

y = x−1/2

FIGURE 5 The infinite shaded region has
area 2 by Example 2(a).

limits.

DEFINITION Integrands with Infinite Discontinuities If f (x) is continuous on [a, b)

but discontinuous at x = b, we define∫ b

a

f (x) dx = lim
R→b−

∫ R

a

f (x) dx

Similarly, if f (x) is continuous on (a, b] but discontinuous at x = a,∫ b

a

f (x) dx = lim
R→a+

∫ b

R

f (x) dx

In both cases, we say that the improper integral converges if the limit exists and that it
diverges otherwise.

EXAMPLE 6 Calculate: (a)
∫ 9

0

dx√
x

and (b)
∫ 1/2

0

dx

x
.

Solution Both integrals are improper because the integrands have infinite discontinuities
at x = 0. The first integral converges:

∫ 9

0

dx√
x

= lim
R→0+

∫ 9

R

x−1/2dx = lim
R→0+ 2x1/2

∣∣∣∣9

R

= lim
R→0+(6 − 2R1/2) = 6

The second integral diverges:

∫ 1/2

0

dx

x
= lim

R→0+

∫ 1/2

R

dx

x
= lim

R→0+

(
ln

1

2
− ln R

)

= ln
1

2
− lim

R→0+ ln R = ∞

The proof of the next theorem is similar to the proof of Theorem 1 (see Exercise 52).

Theorem 2 is valid for all exponents p.
However, the integral is not improper if
p < 0.

THEOREM 2 The p-Integral over [0, a] For a > 0,

∫ a

0

dx

xp
=

⎧⎪⎨
⎪⎩

a1−p

1 − p
if p < 1

diverges if p ≥ 1
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GRAPHICAL INSIGHT The p-integrals
∫ ∞

a

x−p dx and
∫ a

0
x−p dx have opposite be-

havior for p �= 1. The first converges only for p > 1, and the second converges only
for p < 1 (both diverge for p = 1). This is reflected in the graphs of y = x−p and
y = x−q , which switch places at x = 1 (Figure 6). We see that a large value of p helps∫ ∞

a

x−p dx to converge but causes
∫ a

0
x−p dx to diverge.

x

y

y = (q < 1)1
xq

y = (p > 1)1
xp

1
x

y

1

y = (q < 1)1
xq

y = (p > 1)1
xp

dx
xp < ∞ but

∞

1

dx
xq = ∞

∞

1

dx
xp = ∞ but

1

0

dx
xq < ∞

1

0

FIGURE 6

In Section 9.1, we will compute the length of a curve as an integral. It turns out that
the improper integral in our next example represents the length of one-quarter of a unit
circle. Thus, we can expect its value to be 1

4 (2π) = π/2.

EXAMPLE 7 Evaluate
∫ 1

0

dx√
1 − x2

.

Solution This integral is improper with an infinite discontinuity at x = 1 (Figure 7).1

	1 − x2

y

1

1

−1
x

y =

FIGURE 7 The infinite shaded region has
area π

2 .

Using the formula
∫

dx/
√

1 − x2 = sin−1 x + C, we find∫ 1

0

dx√
1 − x2

= lim
R→1−

∫ R

0

dx√
1 − x2

= lim
R→1−(sin−1 R − sin−1 0)

= sin−1 1 − sin−1 0 = π

2
− 0 = π

2

Comparing Integrals
Sometimes we are interested in determining whether an improper integral converges, even
if we cannot find its exact value. For instance, the integral∫ ∞

1

e−x

x
dx

cannot be evaluated explicitly. However, if x ≥ 1, then

0 ≤ 1

x
≤ 1 ⇒ 0 ≤ e−x

x
≤ e−x

In other words, the graph of y = e−x/x lies underneath the graph of y = e−x for x ≥ 1
(Figure 8). Therefore

y = e−x

y

x
1 2 3

y = e
−x

x

FIGURE 8 There is less area under
y = e−x/x than y = e−x over the interval
[1, ∞).

0 ≤
∫ ∞

1

e−x

x
dx ≤

∫ ∞

1
e−x dx = e−1

︸ ︷︷ ︸
Converges by direct computation
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Since the larger integral converges, we can expect that the smaller integral also converges
(and that its value is some positive number less than e−1). This type of conclusion is stated
in the next theorem. A proof is provided in a supplement on the text’s Companion Web
Site.

THEOREM 3 Comparison Test for Improper Integrals
Assume that f (x) ≥ g(x) ≥ 0 for x ≥ a.

• If
∫ ∞

a

f (x) dx converges, then
∫ ∞

a

g(x) dx also converges.

• If
∫ ∞

a

g(x) dx diverges, then
∫ ∞

a

f (x) dx also diverges.

The Comparison Test is also valid for improper integrals with infinite discontinuities
at the endpoints.

EXAMPLE 8 Show that
∫ ∞

1

dx√
x3 + 1

converges.

What the Comparison Test says (for
nonnegative functions):

• If the integral of the bigger function
converges, then the integral of the smaller
function also converges.

• If the integral of the smaller function
diverges, then the integral of the larger
function also diverges.

Solution We cannot evaluate this integral, but we can use the Comparison Test. To show
convergence, we must compare the integrand (x3 + 1)−1/2 with a larger function whose
integral we can compute.

It makes sense to compare with x−3/2 because
√

x3 ≤ √
x3 + 1, and therefore

1√
x3 + 1

≤ 1√
x3

= x−3/2

The integral of the larger function converges, so the integral of the smaller function also
converges: ∫ ∞

1

dx

x3/2︸ ︷︷ ︸
p-integral with p > 1

converges ⇒
∫ ∞

1

dx√
x3 + 1︸ ︷︷ ︸

Integral of smaller function

converges

EXAMPLE 9 Choosing the Right Comparison Does
∫ ∞

1

dx√
x + e3x

converge?

Solution Since
√

x ≥ 0, we have
√

x + e3x ≥ e3x and therefore

1√
x + e3x

≤ 1

e3x

Furthermore,∫ ∞

1

dx

e3x
= lim

R→∞ −1

3
e−3x

∣∣∣∣R
1

= lim
R→∞

1

3

(
e−3 − e−3R

) = 1

3
e−3 (converges)

Our integral converges by the Comparison Test:∫ ∞

1

dx

e3x︸ ︷︷ ︸
Integral of larger function

converges ⇒
∫ ∞

1

dx√
x + e3x︸ ︷︷ ︸

Integral of smaller function

also converges

Had we not been thinking, we might have tried to use the inequality

1√
x + e3x

≤ 1√
x
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However,
∫ ∞

1

dx√
x

diverges (p-integral with p < 1), and this says nothing about oury

x
1

1

y = 	x
1

y = 	x + e3x
1

FIGURE 9 The divergence of a larger
integral says nothing about the smaller
integral.

smaller integral (Figure 9).

EXAMPLE 10 Endpoint Discontinuity Does J =
∫ 0.5

0

dx

x8 + x2
converge?

Solution This integral has a discontinuity at x = 0. We might try the comparison

x8 + x2 > x2 ⇒ 1

x8 + x2
<

1

x2

However, the p-integral
∫ 0.5

0

dx

x2
diverges, so this says nothing about our integral J ,

which is smaller. But notice that if 0 < x < 0.5, then x8 < x2, and therefore

x8 + x2 < 2x2 ⇒ 1

x8 + x2
>

1

2x2

Since
∫ 0.5

0

dx

2x2
diverges, the larger integral J also diverges.

7.6 SUMMARY

• An improper integral is defined as the limit of ordinary integrals:∫ ∞

a

f (x) dx = lim
R→∞

∫ R

a

f (x) dx

The improper integral converges if this limit exists, and it diverges otherwise.
• If f (x) is continuous on [a, b) but discontinuous at x = b, then∫ b

a

f (x) dx = lim
R→b−

∫ R

a

f (x) dx

• An improper integral of x−p is called a p-integral. For a > 0,

p > 1:
∫ ∞

a

dx

xp
converges and

∫ a

0

dx

xp
diverges

p < 1:
∫ ∞

a

dx

xp
diverges and

∫ a

0

dx

xp
converges

p = 1:
∫ ∞

a

dx

x
and

∫ a

0

dx

x
both diverge

• The Comparison Test: Assume that f (x) ≥ g(x) ≥ 0 for x ≥ a. Then:

If
∫ ∞

a

f (x) dx converges, then
∫ ∞

a

g(x) dx converges.

If
∫ ∞

a

g(x) dx diverges, then
∫ ∞

a

f (x) dx diverges.
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• Remember that the Comparison Test provides no information if the larger integral∫ ∞

a

f (x) dx diverges or the smaller integral
∫ ∞

a

g(x) dx converges.

• The Comparison Test is also valid for improper integrals with infinite discontinuities at
endpoints.

7.6 EXERCISES

Preliminary Questions
1. State whether the integral converges or diverges:

(a)
∫ ∞

1
x−3 dx (b)

∫ 1

0
x−3 dx

(c)
∫ ∞

1
x−2/3 dx (d)

∫ 1

0
x−2/3 dx

2. Is
∫ π/2

0
cot x dx an improper integral? Explain.

3. Find a value of b > 0 that makes
∫ b

0

1

x2 − 4
dx an improper

integral.

4. Which comparison would show that
∫ ∞

0

dx

x + ex
converges?

5. Explain why it is not possible to draw any conclusions about the

convergence of
∫ ∞

1

e−x

x
dx by comparing with the integral

∫ ∞
1

dx

x
.

Exercises
1. Which of the following integrals is improper? Explain your an-

swer, but do not evaluate the integral.

(a)
∫ 2

0

dx

x1/3
dx (b)

∫ ∞
1

dx

x0.2
(c)

∫ ∞
−1

e−x dx

(d)
∫ 1

0
e−x dx (e)

∫ π/2

0
sec x dx (f)

∫ ∞
0

sin x dx

(g)
∫ 1

0
sin x dx (h)

∫ 1

0

dx√
3 − x2

(i)
∫ ∞

1
ln x dx

(j)
∫ 3

0
ln x dx

2. Let f (x) = x−4/3.

(a) Evaluate
∫ R

1
f (x) dx.

(b) Evaluate
∫ ∞

1
f (x) dx by computing the limit

lim
R→∞

∫ R

1
f (x) dx

3. Prove that
∫ ∞

1
x−2/3 dx diverges by showing that

lim
R→∞

∫ R

1
x−2/3 dx = ∞

4. Determine whether
∫ 3

0

dx

(3 − x)3/2
converges by computing

lim
R→3−

∫ R

0

dx

(3 − x)3/2

In Exercises 5–40, determine whether the improper integral converges
and, if so, evaluate it.

5.
∫ ∞

1

dx

x19/20
6.

∫ ∞
1

dx

x20/19

7.
∫ 4

−∞
e0.0001t dt 8.

∫ ∞
20

dt

t

9.
∫ 5

0

dx

x20/19
10.

∫ 5

0

dx

x19/20

11.
∫ 4

0

dx√
4 − x

12.
∫ 6

5

dx

(x − 5)3/2

13.
∫ ∞

2
x−3 dx 14.

∫ ∞
0

dx

(x + 1)3

15.
∫ ∞
−3

dx

(x + 4)3/2
16.

∫ ∞
2

e−2x dx

17.
∫ 1

0

dx

x0.2
18.

∫ ∞
2

x−1/3 dx

19.
∫ ∞

4
e−3x dx 20.

∫ ∞
4

e3x dx

21.
∫ 0

−∞
e3x dx 22.

∫ 2

1

dx

(x − 1)2

23.
∫ 3

1

dx√
3 − x

24.
∫ 4

−2

dx

(x + 2)1/3

25.
∫ ∞

0

dx

1 + x
26.

∫ 0

−∞
xe−x2

dx

27.
∫ ∞

0

x dx

(1 + x2)2
28.

∫ 6

3

x dx√
x − 3
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29.
∫ ∞

0
e−x cos x dx 30.

∫ ∞
1

xe−2x dx

31.
∫ 3

0

dx√
9 − x2

32.
∫ 1

0

e
√

x dx√
x

33.
∫ ∞

1

e
√

x dx√
x

34.
∫ π/2

0
sec θ dθ

35.
∫ ∞

0
sin x dx 36.

∫ π/2

0
tan x dx

37.
∫ 1

0
ln x dx 38.

∫ 2

1

dx

x ln x

39.
∫ 1

0

ln x

x2
dx 40.

∫ ∞
1

ln x

x2
dx

41. Let I =
∫ ∞

4

dx

(x − 2)(x − 3)
.

(a) Show that for R > 4,∫ R

4

dx

(x − 2)(x − 3)
= ln

∣∣∣∣R − 3

R − 2

∣∣∣∣ − ln
1

2

(b) Then show that I = ln 2.

42. Evaluate the integral I =
∫ ∞

1

dx

x(2x + 5)
.

43. Evaluate I =
∫ 1

0

dx

x(2x + 5)
or state that it diverges.

44. Evaluate I =
∫ ∞

2

dx

(x + 3)(x + 1)2
or state that it diverges.

In Exercises 45–48, determine whether the doubly infinite improper
integral converges and, if so, evaluate it. Use definition (2).

45.
∫ ∞
−∞

x dx

1 + x2
46.

∫ ∞
−∞

e−|x| dx

47.
∫ ∞
−∞

xe−x2
dx 48.

∫ ∞
−∞

dx

(x2 + 1)3/2

49. Define J =
∫ 1

−1

dx

x1/3
as the sum of the two improper integrals∫ 0

−1

dx

x1/3
+

∫ 1

0

dx

x1/3
. Show that J converges and that J = 0.

50. Determine whether J =
∫ 1

−1

dx

x2
(defined as in Exercise 49) con-

verges.

51. For which values of a does
∫ ∞

0
eax dx converge?

52. Show that
∫ 1

0

dx

xp
converges if p < 1 and diverges if p ≥ 1.

53. Sketch the region under the graph of f (x) = 1

1 + x2
for

−∞ < x < ∞, and show that its area is π .

54. Show that
1√

x4 + 1
≤ 1

x2
for all x, and use this to prove that∫ ∞

1

dx√
x4 + 1

converges.

55. Show that
∫ ∞

1

dx

x3 + 4
converges by comparing with∫ ∞

1
x−3 dx.

56. Show that
∫ ∞

2

dx

x3 − 4
converges by comparing with∫ ∞

2
2x−3 dx.

57. Show that 0 ≤ e−x2 ≤ e−x for x ≥ 1 (Figure 10). Use

the Comparison Test to show that
∫ ∞

0 e−x2
dx converges. Hint: It suf-

fices (why?) to make the comparison for x ≥ 1 because∫ ∞
0

e−x2
dx =

∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx

y

y = e−|x|

y = e−x2

x
1

1

2 4−2−3−4 −1 3

FIGURE 10 Comparison of y = e−|x| and y = e−x2
.

58. Prove that
∫ ∞
−∞

e−x2
dx converges by comparing with∫ ∞

−∞
e−|x| dx (Figure 10).

59. Show that
∫ ∞

1

1 − sin x

x2
dx converges.

60. Let a > 0. Recall that lim
x→∞

xa

ln x
= ∞ (by Exercise 64 in Sec-

tion 4.5).

(a) Show that xa > 2 ln x for all x sufficiently large.

(b) Show that e−xa
< x−2 for all x sufficiently large.

(c) Show that
∫ ∞

1
e−xa

dx converges.

In Exercises 61–74, use the Comparison Test to determine whether or
not the integral converges.

61.
∫ ∞

1

1√
x5 + 2

dx 62.
∫ ∞

1

dx

(x3 + 2x + 4)1/2

63.
∫ ∞

3

dx√
x − 1

64.
∫ 5

0

dx

x1/3 + x3

65.
∫ ∞

1
e−(x+x−1) dx 66.

∫ 1

0

| sin x|√
x

dx
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67.
∫ 1

0

ex

x2
dx 68.

∫ ∞
1

1

x4 + ex
dx

69.
∫ 1

0

1

x4 + √
x

dx 70.
∫ ∞

1

ln x

sinh x
dx

71.
∫ ∞

0

dx√
x1/3 + x3

72.
∫ ∞

0

dx

(8x2 + x4)1/3

73.
∫ ∞

0

dx

(x + x2)1/3
74.

∫ ∞
0

dx

xex + x2

Hint for Exercise 73: Show that for x ≥ 1,

1

(x + x2)1/3
≥ 1

21/3x2/3

Hint for Exercise 74: Show that for 0 ≤ x ≤ 1,

1

xex + x2
≥ 1

(e + 1)x

75. Define J =
∫ ∞

0

dx

x1/2(x + 1)
as the sum of the two improper in-

tegrals ∫ 1

0

dx

x1/2(x + 1)
+

∫ ∞
1

dx

x1/2(x + 1)

Use the Comparison Test to show that J converges.

76. Determine whether J =
∫ ∞

0

dx

x3/2(x + 1)
(defined as in Exer-

cise 75) converges.

77. An investment pays a dividend of $250/year continuously forever.
If the interest rate is 7%, what is the present value of the entire income
stream generated by the investment?

78. An investment is expected to earn profits at a rate of 10,000e0.01t

dollars per year forever. Find the present value of the income stream if
the interest rate is 4%.

79. Compute the present value of an investment that generates income
at a rate of 5000te0.01t dollars per year forever, assuming an interest
rate of 6%.

80. Find the volume of the solid obtained by rotating the region below
the graph of y = e−x about the x-axis for 0 ≤ x < ∞.

81. The solid S obtained by rotating the region below the graph of
y = x−1 about the x-axis for 1 ≤ x < ∞ is called Gabriel’s Horn
(Figure 11).

(a) Use the Disk Method (Section 6.3) to compute the volume of S.
Note that the volume is finite even though S is an infinite region.

(b) It can be shown that the surface area of S is

A = 2π

∫ ∞
1

x−1
√

1 + x−4 dx

Show that A is infinite. If S were a container, you could fill its interior
with a finite amount of paint, but you could not paint its surface with a
finite amount of paint.

y = x−1

y

x

FIGURE 11

82. Compute the volume of the solid obtained by rotating the region
below the graph of y = e−|x|/2 about the x-axis for −∞ < x < ∞.

83. When a capacitor of capacitance C is charged by a source of voltage
V , the power expended at time t is

P(t) = V 2

R
(e−t/RC − e−2t/RC)

where R is the resistance in the circuit. The total energy stored in the
capacitor is

W =
∫ ∞

0
P(t) dt

Show that W = 1
2CV 2.

84. For which integers p does
∫ 1/2

0

dx

x(ln x)p
converge?

85. Conservation of Energy can be used to show that when a mass m

oscillates at the end of a spring with spring constant k, the period of
oscillation is

T = 4
√

m

∫ √
2E/k

0

dx√
2E − kx2

where E is the total energy of the mass. Show that this is an improper
integral with value T = 2π

√
m/k.

In Exercises 86–89, the Laplace transform of a function f (x) is the
function Lf (s) of the variable s defined by the improper integral (if it
converges):

Lf (s) =
∫ ∞

0
f (x)e−sx dx

Laplace transforms are widely used in physics and engineering.

86. Show that if f (x) = C, where C is a constant, then Lf (s) = C/s

for s > 0.

87. Show that if f (x) = sin αx, then Lf (s) = α

s2 + α2
.

88. Compute Lf (s), where f (x) = eαx and s > α.
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89. Compute Lf (s), where f (x) = cos αx and s > 0.

90. When a radioactive substance decays, the fraction of

atoms present at time t is f (t) = e−kt , where k > 0 is the decay con-
stant. It can be shown that the average life of an atom (until it de-
cays) is A = − ∫ ∞

0 tf ′(t) dt . Use Integration by Parts to show that
A = ∫ ∞

0 f (t) dt and compute A. What is the average decay time of
radon-222, whose half-life is 3.825 days?

91. Let Jn =
∫ ∞

0
xn e−αx dx, where n ≥ 1 is an integer and

α > 0. Prove that

Jn = n

α
Jn−1

and J0 = 1/α. Use this to compute J4. Show that Jn = n!/αn+1.

92. Let a > 0 and n > 1. Define f (x) = xn

eax − 1
for x �= 0 and

f (0) = 0.

(a) Use L’Hôpital’s Rule to show that f (x) is continuous at x = 0.

(b) Show that
∫ ∞

0 f (x) dx converges. Hint: Show that f (x) ≤
2xne−ax if x is large enough. Then use the Comparison Test and Exer-
cise 91.

93. According to Planck’s Radiation Law, the amount of
electromagnetic energy with frequency between ν and ν + �ν that is
radiated by a so-called black body at temperature T is proportional to
F(ν) �ν, where

F(ν) =
(

8πh

c3

)
ν3

ehν/kT − 1

where c, h, k are physical constants. Use Exercise 92 to show that the
total radiated energy

E =
∫ ∞

0
F(ν) dν

is finite. To derive his law, Planck introduced the quantum hypothesis
in 1900, which marked the birth of quantum mechanics.

Further Insights and Challenges

94. Let I =
∫ 1

0
xp ln x dx.

(a) Show that I diverges for p = −1.
(b) Show that if p �= −1, then∫

xp ln x dx = xp+1

p + 1

(
ln x − 1

p + 1

)
+ C

(c) Use L’Hôpital’s Rule to show that I converges if p > −1 and di-
verges if p < −1.

95. Let

F(x) =
∫ x

2

dt

ln t
and G(x) = x

ln x

Verify that L’Hôpital’s Rule applies to the limit L = lim
x→∞

F(x)

G(x)
and

evaluate L.

In Exercises 96–98, an improper integral I = ∫ ∞
a f (x) dx is called ab-

solutely convergent if
∫ ∞
a |f (x)| dx converges. It can be shown that if

I is absolutely convergent, then it is convergent.

96. Show that
∫ ∞

1

sin x

x2
dx is absolutely convergent.

97. Show that
∫ ∞

1
e−x2

cos x dx is absolutely convergent.

98. Let f (x) = sin x/x and I = ∫ ∞
0 f (x) dx. We define f (0) = 1.

Then f (x) is continuous and I is not improper at x = 0.

(a) Show that∫ R

1

sin x

x
dx = −cos x

x

∣∣∣∣R
1

−
∫ R

1

cos x

x2
dx

(b) Show that
∫ ∞

1 (cos x/x2) dx converges. Conclude that the limit as
R → ∞ of the integral in (a) exists and is finite.

(c) Show that I converges.

It is known that I = π
2 . However, I is not absolutely convergent. The

convergence depends on cancellation, as shown in Figure 12.

y = −1
x

x
1 2 7

1

−1

y

y = 1
x

y = sin x
x

FIGURE 12 Convergence of
∫ ∞

1 (sin x/x) dx is due to the cancellation
arising from the periodic change of sign.

99. The gamma function, which plays an important role in advanced
applications, is defined for n ≥ 1 by

	(n) =
∫ ∞

0
tn−1e−t dt

(a) Show that the integral defining 	(n) converges for n ≥ 1 (it ac-
tually converges for all n > 0). Hint: Show that tn−1e−t < t−2 for t

sufficiently large.
(b) Show that 	(n + 1) = n	(n) using Integration by Parts.
(c) Show that 	(n + 1) = n! if n ≥ 1 is an integer. Hint: Use (a) re-
peatedly. Thus, 	(n) provides a way of defining n-factorial when n is
not an integer.

100. Use the results of Exercise 99 to show that the Laplace transform

(see Exercises 86–89 above) of xn is
n!

sn+1
.
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7.7 Probability and Integration
What is the probability that a customer will arrive at a fast-food restaurant in the next 45

Area  0.15

x

y

p(x)

10050 90

FIGURE 1 Probability density function for
scores on an exam. The shaded region has
area 0.15, so there is a 15% probability that
a randomly chosen exam has a score above
90.

seconds? Or of scoring above 90% on a standardized test? Probabilities such as these are
described as areas under the graph of a function p(x) called a probability density function
(Figure 1). The methods of integration developed in this chapter are used extensively in
the study of such functions.

In probability theory, the quantity X that we are trying to predict (time to arrival,
exam score, etc.) is called a random variable. The probability that X lies in a given range
[a, b] is denoted

P(a ≤ X ≤ b)

For example, the probability of a customer arriving within the next 30 to 45 seconds is
denoted P(30 ≤ X ≤ 45).

We say that X is a continuous random variable if there is a continuous probability
density function p(x) such that

P(a ≤ X ≤ b) =
∫ b

a

p(x) dx

A probability density function p(x) must satisfy two conditions. First, it must satisfy
p(x) ≥ 0 for all x, because a probability cannot be negative. Second,

∫ ∞

−∞
p(x) = 1 1

The integral represents P(−∞ < X < ∞). It must equal 1 because it is certain (the
probability is 1) that the value of X lies between −∞ and ∞.

We write P(X ≤ b) for the probability that
X is at most b, and P(X ≥ b) for the
probability that X is at least b.

EXAMPLE 1 Find a constant C for which p(x) = C

x2 + 1
is a probability density

−4 −2 1 2 3 4 5 6−1−3−6−5
x

y

p(x)

0.1

0.3

FIGURE 2 The probability density function

p(x) = 1

π(x2 + 1)
.

function. Then compute P(1 ≤ X ≤ 4).

Solution We must choose C so that Eq. (1) is satisfied. The improper integral is a sum
of two integrals (see marginal note)∫ ∞

−∞
p(x) dx = C

∫ 0

−∞
dx

x2 + 1
+ C

∫ ∞

0

dx

x2 + 1
= C

π

2
+ C

π

2
= Cπ

Therefore, Eq. (1) is satisfied if Cπ = 1 or C = π−1. We have

REMINDER∫ 0

−∞
dx

x2 + 1
= lim

R→−∞ tan−1 x

∣∣∣0

R

= lim
R→−∞(tan−1 0 − tan−1 R)

= 0 −
(
−π

2

)
= π

2

Similarly,

∫ ∞

0

dx

x2 + 1
= π

2
.

P(1 < X < 4) =
∫ 4

1
p(x) dx =

∫ 4

1

π−1 dx

x2 + 1
= π−1(tan−1 4 − tan−1 1) ≈ 0.17

Therefore, X lies between 1 and 4 with probability 0.17, or 17% (Figure 2).

CONCEPTUAL INSIGHT If X is a continuous random variable, then the probability of

X taking on any specific value a is zero because
∫ a

a

p(x) dx = 0. If so, what is the

meaning of p(a)? We must think of it this way: the probability that X lies in a small
interval [a, a + �x] is approximately p(a)�x:

P(a ≤ X ≤ a + �x) =
∫ a+�x

a

p(x) dx ≈ p(a)�x

A probability density is similar to a linear mass density ρ(x). The mass of a small
segment [a, a + �x] is approximately ρ(a)�x, but the mass of any particular point
x = a is zero.
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The mean or average value of a random variable is the quantity

μ = μ(X) =
∫ ∞

−∞
xp(x) dx 2

The symbol μ is a lowercase Greek letter mu. If p(x) is defined on [0, ∞) instead of
(−∞, ∞), or on some other interval, then μ is computed by integrating over that interval.
Similarly, in Eq. (1) we integrate over the interval on which p(x) is defined.

In the next example, we consider the exponential probability density with parameter
r > 0, defined on [0, ∞) by

p(t) = 1

r
e−t/r

This density function is often used to model “waiting times” between events that occur
randomly. Exercise 10 asks you to verify that p(t) satisfies Eq. (1).

EXAMPLE 2 Mean of an Exponential Density Let r > 0. Calculate the mean of the
exponential probability density p(t) = 1

r
e−t/r on [0, ∞).

Solution The mean is the integral of tp(t) over [0, ∞). Using Integration by Parts with
u = t/r and v′ = e−t/r , we have u′ = 1/r, v = −re−t/r , and∫

tp(t) dt =
∫ (

t

r
e−t/r

)
dt = −te−t/r +

∫
e−t/rdt = −(r + t)e−t/r

Thus (using that re−R/r and Re−R/r both tend to zero as R → ∞ in the last step),

μ =
∫ ∞

0
tp(t) dt =

∫ ∞

0
t

(
1

r
e−t/r

)
dt = lim

R→∞ −(r + t)e−t/r
∣∣∣R
0

= lim
R→∞

(
r − (r + R) e−R/r

)
= r

EXAMPLE 3 Waiting Time The waiting time T between customer arrivals in a drive-
through fast-food restaurant is a random variable with exponential probability density. Ifp(t) = ( )e−t/601

60

30 45 60 120 180
t

y

FIGURE 3 Customer arrivals have an
exponential distribution.

the average waiting time is 60 seconds, what is the probability that a customer will arrive
within 30 to 45 seconds after another customer?

Solution If the average waiting time is 60 seconds, then r = 60 and p(t) = 1
60e−t/60

because the mean of p(t) is r by the previous example. Therefore, the probability of
waiting between 30 and 45 seconds for the next customer is

P(30 ≤ T ≤ 45) =
∫ 45

30

1

60
e−t/60 = −e−t/60

∣∣∣45

30
= −e−3/4 + e−1/2 ≈ 0.134

This probability is the area of the shaded region in Figure 3.

The normal density functions, whose graphs are the familiar bell-shaped curves,
appear in a surprisingly wide range of applications. The standard normal density is
defined by

p(x) = 1√
2π

e−x2/2 3

We can prove that p(x) satisfies Eq. (1) using multivariable calculus.
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More generally, we define the normal density function with mean μ and standard

μ = 3, σ = 0.75

μ = 0, σ = 2

μ = 0, σ = 1

μ = 0, σ = 0.5

x

y

2 4 6−2−4−6

0.8

FIGURE 4 Normal density functions.

deviation σ :

p(x) = 1

σ
√

2π
e−(x−μ)2/(2σ 2)

The standard deviation σ measures the spread; for larger values of σ the graph is more
spread out about the mean μ (Figure 4). The standard normal density in Eq. (3) has mean
μ = 0 and σ = 1. A random variable with a normal density function is said to have a
normal or Gaussian distribution.

One difficulty is that normal density functions do not have elementary antiderivatives.
As a result, we cannot evaluate the probabilities

P(a ≤ X ≤ b) = 1

σ
√

2π

∫ b

a

e−(x−μ)2/(2σ 2) dx

explicitly. However, the next theorem shows that these probabilities can all be expressed in
terms of a single function called the standard normal cumulative distribution function:

F(z) = 1√
2π

∫ z

−∞
e−x2/2 dx

Observe that F(z) is equal to the area under the graph over (−∞, z] in Figure 5. Numerical
values of F(z) are widely available on scientific calculators, on computer algebra systems,
and online (search “standard cumulative normal distribution”).

z x

y

Area F(z)

y = e−x2/21
	2π

FIGURE 5 F(z) is the area of the shaded
region.

THEOREM 1 If X has a normal distribution with mean μ and standard deviation σ ,
then for all a ≤ b,

P(X ≤ b) = F

(
b − μ

σ

)
4

P(a ≤ X ≤ b) = F

(
b − μ

σ

)
− F

(
a − μ

σ

)
5

Proof We use two changes of variables, first u = x − μ and then t = u/σ :

P(X ≤ b) = 1

σ
√

2π

∫ b

−∞
e−(x−μ)2/(2σ 2) dx = 1

σ
√

2π

∫ b−μ

−∞
e−u2/(2σ 2) du

= 1√
2π

∫ (b−μ)/σ

−∞
e−t2/2 dt = F

(
b − μ

σ

)

This proves Eq. (4). Eq. (5) follows because P(a ≤ X ≤ b) is the area under the graph
between a and b, and this is equal to the area to the left of b minus the area to the left of
a (Figure 6).

b
x

y

aμ

y = e−(x−μ)2/(2σ2)1
σ	2π

FIGURE 6 The shaded region has area

F

(
b − μ

σ

)
− F

(
a − μ

σ

)
.



S E C T I O N 7.7 Probability and Integration 451

EXAMPLE 4 Assume that the scores X on a standardized test are normally distributed
with mean μ = 500 and standard deviation σ = 100. Find the probability that a test chosen
at random has score

(a) at most 600.

(b) between 450 and 650.

Solution We use a computer algebra system to evaluate F(z) numerically.

(a) Apply Eq. (4) with μ = 500 and σ = 100:

P(x ≤ 600) = F

(
600 − 500

100

)
= F(1) ≈ 0.84

Thus, a randomly chosen score is 600 or less with a probability of 0.84, or 84%.

(b) Applying Eq. (5), we find that a randomly chosen score lies between 450 and 650
with a probability of 62.5%:

P(450 ≤ x ≤ 650) = F(1.5) − F(−0.5) ≈ 0.933 − 0.308 = 0.625

CONCEPTUAL INSIGHT Why have we defined the mean of a continuous random variable

X as the integral μ =
∫ ∞

−∞
xp(x) dx?

Suppose first we are given N numbers a1, a2, . . . , aN , and for each value x, let N(x)

be the number of times x occurs among the aj . Then a randomly chosen aj has value x

with probability p(x) = N(x)/N . For example, given the numbers 4, 4, 5, 5, 5, 8, we
haveN = 6 andN(5) = 3.The probability of choosing a 5 isp(5) = N(5)/N = 3

6 = 1
2 .

Now observe that we can write the mean (average value) of the aj in terms of the
probabilities p(x):

a1 + a2 + · · · + aN

N
= 1

N

∑
x

N(x)x =
∑
x

xp(x)

For example,

4 + 4 + 5 + 5 + 5 + 8

6
= 1

6
(2 · 4 + 3 · 5 + 1 · 8) = 4p(4) + 5p(5) + 8p(8)

In defining the mean of a continuous random variable X, we replace the sum∑
x xp(x) with the integral μ =

∫ ∞

−∞
xp(x) dx. This makes sense because the integral

is the limit of sums
∑

xip(xi)�x, and as we have seen, p(xi)�x is the approximate
probability that X lies in [xi, xi + �x].

7.7 SUMMARY

• If X is a continuous random variable with probability density function p(x), then

P(a ≤ X ≤ b) =
∫ b

a

p(x) dx

• Probability densities satisfy two conditions: p(x) ≥ 0 and
∫ ∞

−∞
p(x) dx = 1.
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• Mean (or average) value of X:

μ =
∫ ∞

−∞
xp(x) dx

• Exponential density function of mean r:

p(x) = 1

r
e−x/r

• Normal density of mean μ and standard deviation σ :

p(x) = 1

σ
√

2π
e−(x−μ)2/(2σ 2)

• Standard cumulative normal distribution function:

F(z) = 1√
2π

∫ z

−∞
e−t2/2 dt

• If X has a normal distribution of mean μ and standard deviation σ , then

P(X ≤ b) = F

(
b − μ

σ

)

P(a ≤ X ≤ b) = F

(
b − μ

σ

)
− F

(
a − μ

σ

)

7.7 EXERCISES

Preliminary Questions
1. The function p(x) = 1

2 cos x satisfies
∫ π

0
p(x) dx = 1. Is p(x) a

probability density function on [0, π ]?
2. Estimate P(2 ≤ X ≤ 2.1) assuming that the probability density

function of X satisfies p(2) = 0.2.

3. Which exponential probability density has mean μ = 1
4 ?

Exercises
In Exercises 1–6, find a constant C such that p(x) is a probability
density function on the given interval, and compute the probability in-
dicated.

1. p(x) = C

(x + 1)3
on [0, ∞); P(0 ≤ X ≤ 1)

2. p(x) = Cx(4 − x) on [0, 4]; P(3 ≤ X ≤ 4)

3. p(x) = C√
1 − x2

on (−1, 1); P
( − 1

2 ≤ X ≤ 1
2

)

4. p(x) = Ce−x

1 + e−2x
on (−∞, ∞); P(X ≤ −4)

5. p(x) = C
√

1 − x2 on (−1, 1); P
( − 1

2 ≤ X ≤ 1
)

6. p(x) = Ce−xe−e−x
on (−∞, ∞); P(−4 ≤ X ≤ 4)

This function, called the Gumbel density, is used to model extreme
events such as floods and earthquakes.

7. Verify that p(x) = 3x−4 is a probability density function on
[1, ∞) and calculate its mean value.

8. Show that the density function p(x) = 2

π(x2 + 1)
on [0, ∞) has

infinite mean.

9. Verify that p(t) = 1
50 e−t/50 satisfies the condition∫ ∞

0 p(t) dt = 1.

10. Verify that for all r > 0, the exponential density function
p(t) = 1

r e−t/r satisfies the condition
∫ ∞

0 p(t) dt = 1.

11. The life X (in hours) of a battery in constant use is a random vari-
able with exponential density. What is the probability that the battery
will last more than 12 hours if the average life is 8 hours?

12. The time between incoming phone calls at a call center is a ran-
dom variable with exponential density. There is a 50% probability of
waiting 20 seconds or more between calls. What is the average time
between calls?

13. The distance r between the electron and the nucleus in a hy-
drogen atom (in its lowest energy state) is a random variable with
probability density p(r) = 4a−3

0 r2e−2r/a0 for r ≥ 0, where a0 is the
Bohr radius (Figure 7). Calculate the probability P that the electron is
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within one Bohr radius of the nucleus. The value of a0 is approximately
5.29 × 10−11 m, but this value is not needed to compute P .

a0 2a0 3a0 4a0

p(r)

r

0.4

FIGURE 7 Probability density function p(r) = 4a−3
0 r2e−2r/a0 .

14. Show that the distance r between the electron and the nucleus in
Exercise 13 has mean μ = 3a0/2.

In Exercises 15–21, F(z) denotes the cumulative normal distribution
function. Refer to a calculator, computer algebra system, or online re-
source to obtain values of F(z).

15. Express the area of region A in Figure 8 in terms of F(z) and
compute its value.

55 100 120 165
x

y

A

B

FIGURE 8 Normal density function with μ = 120 and σ = 30.

16. Show that the area of region B in Figure 8 is equal to 1 − F(1.5)

and compute its value. Verify numerically that this area is also equal to
F(−1.5) and explain why graphically.

17. Assume X has a standard normal distribution (μ = 0, σ = 1). Find:

(a) P(X ≤ 1.2) (b) P(X ≥ −0.4)

18. Evaluate numerically:
1

3
√

2π

∫ ∞
14.5

e−(z−10)2/18 dz.

19. Use a graph to show that F(−z) = 1 − F(z) for all z. Then
show that if p(x) is a normal density function with mean μ and standard
deviation σ , then for all r ≥ 0,

P(μ − rσ ≤ X ≤ μ + rσ ) = 2F(r) − 1

20. The average September rainfall in Erie, Pennsylvania, is a random
variable X with mean μ = 102 mm. Assume that the amount of rainfall
is normally distributed with standard deviation σ = 48.

(a) Express P(128 ≤ X ≤ 150) in terms of F(z) and compute its value
numerically.

(b) Let P be the probability that September rainfall will be at least 120
mm. Express P as an integral of an appropriate density function and
compute its value numerically.

21. A bottling company produces bottles of fruit juice that are filled,
on average, with 32 ounces of juice. Due to random fluctuations in the
machinery, the actual volume of juice is normally distributed with a
standard deviation of 0.4 ounce. Let P be the probability of a bottle
having less than 31 ounces. Express P as an integral of an appropriate
density function and compute its value numerically.

22. According to Maxwell’s Distribution Law, in a gas of molecular
mass m, the speed v of a molecule in a gas at temperature T (kelvins)
is a random variable with density

p(v) = 4π
( m

2πkT

)3/2
v2e−mv2/(2kT ) (v ≥ 0)

where k is Boltzmann’s constant. Show that the average molecu-
lar speed is equal to (8kT /πm)1/2. The average speed of oxygen
molecules at room temperature is around 450 m/s.

In Exercises 23–26, calculate μ and σ , where σ is the standard devia-
tion, defined by

σ 2 =
∫ ∞
−∞

(x − μ)2 p(x) dx

The smaller the value of σ , the more tightly clustered are the values of
the random variable X about the mean μ.

23. p(x) = 5

2x7/2
on [1, ∞)

24. p(x) = 1

π
√

1 − x2
on (−1, 1)

25. p(x) = 1

3
e−x/3 on [0, ∞)

26. p(x) = 1

r
e−x/r on [0, ∞), where r > 0

Further Insights and Challenges
27. The time to decay of an atom in a radioactive substance

is a random variable X. The law of radioactive decay states that if N

atoms are present at time t = 0, then Nf (t) atoms will be present at
time t , where f (t) = e−kt (k > 0 is the decay constant). Explain the
following statements:
(a) The fraction of atoms that decay in a small time interval [t, t + �t]
is approximately −f ′(t)�t .

(b) The probability density function of X is −f ′(t).
(c) The average time to decay is 1/k.

28. The half-life of radon-222, is 3.825 days. Use Exercise 27 to com-
pute:

(a) The average time to decay of a radon-222 atom.

(b) The probability that a given atom will decay in the next 24 hours.
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7.8 Numerical Integration
Numerical integration is the process of approximating a definite integral using well-chosen
sums of function values. It is needed when we cannot find an antiderivative explicitly, as
in the case of the Gaussian function f (x) = e−x2/2 (Figure 1).

1

ba

y

y = e−x2/2

x

FIGURE 1 Areas under the bell-shaped
curve are computed using numerical
integration.

To approximate the definite integral
∫ b

a
f (x) dx, we fix a whole number N and divide

[a, b] into N subintervals of length �x = (b − a)/N . The endpoints of the subintervals
(Figure 2) are

x0 = a, x1 = a + �x, x2 = a + 2�x, . . . , xN = b

We shall denote the values of f (x) at these endpoints by yj :

yj = f (xj ) = f (a + j�x)

In particular, y0 = f (a) and yN = f (b).
The Trapezoidal Rule TN approximates

∫ b

a
f (x) dx by the area of the trapezoids

obtained by joining the points (x0, y0), (x1, y1), . . . , (xN , yN) with line segments as in
Figure 2. The area of the j th trapezoid is 1

2�x(yj−1 + yj ), and therefore,

�x

x1

yN

y0

y1

a = x0 b = xNxj−1

yj−1

x j

yj

x

y

FIGURE 2 TN approximates the area under
the graph by trapezoids.

TN = 1

2
�x(y0 + y1) + 1

2
�x(y1 + y2) + · · · + 1

2
�x(yN−1 + yN)

= 1

2
�x

(
(y0 + y1) + (y1 + y2) + · · · + (yN−1 + yN)

)
Note that each value yj occurs twice except for y0 and yN , so we obtain

xj−1

yj−1

xj

yj

�x

FIGURE 3 The shaded trapezoid has area
1
2�x(yj−1 + yj ). This is the average of
the areas of the left- and right-endpoint
rectangles.

TN = 1

2
�x

(
y0 + 2y1 + 2y2 + · · · + 2yN−1 + yN

)

Trapezoidal Rule The N th trapezoidal approximation to
∫ b

a

f (x) dx is

TN = 1

2
�x

(
y0 + 2y1 + · · · + 2yN−1 + yN

)

where �x = b − a

N
and yj = f (a + j �x).

CONCEPTUAL INSIGHT We see in Figure 3 that the area of the j th trapezoid is equal to
the average of the areas of the endpoint rectangles with heights yj−1 and yj . It follows
that TN is equal to the average of the right- and left-endpoint approximations RN and
LN introduced in Section 5.1:

TN = 1

2
(RN + LN)

In general, this average is a better approximation than either RN alone or LN alone.

We use this insight to generalize the Trapezoidal Rule to general trapezoidal sums.



S E C T I O N 7.8 Numerical Integration 455

EXAMPLE 1 Use a trapezoidal sum to approximatex 1 4 6 9 10

f (x) 7 2 −1 3 5

FIGURE 4

∫ 10

1
f (x) dx

where f has values as given in Figure 4.

Solution We are dealing with four subintervals. The right-endpoint approximation is

R = f (4)(4 − 1) + f (6)(6 − 4) + f (9)(9 − 6) + f (10)(10 − 9)

= (2)(3) + (−1)(2) + (3)(3) + (5)(1) = 18

The left-endpoint approximation is

L = f (1)(4 − 1) + f (4)(6 − 4) + f (6)(9 − 6) + f (9)(10 − 9)

= (7)(3) + (2)(2) + (−1)(3) + (3)(1) = 25

The trapezoidal sum is thus 1
2 (18 + 25) = 21.5, which is our approximate value for∫ 10

1
f (x) dx.

The midpoint approximation MN , introduced in Section 5.1, is the sum of the areas
of the rectangles of height f (cj ) and base �x, where cj is the midpoint of the interval
[xj−1, xj ] [Figure 6(A)].

xj−1 x jcj

FIGURE 5 The rectangle and the trapezoid
have the same area.

Midpoint Rule The N th midpoint approximation to
∫ b

a

f (x) dx is

MN = �x
(
f (c1) + f (c2) + · · · + f (cN)

)

where �x = b − a

N
and cj = a + (

j − 1
2

)
�x is the midpoint of [xj−1, xj ].

GRAPHICAL INSIGHT MN has a second interpretation as the sum of the areas of tangential
trapezoids—that is, trapezoids whose top edges are tangent to the graph of f (x) at the
midpoints cj [Figure 6(B)]. The trapezoids have the same area as the rectangles because
the top edge of the trapezoid passes through the midpoint of the top edge of the rectangle,
as shown in Figure 5.

MN is also the sum of the areas
of the tangential trapezoids.

cj ba

�x
x

xj−1 x j

Height f (cj)

(A) MN is the sum of the areas
of the midpoint rectangles.

(B)

x1c1 cj ba

�x

x
xj−1 x j

FIGURE 6 Two interpretations of MN .
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Error Bounds
In applications, it is important to know the accuracy of a numerical approximation. We
define the error in TN and MN by

Error(TN) =
∣∣∣∣
∫ b

a

f (x) dx − TN

∣∣∣∣ , Error(MN) =
∣∣∣∣
∫ b

a

f (x) dx − MN

∣∣∣∣
According to the next theorem, the magnitudes of these errors are related to the size of the
second derivative f ′′(x). A proof of Theorem 1 is provided in a supplement on the text’s
Companion Web Site.

In the error bound, you can let K2 be the
maximum of |f ′′(x)| on [a, b], but if it is
inconvenient to find this maximum exactly,
take K2 to be any number that is definitely
larger than the maximum.

THEOREM 1 Error Bound for TN and MN Assume f ′′(x) exists and is continuous.
Let K2 be a number such that |f ′′(x)| ≤ K2 for all x ∈ [a, b]. Then

Error(TN) ≤ K2(b − a)3

12N2
, Error(MN) ≤ K2(b − a)3

24N2

GRAPHICAL INSIGHT Note that the error bound for MN is one-half of the error bound for
TN , suggesting that MN is generally more accurate than TN . Why do both error bounds
depend on f ′′(x)? The second derivative measures concavity, so if |f ′′(x)| is large, then
the graph of f bends a lot and trapezoids do a poor job of approximating the region
under the graph. Thus the errors in both TN and MN (which uses tangential trapezoids)
are likely to be large (Figure 7).

y = f (x)
y

xx

y

xi−1 ci xi xi−1 ci xi

Trapezoidal error

Midpoint error

(A)  f ´´(x) is larger and the errors are larger. (B)  f ´´(x) is smaller and the errors are smaller.

Midpoint error

Trapezoidal error

FIGURE 7 TN and MN are more accurate
when |f ′′(x)| is small.

EXAMPLE 2 Checking the Error Bound Calculate T6 and M6 for
∫ 4

1

√
x dx.

(a) Calculate the error bounds.
(b) Calculate the integral exactly and verify that the error bounds are satisfied.

Solution Divide [1, 4] into six subintervals of width �x = 4−1
6 = 1

2 . Using the endpoints
and midpoints shown in Figure 8, we obtain

1Endpoints

Midpoints
3.75

3.25
2.75

2.25
1.75

1.25

3.52.51.5 32 4

FIGURE 8 Interval [1, 4] divided into
N = 6 subintervals.

T6 = 1

2

(
1

2

) (√
1 + 2

√
1.5 + 2

√
2 + 2

√
2.5 + 2

√
3 + 2

√
3.5 + √

4
)

≈ 4.661488

M6 = 1

2

(√
1.25 + √

1.75 + √
2.25 + √

2.75 + √
3.25 + √

3.75
)

≈ 4.669245
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(a) Let f (x) = √
x. We must find a number K2 such that |f ′′(x)| ≤ K2 for 1 ≤ x ≤ 4.

We have f ′′(x) = − 1
4x−3/2. The absolute value |f ′′(x)| = 1

4x−3/2 is decreasing on [1, 4],
so its maximum occurs at x = 1 (Figure 9). Thus, we may take K2 = |f ′′(1)| = 1

4 . By

1
4

1 4

Max on [1, 4]

x

y

FIGURE 9 Graph of y = |f ′′(x)| = 1
4x−3/2

for f (x) = √
x.

Theorem 1,

Error(T6) ≤ K2(b − a)3

12N2
=

1
4 (4 − 1)3

12(6)2
= 1

64
≈ 0.0156

Error(M6) ≤ K2(b − a)3

24N2
=

1
4 (4 − 1)3

24(6)2
= 1

128
≈ 0.0078

In Example 2, the error in T6 is
approximately twice as large as the error in
M6. In practice, this is often the case.

(b) The exact value is
∫ 4

1

√
x dx = 2

3x3/2
∣∣4
1 = 14

3 , so the actual errors are

Error(T6) ≈
∣∣∣∣14

3
− 4.661488

∣∣∣∣ ≈ 0.00518 (less than error bound 0.0156)

Error(M6) ≈
∣∣∣∣14

3
− 4.669245

∣∣∣∣ ≈ 0.00258 (less than error bound 0.0078)

The actual errors are less than the error bound, so Theorem 1 is verified.

The error bound can be used to determine values of N that provide a given accuracy.

EXAMPLE 3 Obtaining the Desired Accuracy Find N such that TN approximates∫ 3

0
e−x2

dx with an error of at most 10−4.

Solution Let f (x) = e−x2
. To apply the error bound, we must find a number K2 suchA quick way to find a value for K2 is to plot

f ′′(x) using a graphing utility and find a
bound for |f ′′(x)| visually, as we do in
Example 3.

that |f ′′(x)| ≤ K2 for all x ∈ [0, 3]. We have f ′(x) = −2xe−x2
and

f ′′(x) = (4x2 − 2)e−x2

Let’s use a graphing utility to plot f ′′(x) (Figure 10). The graph shows that the maximum

1 2 3

−2

1

x

y

f ´´(x) = (4x2 − 2)e−x2

FIGURE 10 Graph of the second derivative

of f (x) = e−x2
.

value of |f ′′(x)| on [0, 3] is |f ′′(0)| = | − 2| = 2, so we take K2 = 2 in the error bound:

Error(TN) ≤ K2(b − a)3

12N2
= 2(3 − 0)3

12N2
= 9

2N2

The error is at most 10−4 if

9

2N2
≤ 10−4 ⇒ N2 ≥ 9 × 104

2
⇒ N ≥ 300√

2
≈ 212.1

We conclude that T213 has error at most 10−4. We can confirm this using a computer
algebra system. A CAS shows that T213 ≈ 0.886207, whereas the value of the integral to
nine places is 0.886207348. Thus the error is less than 10−6.

Can we improve on the Trapezoidal and Midpoint Rules? One clue is that the exact
value of the integral lies between TN and MN if f (x) is concave up or down. In fact, we
see geometrically (Figure 11) that

(A) Trapezoids used
to compute TN

(B) Trapezoids used
to compute MN

FIGURE 11 If f (x) is concave down, then
TN is smaller and MN is larger than the
integral.

• f (x) is concave down ⇒ TN ≤
∫ b

a

f (x) dx ≤ MN .

• f (x) is concave up ⇒ MN ≤
∫ b

a

f (x) dx ≤ TN .

This suggests that the errors in TN and MN may cancel partially if we take their average.
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Simpson’s Rule exploits this idea, but it takes into account that MN is roughly twice
as accurate as TN . To minimize the error, Simpson’s Rule SN is defined as a weighted
average that uses twice as much MN as TN . For N even, let

SN = 1

3
TN/2 + 2

3
MN/2 1

To derive a formula for SN , we divide [a, b] into N subintervals as usual. Observe
that the even-numbered endpoints divide [a, b] into N/2 subintervals of length 2�x (keep
in mind that N is even):

[x0, x2], [x2, x4], . . . , [xN−2, xN ] 2

The endpoints of these intervals are x0, x2, . . . , xN . They are used to compute TN/2. The
midpoints x1, x3, . . . , xN−1 are used to compute MN/2 (see Figure 12 for the case N = 8).

a = x0 x1 x2 x3 x4 x5 x6 x7 b = x8

�x

2�x

FIGURE 12 We compute S8 using eight
subintervals. The even endpoints are used
for T4, the odd endpoints for M4, and
S8 = 1

3T4 + 2
3M4.

TN/2 = 1

2
(2�x)

(
y0 + 2y2 + 2y4 + · · · + 2yN−2 + yN

)
MN/2 = 2�x

(
y1 + y3 + y5 + · · · + yN−1

) = �x
(
2y1 + 2y3 + 2y5 + · · · + 2yN−1

)
Thus,

Pattern of coefficients in SN :

1, 4, 2, 4, 2, 4, . . . , 4, 2, 4, 1

The intermediate coefficients alternate
4, 2, 4, 2, . . . , 2, 4 (beginning and ending
with 4).

SN = 1

3
TN/2 + 2

3
MN/2 = 1

3
�x

(
y0 + 2y2 + 2y4 + · · · + 2yN−2 + yN

)
+ 1

3
�x

(
4y1 + 4y3 + 4y5 + · · · + 4yN−1

)

Simpson’s Rule For N even, the N th approximation to
∫ b

a

f (x) dx by Simpson’s

Rule is

SN = 1

3
�x

[
y0 + 4y1 + 2y2 + · · · + 4yN−3 + 2yN−2 + 4yN−1 + yN

]
3

where �x = b − a

N
and yj = f (a + j �x).

CONCEPTUAL INSIGHT Both TN and MN give the exact value of the integral for all N

when f (x) is a linear function (Exercise 59). However, of all combinations of TN/2 and
MN/2, only the particular combination SN = 1

3TN/2 + 2
3MN/2 gives the exact value for

all quadratic polynomials (Exercises 60 and 61). In fact, SN is also exact for all cubic
polynomials (Exercise 62).

EXAMPLE 4 Use Simpson’s Rule with N = 8 to approximate
∫ 4

2

√
1 + x3 dx.

Solution We have �x = 4−2
8 = 1

4 . Figure 13 shows the endpoints and coefficients need-

2 4

1

2.25

4

2.5

2

2.75

4

3

2

3.25

4

3.5

2

3.75

4 1

FIGURE 13 Coefficients for S8 on [2, 4]
shown above the corresponding endpoint.

ed to compute S8 using Eq. (3):

The accuracy of Simpson’s Rule is
impressive. Using a computer algebra
system, we find that the approximation in
Example 4 has an error of less than
3 × 10−6.

1

3

(
1

4

)[√
1 + 23 + 4

√
1 + 2.253 + 2

√
1 + 2.53 + 4

√
1 + 2.753 + 2

√
1 + 33

+ 4
√

1 + 3.253 + 2
√

1 + 3.53 + 4
√

1 + 3.753 +
√

1 + 43
]

≈ 1

12

[
3 + 4(3.52003) + 2(4.07738) + 4(4.66871) + 2(5.2915)

+ 4(5.94375) + 2(6.62382) + 4(7.33037) + 8.06226
] ≈ 10.74159
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EXAMPLE 5 Estimating Integrals from Numerical Data The velocity (in km/h) of a
Piper Cub aircraft traveling due west is recorded every minute during the first 10 minutes
after takeoff. Use Simpson’s Rule to estimate the distance traveled.

t (min) 0 1 2 3 4 5 6 7 8 9 10

v(t) (km/h) 0 80 100 128 144 160 152 136 128 120 136

Solution The distance traveled is the integral of velocity. We convert from minutes to
hours because velocity is given in km/h, and thus we apply Simpson’s Rule, where the
number of intervals is N = 10 and each interval has length �t = 1

60 hours:

S10 =
(

1

3

) (
1

60

) (
0 + 4(80) + 2(100) + 4(128) + 2(144) + 4(160)

+ 2(152) + 4(136) + 2(128) + 4(120) + 136
) ≈ 21.2 km

The distance traveled is approximately 21.2 km (Figure 14).

1 2 3 4 5 6 7 8 9 10

50

100

150

t (min)

v (km/m)

FIGURE 14 Velocity of a Piper Cub.

We now state (without proof) the error bound for Simpson’s Rule. Set

Error(SN) =
∣∣∣∣
∫ b

a

f (x) − SN(f ) dx

∣∣∣∣
The error involves the fourth derivative, which we assume exists and is continuous.

THEOREM 2 Error Bound for SN Let K4 be a number such that |f (4)(x)| ≤ K4 for
all x ∈ [a, b]. Then

Error(SN) ≤ K4(b − a)5

180N4

EXAMPLE 6 Calculate S8 for
∫ 3

1

1

x
dx. Then:

Although Simpson’s Rule provides good
approximations, more sophisticated
techniques are implemented in computer
algebra systems. These techniques are
studied in the area of mathematics called
numerical analysis.

(a) Find a bound for the error in S8.

(b) Find N such that SN has an error of at most 10−6.

Solution The width is �x = 3−1
8 = 1

4 and the endpoints in the partition of [1, 3] are
1, 1.25, 1.5, . . . , 2.75, 3. Using Eq. (3) with f (x) = x−1, we obtain

S8 = 1

3

(
1

4

) [
1

1
+ 4

1.25
+ 2

1.5
+ 4

1.75
+ 2

2
+ 4

2.25
+ 2

2.5
+ 4

2.75
+ 1

3

]
≈ 1.09873

(a) The fourth derivative f (4)(x) = 24x−5 is decreasing, so the max of |f (4)(x)| on [1, 3]
is |f (4)(1)| = 24. Therefore, we use the error bound with K4 = 24:

Error(SN) ≤ K4(b − a)5

180N4
= 24(3 − 1)5

180N4
= 64

15N4

Error(S8) ≤ K4(b − a)5

180(8)4
= 24(3 − 1)5

180(84)
≈ 0.001
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(b) The error will be at most 10−6 if N satisfiesUsing a CAS, we find that

S46 ≈ 1.09861241∫ 3

1

1

x
dx = ln 3 ≈ 1.09861229

The error is indeed less than 10−6.

Error(SN) = 64

15N4
≤ 10−6

In other words,

N4 ≥ 106
(

64

15

)
or N ≥

(
106 · 64

15

)1/4

≈ 45.45

Thus, we may take N = 46 (see marginal comment).

GRAPHICAL INSIGHT Simpson’s Rule has an interpretation in terms of parabolas (Fig-
ure 15). There is a unique parabola passing through the graph of f (x) at the three
points x2j−2, x2j−1, x2j [Figure 15(A)]. On the interval [x2j−2, x2j ], the area under the
parabola approximates the area under the graph. Simpson’s Rule SN is equal to the sum
of these parabolic approximations (see Exercises 60–61).

x
x3x2x1 x6x5x4x0

(B)  Graph of y = f (x)(A)  Unique parabola through
       three points.

x
x3x2x1 x6x5x4x0

(C)  Parabolic arcs used in Simpson's Rule.

x
x2 j−1x2 j−2 x2 j

y = f (x)Parabola

FIGURE 15 Simpson’s Rule approximates the graph by parabolic arcs.

7.8 SUMMARY

• We consider three numerical approximations to
∫ b

a

f (x) dx: the Trapezoidal Rule TN ,

the Midpoint Rule MN , and Simpson’s Rule SN (for N even).

TN = 1

2
�x

(
y0 + 2y1 + 2y2 + · · · + 2yN−1 + yN

) = 1

2
(RN + LN)

MN = �x
(
f (c1) + f (c2) + · · · + f (cN)

) (
cj = a +

(
j − 1

2

)
�x

)

SN = 1

3
�x

[
y0 + 4y1 + 2y2 + · · · + 4yN−3 + 2yN−2 + 4yN−1 + yN

]
where �x = (b − a)/N and yj = f (a + j �x).
• TN is equal to the sum of the areas of the trapezoids obtained by connecting the points
(x0, y0), (x1, y1), . . . , (xN , yN) with line segments.
• MN has two geometric interpretations; it may be interpreted either as the sum of the
areas of the midpoint rectangles or as the sum of the areas of the tangential trapezoids.
• SN is equal to 1

3TN/2 + 2
3MN/2.

• Error bounds:

Error(TN) ≤ K2(b − a)3

12N2
, Error(MN) ≤ K2(b − a)3

24N2
, Error(SN) ≤ K4(b − a)5

180N4

where K2 is any number such that |f ′′(x)| ≤ K2 for all x ∈ [a, b] and K4 is any number
such that |f (4)(x)| ≤ K4 for all x ∈ [a, b].
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7.8 EXERCISES

Preliminary Questions
1. What are T1 and T2 for a function on [0, 2] such that f (0) = 3,

f (1) = 4, and f (2) = 3?

2. For which graph in Figure 16 will TN overestimate the integral?
What about MN ?

x

y
y = f (x)

x

y
y = g(x)

FIGURE 16

3. How large is the error when the Trapezoidal Rule is applied to a
linear function? Explain graphically.

4. What is the maximum possible error if T4 is used to approximate

∫ 3

0
f (x) dx

where |f ′′(x)| ≤ 2 for all x.

5. What are the two graphical interpretations of the Midpoint Rule?

Exercises
In Exercises 1–12, calculate TN and MN for the value of N indicated.

1.
∫ 2

0
x2 dx, N = 4 2.

∫ 4

0

√
x dx, N = 4

3.
∫ 4

1
x3 dx, N = 6 4.

∫ 2

1

√
x4 + 1 dx, N = 5

5.
∫ 4

1

dx

x
, N = 6 6.

∫ −1

−2

dx

x
, N = 5

7.
∫ π/2

0

√
sin x dx, N = 6 8.

∫ π/4

0
sec x dx, N = 6

9.
∫ 2

1
ln x dx, N = 5 10.

∫ 3

2

dx

ln x
, N = 5

11.
∫ 1

0
e−x2

dx, N = 5 12.
∫ 1

−2
ex2

dx, N = 6

In Exercises 13–22, calculate SN given by Simpson’s Rule for the value
of N indicated.

13.
∫ 4

0

√
x dx, N = 4 14.

∫ 5

3
(9 − x2) dx, N = 4

15.
∫ 3

0

dx

x4 + 1
, N = 6 16.

∫ 1

0
cos(x2) dx, N = 6

17.
∫ 1

0
e−x2

dx, N = 4 18.
∫ 2

1
e−x dx, N = 6

19.
∫ 4

1
ln x dx, N = 8 20.

∫ 4

2

√
x4 + 1 dx, N = 8

21.
∫ π/4

0
tan θ dθ , N = 10

22.
∫ 2

0
(x2 + 1)−1/3 dx, N = 10

In Exercises 23–26, calculate the approximation to the volume of the
solid obtained by rotating the graph around the given axis.

23. y = cos x;
[
0, π

2

]
; x-axis; M8

24. y = cos x;
[
0, π

2

]
; y-axis; S8

25. y = e−x2
; [0, 1]; x-axis; T8

26. y = e−x2
; [0, 1]; y-axis; S8

27. An airplane’s velocity is recorded at 5-min intervals during a 1-hour
period with the following results, in miles per hour:

550, 575, 600, 580, 610, 640, 625,

595, 590, 620, 640, 640, 630

Use Simpson’s Rule to estimate the distance traveled during the hour.

28. Use Simpson’s Rule to determine the average temperature in a
museum over a 3-hour period, if the temperatures (in degrees Celsius),
recorded at 15-min intervals, are

21, 21.3, 21.5, 21.8, 21.6, 21.2, 20.8,

20.6, 20.9, 21.2, 21.1, 21.3, 21.2

29. Tsunami Arrival Times Scientists estimate the arrival
times of tsunamis (seismic ocean waves) based on the point of origin
P and ocean depths. The speed s of a tsunami in miles per hour is
approximately s = √

15d, where d is the ocean depth in feet.
(a) Let f (x) be the ocean depth x miles from P (in the direction of
the coast). Argue using Riemann sums that the time T required for the
tsunami to travel M miles toward the coast is

T =
∫ M

0

dx√
15f (x)

(b) Use Simpson’s Rule to estimate T if M = 1000 and the ocean
depths (in feet), measured at 100-mile intervals starting from P , are

13,000, 11,500, 10,500, 9000, 8500,

7000, 6000, 4400, 3800, 3200, 2000

30. Use S8 to estimate
∫ π/2

0

sin x

x
dx, taking the value of

sin x

x
at

x = 0 to be 1.
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31. Calculate T6 for the integral I =
∫ 2

0
x3 dx.

(a) Is T6 too large or too small? Explain graphically.

(b) Show that K2 = |f ′′(2)| may be used in the error bound and find
a bound for the error.

(c) Evaluate I and check that the actual error is less than the bound
computed in (b).

32. Calculate M4 for the integral I =
∫ 1

0
x sin(x2) dx.

(a) Use a plot of f ′′(x) to show that K2 = 3.2 may be used in
the error bound and find a bound for the error.

(b) Evaluate I numerically and check that the actual error is
less than the bound computed in (a).

In Exercises 33–36, state whether TN or MN underestimates or overes-
timates the integral and find a bound for the error (but do not calculate
TN or MN ).

33.
∫ 4

1

1

x
dx, T10 34.

∫ 2

0
e−x/4 dx, T20

35.
∫ 4

1
ln x dx, M10 36.

∫ π/4

0
cos x, M20

In Exercises 37–40, use the error bound to find a value of N

for which Error(TN ) ≤ 10−6. If you have a computer algebra system,
calculate the corresponding approximation and confirm that the error
satisfies the required bound.

37.
∫ 1

0
x4 dx 38.

∫ 3

0
(5x4 − x5) dx

39.
∫ 5

2

1

x
dx 40.

∫ 3

0
e−x dx

41. Compute the error bound for the approximations T10 and M10 to∫ 3
0 (x3 + 1)−1/2 dx, using Figure 17 to determine a value of K2. Then

find a value of N such that the error in MN is at most 10−6.

1 2 3

−1

1

x

y

FIGURE 17 Graph of f ′′(x), where f (x) = (x3 + 1)−1/2.

42. (a) Compute S6 for the integral I =
∫ 1

0
e−2x dx.

(b) Show that K4 = 16 may be used in the error bound and compute
the error bound.

(c) Evaluate I and check that the actual error is less than the bound
for the error computed in (b).

43. Calculate S8 for
∫ 5

1 ln x dx and calculate the error bound. Then
find a value of N such that SN has an error of at most 10−6.

44. Find a bound for the error in the approximation S10 to
∫ 3

0 e−x2
dx

(use Figure 18 to determine a value of K4). Then find a value of N such
that SN has an error of at most 10−6.

54321

−2

−1.5

1

0.5

x

y

FIGURE 18 Graph of f (4)(x), where f (x) = e−x2
.

45. Use a computer algebra system to compute and graph

f (4)(x) for f (x) =
√

1 + x4 and find a bound for the error in the

approximation S40 to
∫ 5

0
f (x) dx.

46. Use a computer algebra system to compute and graph

f (4)(x) for f (x) = tan x − sec x and find a bound for the error in the

approximation S40 to
∫ π/4

0
f (x) dx.

In Exercises 47–50, use the error bound to find a value of N for which
Error(SN ) ≤ 10−9.

47.
∫ 6

1
x4/3 dx 48.

∫ 4

0
xex dx

49.
∫ 1

0
ex2

dx 50.
∫ 4

1
sin(ln x) dx

51. Show that
∫ 1

0

dx

1 + x2
= π

4
[use Eq. (3) in Section 5.7].

(a) Use a computer algebra system to graph f (4)(x) for f (x) =
(1 + x2)−1 and find its maximum on [0, 1].
(b) Find a value of N such that SN approximates the integral with an
error of at most 10−6. Calculate the corresponding approximation and
confirm that you have computed π

4 to at least four places.

52. Let J =
∫ ∞

0
e−x2

dx and JN =
∫ N

0
e−x2

dx. Although e−x2

has no elementary antiderivative, it is known that J = √
π/2. Let TN

be the N th trapezoidal approximation to JN . Calculate T4 and show
that T4 approximates J to three decimal places.

53. Let f (x) = sin(x2) and I =
∫ 1

0
f (x) dx.

(a) Check that f ′′(x) = 2 cos(x2) − 4x2 sin(x2). Then show that
|f ′′(x)| ≤ 6 for x ∈ [0, 1]. Hint: Note that |2 cos(x2)| ≤ 2 and
|4x2 sin(x2)| ≤ 4 for x ∈ [0, 1].
(b) Show that Error(MN) is at most

1

4N2
.

(c) Find an N such that |I − MN | ≤ 10−3.
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54. The error bound for MN is proportional to 1/N2,

so the error bound decreases by 1
4 if N is increased to 2N . Compute

the actual error in MN for
∫ π

0 sin x dx for N = 4, 8, 16, 32, and 64.

Does the actual error seem to decrease by 1
4 as N is doubled?

55. Observe that the error bound for TN (which has
12 in the denominator) is twice as large as the error bound for MN

(which has 24 in the denominator). Compute the actual error in TN for∫ π
0 sin x dx for N = 4, 8, 16, 32, and 64 and compare with the calcu-

lations of Exercise 54. Does the actual error in TN seem to be roughly
twice as large as the error in MN in this case?

56. Explain why the error bound for SN decreases

by 1
16 if N is increased to 2N . Compute the actual error in SN for∫ π

0 sin x dx for N = 4, 8, 16, 32, and 64. Does the actual error seem to

decrease by 1
16 as N is doubled?

57. Verify that S2 yields the exact value of
∫ 1

0
(x − x3) dx.

58. Verify that S2 yields the exact value of
∫ b

a
(x − x3) dx for all

a < b.

Further Insights and Challenges
59. Show that if f (x) = rx + s is a linear function (r, s constants),

then TN =
∫ b

a
f (x) dx for all N and all endpoints a, b.

60. Show that if f (x) = px2 + qx + r is a quadratic polynomial, then

S2 =
∫ b

a
f (x) dx. In other words, show that

∫ b

a
f (x) dx = b − a

6

(
y0 + 4y1 + y2

)

where y0 = f (a), y1 = f

(
a + b

2

)
, and y2 = f (b). Hint: Show this

first for f (x) = 1, x, x2 and use linearity.

61. For N even, divide [a, b] into N subintervals of width �x =
b − a

N
. Set xj = a + j �x, yj = f (xj ), and

S
2j
2 = b − a

3N

(
y2j + 4y2j+1 + y2j+2

)
(a) Show that SN is the sum of the approximations on the intervals
[x2j , x2j+2]—that is, SN = S0

2 + S2
2 + · · · + SN−2

2 .

(b) By Exercise 60, S2j
2 =

∫ x2j+2

x2j

f (x) dx if f (x) is a quadratic poly-

nomial. Use (a) to show that SN is exact for all N if f (x) is a quadratic
polynomial.

62. Show that S2 also gives the exact value for
∫ b

a
x3 dx and conclude,

as in Exercise 61, that SN is exact for all cubic polynomials. Show by
counterexample that S2 is not exact for integrals of x4.

63. Use the error bound for SN to obtain another proof that Simpson’s
Rule is exact for all cubic polynomials.

64. Sometimes, Simpson’s Rule Performs Poorly Calcu-

late M10 and S10 for the integral
∫ 1

0

√
1 − x2 dx, whose value we know

to be π
4 (one-quarter of the area of the unit circle).

(a) We usually expect SN to be more accurate than MN . Which of M10
and S10 is more accurate in this case?

(b) How do you explain the result of part (a)? Hint: The error bounds
are not valid because |f ′′(x)| and |f (4)(x)| tend to ∞ as x → 1, but
|f (4)(x)| goes to infinity faster.

CHAPTER REVIEW EXERCISES

1. Match the integrals (a)–(e) with their antiderivatives (i)–(v) on
the basis of the general form (do not evaluate the integrals).

(a)
∫

x dx

x2 − 4
(b)

∫
(2x + 9) dx

x2 + 4

(c)
∫

sin3 x cos2 x dx (d)
∫

dx

x
√

16x2 − 1

(e)
∫

16 dx

x(x − 4)2

(i) sec−1 4x + C

(ii) log |x| − log |x − 4| − 4

x − 4
+ C

(iii)
1

30
(3 cos5 x − 3 cos3 x sin2 x − 7 cos3 x) + C

(iv)
9

2
tan−1 x

2
+ ln(x2 + 4) + C (v)

√
x2 − 4 + C

2. Evaluate
∫

x dx

x + 2
in two ways: using substitution and using the

Method of Partial Fractions.

In Exercises 3–12, evaluate using the suggested method.

3.
∫

cos3 θ sin8 θ dθ [write cos3 θ as cos θ(1 − sin2 θ)]

4.
∫

xe−12x dx (Integration by Parts)

5.
∫

sec3 θ tan4 θ dθ (trigonometric identity, reduction formula)

6.
∫

4x + 4

(x − 5)(x + 3)
dx (partial fractions)

7.
∫

dx

x(x2 − 1)3/2
dx (trigonometric substitution)



464 C H A P T E R 7 TECHNIQUES OF INTEGRATION

8.
∫

(1 + x2)−3/2dx (trigonometric substitution)

9.
∫

dx

x3/2 + x1/2
(substitution)

10.
∫

dx

x + x−1
(rewrite integrand)

11.
∫

x−2 tan−1 x dx (Integration by Parts)

12.
∫

dx

x2 + 4x − 5
(complete the square, substitution, partial frac-

tions)

In Exercises 13–64, evaluate using the appropriate method or combi-
nation of methods.

13.
∫ 1

0
x2e4x dx 14.

∫
x2√

9 − x2
dx

15.
∫

cos9 6θ sin3 6θ dθ 16.
∫

sec2 θ tan4 θ dθ

17.
∫

(6x + 4) dx

x2 − 1
18.

∫ 9

4

dt

(t2 − 1)2

19.
∫

dθ

cos4 θ
20.

∫
sin 2θ sin2 θ dθ

21.
∫ 1

0
ln(4 − 2x) dx 22.

∫
(ln(x + 1))2 dx

23.
∫

sin5 θ dθ 24.
∫

cos4(9x − 2) dx

25.
∫ π/4

0
sin 3x cos 5x dx 26.

∫
sin 2x sec2 x dx

27.
∫ √

tan x sec2 x dx 28.
∫

(sec x + tan x)2 dx

29.
∫

sin5 θ cos3 θ dθ 30.
∫

cot3 x csc x dx

31.
∫

cot2 x csc2 x dx 32.
∫ π

π/2
cot2

θ

2
dθ

33.
∫ π/2

π/4
cot2 x csc3 x dx 34.

∫ 6

4

dt

(t − 3)(t + 4)

35.
∫

dt

(t − 3)2(t + 4)
36.

∫ √
x2 + 9 dx

37.
∫

dx

x
√

x2 − 4
38.

∫ 27

8

dx

x + x2/3

39.
∫

dx

x3/2 + ax1/2
40.

∫
dx

(x − b)2 + 4

41.
∫

(x2 − x) dx

(x + 2)3

42.
∫

(7x2 + x) dx

(x − 2)(2x + 1)(x + 1)

43.
∫

16 dx

(x − 2)2(x2 + 4)
44.

∫
dx

(x2 + 25)2

45.
∫

dx

x2 + 8x + 25
46.

∫
dx

x2 + 8x + 4

47.
∫

(x2 − x) dx

(x + 2)3
48.

∫ 1

0
t2

√
1 − t2 dt

49.
∫

dx

x4
√

x2 + 4
50.

∫
dx

(x2 + 5)3/2

51.
∫

(x + 1)e4−3x dx 52.
∫

x−2 tan−1 x dx

53.
∫

x3 cos(x2) dx 54.
∫

x2(ln x)2 dx

55.
∫

x tanh−1 x dx 56.
∫

tan−1 t dt

1 + t2

57.
∫

ln(x2 + 9) dx 58.
∫

(sin x)(cosh x) dx

59.
∫ 1

0
cosh 2t dt 60.

∫
sinh3 x cosh x dx

61.
∫

coth2(1 − 4t) dt 62.
∫ 0.3

−0.3

dx

1 − x2

63.
∫ 3

√
3/2

0

dx√
9 − x2

64.
∫ √

x2 + 1 dx

x2

65. Use the substitution u = tanh t to evaluate
∫

dt

cosh2 t + sinh2 t
.

66. Find the volume obtained by rotating the region enclosed by
y = ln x and y = (ln x)2 about the y-axis.

67. Let In =
∫

xn dx

x2 + 1
.

(a) Prove that In = xn−1

n − 1
− In−2.

(b) Use (a) to calculate In for 0 ≤ n ≤ 5.

(c) Show that, in general,

I2n+1 = x2n

2n
− x2n−2

2n − 2
+ · · ·

+ (−1)n−1 x2

2
+ (−1)n

1

2
ln(x2 + 1) + C

I2n = x2n−1

2n − 1
− x2n−3

2n − 3
+ · · ·

+ (−1)n−1x + (−1)n tan−1 x + C

68. Let Jn =
∫

xne−x2/2 dx.

(a) Show that J1 = −e−x2/2.

(b) Prove that Jn = −xn−1e−x2/2 + (n − 1)Jn−2.

(c) Use (a) and (b) to compute J3 and J5.



Chapter Review Exercises 465

69. Compute p(X ≤ 1), where X is a continuous random variable

with probability density p(x) = 1

π(x2 + 1)
.

70. Show that p(x) = 1
4 e−t/2 + 1

6 e−t/3 is a probability density and
find its mean.

71. Find a constant C such that p(x) = Cx3e−x2
is a probability

density and compute p(0 ≤ X ≤ 1).

72. The interval between patient arrivals in an emergency room
is a random variable with exponential density function p(x) =
0.125e−0.125t (t in minutes). What is the average time between pa-
tient arrivals? What is the probability of two patients arriving within 3
minutes of each other?

73. Calculate the following probabilities, assuming that X is normally
distributed with mean μ = 40 and σ = 5.

(a) p(X ≥ 45) (b) p(0 ≤ X ≤ 40)

74. According to kinetic theory, the molecules of ordinary matter are
in constant random motion. The energy E of a molecule is a random
variable with density function p(E) = 1

kT
e−E/(kT ), where T is the

temperature (in kelvins) and k is Boltzmann’s constant. Compute the
mean kinetic energy E in terms of k and T .

In Exercises 75–84, determine whether the improper integral converges
and, if so, evaluate it.

75.
∫ ∞

0

dx

(x + 2)2
76.

∫ ∞
4

dx

x2/3

77.
∫ 4

0

dx

x2/3
78.

∫ ∞
9

dx

x12/5

79.
∫ 0

−∞
dx

x2 + 1
80.

∫ 9

−∞
e4x dx

81.
∫ π/2

0
cot θ dθ 82.

∫ ∞
1

dx

(x + 2)(2x + 3)

83.
∫ ∞

0
(5 + x)−1/3 dx 84.

∫ 5

2
(5 − x)−1/3 dx

In Exercises 85–90, use the Comparison Test to determine whether the
improper integral converges or diverges.

85.
∫ ∞

8

dx

x2 − 4
86.

∫ ∞
8

(sin2 x)e−x dx

87.
∫ ∞

3

dx

x4 + cos2 x
88.

∫ ∞
1

dx

x1/3 + x2/3

89.
∫ 1

0

dx

x1/3 + x2/3
90.

∫ ∞
0

e−x3
dx

91. Calculate the volume of the infinite solid obtained by rotating the
region under y = (x2 + 1)−2 for 0 ≤ x < ∞ about the y-axis.

92. Let R be the region under the graph of y = (x + 1)−1 for
0 ≤ x < ∞. Which of the following quantities is finite?

(a) The area of R

(b) The volume of the solid obtained by rotating R about the x-axis

(c) The volume of the solid obtained by rotating R about the y-axis

93. Show that
∫ ∞

0 xne−x2
dx converges for all n > 0. Hint: First ob-

serve that xne−x2
< xne−x for x > 1. Then show that xne−x < x−2

for x sufficiently large.

94. Compute the Laplace transform Lf (s) of the function f (x) = x

for s > 0. See Exercises 86–89 in Section 7.7 for the definition of
Lf (s).

95. Compute the Laplace transform Lf (s) of the function f (x) =
x2eαx for s > α.

96. Estimate
∫ 5

2
f (x) dx by computing T2, M3, T6, and S6 for a

function f (x) taking on the values in the following table:

x 2 2.5 3 3.5 4 4.5 5

f (x) 1
2 2 1 0 − 3

2 −4 −2

97. State whether the approximation MN or TN is larger or smaller
than the integral.

(a)
∫ π

0
sin x dx (b)

∫ 2π

π
sin x dx

(c)
∫ 8

1

dx

x2
(d)

∫ 5

2
ln x dx

98. The rainfall rate (in inches per hour) was measured hourly during
a 10-hour thunderstorm with the following results:

0, 0.41, 0.49, 0.32, 0.3, 0.23,

0.09, 0.08, 0.05, 0.11, 0.12

Use Simpson’s Rule to estimate the total rainfall during the 10-hour
period.

In Exercises 99–104, compute the given approximation to the integral.

99.
∫ 1

0
e−x2

dx, M5 100.
∫ 4

2

√
6t3 + 1 dt , T3

101.
∫ π/2

π/4

√
sin θ dθ , M4 102.

∫ 4

1

dx

x3 + 1
, T6

103.
∫ 1

0
e−x2

dx, S4 104.
∫ 9

5
cos(x2) dx, S8

105. The following table gives the area A(h) of a horizontal cross sec-
tion of a pond at depth h. Use the Trapezoidal Rule to estimate the
volume V of the pond (Figure 1).

h (ft) A(h) (acres) h (ft) A(h) (acres)

0 2.8 10 0.8
2 2.4 12 0.6
4 1.8 14 0.2
6 1.5 16 0.1
8 1.2 18 0
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Area of horizontal
cross section is A(h)

h

FIGURE 1

106. Suppose that the second derivative of the function A(h) in Exer-
cise 105 satisfies |A′′(h)| ≤ 1.5. Use the error bound to find the maxi-
mum possible error in your estimate of the volume V of the pond.

107. Find a bound for the error

∣∣∣∣∣M16 −
∫ 3

1
x3 dx

∣∣∣∣∣.

108. Let f (x) = sin(x3). Find a bound for the error

∣∣∣∣∣T24 −
∫ π/2

0
f (x) dx

∣∣∣∣∣
Hint: Find a bound K2 for |f ′′(x)| by plotting f ′′(x) with a graphing
utility.

109. Find a value of N such that

∣∣∣∣∣MN −
∫ π/4

0
tan x dx

∣∣∣∣∣ ≤ 10−4

110. Find a value of N such that SN approximates
∫ 5

2
x−1/4 dx with

an error of at most 10−2 (but do not calculate SN ).



CHAPTER 7 TECHNIQUES
OF INTEGRATION
PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided. Questions designated as
BC indicate BC-only topics.

1. C Use the substitution u = √
x to rewrite

∫ π

0
cos

√
x dx.

(A)
∫ π

0
cos u du

(B)
∫ √

π

0
2u cos u du

(C)
∫ π

0

1

2
u cos u du

(D)
∫ π

0
2u cos u du

(E)
∫ √

π

0
u cos u du

2. BC
∫

xe5x dx =
(A) xe5x + e5x + C

(B) 1
5 (xe5x + e5x) + C

(C) 1
5 (xe5x − e5x) + C

(D) 1
25 (5xe5x − e5x) + C

(E) 1
25 (5xe5x + e5x) + C

3. BC
∫

x2 ln x dx =

(A)
x2

2
+ C

(B)
x3

3
ln x − x3

3
+ C

(C)
x3

3
ln x − x3

9
+ C

(D)
x3

3
ln x − x4

12
+ C

(E)
x3

3
ln x + x4

12
+ C

4. BC
∫

tan−1x dx =
(A) ln(tan−1x) + C

(B)
1

1 + x2
+ C

(C) x tan−1x − 1
2 ln(x2 + 1) + C

(D) x tan−1x + 1
2 ln(x2 + 1) + C

(E) x tan−1x − ln(x2 + 1) + C

AP7-1
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5. C What is M3, the midpoint Riemann sum with three

equal subdivisions, for
∫ 11

5

√
x2 + 1 dx?

(A)
√

37 + 65 + 101

(B) 2
√

37 + 65 + 101

(C) 2
(√

37 + √
65 + √

101
)

(D)
√

37 + √
65 + √

101

(E) 1
6

(√
37 + √

65 + √
101

)

6. C Find the trapezoidal sum with n = 4 for
∫ 2

1
f (x) dx,

where some values for f (x) are as given in the following
table.

x 1 1.2 1.6 1.7 2
f (x) 4 6 10 16 20

(A) 9

(B) 10.9

(C) 12.8

(D) 14

(E) 22

7. BC
∫

x2 cos(3x) dx =

(A)
x2

3
sin(3x) + 2

9
x cos(3x) + 2

27
sin(3x) + C

(B)
x2

3
sin(3x) + 2

9
x cos(3x) − 2

27
sin(3x) + C

(C) −x2

3
sin(3x) + 2

9
x cos(3x) − 2

27
sin(3x) + C

(D)
x2

3
sin(3x) − 2

9
x cos(3x) + 2

27
sin(3x) + C

(E)
x2

3
sin(3x) − 2

9
x cos(3x) − 2

27
sin(3x) + C

8.
∫

sin2(x) dx =
(A) 1

3 sin3(x) + C

(B) 2 sin(x) cos(x) + C

(C) x − sin(x) cos(x) + C

(D) 1
2 (x − sin(x) cos(x)) + C

(E) −1
2 (x − sin(x) cos(x)) + C

9. BC
∫

x3 sin(x2) dx =
(A) 2x − 1

2 cos(x2) + C

(B) 1
2

(
x2 cos(x2) − sin(x2)

) + C

(C) −1
2

(
x2 cos(x2) − sin(x2)

) + C

(D) x2 cos(x2) − sin(x2) + C

(E) x2 cos(x2) + sin(x2) + C

10.
∫

sin(x)cos3(x) dx =
(A) 1

4 cos(x) sin4(x) + C

(B) −1
4 cos(x) sin4(x) + C

(C) 1
4 cos4(x) + C

(D) −1
4 cos4(x) + C

(E) 1
4 sin4(x) + C

11.
∫

sin2(x)cos3(x) dx =
(A) 1

3 sin3(x) − 1
5 sin5(x) + C

(B) 1
3 sin3(x) + 1

5 sin5(x) + C

(C) 1
3 sin3(x)cos3(x) − 1

4 sin2(x) cos4(x) + C

(D) 1
4 cos4(x) + C

(E) −1
4 sin4(x) + C

12.
∫

tan(2x)sec2(2x) dx =
(A) 1

2 sec2(2x) + C

(B) 1
2 sec(2x) + C

(C) 1
2 tan2(2x) + C

(D) 1
4 sec2(2x) + C

(E) ln |tan(2x) + sec(2x)| + C

13.
∫

1√
1 − 4x2

dx =
(A) arcsin(2x) + C

(B) 1
2 arcsin(2x) + C

(C) arccos(2x) + C

(D) 1
2 arccos(2x) + C

(E) arctan(2x) + C
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14.
∫

1

25 + 4x2
dx =

(A) ln
∣∣25 + 4x2

∣∣ + C

(B) 1
8 ln

∣∣25 + 4x2
∣∣ + C

(C) arctan(5 + 2x) + C

(D)
1

10
arctan

(
2x

5

)
+ C

(E)
1

20
arctan

(
2x

5

)
+ C

15. BC
∫

1

x2 − 9
dx =

(A) ln
∣∣x2 − 9

∣∣ + C

(B) arctan
(x

3

)
+ C

(C) ln |x + 3| − ln |x − 3| + C

(D)
1

6
ln

∣∣∣∣x − 3

x + 3

∣∣∣∣ + C

(E) ln |x + 3| + ln |x − 3| + C

16. BC
∫

1

x2 + x − 6
dx =

(A) ln |x + 3| + ln |x − 2| + C

(B) (ln |x + 3|)(ln |x − 2|) + C

(C) ln

∣∣∣∣x + 3

x − 2

∣∣∣∣ + C

(D)
1

5
ln

∣∣∣∣x + 3

x − 2

∣∣∣∣ + C

(E)
1

5
ln

∣∣∣∣x − 2

x + 3

∣∣∣∣ + C

17. BC
∫

2x + 1

x2 + 1
dx =

(A) ln
∣∣x2 + 1

∣∣ + C

(B) 2 arctan(x) + C

(C) 2 ln |x| + arctan(x) + C

(D) ln
∣∣x2 + 1

∣∣ + arctan(x) + C

(E) ln
∣∣x2

∣∣ + x + C

18. BC If
∫ R

0
f (x) dx = 2R2 − 5

R2 + 1
, then

∫ ∞

0
f (x) dx is

(A) −5

(B) −3
2

(C) 0

(D) 2

(E) ∞

19. BC
∫ ∞

1

1

x2 + 1
dx is

(A) 0

(B) π
4

(C) 1

(D) π
2

(E) nonexistent

20. BC
∫ 0

−1

1√
1 − x2

dx is

(A) 0

(B) π
4

(C) 1

(D) π
2

(E) nonexistent



AP7-4 CHAPTER 7 TECHNIQUES OF INTEGRATION

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work. Questions
designated as BC indicate BC-only topics.

1. BC Let f (x) = sin−1x. The graph of f is given below.

−2 −1 1 2

−2

−1

1

2

y

x

(a) Use integration by parts with u = f (x) and dv = dx

to find
∫

sin−1 x dx.

(b) Evaluate
∫ 1

0
sin−1x dx.

(c) Use the graph of f (x) = sin−1x on the interval [0, 1]
and the relationship between definite integrals and area

to explain why
∫ 1

0
sin−1x dx +

∫ π/2

0
siny dy = π

2
.

2. Assume f ′′ is continuous on [1, 2]. Use the table below to
answer the questions that follow.

x 1 1.2 1.4 1.7 2
f (x) 12 6 4 2 8
f ′(x) −7 −5 −1 3 5

(a) Compute the midpoint Riemann sum to approximate∫ 2

1
f (x) dx, with n = 2.

(b) BC Use a trapezoidal sum to approximate
∫ 2

1
f (x) dx,

with n = 4.

(c) Compute
∫ 1.2

1.7
f ′(x) dx.

(d) Compute
∫ 2

1
xf ′′(x) dx.

3. BC Let f (x) = 1√
x2 − 1

. Let R be the region bounded

above by the graph of f , below by the x-axis, and on the
left by the line x = 2.

(a) Show the area of R is infinite by comparing f (x) with

another function g(x) and show that
∫ ∞

2
g(x) dx di-

verges.

(b) Show that the volume of the solid obtained by rotating
R about the x-axis is finite.

4. BC Let f (x) = 1

(x + A)(x + B)
, with A > 0 and B > 0.

(a) Show by carefully comparing f (x) to 1/x2 that∫ ∞

2
f (x) dx is finite.

(b) Compute
∫ ∞

2
f (x) dx with A = 3 and B = 5.

Answers to odd-numbered questions can be found in the back of
the book.



This NASA simulation, depicting streamlines of

hot gas from the nozzles of a Harrier Jet during

vertical takeoff, is based on a branch of

mathematics called computational fluid

dynamics.

8 FURTHER APPLICATIONS
OF THE INTEGRAL AND
TAYLOR POLYNOMIALS

T he first three sections of this chapter develop some additional uses of integration,
including two important physical applications. The last section introduces Taylor poly-

nomials, the higher-order generalizations of the linear approximation. Taylor polynomials
illustrate beautifully the power of calculus to yield valuable insight into functions.

8.1 Arc Length and Surface Area
We have seen that integrals are used to compute “total amounts” (such as distance trav-
eled, total mass, total cost, etc.). Another such quantity is the length of a curve (also
called arc length). We shall derive a formula for arc length using our standard procedure:
approximation followed by passage to a limit.

x
b = xN

y = f (x)

PN

Pi

a = x0

y

x1 xixi − 1

Pi − 1

x2

P1

P0
Li

FIGURE 1 A polygonal approximation L to
y = f (x).

Consider the graph of y = f (x) over an interval [a, b]. Choose a partition P of [a, b]
into N subintervals with endpoints

P : a = x0 < x1 < · · · < xN = b

and let Pi = (xi, f (xi)) be the point on the graph above xi . Now join these points by
line segments Li = Pi−1Pi . The resulting curve L is called a polygonal approximation
(Figure 1). The length of L, which we denote |L|, is the sum of the lengths |Li | of the
segments:

|L| = |L1| + |L2| + · · · + |LN | =
N∑

i=1

|Li |

As may be expected, the polygonal approximations L approximate the curve more
and more closely as the width of the partition decreases (Figure 2). Based on this idea, we
define the arc length s of the graph to be the limit of the lengths |L| as the width ‖P ‖ of
the partition tends to zero:The letter s is commonly used to denote

arc length.

arc length s = lim‖P ‖→0

N∑
i=1

|Li |

b = x3 b = x5a = x0 a = x0 b = x10a = x0x1 x1x2 x2 x3 x4

P0
P1

P1

P2 P2

P4

P3 P0
P5

P3

N = 3 N = 5 N = 10

x x x

P0
P10

FIGURE 2 The polygonal approximations improve as the widths of the subintervals decrease.
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To compute the arc length s, we must express the limit of the polygonal approximations
as an integral. Figure 3 shows that the segment Li is the hypotenuse of a right triangle of
base �xi = xi − xi−1 and height |f (xi) − f (xi−1)|. By the Pythagorean Theorem,

|Li | =
√

�x2
i + (f (xi) − f (xi−1))2

We shall assume that f ′(x) exists and is continuous. Then, by the Mean Value Theorem,
x

x i − 1

Pi − 1

Pi
Li

x i

| f (x i) − f (x i − 1) |
Δx i

FIGURE 3 there is a value ci in [xi−1, xi] such that

f (xi) − f (xi−1) = f ′(ci)(xi − xi−1) = f ′(ci)�xi

and therefore,

|Li | =
√

(�xi)2 + (f ′(ci)�xi)2 =
√

(�xi)2(1 + [f ′(ci)]2) =
√

1 + [f ′(ci)]2 �xi

We find that the length |L| is a Riemann sum for the function
√

1 + [f ′(x)]2:

|L| = |L1| + |L2| + · · · + |LN | =
N∑

i=1

√
1 + [f ′(ci)]2 �xi

This function is continuous, and hence integrable, so the Riemann sums approach

REMINDER A Riemann sum for the
integral

∫ b

a
g(x) dx is a sum

N∑
i=1

g(ci)�xi

where x0, x1, . . . , xN is a partition of
[a, b], �xi = xi − xi−1, and ci is any
number in [xi−1, xi].

∫ b

a

√
1 + [f ′(x)]2 dx

as the norm (maximum of the widths �xi) of the partition tends to zero.

In Exercises 20–22, we verify that Eq. (1)
correctly gives the lengths of line segments
and circles.

THEOREM 1 Formula for Arc Length Assume that f ′(x) exists and is continuous on
[a, b]. Then the arc length s of y = f (x) over [a, b] is equal to

s =
∫ b

a

√
1 + [f ′(x)]2 dx 1

3

2

1

1 2 3

y

x

x3 + x−1y = 1
12

FIGURE 4 The arc length over [1, 3] is 17
6 .

EXAMPLE 1 Find the arc length s of the graph of f (x) = 1
12x3 + x−1 over [1, 3]

(Figure 4).

Solution First, let’s calculate 1 + f ′(x)2. Since f ′(x) = 1
4 x2 − x−2,

1 + f ′(x)2 = 1 +
(

1

4
x2 − x−2

)2

= 1 +
(

1

16
x4 − 1

2
+ x−4

)

= 1

16
x4 + 1

2
+ x−4 =

(
1

4
x2 + x−2

)2

Fortunately, 1 + f ′(x)2 is a square, so we can easily compute the arc length:

s =
∫ 3

1

√
1 + f ′(x)2 dx =

∫ 3

1

(
1

4
x2 + x−2

)
dx =

(
1

12
x3 − x−1

) ∣∣∣∣3

1

=
(

9

4
− 1

3

)
−

(
1

12
− 1

)
= 17

6
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EXAMPLE 2 Arc Length as a Function of the Upper Limit Find the arc length s(a) of
y = cosh x over [0, a] (Figure 5). Then find the arc length over [0, 2].

x

1y = cosh x

y

a−a

FIGURE 5

REMINDER

cosh x = 1

2
(ex + e−x)

sinh x = 1

2
(ex − e−x)

cosh2 x − sinh2 x = 1 2

Solution Recall that y′ = (cosh x)′ = sinh x. By Eq. (2) in the margin,

1 + (y′)2 = 1 + sinh2 x = cosh2 x

Because cosh x > 0, we have
√

1 + (y′)2 = cosh x and

s(a) =
∫ a

0

√
1 + (y′)2 dx =

∫ a

0
cosh x dx = sinh x

∣∣∣∣a
0

= sinh a

The arc length over [0, 2] is s(2) = sinh 2 ≈ 3.63.

In Examples 1 and 2, the quantity 1 + f ′(x)2 turned out to be a perfect square, and
we were able to compute s exactly. Usually,

√
1 + f ′(x)2 does not have an elementary

antiderivative and there is no explicit formula for the arc length. However, we can always
approximate arc length using numerical integration.

EXAMPLE 3 No Exact Formula for Arc Length Approximate the length s of
y = sin x over [0, π ] using Simpson’s Rule SN with N = 6.

Solution We have y′ = cos x and
√

1 + (y′)2 = √
1 + cos2 x. The arc length is

s =
∫ π

0

√
1 + cos2 x dx

This integral cannot be evaluated explicitly, so we approximate it by applying Simp-

son’s Rule (Section 7.8) to the integrand g(x) =
√

1 + cos2 x. Divide [0, π ] into N = 6
subintervals of width �x = π/6. Then

S6 = �x

3

(
g(0) + 4g

(
π

6

)
+ 2g

(
2π

6

)
+ 4g

(
3π

6

)
+ 2g

(
4π

6

)
+ 4g

(
5π

6

)
+ g(π)

)

≈ π

18
(1.4142 + 5.2915 + 2.2361 + 4 + 2.2361 + 5.2915 + 1.4142) ≈ 3.82

Thus s ≈ 3.82 (Figure 6). A computer algebra system yields the more accurate approxi-
mation s ≈ 3.820198.

y

1

x

y = sin x

π

6
π

3
π

2
2π

3
5π

6
π

FIGURE 6 The arc length from 0 to π is
approximately 3.82.

The surface area S of a surface of revolution (Figure 7) can be computed by an integral

y = f (x)

y

x
ba

FIGURE 7 Surface obtained by revolving
y = f (x) about the x-axis.

that is similar to the arc length integral. Suppose that f (x) ≥ 0, so that the graph lies
above the x-axis. We can approximate the surface by rotating a polygonal approximation
to y = f (x) about the x-axis. The result is a surface built out of truncated cones (Fig-
ure 8).

The surface area of a truncated cone is equal to π times the sum of the left- and right-
hand radii times the length of the slanted side. Using the notation from the derivation of
the arc length formula above, we find that the surface area of the truncated cone along the
subinterval [xi−1, xi] is

π
(
f (xi−1) + f (xi)

)︸ ︷︷ ︸
Sum of radii

|Pi−1Pi |︸ ︷︷ ︸
Slant length

= 2π

(
f (xi−1) + f (xi)

2

) √
1 + f ′(ci)2�xi
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Li

Δxi

f (xi)

f (xi − 1)

xixi − 1 xxiixi i − 11

L1

Li

Pi − 1

x0

y

Pi

x
xixi − 1

FIGURE 8 Rotating a polygonal
approximation produces an approximation
by truncated cones.

The surface area S is equal to the limit of the sums of the surface areas of the truncated
cones as N → ∞. We can show that the limit is not affected if we replace xi−1 and xi by
ci . Therefore

S = 2π lim
N→∞

N∑
i=1

f (ci)

√
1 + f ′(ci)2�xi

This is a limit of Riemann sums that converges to the integral in Eq. (3) below.

Area of a Surface of Revolution Assume that f (x) ≥ 0 and that f ′(x) exists and is
continuous on [a, b]. The surface area S of the surface obtained by rotating the graph
of f (x) about the x-axis for a ≤ x ≤ b is equal to

S = 2π

∫ b

a

f (x)

√
1 + f ′(x)2 dx 3

EXAMPLE 4 Calculate the surface area of a sphere of radius R.

Solution The graph of f (x) = √
R2 − x2 is a semicircle of radius R (Figure 9). We

y

x
−R R

f(x) = √R2 − x2

FIGURE 9 A sphere is obtained by revolving
the semicircle about the x-axis.

obtain a sphere by rotating it about the x-axis. We have

f ′(x) = − x√
R2 − x2

, 1 + f ′(x)2 = 1 + x2

R2 − x2
= R2

R2 − x2

The surface area integral gives us the usual formula for the surface area of a sphere:

S = 2π

∫ R

−R

f (x)

√
1 + f ′(x)2 dx = 2π

∫ R

−R

√
R2 − x2 R√

R2 − x2
dx

= 2πR

∫ R

−R

dx = 2πR(2R) = 4πR2.

EXAMPLE 5 Find the surface area S of the surface obtained by rotating the graph of
y = x1/2 − 1

3x3/2 about the x-axis for 1 ≤ x ≤ 3.

Solution Let f (x) = x1/2 − 1
3x3/2. Then f ′(x) = 1

2 (x−1/2 − x1/2) and

1 + f ′(x)2 = 1 +
(

x−1/2 − x1/2

2

)2

= 1 + x−1 − 2 + x

4

= x−1 + 2 + x

4
=

(
x1/2 + x−1/2

2

)2
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The surface area (Figure 10) is equal toy

x

1

31

y = x1/2 − x3/21
3

FIGURE 10

S = 2π

∫ 3

1
f (x)

√
1 + f ′(x)2 dx = 2π

∫ 3

1

(
x1/2 − 1

3
x3/2

) (
x1/2 + x−1/2

2

)
dx

= π

∫ 3

1

(
1 + 2

3
x − 1

3
x2

)
dx = π

(
x + 1

3
x2 − 1

9
x3

) ∣∣∣∣3

1
= 16π

9

8.1 SUMMARY

• The arc length of y = f (x) over [a, b] is

s =
∫ b

a

√
1 + f ′(x)2 dx

• Use numerical integration to approximate arc length when the arc length integral cannot
be evaluated explicitly.
• Assume that f (x) ≥ 0. The surface area of the surface obtained by rotating the graph
of f (x) about the x-axis for a ≤ x ≤ b is

Surface area = 2π

∫ b

a

f (x)

√
1 + f ′(x)2 dx

8.1 EXERCISES

Preliminary Questions
1. Which integral represents the length of the curve y = cos x be-

tween 0 and π?∫ π

0

√
1 + cos2 x dx,

∫ π

0

√
1 + sin2 x dx

2. Use the formula for arc length to show that for any constant C, the
graphs y = f (x) and y = f (x) + C have the same length over every
interval [a, b]. Explain geometrically.

3. Use the formula for arc length to show that the length of a graph
over [1, 4] cannot be less than 3.

Exercises
1. Express the arc length of the curve y = x4 between x = 2 and

x = 6 as an integral (but do not evaluate).

2. Express the arc length of the curve y = tan x for 0 ≤ x ≤ π
4 as an

integral (but do not evaluate).

3. Find the arc length of y = 1
12x3 + x−1 for 1 ≤ x ≤ 2. Hint: Show

that 1 + (y′)2 =
(

1
4x2 + x−2

)2
.

4. Find the arc length of y =
(x

2

)4 + 1

2x2
over [1, 4]. Hint: Show

that 1 + (y′)2 is a perfect square.

In Exercises 5–10, calculate the arc length over the given interval.

5. y = 3x + 1, [0, 3] 6. y = 9 − 3x, [1, 3]

7. y = x3/2, [1, 2] 8. y = 1
3x3/2 − x1/2, [2, 8]

9. y = 1
4x2 − 1

2 ln x, [1, 2e] 10. y = ln(cos x),
[
0, π

4

]

In Exercises 11–14, approximate the arc length of the curve over the
interval using the Trapezoidal Rule TN , the Midpoint Rule MN , or
Simpson’s Rule SN as indicated.

11. y = 1
4x4, [1, 2], T5 12. y = sin x,

[
0, π

2

]
, M8

13. y = x−1, [1, 2], S8 14. y = e−x2
, [0, 2], S8

15. Calculate the length of the astroid x2/3 + y2/3 = 1 (Figure 11).

y

1

1

−1

−1
x

FIGURE 11 Graph of x2/3 + y2/3 = 1.



472 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

16. Show that the arc length of the astroid x2/3 + y2/3 = a2/3 (for
a > 0) is proportional to a.

17. Let a, r > 0. Show that the arc length of the curve xr + yr = ar

for 0 ≤ x ≤ a is proportional to a.

18. Find the arc length of the curve shown in Figure 12.

x

0.5

y

321

FIGURE 12 Graph of 9y2 = x(x − 3)2.

19. Find the value of a such that the arc length of the catenary
y = cosh x for −a ≤ x ≤ a equals 10.

20. Calculate the arc length of the graph of f (x) = mx + r over [a, b]
in two ways: using the Pythagorean theorem (Figure 13) and using the
arc length integral.

x
a b

r

y

b − a

m(b − a)

FIGURE 13

21. Show that the circumference of the unit circle is equal to

2
∫ 1

−1

dx√
1 − x2

(an improper integral)

Evaluate, thus verifying that the circumference is 2π .

22. Generalize the result of Exercise 21 to show that the circumference
of the circle of radius r is 2πr .

23. Calculate the arc length of y = x2 over [0, a]. Hint: Use trigono-
metric substitution. Evaluate for a = 1.

24. Express the arc length of g(x) = √
x over [0, 1] as a def-

inite integral. Then use the substitution u = √
x to show that this arc

length is equal to the arc length of x2 over [0, 1] (but do not evaluate
the integrals). Explain this result graphically.

25. Find the arc length of y = ex over [0, a]. Hint: Try the substitution

u =
√

1 + e2x followed by partial fractions.

26. Show that the arc length of y = ln(f (x)) for a ≤ x ≤ b is

∫ b

a

√
f (x)2 + f ′(x)2

f (x)
dx 4

27. Use Eq. (4) to compute the arc length of y = ln(sin x) for π
4 ≤

x ≤ π
2 .

28. Use Eq. (4) to compute the arc length of y = ln

(
ex + 1

ex − 1

)
over

[1, 3].
29. Show that if 0 ≤ f ′(x) ≤ 1 for all x, then the arc length of
y = f (x) over [a, b] is at most

√
2(b − a). Show that for f (x) = x,

the arc length equals
√

2(b − a).

30. Use the Comparison Theorem (Section 5.2) to prove that the arc
length of y = x4/3 over [1, 2] is not less than 5

3 .

31. Approximate the arc length of one-quarter of the unit circle (which
we know is π

2 ) by computing the length of the polygonal approximation
with N = 4 segments (Figure 14).

y

10.750.50.25
x

FIGURE 14 One-quarter of the unit circle

32. A merchant intends to produce specialty carpets in the
shape of the region in Figure 15, bounded by the axes and graph of
y = 1 − xn (units in yards). Assume that material costs $50/yd2 and
that it costs 50L dollars to cut the carpet, where L is the length of the
curved side of the carpet. The carpet can be sold for 150A dollars, where
A is the carpet’s area. Using numerical integration with a computer al-
gebra system, find the whole number n for which the merchant’s profits
are maximal.

1

0.5

y

y = 1 − xn

10.5
x

A

FIGURE 15

In Exercises 33–40, compute the surface area of revolution about the
x-axis over the interval.

33. y = x, [0, 4] 34. y = 4x + 3, [0, 1]
35. y = x3, [0, 2] 36. y = x2, [0, 4]
37. y = (4 − x2/3)3/2, [0, 8] 38. y = e−x , [0, 1]
39. y = 1

4x2 − 1
2 ln x, [1, e] 40. y = sin x, [0, π ]
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In Exercises 41–44, use a computer algebra system to find the
approximate surface area of the solid generated by rotating the curve
about the x-axis.

41. y = x−1, [1, 3]
42. y = x4, [0, 1]
43. y = e−x2/2, [0, 2]
44. y = tan x,

[
0, π

4

]
45. Find the area of the surface obtained by rotating y = cosh x over
[− ln 2, ln 2] around the x-axis.

46. Show that the surface area of a spherical cap of height h and radius
R (Figure 16) has surface area 2πRh.

h

R

FIGURE 16

47. Find the surface area of the torus obtained by rotating the circle
x2 + (y − b)2 = r2 about the x-axis (Figure 17).

y

x

(0, b + a)

(0, b)

FIGURE 17 Torus obtained by rotating a circle about the x-axis.

48. Show that the surface area of a right circular cone of radius r and

height h is πr
√

r2 + h2. Hint: Rotate a line y = mx about the x-axis
for 0 ≤ x ≤ h, where m is determined suitably by the radius r .

Further Insights and Challenges
49. Find the surface area of the ellipsoid obtained by rotating the ellipse(x

a

)2 +
(y

b

)2 = 1 about the x-axis.

50. Show that if the arc length of f (x) over [0, a] is proportional to a,
then f (x) must be a linear function.

51. Let L be the arc length of the upper half of the ellipse with
equation

y = b

a

√
a2 − x2

(Figure 18) and let η =
√

1 − (b2/a2). Use substitution to show that

L = a

∫ π/2

−π/2

√
1 − η2 sin2 θ dθ

Use a computer algebra system to approximate L for a = 2, b = 1.

x

y

2−2

1

FIGURE 18 Graph of the ellipse y = 1
2

√
4 − x2.

52. Prove that the portion of a sphere of radius R seen by an ob-
server located at a distance d above the North Pole has area A =
2πdR2/(d + R). Hint: According to Exercise 46, the cap has surface
area is 2πRh. Show that h = dR/(d + R) by applying the Pythagorean
Theorem to the three right triangles in Figure 19.

h

d

Observer

R

FIGURE 19 Spherical cap observed from a distance d above the North
Pole.

53. Suppose that the observer in Exercise 52 moves off to
infinity—that is, d → ∞. What do you expect the limiting value of the
observed area to be? Check your guess by calculating the limit using
the formula for the area in the previous exercise.

54. Let M be the total mass of a metal rod in the shape of
the curve y = f (x) over [a, b] whose mass density ρ(x) varies as a
function of x. Use Riemann sums to justify the formula

M =
∫ b

a
ρ(x)

√
1 + f ′(x)2 dx

55. Let f (x) be an increasing function on [a, b] and let g(x) be
its inverse. Argue on the basis of arc length that the following equality
holds: ∫ b

a

√
1 + f ′(x)2 dx =

∫ f (b)

f (a)

√
1 + g′(y)2 dy 5

Then use the substitution u = f (x) to prove Eq. (5).
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8.2 Fluid Pressure and Force
Fluid force is the force on an object submerged in a fluid. Divers feel this force as they

FIGURE 1 Since water pressure is
proportional to depth, divers breathe
compressed air to equalize the pressure and
avoid lung injury.

descend below the water surface (Figure 1). Our calculation of fluid force is based on two
laws that determine the pressure exerted by a fluid:

• Fluid pressure p is proportional to depth.
• Fluid pressure does not act in a specific direction. Rather, a fluid exerts pressure on

each side of an object in the perpendicular direction (Figure 2).

This second fact, known as Pascal’s principle, points to an important difference between
fluid pressure and the pressure exerted by one solid object on another.

Pressure, by definition, is force per unit
area.

• The SI unit of pressure is the pascal
(Pa) (1 Pa = 1 N/m2).

• Mass density (mass per unit volume) is
denoted ρ (Greek rho).

• The factor ρg is the density by weight,
where g = 9.8 m/s2 is the acceleration
due to gravity.

Fluid Pressure The pressure p at depth h in a fluid of mass density ρ is

p = ρgh 1

The pressure acts at each point on an object in the direction perpendicular to the object’s
surface at that point.

Our first example does not require integration because the pressure p is constant. In
this case, the total force acting on a surface of area A is

Force = pressure × area = pA

EXAMPLE 1 Calculate the fluid force on the top and bottom of a box of dimensions

Pressure
on side
varies with
depth, acts in
perpendicular
direction

Constant pressure
along the top acting
             downward

Constant pressure
along bottom
acting upward

3

Water level

5

2
2

FIGURE 2 Fluid pressure acts on each side
in the perpendicular direction.

2 × 2 × 5 m, submerged in a pool of water with its top 3 m below the water surface
(Figure 2). The density of water is ρ = 103 kg/m3.

Solution The top of the box is located at depth h = 3 m, so, by Eq. (1) with g = 9.8,

Pressure on top = ρgh = 103(9.8)(3) = 29,400 Pa

The top has area A = 4 m2 and the pressure is constant, so

Downward force on top = pA = 103(9.8)(3) × 4 = 117,600 N

The bottom of the box is at depth h = 8 m, so the total force on the bottom is

Upward force on bottom = pA = 103(9.8)(8) × 4 = 313,600 N

In the next example, the pressure varies with depth, and it is necessary to calculate
the force as an integral.

EXAMPLE 2 Calculating Force Using Integration Calculate the fluid force F on the
side of the box in Example 1.

Solution Since the pressure varies with depth, we divide the side of the box into N thin
horizontal strips (Figure 3). Let Fj be the force on the j th strip. The total force F is equal
to the sum of the forces on the strips:

F = F1 + F2 + · · · + FN
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Step 1. Approximate the force on a strip.
We’ll use the variable y to denote depth, where y = 0 at the water level and y is positive
in the downward direction. Thus, a larger value of y denotes greater depth. Each strip is
a rectangle of height �y = 5/N and length 2, so the area of a strip is 2�y. The bottom
edge of the j th strip has depth yj = 3 + j�y.

If �y is small, the pressure on the j th strip is nearly constant with value ρgyj

yN = 3 + N�y = 8

yj−1 = 3 + ( j − 1)�y
yj  = 3 + j�y

y1 = 3 + �y
y0 = 3

5

2

3

Water level

FIGURE 3 Each strip has area 2�y.

(because all points on the strip lie at nearly the same depth yj ), so we can approximate
the force on the j th strip:

Fj ≈ ρgyj︸︷︷︸
Pressure

× (2�y)︸ ︷︷ ︸
Area

= (ρg)2yj�y

Step 2. Approximate total force as a Riemann sum.

F = F1 + F2 + · · · + FN ≈ ρg

N∑
j=1

2yj�y

The sum on the right is a Riemann sum that converges to the integral ρg
∫ 8

3 2y dy.
The interval of integration is [3, 8] because the box extends from y = 3 to y = 8 (the
Riemann sum has been set up with y0 = 3 and yN = 8).

Step 3. Evaluate total force as an integral.
As �y tends to zero, the Riemann sum approaches the integral, and we obtain

F = ρg

∫ 8

3
2y dy = (ρg)y2

∣∣∣∣8

3
= (103)(9.8)(82 − 32) = 539,000 N

Now we’ll add another complication: allowing the widths of the horizontal strips to
vary with depth (Figure 4). Denote the width at depth y by f (y):

f (y) = width of the side at depth y

As before, assume that the object extends from y = a to y = b. Divide the flat side of
the object into N horizontal strips of thickness �y = (b − a)/N . If �y is small, the j th

y0 = a

0

y1

yN = b

yj

yj−1

Water level

f (yj)

�y

FIGURE 4 The area of the shaded strip is
approximately f (yj ) �y.

strip is nearly rectangular of area f (y)�y. Since the strip lies at depth yj = a + j�y, the
force Fj on the j th strip can be approximated:

Fj ≈ ρgyj︸︷︷︸
Pressure

× f (yj )�y︸ ︷︷ ︸
Area

= (ρg)yjf (yj )�y

The force F is approximated by a Riemann sum that converges to an integral:

F = F1 + · · · + FN ≈ ρg

N∑
j=1

yjf (yj )�y ⇒ F = ρg

∫ b

a

yf (y) dy

THEOREM 1 Fluid Force on a Flat Surface Submerged Vertically The fluid force F

on a flat side of an object submerged vertically in a fluid is

F = ρg

∫ b

a

yf (y) dy 2

where f (y) is the horizontal width of the side at depth y, and the object extends from
depth y = a to depth y = b.
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EXAMPLE 3 Calculate the fluid force F on one side of an equilateral triangular plate
of side 2 m submerged vertically in a tank of oil of mass density ρ = 900 kg/m3 (Figure 5).

2

f (y)

y

�3

FIGURE 5 Triangular plate submerged in a
tank of oil.

Solution To use Eq. (2), we need to find the horizontal width f (y) of the plate at depth

y. An equilateral triangle of side s = 2 has height
√

3s/2 = √
3. By similar triangles,

y/f (y) = √
3/2 and thus f (y) = 2y/

√
3. By Eq. (2),

F = ρg

∫ √
3

0
y f (y) dy = (900)(9.8)

∫ √
3

0

2√
3
y2 dy =

(
17,640√

3

)
y3

3

∣∣∣∣
√

3

0
= 17,640 N

The next example shows how to modify the force calculation when the side of the
submerged object is inclined at an angle.

EXAMPLE 4 Force on an Inclined Surface The side of a dam is inclined at an angle

Hoover Dam, with recently completed
Colorado river bridge

of 45◦. The dam has height 700 ft and width 1500 ft as in Figure 6. Calculate the force
F on the dam if the reservoir is filled to the top of the dam. Water has density w = 62.5
lb/ft3.

Solution The vertical height of the dam is 700 ft, so we divide the vertical axis from 0 to
700 into N subintervals of length �y = 700/N . This divides the face of the dam into N

strips as in Figure 6. By trigonometry, each strip has width equal to �y/ sin(45◦) = √
2�y.

Therefore,

Area of each strip = length × width = 1500(
√

2 �y)

As usual, we approximate the force Fj on the j th strip. The factor ρg is equal to weight
per unit volume, so we use w = 62.5 lb/ft3 in place of ρg:

Fj ≈
Pressure︷︸︸︷
wyj ×

Area of strip︷ ︸︸ ︷
1500

√
2�y = wyj × 1500

√
2 �y lb

F =
N∑

j=1

Fj ≈
N∑

j=1

wyj

(
1500

√
2 �y

) = 1500
√

2 w

N∑
j=1

yj�y

yN = N�y = 700

yj−1 = ( j − 1)�y
yj = j�y

y1 = �y
y0 = 0

700

45 45

1,500

�y

�y

�y/sin 45

�2�y

FIGURE 6
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This is a Riemann sum for the integral 1500
√

2w

∫ 700

0
y dy. Therefore,

F = 1500
√

2w

∫ 700

0
y dy = 1500

√
2(62.5)

7002

2
≈ 3.25 × 1010 lb

8.2 SUMMARY

• If pressure is constant, then force = pressure × area.
• The fluid pressure at depth h is equal to ρgh, where ρ is the fluid density (mass per
unit volume) and g = 9.8 m/s2 is the acceleration due to gravity. Fluid pressure acts on a
surface in the direction perpendicular to the surface. Water has mass density 1000 kg/m3.
• If an object is submerged vertically in a fluid and extends from depth y = a to y = b,
then the total fluid force on a side of the object is

F = ρg

∫ b

a

yf (y) dy

where f (y) is the horizontal width of the side at depth y.
• If fluid density is given as weight per unit volume, the factor g does not appear. Water
has weight density 62.5 lb/ft3.

8.2 EXERCISES

Preliminary Questions
1. How is pressure defined?

2. Fluid pressure is proportional to depth. What is the factor of pro-
portionality?

3. When fluid force acts on the side of a submerged object, in which
direction does it act?

4. Why is fluid pressure on a surface calculated using thin horizontal
strips rather than thin vertical strips?

5. If a thin plate is submerged horizontally, then the fluid force on one
side of the plate is equal to pressure times area. Is this true if the plate
is submerged vertically?

Exercises
1. A box of height 6 m and square base of side 3 m is submerged in a

pool of water. The top of the box is 2 m below the surface of the water.

(a) Calculate the fluid force on the top and bottom of the box.

(b) Write a Riemann sum that approximates the fluid force on a side
of the box by dividing the side into N horizontal strips of thickness
�y = 6/N .

(c) To which integral does the Riemann sum converge?

(d) Compute the fluid force on a side of the box.

2. A plate in the shape of an isosceles triangle with base 1 m and
height 2 m is submerged vertically in a tank of water so that its vertex
touches the surface of the water (Figure 7).

(a) Show that the width of the triangle at depth y is f (y) = 1
2y.

(b) Consider a thin strip of thickness �y at depth y. Explain why the
fluid force on a side of this strip is approximately equal to ρg 1

2y2�y.

(c) Write an approximation for the total fluid force F on a side of the
plate as a Riemann sum and indicate the integral to which it converges.

(d) Calculate F .

1

2

f (y)

y

�y

FIGURE 7

3. Repeat Exercise 2, but assume that the top of the triangle is located
3 m below the surface of the water.
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4. The plate R in Figure 8, bounded by the parabola y = x2 and
y = 1, is submerged vertically in water (distance in meters).

(a) Show that the width of R at height y is f (y) = 2
√

y and the fluid
force on a side of a horizontal strip of thickness �y at height y is
approximately (ρg)2y1/2(1 − y)�y.

(b) Write a Riemann sum that approximates the fluid force F on a side
of R and use it to explain why

F = ρg

∫ 1

0
2y1/2(1 − y) dy

(c) Calculate F .

Water surface

1 − y

x
1

(�y, y)

−1

y

1

�y

y = x2

f (y)

R

FIGURE 8

5. Let F be the fluid force on a side of a semicircular plate of radius r

meters, submerged vertically in water so that its diameter is level with
the water’s surface (Figure 9).

(a) Show that the width of the plate at depth y is 2
√

r2 − y2.

(b) Calculate F as a function of r using Eq. (2).

y

r

r

2�r2 − y2

x

FIGURE 9

6. Calculate the force on one side of a circular plate with radius 2 m,
submerged vertically in a tank of water so that the top of the circle is
tangent to the water surface.

7. A semicircular plate of radius r meters, oriented as in Figure 9,
is submerged in water so that its diameter is located at a depth of m

meters. Calculate the fluid force on one side of the plate in terms of m

and r .

8. A plate extending from depth y = 2 m to y = 5 m is sub-

merged in a fluid of density ρ = 850 kg/m3. The horizontal width of
the plate at depth y is f (y) = 2(1 + y2)−1. Calculate the fluid force
on one side of the plate.

9. Figure 10 shows the wall of a dam on a water reservoir. Use the
Trapezoidal Rule and the width and depth measurements in the figure
to estimate the fluid force on the wall.

Depth (ft)

20

0

600

900

1100

1400

1650

1800 (ft)

40

60

80

100

FIGURE 10

10. Calculate the fluid force on a side of the plate in Figure 11(A),
submerged in water.

11. Calculate the fluid force on a side of the plate in Figure 11(B),
submerged in a fluid of mass density ρ = 800 kg/m3.

3 m
4 m

7 m
2 m

(A) (B)

2 m

2 m

4 m

FIGURE 11

12. Find the fluid force on the side of the plate in Figure 12, submerged
in a fluid of density ρ = 1200 kg/m3. The top of the place is level with
the fluid surface. The edges of the plate are the curves y = x1/3 and
y = −x1/3.

x
8

2 Fluid level

−8

y

y = x1/3y = −x1/3

FIGURE 12

13. Let R be the plate in the shape of the region under y = sin x for
0 ≤ x ≤ π

2 in Figure 13(A). Find the fluid force on a side of R if it is
rotated counterclockwise by 90◦ and submerged in a fluid of density
1100 kg/m3 with its top edge level with the surface of the fluid as in (B).

π

2

1

(A) (B)

Fluid level
y

y = sin x

x

R

Fluid level

R

FIGURE 13
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14. In the notation of Exercise 13, calculate the fluid force on a side
of the plate R if it is oriented as in Figure 13(A). You may need to use
Integration by Parts and trigonometric substitution.

15. Calculate the fluid force on one side of a plate in the shape of region
A shown Figure 14. The water surface is at y = 1, and the fluid has
density ρ = 900 kg/m3.

y = ln x
1

y

1 e
x

A

B

FIGURE 14

16. Calculate the fluid force on one side of the “infinite” plate B in
Figure 14, assuming the fluid has density ρ = 900 kg/m3.

17. Figure 15(A) shows a ramp inclined at 30◦ leading into a swimming
pool. Calculate the fluid force on the ramp.

18. Calculate the fluid force on one side of the plate (an isosceles tri-
angle) shown in Figure 15(B).

4

3

10

y
f (y)

Vertical
change �y

6

Water surface

(B)(A)

Water surface

30°

60°

FIGURE 15

19. The massive Three Gorges Dam on China’s Yangtze River has
height 185 m (Figure 16). Calculate the force on the dam, assuming
that the dam is a trapezoid of base 2000 m and upper edge 3000 m,
inclined at an angle of 55◦ to the horizontal (Figure 17).

FIGURE 16 Three Gorges Dam on the
Yangtze River

2,000 m

3,000 m

185 m55°

FIGURE 17

20. A square plate of side 3 m is submerged in water at an incline of
30◦ with the horizontal. Calculate the fluid force on one side of the
plate if the top edge of the plate lies at a depth of 6 m.

21. The trough in Figure 18 is filled with corn syrup, whose weight
density is 90 lb/ft3. Calculate the force on the front side of the trough.

a

dh

b

FIGURE 18

22. Calculate the fluid pressure on one of the slanted sides of the trough
in Figure 18 when it is filled with corn syrup as in Exercise 21.

Further Insights and Challenges
23. The end of the trough in Figure 19 is an equilateral triangle of
side 3. Assume that the trough is filled with water to height H . Calcu-
late the fluid force on each side of the trough as a function of H and
the length l of the trough.

H

l
3

FIGURE 19

24. A rectangular plate of side � is submerged vertically in a fluid of
density w, with its top edge at depth h. Show that if the depth is in-
creased by an amount �h, then the force on a side of the plate increases
by wA�h, where A is the area of the plate.

25. Prove that the force on the side of a rectangular plate of area A

submerged vertically in a fluid is equal to p0A, where p0 is the fluid
pressure at the center point of the rectangle.

26. If the density of a fluid varies with depth, then the pres-
sure at depth y is a function p(y) (which need not equal wy as in the
case of constant density). Use Riemann sums to argue that the total
force F on the flat side of a submerged object submerged vertically is
F = ∫ b

a f (y)p(y) dy, where f (y) is the width of the side at depth y.
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8.3 Center of Mass
Every object has a balance point called the center of mass (Figure 1). When a rigid object

FIGURE 1 This acrobat with Cirque du
Soleil must distribute his weight so that his
arm provides support directly below his
center of mass.

such as a hammer is tossed in the air, it may rotate in a complicated fashion, but its center
of mass follows the same simple parabolic trajectory as a stone tossed in the air. In this
section we use integration to compute the center of mass of a thin plate (also called a
lamina) of constant mass density ρ.

The center of mass (COM) is expressed in terms of quantities called moments. The
moment of a single particle of mass m with respect to a line L is the product of the particle’s
mass m and its directed distance (positive or negative) to the line:

Moment with respect to line L = m × directed distance to L

The particular moments with respect to the x- and y-axes are denoted Mx and My . For a
particle located at the point (x, y) (Figure 2),

Mx = my (mass times directed distance to x-axis)

My = mx (mass times directed distance to y-axis)

y

x

y

Mass m
located at (x, y)

x

FIGURE 2

x4

x1
x2

m4

m2

m1

x3
m3 COM

y

x

FIGURE 3

By definition, moments are additive: the moment of a system of n particles with
coordinates (xj , yj ) and mass mj (Figure 3) is the sum

CAUTION The notation is potentially
confusing: Mx is defined in terms of
y-coordinates and My in terms of
x-coordinates.

Mx = m1y1 + m2y2 + · · · + mnyn

My = m1x1 + m2x2 + · · · + mnxn

The center of mass (COM) is the point P = (xCM, yCM) with coordinates

xCM = My

M
, yCM = Mx

M

where M = m1 + m2 + · · · + mn is the total mass of the system.

EXAMPLE 1 Find the COM of the system of three particles in Figure 4, having masses
2, 4, and 8 at locations (0, 2), (3, 1), and (6, 4).

8

4

COM

y

2

1

2

3

4

x
71 42 63 5

FIGURE 4 Centers of mass for Example 1.

Solution The total mass is M = 2 + 4 + 8 = 14 and the moments are

Mx = m1y1 + m2y2 + m3y3 = 2 · 2 + 4 · 1 + 8 · 4 = 40

My = m1x1 + m2x2 + m3x3 = 2 · 0 + 4 · 3 + 8 · 6 = 60

Therefore, xCM = 60
14 = 30

7 and yCM = 40
14 = 20

7 . The COM is
( 30

7 , 20
7

)
.
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Laminas (Thin Plates)
Now consider a lamina (thin plate) of constant mass density ρ occupying the regionIn this section, we restrict our attention to

thin plates of constant mass density (also
called “uniform density”). COM
computations when mass density is not
constant require multiple integration and
are covered in Section 15.5.

under the graph of f (x) over an interval [a, b], where f (x) is continuous and f (x) ≥ 0
(Figure 5). In our calculations we will use the principle of additivity of moments mentioned
above for point masses:

If a region is decomposed into smaller, non-overlapping regions, then the moment of the
region is the sum of the moments of the smaller regions.

To compute the y-moment My , we begin as usual, by dividing [a, b] into N subin-
tervals of width �x = (b − a)/N and endpoints xj = a + j�x. This divides the lamina
into N vertical strips (Figure 6). If �x is small, the j th strip is nearly rectangular of area
f (xj )�x and mass ρf (xj )�x. Since all points in the strip lie at approximately the same
distance xj from the y-axis, the moment My,j of the j th strip is approximately

My,j ≈ (mass) × (directed distance to y-axis) = (ρf (xj )�x)xj

By additivity of moments,

My =
N∑

j=1

My,j ≈ ρ

N∑
j=1

xjf (xj )�x

y

x

y = f (x)

a b

FIGURE 5 Lamina occupying the region
under the graph of f (x) over [a, b].

y

x

y = f (x)

xj−1x1x0 = a xN = bxj

x j

FIGURE 6 The shaded strip is nearly
rectangular of area with f (xj )�x.

This is a Riemann sum whose value approaches ρ
∫ b

a
xf (x) dx as N → ∞, and thus

My = ρ

∫ b

a

xf (x) dx

More generally, if the lamina occupies the region between the graphs of two functions
f1(x) and f2(x) over [a, b], where f1(x) ≥ f2(x), then

My = ρ

∫ b

a

x(length of vertical cut) dx = ρ

∫ b

a

x
(
f1(x) − f2(x)

)
dx 1

Think of the lamina as made up of vertical strips of length f1(x) − f2(x) at distance x

from the y-axis (Figure 7).

x

Δx

y = f1(x)

y = f2(x)

f1(x) − f2(x)

a x b

y

FIGURE 7
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We can compute the x-moment by dividing the lamina into horizontal strips, but
this requires us to describe the lamina as a region between two curves x = g1(y) and
x = g2(y) with g1(y) ≥ g2(y) over an interval [c, d] along the y-axis (Figure 8):

x

x = g1(y)x = g2(y)

g1(y) − g2(y)

d

y

c

y

FIGURE 8

Mx = ρ

∫ d

c

y(length of horizontal cut) dy = ρ

∫ d

c

y
(
g1(y) − g2(y)

)
dy 2

The total mass of the lamina is M = ρA, where A is the area of the lamina:

M = ρA = ρ

∫ b

a

(
f1(x) − f2(x)

)
dx or ρ

∫ d

c

(
g1(y) − g2(y)

)
dy

The center-of-mass coordinates are the moments divided by the total mass:

xCM = My

M
, yCM = Mx

M

EXAMPLE 2 Find the moments and COM of the lamina of uniform density ρ occu-
pying the region underneath the graph of f (x) = x2 for 0 ≤ x ≤ 2.

Solution First, compute My using Eq. (1):

My = ρ

∫ 2

0
xf (x) dx = ρ

∫ 2

0
x(x2) dx = ρ

x4

4

∣∣∣∣2

0
= 4ρ

Then compute Mx using Eq. (2), describing the lamina as the region between x = √
y and

x = 2 over the interval [0, 4] along the y-axis (Figure 9). By Eq. (2),

4

y

x = 2

2y

y

x

yx =

y = f (x) = x2

or

2 − y

FIGURE 9 Lamina occupying the region
under the graph of f (x) = x2 over [0, 2].

Mx = ρ

∫ 4

0
y
(
g1(y) − g2(y)

)
dy = ρ

∫ 4

0
y(2 − √

y) dy

= ρ

(
y2 − 2

5
y5/2

) ∣∣∣∣4

0
= ρ

(
16 − 2

5
· 32

)
= 16

5
ρ

The plate has area A = ∫ 2
0 x2 dx = 8

3 and total mass M = 8
3ρ. Therefore,

xCM = My

M
= 4ρ

8
3ρ

= 3

2
, yCM = Mx

M
=

16
5 ρ

8
3ρ

= 6

5

CONCEPTUAL INSIGHT The COM of a lamina of constant mass density ρ is also called
the centroid. The centroid depends on the shape of the lamina, but not on its mass
density because the factor ρ cancels in the ratios Mx/M and My/M . In particular, in
calculating the centroid, we can take ρ = 1. When mass density is not constant, the
COM depends on both shape and mass density. In this case, the COM is computed
using multiple integration (Section 15.5).

A drawback of Eq. (2) for Mx is that it requires integration along the y-axis. For-
tunately, there is a second formula for Mx as an integral along the x-axis. As before,
divide the region into N thin vertical strips of width �x (see Figure 10). Let Mx,j be

x

y = f (x)

xj−1x1x0 = a xN = bxj

f (xj)

f (xj)

1
2

FIGURE 10 Because the shaded strip is
nearly rectangular, its COM has an
approximate height of 1

2f (xj ).

the x-moment of the j th strip and let mj be its mass. We can use the following trick to
approximate Mx,j . The strip is nearly rectangular with height f (xj ) and width �x, so
mj ≈ ρf (xj ) �x. Furthermore, Mx,j = yjmj , where yj is the y-coordinate of the COM
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of the strip. However, yj ≈ 1
2f (xj ) because the COM of a rectangle is located at its center.

Thus,

Mx,j = mjyj ≈ ρf (xj )�x · 1

2
f (xj ) = 1

2
ρf (xj )

2�x

Mx =
N∑

j=1

Mx,j ≈ 1

2
ρ

N∑
j=1

f (xj )
2�x

This is a Riemann sum whose value approaches 1
2ρ

∫ b

a
f (x)2 dx as N → ∞. The case

of a region between the graphs of functions f1(x) and f2(x) where f1(x) ≥ f2(x) ≥ 0 is
treated similarly, so we obtain the alternative formulas

Mx = 1

2
ρ

∫ b

a

f (x)2 dx or
1

2
ρ

∫ b

a

(
f1(x)2 − f2(x)2) dx 3

EXAMPLE 3 Find the centroid of the shaded region in Figure 11.

x

y

25

1 2 3

y = ex

FIGURE 11 Region under the curve y = ex

between x = 1 and x = 3.

Solution The centroid does not depend on ρ, so we may set ρ = 1 and apply Eqs. (1)
and (3) with f (x) = ex :

Mx = 1

2

∫ 3

1
f (x)2 dx = 1

2

∫ 3

1
e2x dx = 1

4
e2x

∣∣∣∣3

1
= e6 − e2

4

Using Integration by Parts,

My =
∫ 3

1
xf (x) dx =

∫ 3

1
xex dx = (x − 1)ex

∣∣∣∣3

1
= 2e3

The total mass is M =
∫ 3

1
ex dx = (e3 − e). The centroid has coordinates

xCM = My

M
= 2e3

e3 − e
≈ 2.313, yCM = Mx

M
= e6 − e2

4(e3 − e)
≈ 5.701

The symmetry properties of an object give information about its centroid (Figure 12).

COM

x

y

FIGURE 12 The COM of a symmetric plate
lies on the axis of symmetry.

For instance, the centroid of a square or circular plate is located at its center. Here is a
precise formulation (see Exercise 43).

THEOREM 1 Symmetry Principle If a lamina is symmetric with respect to a line,
then its centroid lies on that line.

EXAMPLE 4 Using Symmetry Find the centroid of a semicircle of radius 3.

Solution Symmetry cuts our work in half. The semicircle is symmetric with respect to
the y-axis, so the centroid lies on the y-axis, and hence xCM = 0. It remains to calculate
Mx and yCM. The semicircle is the graph of f (x) = √

9 − x2 (Figure 13). By Eq. (3) with

3

3

Centroid

−3

y

x

)(0, 4
π

FIGURE 13 The semicircle y =
√

9 − x2.

ρ = 1,

Mx = 1

2

∫ 3

−3
f (x)2 dx = 1

2

∫ 3

−3
(9 − x2) dx = 1

2

(
9x − 1

3
x3

) ∣∣∣∣3

−3
= 9 − (−9) = 18

The semicircle has area (and mass) equal to A = 1
2π(32) = 9π/2, so

yCM = Mx

M
= 18

9π/2
= 4

π
≈ 1.27
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EXAMPLE 5 Using Additivity and Symmetry Find the centroid of the region R in
Figure 14.

y

x
−2 2

3

5

7

FIGURE 14 The moment of region R is the
sum of the moments of the triangle and
circle.

Solution We set ρ = 1 because we are computing a centroid. The region R is symmetric
with respect to the y-axis, so we know in advance that xCM = 0. To find yCM, we compute
the moment Mx .

Step 1. Use additivity of moments.
Let M

triangle
x and Mcircle

x be the x-moments of the triangle and the circle. Then

Mx = M
triangle
x + Mcircle

x

Step 2. Moment of the circle.
To save work, we use the fact that the centroid of the circle is located at the center
(0, 5) by symmetry. Thus ycircle

CM = 5 and we can solve for the moment:

ycircle
CM = Mcircle

x

Mcircle
= Mcircle

x

4π
= 5 ⇒ Mcircle

x = 20π

Here, the mass of the circle is its area Mcircle = π(22) = 4π (since ρ = 1).

Step 3. Moment of a triangle.
Let’s compute M

triangle
x for an arbitrary triangle of height h and base b (Figure 15). Let

�(y) be the width of the triangle at height y. By similar triangles,

y

h − y

b

�(y)

FIGURE 15 By similar triangles,
�(y)

h − y
= b

h
.

�(y)

h − y
= b

h
⇒ �(y) = b − b

h
y

By Eq. (2),

M
triangle
x =

∫ h

0
y�(y) dy =

∫ h

0
y

(
b − b

h
y

)
dy =

(
by2

2
− by3

3h

) ∣∣∣∣h
0

= bh2

6

In our case, b = 4, h = 3, and M
triangle
x = 4 · 32

6
= 6.

Step 4. Computation of yCM.

Mx = M
triangle
x + Mcircle

x = 6 + 20π

The triangle has mass 1
2 · 4 · 3 = 6, and the circle has mass 4π , so R has mass M =

6 + 4π and

yCM = Mx

M
= 6 + 20π

6 + 4π
≈ 3.71

8.3 SUMMARY

• The moments of a system of particles of mass mj located at (xj , yj ) are

Mx = m1y1 + · · · + mnyn, My = m1x1 + · · · + mnxn

The center of mass (COM) has coordinates

xCM = My

M
and yCM = Mx

M

where M = m1 + · · · + mn.
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• Lamina (thin plate) of constant mass density ρ (region under the graph of f (x) where
f (x) ≥ 0, or between the graphs of f1(x) and f2(x) where f1(x) ≥ f2(x)):

My = ρ

∫ b

a

xf (x) dx or ρ

∫ b

a

x
(
f1(x) − f2(x)

)
dx

• There are two ways to compute the x-moment Mx . If the lamina occupies the region
between the graph of x = g(y) and the y-axis where g(y) ≥ 0, or between the graphs of
g1(y) and g2(y) where g1(y) ≥ g2(y), then

Mx = ρ

∫ d

c

yg(y) dy or ρ

∫ d

c

y
(
g1(y) − g2(y)

)
dy

• Alternative (often more convenient) formula for Mx :

Mx = 1

2
ρ

∫ b

a

f (x)2 dx or
1

2
ρ

∫ b

a

(
f1(x)2 − f2(x)2) dx

• The total mass of the lamina is M = ρ
∫ b

a

(
f1(x) − f2(x)

)
dx. The coordinates of the

center of mass (also called the centroid ) are

xCM = My

M
, yCM = Mx

M

• Additivity: If a region is decomposed into smaller non-overlapping regions, then the
moment of the region is the sum of the moments of the smaller regions.
• Symmetry Principle: If a lamina of constant mass density is symmetric with respect to
a given line, then the center of mass (centroid) lies on that line.

m2

L2L1

Pm1

FIGURE 16 Archimedes’ Law of the Lever:

m1L1 = m2L2

HISTORICAL
PERSPECTIVE

We take it for granted
that physical laws
are best expressed
as mathematical re-
lationships. Think of
F = ma or the uni-
versal law of gravita-

tion. However, the fundamental insight that
mathematics could be used to formulate laws
of nature (and not just for counting or measur-
ing) developed gradually, beginning with the
philosophers of ancient Greece and culminat-
ing some 2000 years later in the discoveries of
Galileo and Newton.Archimedes (287–212 bce)

was one of the first scientists (perhaps the first) to
formulate a precise physical law. Concerning the
principle of the lever, Archimedes wrote, “Com-
mensurable magnitudes balance at distances re-
ciprocally proportional to their weight.” In other
words, if weights of mass m1 and m2 are placed
on a weightless lever at distances L1 and L2
from the fulcrum P (Figure 16), then the lever
will balance if m1/m2 = L2/L1, or

m1L1 = m2L2

In our terminology, what Archimedes had dis-
covered was the center of mass P of the system
of weights (see Exercises 41 and 42).

8.3 EXERCISES

Preliminary Questions
1. What are the x- and y-moments of a lamina whose center of mass

is located at the origin?

2. A thin plate has mass 3. What is the x-moment of the plate if its
center of mass has coordinates (2, 7)?

3. The center of mass of a lamina of total mass 5 has coordinates
(2, 1). What are the lamina’s x- and y-moments?

4. Explain how the Symmetry Principle is used to conclude that the
centroid of a rectangle is the center of the rectangle.
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Exercises
1. Four particles are located at points (1, 1), (1, 2), (4, 0), (3, 1).

(a) Find the moments Mx and My and the center of mass of the system,
assuming that the particles have equal mass m.
(b) Find the center of mass of the system, assuming the particles have
masses 3, 2, 5, and 7, respectively.

2. Find the center of mass for the system of particles of masses 4, 2,
5, 1 located at (1, 2), (−3, 2), (2, −1), (4, 0).

3. Point masses of equal size are placed at the vertices of the triangle
with coordinates (a, 0), (b, 0), and (0, c). Show that the center of mass
of the system of masses has coordinates

( 1
3 (a + b), 1

3 c
)
.

4. Point masses of mass m1, m2, and m3 are placed at the points
(−1, 0), (3, 0), and (0, 4).

(a) Suppose that m1 = 6. Find m2 such that the center of mass lies on
the y-axis.
(b) Suppose that m1 = 6 and m2 = 4. Find the value of m3 such that
yCM = 2.

5. Sketch the lamina S of constant density ρ = 3 g/cm2 occupying
the region beneath the graph of y = x2 for 0 ≤ x ≤ 3.

(a) Use Eqs. (1) and (2) to compute Mx and My .
(b) Find the area and the center of mass of S.

6. Use Eqs. (1) and (3) to find the moments and center of mass of
the lamina S of constant density ρ = 2 g/cm2 occupying the region be-
tween y = x2 and y = 9x over [0, 3]. Sketch S, indicating the location
of the center of mass.

7. Find the moments and center of mass of the lamina of uniform
density ρ occupying the region underneath y = x3 for 0 ≤ x ≤ 2.

8. CalculateMx (assumingρ = 1) for the region underneath the graph
of y = 1 − x2 for 0 ≤ x ≤ 1 in two ways, first using Eq. (2) and then
using Eq. (3).

9. Let T be the triangular lamina in Figure 17.

(a) Show that the horizontal cut at height y has length 4 − 2
3y and use

Eq. (2) to compute Mx (with ρ = 1).
(b) Use the Symmetry Principle to show that My = 0 and find the
center of mass.

y

−2 2

6

x

FIGURE 17 Isosceles triangle.

In Exercises 10–17, find the centroid of the region lying underneath the
graph of the function over the given interval.

10. f (x) = 6 − 2x, [0, 3] 11. f (x) = √
x, [1, 4]

12. f (x) = x3, [0, 1] 13. f (x) = 9 − x2, [0, 3]
14. f (x) = (1 + x2)−1/2, [0, 3] 15. f (x) = e−x , [0, 4]
16. f (x) = ln x, [1, 2] 17. f (x) = sin x, [0, π ]
18. Calculate the moments and center of mass of the lamina occupying
the region between the curves y = x and y = x2 for 0 ≤ x ≤ 1.

19. Sketch the region between y = x + 4 and y = 2 − x for 0 ≤ x ≤
2. Using symmetry, explain why the centroid of the region lies on the
line y = 3. Verify this by computing the moments and the centroid.

In Exercises 20–25, find the centroid of the region lying between the
graphs of the functions over the given interval.

20. y = x, y = √
x, [0, 1]

21. y = x2, y = √
x, [0, 1]

22. y = x−1, y = 2 − x, [1, 2]
23. y = ex , y = 1, [0, 1]
24. y = ln x, y = x − 1, [1, 3]
25. y = sin x, y = cos x, [0, π/4]
26. Sketch the region enclosed by y = x + 1, and y = (x − 1)2, and
find its centroid.

27. Sketch the region enclosed by y = 0, y = (x + 1)3, and y =
(1 − x)3, and find its centroid.

In Exercises 28–32, find the centroid of the region.

28. Top half of the ellipse
(x

2

)2 +
(y

4

)2 = 1

29. Top half of the ellipse
(x

a

)2 +
(y

b

)2 = 1 for arbitrary a, b > 0

30. Semicircle of radius r with center at the origin

31. Quarter of the unit circle lying in the first quadrant

32. Triangular plate with vertices (−c, 0), (0, c), (a, b), where
a, b, c > 0, and b < c

33. Find the centroid for the shaded region of the semicircle of radius
r in Figure 18. What is the centroid when r = 1 and h = 1

2 ? Hint: Use
geometry rather than integration to show that the area of the region is

r2 sin−1(
√

1 − h2/r2) − h
√

r2 − h2).

y

x
hr

FIGURE 18
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34. Sketch the region between y = xn and y = xm for 0 ≤ x ≤ 1,
where m > n ≥ 0 and find the COM of the region. Find a pair (n, m)

such that the COM lies outside the region.

In Exercises 35–37, use the additivity of moments to find the COM of
the region.

35. Isosceles triangle of height 2 on top of a rectangle of base 4 and
height 3 (Figure 19)

y

−2 2

2

3

x

FIGURE 19

36. An ice cream cone consisting of a semicircle on top of an equilateral
triangle of side 6 (Figure 20)

y

−3 3

6

x

FIGURE 20

37. Three-quarters of the unit circle (remove the part in the fourth
quadrant)

38. Let S be the lamina of mass density ρ = 1 obtained by removing
a circle of radius r from the circle of radius 2r shown in Figure 21. Let

MS
x and MS

y denote the moments of S. Similarly, let M
big
y and Msmall

y

be the y-moments of the larger and smaller circles.

(a) Use the Symmetry Principle to show that MS
x = 0.

(b) Show that MS
y = M

big
y − Msmall

y using the additivity of moments.

(c) Find M
big
y and Msmall

y using the fact that the COM of a circle is its

center. Then compute MS
y using (b).

(d) Determine the COM of S.

y

x
r

2r

FIGURE 21

39. Find the COM of the laminas in Figure 22 obtained by removing
squares of side 2 from a square of side 8.

8

22

8

FIGURE 22

Further Insights and Challenges
40. Amedian of a triangle is a segment joining a vertex to the midpoint
of the opposite side. Show that the centroid of a triangle lies on each
of its medians, at a distance two-thirds down from the vertex. Then use
this fact to prove that the three medians intersect at a single point. Hint:
Simplify the calculation by assuming that one vertex lies at the origin
and another on the x-axis.

41. Let P be the COM of a system of two weights with masses m1 and
m2 separated by a distance d . Prove Archimedes’ Law of the (weight-
less) Lever: P is the point on a line between the two weights such that
m1L1 = m2L2, where Lj is the distance from mass j to P .

42. Find the COM of a system of two weights of masses m1 and m2
connected by a lever of length d whose mass density ρ is uniform. Hint:
The moment of the system is the sum of the moments of the weights
and the lever.

43. Symmetry Principle Let R be the region under the
graph of f (x) over the interval [−a, a], where f (x) ≥ 0. Assume that
R is symmetric with respect to the y-axis.

(a) Explain why f (x) is even—that is, why f (x) = f (−x).

(b) Show that xf (x) is an odd function.

(c) Use (b) to prove that My = 0.

(d) Prove that the COM of R lies on the y-axis (a similar argument
applies to symmetry with respect to the x-axis).

44. Prove directly that Eqs. (2) and (3) are equivalent in the following
situation. Let f (x) be a positive decreasing function on [0, b] such that
f (b) = 0. Set d = f (0) and g(y) = f −1(y). Show that

1

2

∫ b

0
f (x)2 dx =

∫ d

0
yg(y) dy

Hint: First apply the substitution y = f (x) to the integral on the left
and observe that dx = g′(y) dy. Then apply Integration by Parts.
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45. Let R be a lamina of uniform density submerged in a fluid of den-
sity w (Figure 23). Prove the following law: The fluid force on one side
of R is equal to the area of R times the fluid pressure on the centroid.
Hint: Let g(y) be the horizontal width of R at depth y. Express both the
fluid pressure [Eq. (2) in Section 8.2] and y-coordinate of the centroid
in terms of g(y).

y

yCM

y (depth)

Fluid level

Centroid

g(y)

R

FIGURE 23

8.4 Taylor Polynomials

English mathematician Brook Taylor
(1685–1731) made important contributions
to calculus and physics, as well as to the
theory of linear perspective used in
drawing.

In Section 4.1, we used the linearization L(x) to approximate a function f (x) near a point
x = a:

L(x) = f (a) + f ′(a)(x − a)

We refer to L(x) as a “first-order” approximation to f (x) at x = a because f (x) and L(x)

have the same value and the same first derivative at x = a (Figure 1):

L(a) = f (a), L′(a) = f ′(a)

A first-order approximation is useful only in a small interval around x = a. In this section
we learn how to achieve greater accuracy over larger intervals using the higher-order
approximations (Figure 2).

f(x)

L(x)

a
x

y

FIGURE 1 The linear approximation L(x) is
a first-order approximation to f (x).

a

f(x)

L(x)

x

y

Second-order
approximation

FIGURE 2 A second-order approximation is
more accurate over a larger interval.

In what follows, assume that f (x) is defined on an open interval I and that all higher
derivatives f (k)(x) exist on I . Let a ∈ I . We say that two functions f (x) and g(x) agree
to order n at x = a if their derivatives up to order n at x = a are equal:

f (a) = g(a), f ′(a) = g′(a), f ′′(a) = g′′(a), . . . , f (n)(a) = g(n)(a)

We also say that g(x) “approximates f (x) to order n” at x = a.
Define the nth Taylor polynomial centered at x = a as follows:

Tn(x) = f (a) + f ′(a)

1! (x − a) + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n

The first few Taylor polynomials are

T0(x) = f (a)

T1(x) = f (a) + f ′(a)(x − a)
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T2(x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2

T3(x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2 + 1

6
f ′′′(a)(x − a)3

Note that T1(x) is the linearization of f (x) at a. Note also that Tn(x) is obtained from
Tn−1(x) by adding on a term of degree n:

Tn(x) = Tn−1(x) + f (n)(a)

n! (x − a)n

The next theorem justifies our definition of Tn(x).

REMINDER k-factorial is the number
k! = k(k − 1)(k − 2) · · · (2)(1). Thus,

1! = 1, 2! = (2)1 = 2

3! = (3)(2)1 = 6

By convention, we define 0! = 1.

THEOREM 1 The polynomial Tn(x) centered at a agrees with f (x) to order n at
x = a, and it is the only polynomial of degree at most n with this property.

The verification of Theorem 1 is left to the exercises (Exercises 70–71), but we’ll
illustrate the idea by checking that T2(x) agrees with f (x) to order n = 2.

T2(x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2, T2(a) = f (a)

T ′
2(x) = f ′(a) + f ′′(a)(x − a), T ′

2(a) = f ′(a)

T ′′
2 (x) = f ′′(a), T ′′

2 (a) = f ′′(a)

This shows that the value and the derivatives of order up to n = 2 at x = a are equal.
Before proceeding to the examples, we write Tn(x) in summation notation:

Tn(x) =
n∑

j=0

f (j)(a)

j ! (x − a)j

By convention, we regard f (x) as the zeroeth derivative, and thus f (0)(x) is f (x) itself.
When a = 0, Tn(x) is also called the nth Maclaurin polynomial.

EXAMPLE 1 Maclaurin Polynomials for ex Plot the third and fourth Maclaurin poly-
nomials for f (x) = ex . Compare with the linear approximation.

Solution All higher derivatives coincide with f (x) itself: f (k)(x) = ex . Therefore,

f (0) = f ′(0) = f ′′(0) = f ′′′(0) = f (4)(0) = e0 = 1

The third Maclaurin polynomial (the case a = 0) is

T3(x) = f (0) + f ′(0)x + 1

2
f ′′(0)x2 + 1

3!f
′′′(0)x3 = 1 + x + 1

2
x2 + 1

6
x3

We obtain T4(x) by adding the term of degree 4 to T3(x):

T4(x) = T3(x) + 1

4!f
(4)(0)x4 = 1 + x + 1

2
x2 + 1

6
x3 + 1

24
x4

Figure 3 shows that T3 and T4 approximate f (x) = ex much more closely than the linear

5

1
x

y y = ex

y = T4(x)
y = T3(x)

y = T1(x)

−1

FIGURE 3 Maclaurin polynomials for
f (x) = ex .

approximation T1(x) on an interval around a = 0. Higher-degree Taylor polynomials
would provide even better approximations on larger intervals.
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EXAMPLE 2 Computing Taylor Polynomials Compute the Taylor polynomial T4(x)

centered at a = 3 for f (x) = √
x + 1.

Solution First evaluate the derivatives up to degree 4 at a = 3:

f (x) = (x + 1)1/2, f (3) = 2

f ′(x) = 1

2
(x + 1)−1/2, f ′(3) = 1

4

f ′′(x) = −1

4
(x + 1)−3/2, f ′′(3) = − 1

32

f ′′′(x) = 3

8
(x + 1)−5/2, f ′′′(3) = 3

256

f (4)(x) = −15

16
(x + 1)−7/2, f (4)(3) = − 15

2048

Then compute the coefficients
f (j)(3)

j ! :

The first term f (a) in the Taylor polynomial
Tn(x) is called the constant term.

Constant term = f (3) = 2

Coefficient of (x − 3) = f ′(3) = 1

4

Coefficient of (x − 3)2 = f ′′(3)

2! = − 1

32
· 1

2! = − 1

64

Coefficient of (x − 3)3 = f ′′′(3)

3! = 3

256
· 1

3! = 1

512

Coefficient of (x − 3)4 = f (4)(3)

4! = − 15

2048
· 1

4! = − 5

16,384

The Taylor polynomial T4(x) centered at a = 3 is (see Figure 4):

−1 153

y

x

y = f (x)

y = T4(x)

FIGURE 4 Graph of f (x) = √
x + 1 and

T4(x) centered at x = 3.

T4(x) = 2 + 1

4
(x − 3) − 1

64
(x − 3)2 + 1

512
(x − 3)3 − 5

16,384
(x − 3)4

EXAMPLE 3 Finding a General Formula for Tn Find the Taylor polynomials Tn(x) of
f (x) = ln x centered at a = 1.

Solution For f (x) = ln x, the constant term of Tn(x) at a = 1 is zero because f (1) =
ln 1 = 0. Next, we compute the derivatives:

After computing several derivatives of
f (x) = ln x, we begin to discern the
pattern. For many functions of interest,
however, the derivatives follow no simple
pattern and there is no convenient formula
for the general Taylor polynomial.

f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −3 · 2x−4

Similarly, f (5)(x) = 4 · 3 · 2x−5. The general pattern is that f (k)(x) is a multiple of x−k ,
with a coefficient ±(k − 1)! that alternates in sign:

f (k)(x) = (−1)k−1(k − 1)! x−k 1

The coefficient of (x − 1)k in Tn(x) is

f (k)(1)

k! = (−1)k−1(k − 1)!
k! = (−1)k−1

k
(for k ≥ 1)
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Thus, the coefficients for k ≥ 1 form a sequence 1, − 1
2 , 1

3 , − 1
4 , . . . , andTaylor polynomials for ln x at a = 1:

T1(x) = (x − 1)

T2(x) = (x − 1) − 1

2
(x − 1)2

T3(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3

Tn(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − · · · + (−1)n−1 1

n
(x − 1)n

EXAMPLE 4 Cosine Find the Maclaurin polynomials of f (x) = cos x.

Solution The derivatives form a repeating pattern of period 4:

f (x) = cos x, f ′(x) = − sin x, f ′′ (x) = − cos x, f ′′′(x) = sin x,

f (4)(x) = cos x, f (5)(x) = − sin x, · · ·

In general, f (j+4)(x) = f (j)(x). The derivatives at x = 0 also form a pattern:

f (0) f ′(0) f ′′(0) f ′′′(0) f (4)(0) f (5)(0) f (6)(0) f (7)(0) · · ·
1 0 −1 0 1 0 −1 0 · · ·

Therefore, the coefficients of the odd powers x2k+1 are zero, and the coefficients of the

Scottish mathematician Colin Maclaurin
(1698–1746) was a professor in Edinburgh.
Newton was so impressed by his work that
he once offered to pay part of Maclaurin’s
salary.

even powers x2k alternate in sign with value (−1)k/(2k)!:

T0(x) = T1(x) = 1, T2(x) = T3(x) = 1 − 1

2!x
2

T4(x) = T5(x) = 1 − x2

2
+ x4

4!
T2n(x) = T2n+1(x) = 1 − 1

2
x2 + 1

4!x
4 − 1

6!x
6 + · · · + (−1)n

1

(2n)!x
2n

Figure 5 shows that as n increases, Tn(x) approximates f (x) = cos x well over larger and
larger intervals, but outside this interval, the approximation fails.

x x

x x

yy y

y

T0(x)

T2(x)

T10(x)T6(x)

x

T4(x)

2π

π

−2π

−π

2π 2π

π π

−2π −2π

−π −π

2π

π

−2π

−π

2π

π

−2π

−π

y

f (x) = cos x

x

y

T8(x)

2π

π

−2π

−π

FIGURE 5 Maclaurin polynomials for
f (x) = cos x. The graph of f (x) is shown
as a dashed curve.
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EXAMPLE 5 How far is the horizon? Valerie is at the beach, looking out over the
ocean (Figure 6). How far can she see? Use Maclaurin polynomials to estimate the distance
d , assuming that Valerie’s eye level is h = 1.7 m above ground. What if she looks out
from a window where her eye level is 20 m?

FIGURE 6 View from the beach

A

H

h

R

Eye level

R

d

C

q

FIGURE 7 Valerie can see a distance
d = Rθ , the length of arc AH .

Solution Let R be the radius of the earth. Figure 7 shows that Valerie can see a distance
d = Rθ , the length of the circular arc AH in Figure 7. We have

cos θ = R

R + h

Our key observation is that θ is close to zero (both θ and h are much smaller than shownThis calculation ignores the bending of
light (called refraction) as it passes through
the atmosphere. Refraction typically
increases d by around 10%, although the
actual effect is complex and varies with
atmospheric temperature.

in the figure), so we lose very little accuracy if we replace cos θ by its second Maclaurin
polynomial T2(θ) = 1 − 1

2θ2, as computed in Example 4:

1 − 1

2
θ2 ≈ R

R + h
⇒ θ2 ≈ 2 − 2R

R + h
⇒ θ ≈

√
2h

R + h

Furthermore, h is very small relative to R, so we may replace R + h by R to obtain

d = Rθ ≈ R

√
2h

R
= √

2Rh

The earth’s radius is approximately R ≈ 6.37 × 106 m, so

d = √
2Rh ≈

√
2(6.37 × 106)h ≈ 3569

√
h m

In particular, we see that d is proportional to
√

h.
If Valerie’s eye level is h = 1.7 m, then d ≈ 3569

√
1.7 ≈ 4653 m, or roughly

4.7 km. If h = 20 m, then d ≈ 3569
√

20 ≈ 15.96 m, or nearly 16 km.

The Error Bound
To use Taylor polynomials effectively, we need a way to estimate the size of the error.
This is provided by the next theorem, which shows that the size of this error depends on
the size of the (n + 1)st derivative.A proof of Theorem 2 is presented at the

end of this section.

THEOREM 2 Error Bound Assume that f (n+1)(x) exists and is continuous. Let K be
a number such that |f (n+1)(u)| ≤ K for all u between a and x. Then

|f (x) − Tn(x)| ≤ K
|x − a|n+1

(n + 1)!

where Tn(x) is the nth Taylor polynomial centered at x = a.
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EXAMPLE 6 Using the Error Bound Apply the error bound to

| ln 1.2 − T3(1.2)|
where T3(x) is the third Taylor polynomial for f (x) = ln x at a = 1. Check your result
with a calculator.

Solution

Step 1. Find a value of K .
To use the error bound with n = 3, we must find a value of K such that |f (4)(u)| ≤ K

for all u between a = 1 and x = 1.2.As we computed in Example 3, f (4)(x) = −6x−4.
The absolute value |f (4)(x)| is decreasing for x > 0, so its maximum value on [1, 1.2]
is |f (4)(1)| = 6. Therefore, we may take K = 6.

Step 2. Apply the error bound.

| ln 1.2 − T3(1.2)| ≤ K
|x − a|n+1

(n + 1)! = 6
|1.2 − 1|4

4! ≈ 0.0004

Step 3. Check the result.
Recall from Example 3 that

T3(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3

The following values from a calculator confirm that the error is at most 0.0004:

| ln 1.2 − T3(1.2)| ≈ |0.182667 − 0.182322| ≈ 0.00035 < 0.0004

Observe in Figure 8 that ln x and T3(x) are indistinguishable near x = 1.2.

T3(x)

ln(x)

x

1

−1

y

21 1.2

FIGURE 8 ln x and T3(x) are
indistinguishable near x = 1.2.

EXAMPLE 7 Approximating with a Given Accuracy Let Tn(x) be the nth Maclaurin
polynomial for f (x) = cos x. Find a value of n such that

| cos 0.2 − Tn(0.2)| < 10−5

Solution

Step 1. Find a value of K .
Since |f (n)(x)| is | cos x| or | sin x|, depending on whether n is even or odd, we have
|f (n)(u)| ≤ 1 for all u. Thus, we may apply the error bound with K = 1.

Step 2. Find a value of n.
The error bound gives usTo use the error bound, it is not necessary

to find the smallest possible value of K. In
this example, we take K = 1. This works
for all n, but for odd n we could have used
the smaller value K = sin 0.2 ≈ 0.2.

| cos 0.2 − Tn(0.2)| ≤ K
|0.2 − 0|n+1

(n + 1)! = |0.2|n+1

(n + 1)!
To make the error less than 10−5, we must choose n so that

|0.2|n+1

(n + 1)! < 10−5

It’s not possible to solve this inequality for n, but we can find a suitable n by checking
several values:

n 2 3 4

|0.2|n+1

(n + 1)!
0.23

3! ≈ 0.0013
0.24

4! ≈ 6.67 × 10−5 0.25

5! ≈ 2.67 × 10−6 < 10−5

We see that the error is less than 10−5 for n = 4.
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The rest of this section is devoted to a proof of the error bound (Theorem 2). Define
the nth remainder:

Rn(x) = f (x) − Tn(x)

The error in Tn(x) is the absolute value |Rn(x)|. As a first step in proving the error bound,
we show that Rn(x) can be represented as an integral.

Taylor’s Theorem: Version I Assume that f (n+1)(x) exists and is continuous. Then

Rn(x) = 1

n!
∫ x

a

(x − u)nf (n+1)(u) du 2

Proof Set

In(x) = 1

n!
∫ x

a

(x − u)nf (n+1)(u) du

Our goal is to show that Rn(x) = In(x). For n = 0, R0(x) = f (x) − f (a) and the desired
result is just a restatement of the Fundamental Theorem of Calculus:

I0(x) =
∫ x

a

f ′(u) du = f (x) − f (a) = R0(x)

To prove the formula for n > 0, we apply Integration by Parts to In(x) withExercise 64 reviews this proof for the
special case n = 2.

h(u) = 1

n! (x − u)n, g(u) = f (n)(u)

Then g′(u) = f (n+1)(u), and so

In(x) =
∫ x

a

h(u) g′(u) du = h(u)g(u)

∣∣∣∣x
a

−
∫ x

a

h′(u)g(u) du

= 1

n! (x − u)nf (n)(u)

∣∣∣∣x
a

− 1

n!
∫ x

a

(−n)(x − u)n−1f (n)(u) du

= − 1

n! (x − a)nf (n)(a) + In−1(x)

This can be rewritten as

In−1(x) = f (n)(a)

n! (x − a)n + In(x)

Now apply this relation n times, noting that I0(x) = f (x) − f (a):

f (x) = f (a) + I0(x)

= f (a) + f
′
(a)

1! (x − a) + I1(x)

= f (a) + f
′
(a)

1! (x − a) + f ′′(a)

2! (x − a)2 + I2(x)

...

= f (a) + f
′
(a)

1! (x − a) + · · · + f (n)(a)

n! (x − a)n + In(x)

This shows that f (x) = Tn(x) + In(x) and hence In(x) = Rn(x), as desired.
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Taylor’s Theorem: Version II (Lagrange) Assume f (n+1)(x) exists and is continuous.
Then

Rn(x) = f (n+1)(c)

(n + 1)! (x − a)n+1 for some c between a and x 3

Proof We use the Generalized Mean Value Theorem stated in the margin.

The Generalized Mean Value Theorem for
Integrals states: If f (x) and g(x) are
continuous functions on [a, b], then there
exists c ∈ [a, b] such that∫ b

a

f (u)g(u) du = f (c)

∫ b

a

g(u) du

We apply this result in Eq. (4) with b = x

and the functions

f (n+1)(u), g(u) = (x − u)n

n!

Rn(x) = 1

n!
∫ x

a

(x − u)nf (n+1)(u) du

= 1

n!f
(n+1)(c)

∫ x

a

(x − u)n du 4

= f (n+1)(c)

n!
(−(x − u)n+1

n + 1

∣∣∣∣u=x

u=a

)

= f (n+1)(c)

(n + 1)! (x − a)n+1

Theorem 2 now follows immediately since
∣∣f (n+1)(c)

∣∣ ≤ K , by hypothesis.

8.4 SUMMARY

• The nth Taylor polynomial centered at x = a for the function f (x) is

Tn(x) = f (a) + f ′(a)

1! (x − a)1 + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n

When a = 0, Tn(x) is also called the nth Maclaurin polynomial.
• If f (n+1)(x) exists and is continuous, then we have the error bound

|Tn(x) − f (x)| ≤ K
|x − a|n+1

(n + 1)!
where K is a number such that |f (n+1)(u)| ≤ K for all u between a and x.
• For reference, we include a table of standard Maclaurin and Taylor polynomials.

f (x) a Maclaurin or Taylor Polynomial

ex 0 Tn(x) = 1 + x + x2

2! + x3

3! + · · · + xn

n!
sin x 0 T2n+1(x) = T2n+2(x) = x − x3

3! + · · · + (−1)n
x2n+1

(2n + 1)!
cos x 0 T2n(x) = T2n+1(x) = 1 − x2

2! + x4

4! − · · · + (−1)n
x2n

(2n)!
ln x 1 Tn(x) = (x − 1) − 1

2
(x − 1)2 + · · · + (−1)n−1

n
(x − 1)n

1

1 − x
0 Tn(x) = 1 + x + x2 + · · · + xn
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8.4 EXERCISES

Preliminary Questions
1. What is T3(x) centered at a = 3 for a function f (x) such that

f (3) = 9, f ′(3) = 8, f ′′(3) = 4, and f ′′′(3) = 12?

2. The dashed graphs in Figure 9 are Taylor polynomials for a function
f (x). Which of the two is a Maclaurin polynomial?

x x
2 31

2

31−1 −1

y = f (x)y = f (x)

y y

(A) (B)

FIGURE 9

3. For which value of x does the Maclaurin polynomial Tn(x) satisfy
Tn(x) = f (x), no matter what f (x) is?

4. Let Tn(x) be the Maclaurin polynomial of a function f (x) satisfy-
ing |f (4)(x)| ≤ 1 for all x. Which of the following statements follow
from the error bound?

(a) |T4(2) − f (2)| ≤ 2
3

(b) |T3(2) − f (2)| ≤ 2
3

(c) |T3(2) − f (2)| ≤ 1
3

Exercises
In Exercises 1–14, calculate the Taylor polynomials T2(x) and T3(x)

centered at x = a for the given function and value of a.

1. f (x) = sin x, a = 0 2. f (x) = sin x, a = π

2

3. f (x) = 1

1 + x
, a = 2 4. f (x) = 1

1 + x2
, a = −1

5. f (x) = x4 − 2x, a = 3 6. f (x) = x2 + 1

x + 1
, a = −2

7. f (x) = tan x, a = 0 8. f (x) = tan x, a = π

4

9. f (x) = e−x + e−2x , a = 0 10. f (x) = e2x , a = ln 2

11. f (x) = x2e−x , a = 1 12. f (x) = cosh 2x, a = 0

13. f (x) = ln x

x
, a = 1 14. f (x) = ln(x + 1), a = 0

15. Show that the nth Maclaurin polynomial for ex is

Tn(x) = 1 + x

1! + x2

2! + · · · + xn

n!
16. Show that the nth Taylor polynomial for

1

x + 1
at a = 1 is

Tn(x) = 1

2
− (x − 1)

4
+ (x − 1)2

8
+ · · · + (−1)n

(x − 1)n

2n+1

17. Show that the Maclaurin polynomials for sin x are

T2n+1(x) = T2n+2(x) = x − x3

3! + x5

5! − · · · + (−1)n
x2n+1

(2n + 1)!
18. Show that the Maclaurin polynomials for ln(1 + x) are

Tn(x) = x − x2

2
+ x3

3
+ · · · + (−1)n−1 xn

n

In Exercises 19–24, find Tn(x) at x = a for all n.

19. f (x) = 1

1 + x
, a = 0 20. f (x) = 1

x − 1
, a = 4

21. f (x) = ex , a = 1 22. f (x) = x−2, a = 2

23. f (x) = cos x, a = π

4
24. f (θ) = sin 3θ , a = 0

In Exercises 25–28, find T2(x) and use a calculator to compute the
error |f (x) − T2(x)| for the given values of a and x.

25. y = ex , a = 0, x = −0.5

26. y = cos x, a = 0, x = π

12

27. y = x−2/3, a = 1, x = 1.2

28. y = esin x , a = π

2
, x = 1.5

29. Compute T3(x) for f (x) = √
x centered at a = 1. Then

use a plot of the error |f (x) − T3(x)| to find a value c > 1 such that
the error on the interval [1, c] is at most 0.25.

30. Plot f (x) = 1/(1 + x) together with the Taylor polyno-
mials Tn(x) at a = 1 for 1 ≤ n ≤ 4 on the interval [−2, 8] (be sure to
limit the upper plot range).

(a) Over which interval does T4(x) appear to approximate f (x)

closely?

(b) What happens for x < −1?

(c) Use your computer algebra system to produce and plot T30 together
with f (x) on [−2, 8]. Over which interval does T30 appear to give a
close approximation?



S E C T I O N 8.4 Taylor Polynomials 497

31. Let T3(x) be the Maclaurin polynomial of f (x) = ex . Use the er-
ror bound to find the maximum possible value of |f (1.1) − T3(1.1)|.
Show that we can take K = e1.1.

32. Let T2(x) be the Taylor polynomial of f (x) = √
x at a = 4. Ap-

ply the error bound to find the maximum possible value of the error
|f (3.9) − T2(3.9)|.
In Exercises 33–36, compute the Taylor polynomial indicated and use
the error bound to find the maximum possible size of the error. Verify
your result with a calculator.

33. f (x) = cos x, a = 0; |cos 0.25 − T5(0.25)|
34. f (x) = x11/2, a = 1; |f (1.2) − T4(1.2)|
35. f (x) = x−1/2, a = 4; |f (4.3) − T3(4.3)|
36. f (x) = √

1 + x, a = 8; |√9.02 − T3(8.02)|
37. Calculate the Maclaurin polynomial T3(x) for f (x) = tan−1 x.
Compute T3

( 1
2

)
and use the error bound to find a bound for the error∣∣ tan−1 1

2 − T3
( 1

2

)∣∣. Refer to the graph in Figure 10 to find an accept-

able value of K . Verify your result by computing
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣
using a calculator.

y

x
21 3

−1

1

2

3

4

5

FIGURE 10 Graph of f (4)(x) = −24x(x2 − 1)

(x2 + 1)4
, where

f (x) = tan−1 x.

38. Let f (x) = ln(x3 − x + 1). The third Taylor polynomial at a =
1 is

T3(x) = 2(x − 1) + (x − 1)2 − 7

3
(x − 1)3

Find the maximum possible value of |f (1.1) − T3(1.1)|, using the
graph in Figure 11 to find an acceptable value of K . Verify your re-
sult by computing |f (1.1) − T3(1.1)| using a calculator.

20

40
41

x

y

1.21.11.00.9

FIGURE 11 Graph of f (4)(x), where f (x) = ln(x3 − x + 1).

39. Calculate the T3(x) at a = 0.5 for f (x) = cos(x2),
and use the error bound to find the maximum possible value of
|f (0.6) − T2(0.6)|. Plot f (4)(x) to find an acceptable value of K .

40. Calculate the Maclaurin polynomial T2(x) for f (x) =
sech x and use the error bound to find the maximum possible value
of

∣∣f ( 1
2

) − T2
( 1

2

)∣∣. Plot f ′′′(x) to find an acceptable value of K .

In Exercises 41–44, use the error bound to find a value of n for which the
given inequality is satisfied. Then verify your result using a calculator.

41. | cos 0.1 − Tn(0.1)| ≤ 10−7, a = 0

42. | ln 1.3 − Tn(1.3)| ≤ 10−4, a = 1

43. |√1.3 − Tn(1.3)| ≤ 10−6, a = 1

44. |e−0.1 − Tn(−0.1)| ≤ 10−6, a = 0

45. Let f (x) = e−x and T3(x) = 1 − x + x2

2
− x3

6
. Use the error

bound to show that for all x ≥ 0,

|f (x) − T3(x)| ≤ x4

24

If you have a GU, illustrate this inequality by plotting f (x) − T3(x)

and x4/24 together over [0, 1].
46. Use the error bound with n = 4 to show that∣∣∣∣∣sin x −

(
x − x3

6

)∣∣∣∣∣ ≤ |x|5
120

(for all x)

47. Let Tn(x) be the Taylor polynomial for f (x) = ln x at a = 1, and
let c > 1. Show that

| ln c − Tn(c)| ≤ |c − 1|n+1

n + 1

Then find a value of n such that | ln 1.5 − Tn(1.5)| ≤ 10−2.

48. Let n ≥ 1. Show that if |x| is small, then

(x + 1)1/n ≈ 1 + x

n
+ 1 − n

2n2
x2

Use this approximation with n = 6 to estimate 1.51/6.

49. Verify that the third Maclaurin polynomial for f (x) = ex sin x is
equal to the product of the third Maclaurin polynomials of ex and sin x

(after discarding terms of degree greater than 3 in the product).

50. Find the fourth Maclaurin polynomial for f (x) = sin x cos x by
multiplying the fourth Maclaurin polynomials for f (x) = sin x and
f (x) = cos x.

51. Find the Maclaurin polynomials Tn(x) for f (x) = cos(x2). You
may use the fact that Tn(x) is equal to the sum of the terms up to degree
n obtained by substituting x2 for x in the nth Maclaurin polynomial of
cos x.

52. Find the Maclaurin polynomials of 1/(1 + x2) by substituting −x2

for x in the Maclaurin polynomials of 1/(1 − x).

53. Let f (x) = 3x3 + 2x2 − x − 4. Calculate Tj (x) for j = 1, 2, 3,
4, 5 at both a = 0 and a = 1. Show that T3(x) = f (x) in both cases.
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54. Let Tn(x) be the nth Taylor polynomial at x = a for a polynomial
f (x) of degree n. Based on the result of Exercise 53, guess the value of
|f (x) − Tn(x)|. Prove that your guess is correct using the error bound.

55. Let s(t) be the distance of a truck to an intersection. At time t = 0,
the truck is 60 meters from the intersection, is traveling at a velocity
of 24 m/s, and begins to slow down with an acceleration of a = −3
m/s2. Determine the second Maclaurin polynomial of s(t), and use it
to estimate the truck’s distance from the intersection after 4 s.

56. A bank owns a portfolio of bonds whose value P(r) depends on
the interest rate r (measured in percent; for example, r = 5 means a
5% interest rate). The bank’s quantitative analyst determines that

P(5) = 100,000,
dP

dr

∣∣∣∣
r=5

= −40,000,
d2P

dr2

∣∣∣∣
r=5

= 50,000

In finance, this second derivative is called bond convexity. Find the
second Taylor polynomial of P(r) centered at r = 5 and use it to esti-
mate the value of the portfolio if the interest rate moves to r = 5.5%.

57. A narrow, negatively charged ring of radius R exerts a force on a
positively charged particle P located at distance x above the center of
the ring of magnitude

F(x) = − kx

(x2 + R2)3/2

where k > 0 is a constant (Figure 12).

(a) Compute the third-degree Maclaurin polynomial for F(x).
(b) Show that F ≈ −(k/R3)x to second order. This shows that when x

is small, F(x) behaves like a restoring force similar to the force exerted
by a spring.
(c) Show that F(x) ≈ −k/x2 when x is large by showing that

lim
x→∞

F(x)

−k/x2
= 1

Thus, F(x) behaves like an inverse square law, and the charged ring
looks like a point charge from far away.

x

x

R
F(x)

Nearly linear
here

Nearly inverse square
here

P

FIGURE 12

58. A light wave of wavelength λ travels from A to B by passing
through an aperture (circular region) located in a plane that is perpen-
dicular to AB (see Figure 13 for the notation). Let f (r) = d ′ + h′; that
is, f (r) is the distance AC + CB as a function of r .

(a) Show that f (r) =
√

d2 + r2 +
√

h2 + r2, and use the Maclaurin
polynomial of order 2 to show that

f (r) ≈ d + h + 1

2

(
1

d
+ 1

h

)
r2

(b) The Fresnel zones, used to determine the optical disturbance at
B, are the concentric bands bounded by the circles of radius Rn

such that f (Rn) = d + h + nλ/2. Show that Rn ≈ √
nλL, where

L = (d−1 + h−1)−1.

(c) Estimate the radii R1 and R100 for blue light (λ = 475 × 10−7 cm)
if d = h = 100 cm.

O

d ´
d

R1
R2

R3

C

B

A

h

r
h´

FIGURE 13 The Fresnel zones are the regions between the circles of
radius Rn.

59. Referring to Figure 14, let a be the length of the chord AC of angle
θ of the unit circle. Derive the following approximation for the excess
of the arc over the chord.

θ − a ≈ θ3

24

Hint: Show that θ − a = θ − 2 sin(θ/2) and use the third Maclaurin
polynomial as an approximation.

C

1

B

A

b

aq

q
2

FIGURE 14 Unit circle.

60. To estimate the length θ of a circular arc of the unit circle, the
seventeenth-century Dutch scientist Christian Huygens used the ap-
proximation θ ≈ (8b − a)/3, where a is the length of the chord AC of
angle θ and b is length of the chord AB of angle θ/2 (Figure 14).

(a) Prove that a = 2 sin(θ/2) and b = 2 sin(θ/4), and show that the
Huygens approximation amounts to the approximation

θ ≈ 16

3
sin

θ

4
− 2

3
sin

θ

2

(b) Compute the fifth Maclaurin polynomial of the function on the
right.

(c) Use the error bound to show that the error in the Huygens approx-
imation is less than 0.00022|θ |5.
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Further Insights and Challenges
61. Show that the nth Maclaurin polynomial of f (x) = arcsin x for n

odd is

Tn(x) = x + 1

2

x3

3
+ 1 · 3

2 · 4

x5

5
+ · · · + 1 · 3 · 5 · · · (n − 2)

2 · 4 · 6 · · · (n − 1)

xn

n

62. Let x ≥ 0 and assume that f (n+1)(t) ≥ 0 for 0 ≤ t ≤ x. Use
Taylor’s Theorem to show that the nth Maclaurin polynomial Tn(x)

satisfies

Tn(x) ≤ f (x) for all x ≥ 0

63. Use Exercise 62 to show that for x ≥ 0 and all n,

ex ≥ 1 + x + x2

2! + · · · + xn

n!
Sketch the graphs of ex , T1(x), and T2(x) on the same coordinate axes.
Does this inequality remain true for x < 0?

64. This exercise is intended to reinforce the proof of Taylor’s
Theorem.

(a) Show that f (x) = T0(x) +
∫ x

a
f ′(u) du.

(b) Use Integration by Parts to prove the formula∫ x

a
(x − u)f (2)(u) du = −f ′(a)(x − a) +

∫ x

a
f ′(u) du

(c) Prove the case n = 2 of Taylor’s Theorem:

f (x) = T1(x) +
∫ x

a
(x − u)f (2)(u) du.

In Exercises 65–69, we estimate integrals using Taylor polynomials.
Exercise 66 is used to estimate the error.

65. Find the fourth Maclaurin polynomial T4(x) for f (x) = e−x2
,

and calculate I = ∫ 1/2
0 T4(x) dx as an estimate

∫ 1/2
0 e−x2

dx. A CAS
yields the value I ≈ 0.4794255. How large is the error in your approx-
imation? Hint: T4(x) is obtained by substituting −x2 in the second
Maclaurin polynomial for ex .

66. Approximating Integrals Let L > 0. Show that if two functions
f (x) and g(x) satisfy |f (x) − g(x)| < L for all x ∈ [a, b], then∣∣∣∣

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣∣ dx < L(b − a)

67. Let T4(x) be the fourth Maclaurin polynomial for cos x.

(a) Show that | cos x − T4(x)| ≤ ( 1
2

)6
/6! for all x ∈ [

0, 1
2

]
. Hint:

T4(x) = T5(x).

(b) Evaluate
∫ 1/2

0 T4(x) dx as an approximation to
∫ 1/2

0 cos x dx. Use
Exercise 66 to find a bound for the size of the error.

68. Let Q(x) = 1 − x2/6. Use the error bound for sin x to show that∣∣∣∣ sin x

x
− Q(x)

∣∣∣∣ ≤ |x|4
5!

Then calculate
∫ 1

0 Q(x) dx as an approximation to
∫ 1

0 (sin x/x) dx and
find a bound for the error.

69. (a) Compute the sixth Maclaurin polynomial T6(x) for sin(x2) by
substituting x2 in P(x) = x − x3/6, the third Maclaurin polynomial
for sin x.

(b) Show that | sin(x2) − T6(x)| ≤ |x|10

5! .

Hint: Substitute x2 for x in the error bound for | sin x − P(x)|, noting
that P(x) is also the fourth Maclaurin polynomial for sin x.

(c) Use T6(x) to approximate
∫ 1/2

0
sin(x2) dx and find a bound for

the error.

70. Prove by induction that for all k,

dj

dxj

(
(x − a)k

k!

)
= k(k − 1) · · · (k − j + 1)(x − a)k−j

k!

dj

dxj

(
(x − a)k

k!

)∣∣∣∣∣
x=a

=
{

1 for k = j

0 for k �= j

Use this to prove that Tn(x) agrees with f (x) at x = a to order n.

71. Let a be any number and let

P(x) = anxn + an−1xn−1 + · · · + a1 + a0

be a polynomial of degree n or less.

(a) Show that if P (j)(a) = 0 for j = 0, 1, . . . , n, then P(x) = 0, that
is, aj = 0 for all j . Hint: Use induction, noting that if the statement is
true for degree n − 1, then P ′(x) = 0.

(b) Prove that Tn(x) is the only polynomial of degree n or less that
agrees with f (x) at x = a to order n. Hint: If Q(x) is another such
polynomial, apply (a) to P(x) = Tn(x) − Q(x).

CHAPTER REVIEW EXERCISES

In Exercises 1–4, calculate the arc length over the given interval.

1. y = x5

10
+ x−3

6
, [1, 2] 2. y = ex/2 + e−x/2, [0, 2]

3. y = 4x − 2, [−2, 2] 4. y = x2/3, [1, 8]

5. Show that the arc length of y = 2
√

x over [0, a] is equal to√
a(a + 1) + ln(

√
a + √

a + 1). Hint: Apply the substitution x =
tan2 θ to the arc length integral.

6. Compute the trapezoidal approximation T5 to the arc
length s of y = tan x over

[
0, π

4

]
.
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In Exercises 7–10, calculate the surface area of the solid obtained by
rotating the curve over the given interval about the x-axis.

7. y = x + 1, [0, 4]

8. y = 2

3
x3/4 − 2

5
x5/4, [0, 1]

9. y = 2

3
x3/2 − 1

2
x1/2, [1, 2] 10. y = 1

2
x2, [0, 2]

11. Compute the total surface area of the coin obtained by rotating the
region in Figure 1 about the x-axis. The top and bottom parts of the
region are semicircles with a radius of 1 mm.

1 mm

4 mm
x

y

FIGURE 1

12. Calculate the fluid force on the side of a right triangle of height
3 m and base 2 m submerged in water vertically, with its upper vertex
at the surface of the water.

13. Calculate the fluid force on the side of a right triangle of height
3 m and base 2 m submerged in water vertically, with its upper vertex
located at a depth of 4 m.

14. A plate in the shape of the shaded region in Figure 2 is submerged
in water. Calculate the fluid force on a side of the plate if the water
surface is y = 1.

x

y

1−1

y = �1 − x2

�1 − x2y = 1
2

FIGURE 2

15. Figure 3 shows an object whose face is an equilateral triangle with
5-m sides. The object is 2 m thick and is submerged in water with its
vertex 3 m below the water surface. Calculate the fluid force on both a
triangular face and a slanted rectangular edge of the object.

5 2

3
Water level

FIGURE 3

16. The end of a horizontal oil tank is an ellipse (Figure 4) with equa-
tion (x/4)2 + (y/3)2 = 1 (length in meters). Assume that the tank is
filled with oil of density 900 kg/m3.

(a) Calculate the total force F on the end of the tank when the tank is
full.

(b) Would you expect the total force on the lower half of the

tank to be greater than, less than, or equal to 1
2F ? Explain. Then com-

pute the force on the lower half exactly and confirm (or refute) your
expectation.

3

−3

y

x
4−4

FIGURE 4

17. Calculate the moments and COM of the lamina occupying the re-
gion under y = x(4 − x) for 0 ≤ x ≤ 4, assuming a density of ρ =
1200 kg/m3.

18. Sketch the region between y = 4(x + 1)−1 and y = 1 for 0 ≤ x ≤
3, and find its centroid.

19. Find the centroid of the region between the semicircle y =√
1 − x2 and the top half of the ellipse y = 1

2

√
1 − x2 (Figure 2).

20. Find the centroid of the shaded region in Figure 5 bounded on the
left by x = 2y2 − 2 and on the right by a semicircle of radius 1. Hint:
Use symmetry and additivity of moments.

x

y

Semicircle
of radius 1

1

x = ±   1 − y/2

FIGURE 5
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In Exercises 21–26, find the Taylor polynomial at x = a for the given
function.

21. f (x) = x3, T3(x), a = 1

22. f (x) = 3(x + 2)3 − 5(x + 2), T3(x), a = −2

23. f (x) = x ln(x), T4(x), a = 1

24. f (x) = (3x + 2)1/3, T3(x), a = 2

25. f (x) = xe−x2
, T4(x), a = 0

26. f (x) = ln(cos x), T3(x), a = 0

27. Find the nth Maclaurin polynomial for f (x) = e3x .

28. Use the fifth Maclaurin polynomial of f (x) = ex to approximate√
e. Use a calculator to determine the error.

29. Use the third Taylor polynomial of f (x) = tan−1 x at a = 1 to
approximate f (1.1). Use a calculator to determine the error.

30. Let T4(x) be the Taylor polynomial for f (x) = √
x at a = 16. Use

the error bound to find the maximum possible size of |f (17) − T4(17)|.
31. Find n such that |e − Tn(1)| < 10−8, where Tn(x) is the nth
Maclaurin polynomial for f (x) = ex .

32. Let T4(x) be the Taylor polynomial for f (x) = x ln x at a = 1
computed in Exercise 23. Use the error bound to find a bound for
|f (1.2) − T4(1.2)|.

33. Verify that Tn(x) = 1 + x + x2 + · · · + xn is the nth Maclaurin
polynomial of f (x) = 1/(1 − x). Show using substitution that the nth
Maclaurin polynomial for f (x) = 1/(1 − x/4) is

Tn(x) = 1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn

What is the nth Maclaurin polynomial for g(x) = 1

1 + x
?

34. Let f (x) = 5

4 + 3x − x2
and let ak be the coefficient of xk in the

Maclaurin polynomial Tn(x) of for k ≤ n.

(a) Show that f (x) =
(

1/4

1 − x/4
+ 1

1 + x

)
.

(b) Use Exercise 33 to show that ak = 1

4k+1
+ (−1)k .

(c) Compute T3(x).

35. Let Tn(x) be the nth Maclaurin polynomial for the function f (x) =
sin x + sinh x.

(a) Show that T5(x) = T6(x) = T7(x) = T8(x).

(b) Show that |f n(x)| ≤ 1 + cosh x for all n. Hint: Note that
| sinh x| ≤ | cosh x| for all x.

(c) Show that |T8(x) − f (x)| ≤ 2.6

9! |x|9 for −1 ≤ x ≤ 1.



CHAPTER 8 FURTHER
APPLICATIONS OF THE
INTEGRAL AND TAYLOR
POLYNOMIALS
PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided. Questions designated as
BC indicate BC-only topics.

1. BC What integral gives the length of the graph of y = x4

from (0, 0) to (2, 16)?

(A)
∫ 2

0

√
1 + x4 dx

(B)
∫ 2

0

√
1 + 4x3 dx

(C)
∫ 2

0

√
1 + 16x5 dx

(D)
∫ 2

0

√
1 + 16x6 dx

(E)
∫ 2

0

√
1 + x8 dx

2. BC If
∫ 1

0

√
1 + 36e6x dx is the length of the graph y =

f (x) on the interval [0, 1], then f (x) =
(A) 2e3x

(B) 6e3x

(C) 12e3x

(D) e6x

(E) 6e6x

3. BC The length of the graph y = x
√

x from (0, 0) to (1, 1)

is

(A) 2
3

(B) 1
9 (5

√
5 − 4)

(C) 1
9 (5

√
10 − 4)

(D) 1
27 (13

√
13 − 1)

(E) 1
27 (13

√
13 − 8)

4. A circular plate of radius 4 feet is experiencing a force of
3R pounds per square foot exerted on points R feet from
the center of the plate. The total force exerted on the plate,
in pounds, is

(A) 24

(B) 48

(C) 48π

(D) 128π

(E) 192π

AP8-1
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5. Arod 6 inches long has a variable force F(x) exerted on it x
inches from one end. The following table gives the amount
of the force in pounds per inch. Use a trapezoidal sum to
estimate the total force, in pounds, on the rod. The estimate
is

x 0 2 4 6
F(x) 3 7 8 5

(A) 11.5

(B) 19

(C) 23

(D) 38

(E) 56

6. Atriangular plate is attached to the side of a swimming pool
with its vertex pointing down, and the top edge of the plate
is at the top of the water in the pool. The top edge of the
plate is 8 feet long, and the vertex of the triangle is 12 feet
from the top edge. The density of the water is 62.4 pounds
per cubic foot. If we put the origin at the vertex, with the
y-axis being the vertical axis, then an integral that gives the
total force on the plate is

(A) 62.4
∫ 8

0
2y2 dy

(B) 62.4
∫ 8

0

4

9
y2 dy

(C) 62.4
∫ 12

0

2

3
y2 dy

(D) 62.4
∫ 12

0
8y − 2

3
y2 dy

(E) 62.4
∫ 12

0
8y − 4

9
y2 dy

7. The density ρ of an elliptical plate is constant on lines per-
pendicular to the x-axis. The equation of the boundary of
the plate is 4x2 + 9y2 = 36. An integral that gives the total
mass of the plate is

(A)
∫ 2

−2
ρ(y) dy

(B)
∫ 2

−2
ρ(y)

√
36 − 9y2 dy

(C)
∫ 3

−3
ρ(x) dx

(D)
∫ 3

−3
2πxρ(x) dx

(E)
∫ 3

−3

2ρ(x)
√

36 − 4x2

3
dx

8. If the moment about the x-axis for a region R is 24, its mo-
ment around the y-axis is 16 and its total mass is 2, then the
center of gravity is

(A) (12, 8)

(B) (8, 12)

(C) (48, 32)

(D) (32, 48)

(E) (24, 16)

9. BC The third degree Taylor polynomial for f (x) = 4 +
2x2 + 6x3 centered at x = 1 is

(A) (x − 1)3

(B) 6(x − 1)3

(C) 18(x − 1)3

(D) 4 + 2(x − 1)2 + 6(x − 1)3

(E) 4 + 2x2 + 6x3

10. BC If f (1) = 5, f ′(1) = 7, f ′′(1) = 8, and f ′′′(1) = 12,
then the third degree Taylor polynomial for f centered at
x = 1 is

(A) 5 + 7x + 8x2 + 12x3

(B) 12(x − 1)3

(C) 5 + 7(x − 1) + 8(x − 1)2 + 12(x − 1)3

(D) 5 + 7(x − 1) + 4(x − 1)2 + 4(x − 1)3

(E) 5 + 7(x − 1) + 4(x − 1)2 + 2(x − 1)3

11. BC The fourth degree Taylor polynomial for f (x) =
cos(2x) centered at x = 0 is

(A) 16x4

(B) 1 − 2x2 + 16x4

(C) 1 + 2x2 − 16x4

(D) 1 + 2x2 − 2
3x4

(E) 1 − 2x2 + 2
3x4

12. BC If P(x) is the 100th degree Taylor polynomial for
f (x) = sin(3x) centered at x = 0, then the coefficient of
x73 is

(A) − 373

73!
(B) − 1

73!
(C) 0

(D) 1
73!

(E) 373

73!
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13. BC If P(x) is the 100th degree Taylor polynomial for
f (x) = sin(3x) centered at x = 0, then the coefficient of
x74 is

(A) − 374

74!

(B) − 1
74!

(C) 0

(D) 1
74!

(E) 374

74!

14. BC If the coefficient of x20 in the Taylor polynomial of
degree 25 for f centered at x = 0 is 2, then f (20)(0) is

(A) 2

(B) 40

(C) 2
20

(D) 2(20!)

(E) 2
20!

15. BC If
∣∣f (4)(x)

∣∣ ≤ 8 for all x, and P(x) is the Taylor poly-
nomial of degree 3 for f (x) centered at x = 1, then using
the error bound, we know that |f (4) − P(4)| ≤ B, where
B =
(A) 8·34

4!

(B) 34

8·4!

(C) 8·3!
4

(D) 34

8!·4!

(E) 8!·34

4!

16. BC TheTaylor polynomial of degree 6 for
1

1 + 3x2
centered

at x = 0 is

(A) 1 + 3x2 + 9x4 + 27x6

(B) 1 − 3x2 − 9x4 − 27x6

(C) 1 − 3x2 + 9x4 − 27x6

(D) 1 + 3
2x2 + 9

4!x
4 + 27

6! x
6

(E) 1 + 3
2x2 + 9

4x4 + 27
6 x6

17. BC If we approximate cos(1.8) by the Taylor polynomial
of degree 3 for f (x) = cos(x) at x = π

2 , the Remainder
Theorem tells us that our approximation is within B, where
B =
(A)

∣∣π
2 − 1.8

∣∣3
3!

(B) cos3(1.8)

∣∣π
2 − 1.8

∣∣3
3!

(C) |cos(1.8)|
∣∣π

2 − 1.8
∣∣3

3!
(D)

∣∣π
2 − 1.8

∣∣4
4!

(E)

∣∣π
2 − 1.8

∣∣4
4

18. Let R be the region between the graph of y = √
x and the

x-axis over the interval [0, 4] with constant density ρ. Then
the moment of R about the y-axis is

(A) ρ

∫ 4

0

√
x dx

(B) ρ

∫ 4

0
x
√

x dx

(C) ρ

∫ 4

0
2πx

√
x dx

(D) ρ

∫ 2

0
y2 dy

(E) ρ

∫ 2

0
y3 dy

19. BC The Taylor polynomial of degree n for f (x) = e2x cen-
tered at x = 0 is

(A) 1 + 2x + 4x2 + 8x3 + · · · + 2nxn

(B) 1 + 2x + 2x2 + 2x3 + · · · + 2xn

(C) 1 + 2x + 2x2 + 8
3x3 + · · · + 2n

n
xn

(D) 1 + 2x + 4x2 + 8
3!x

3 + · · · + 2n

n! x
n

(E) 1 + 2x + 2x2 + 8
3!x

3 + · · · + 2n

n! x
n

20. BC If P(x) is the Taylor polynomial of degree 3 for f (x)

centered at x = 1, and if
∣∣f (n)(x)

∣∣ ≤ 2n for all n, then the
Remainder Theorem tells us that |f (1.7) − P(1.7)| ≤ B,
where B =
(A) 16

24 (1.7)4

(B) 16
4 (1.7)4

(C) 16
24 (0.7)4

(D) 1
24·16 (1.7)4

(E) 1
24·16 (0.7)4
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Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work. Questions
designated as BC indicate BC-only topics.

1. BC Let f be a function such that f (0) = 3, f ′(0) =
6, f ′′(0) = 4, and f ′′′(0) = 12. Let P(x) be the Maclau-
rin polynomial of degree 3 for f .
(a) Find P(x).
(b) Let g(x) = f (3x). Compute the Maclaurin polynomial

of degree 3 for g directly, and then show that your an-
swer is P(3x).

(c) Let h(x) = xf (x). Compute the Maclaurin polynomial
of degree 3 for h directly, and find a relation between
your answer and a Taylor polynomial for f .

2. BC Let f be a function with f (1) = 5, f ′(1) = c, f ′′(1) =
6, and f ′′′(1) = 24, where c is a constant.
(a) Find the third degree Taylor polynomial for f centered

at x = 1.
(b) Let g(x) = f (x2). Find the second degree Taylor poly-

nomial for g centered at x = 1.
(c) Show that if c = 0, both f and g have relative extreme

values at x = 1, and classify each of them as a relative
maximum or minimum.

3. A rectangular plate is submerged vertically in a liquid that
weighs 50 pounds per cubic foot. The plate is 10 feet across
the top, and its vertical dimension is 20 feet. The force of
the water pressing against the plate varies with the depth,
and at depth h is 50h pounds per square foot. The water
comes exactly to the top of the plate.
(a) What is the total force on the plate?
(b) Engineers want to draw a horizontal line L at vertical

distance D up from the bottom of the plate so that the
total force on the portion of the plate below L equals
the total force on the portion of the plate above L. Find
D.

(c) If the water rises above the top of the plate, let x be
the distance from the top of the water to the bottom of
the plate. Let A(x) be the total force on the part of the
plate above L, and B(x) the total force on the part of
the plate below L. Show that A(x) is growing faster
than B(x).

4. BC Let f be a function that has derivatives of all or-
ders on (−3, 3), with

∣∣f (n)(x)
∣∣ ≤ 4n + 3, and f (0) = −1,

f ′(0) = 2, f ′′(0) = −4, and f ′′′(0) = 12.

(a) Use the local linearization of f at x = 0 to estimate
f

( − 1
2

)
.

(b) What is the maximum error between your estimate and
the actual value of f

( − 1
2

)
?

(c) Write the Taylor polynomial of degree 3 for f centered
at x = 0, and then use it to estimate f

( − 1
2

)
.

(d) What is the maximum error between your estimate in
part (c) and the actual value of f

( − 1
2

)
?

Answers to odd-numbered questions can be found in the back of
the book.



Tour de France champion Lance Armstrong

testing a bicycle at the San Diego Air & Space

Technology Low Speed Wind Tunnel in

November 2008. Armstrong’s clothing, helmet,

posture, and hand position are also

aerodynamically optimized.

9 INTRODUCTION TO
DIFFERENTIAL
EQUATIONS

Will this airplane fly?…How can we create an image of the interior of the human body
using very weak X-rays?…What is a design of a bicycle frame that combines low weight
with rigidity?…How much would the mean temperature of the earth increase if the
amount of carbon dioxide in the atmosphere increased by 20 percent?

—An overview of applications of differential equations in Computational
Differential Equations, K. Eriksson, D. Estep, P. Hansbo, and C. Johnson,

Cambridge University Press, New York, 1996

D ifferential equations are among the most powerful tools we have for analyzing the
world mathematically. They are used to formulate the fundamental laws of nature

(from Newton’s Laws to Maxwell’s equations and the laws of quantum mechanics) and to
model the most diverse physical phenomena. The quotation above lists just a few of the
myriad applications. This chapter provides an introduction to some elementary techniques
and applications of this important subject.

9.1 Solving Differential Equations
A differential equation is an equation that involves an unknown function y = y(x) and its
first or higher derivatives. A solution is a function y = f (x) satisfying the given equation.
As we have seen in previous chapters, solutions usually depend on one or more arbitrary
constants (denoted A, B, and C in the following examples):

Differential equation General solution

y′ = −2y y = Ce−2x

dy

dt
= t y = 1

2
t2 + C

y′′ + y = 0 y = A sin x + B cos x

An expression such as y = Ce−2x is called a general solution. For each value of C, we
obtain a particular solution. The graphs of the solutions as C varies form a family of
curves in the xy-plane (Figure 1).

y

x
1

3

5

7

−1

−3

−5

−7

FIGURE 1 Family of solutions of y′ = −2y.

The first step in any study of differential equations is to classify the equations accord-
ing to various properties. The most important attributes of a differential equation are its
order and whether or not it is linear.

502
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The order of a differential equation is the order of the highest derivative appearing in
the equation. The general solution of an equation of order n usually involves n arbitrary
constants. For example,

y′′ + y = 0

has order 2 and its general solution has two arbitrary constants A and B as listed above.
A differential equation is called linear if it can be written in the form

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = b(x)

The coefficients aj (x) and b(x) can be arbitrary functions of x, but a linear equation
cannot have terms such as y3, yy′, or sin y.

Differential equation Order Linear or nonlinear

x2y′ + exy = 4 First-order Linear

x(y′)2 = y + x First-order Nonlinear (because (y′)2 appears)

y′′ = (sin x)y′ Second-order Linear

y′′′ = x(sin y) Third-order Nonlinear (because sin y appears)

In this chapter we restrict our attention to first-order equations.

Separation of Variables

We are familiar with the simplest type of differential equation, namely y′ = f (x). A
solution is simply an antiderivative of f (x), so can write the general solution as

y =
∫

f (x) dx

A more general class of first-order equations that can be solved directly by integration are
the separable equations, which have the form

dy

dx
= f (x)g(y) 1

For example,

• dy

dx
= (sin x)y is separable.

• dy

dx
= x + y is not separable because x + y is not a product f (x)g(y).

Separable equations are solved using the method of separation of variables: MoveIn separation of variables, we manipulate
dx and dy symbolically, just as in the
Substitution Rule.

the terms involving y and dy to the left and those involving x and dx to the right. Then
integrate both sides:

dy

dx
= f (x)g(y) (separable equation)

dy

g(y)
= f (x) dx (separate the variables)∫

dy

g(y)
=

∫
f (x) dx (integrate)

If these integrals can be evaluated, we can try to solve for y as a function of x.
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EXAMPLE 1 Show that y
dy

dx
− x = 0 is separable but not linear. Then find the general

solution and plot the family of solutions.

Solution This differential equation is nonlinear because it contains the term yy′. To show
that it is separable, rewrite the equation:

y
dy

dx
− x = 0 ⇒ dy

dx
= xy−1 (separable equation)

Now use separation of variables:

Note that one constant of integration is
sufficient in Eq. (2). An additional constant
for the integral on the left is not needed.

y dy = x dx (separate the variables)∫
y dy =

∫
x dx (integrate)

1

2
y2 = 1

2
x2 + C 2

y = ±
√

x2 + 2C (solve for y)

Since C is arbitrary, we may replace 2C by C to obtain (Figure 2)

y = ±
√

x2 + C

Each choice of sign yields a solution.

C = −16

C = −9 C = −9

C = −4 C = −4

C = 0 C = 0

C = 4

C = 9

C = 16

C = −16

y

1

2

3

4

x
54321−2 −1−3−4−5

FIGURE 2 Solutions y =
√

x2 + C to

y
dy

dx
− x = 0.

It is a good idea to verify that solutions you have found satisfy the differential equation.
In our case, for the positive square root (the negative square root is similar), we have

dy

dx
= d

dx

√
x2 + C = x√

x2 + C

y
dy

dx
=

√
x2 + C

(
x√

x2 + C

)
= x ⇒ y

dy

dx
− x = 0

This verifies that y = √
x2 + C is a solution.

Although it is useful to find general solutions, in applications we are usually interested
Most differential equations arising in
applications have an existence and
uniqueness property: There exists one and
only one solution satisfying a given initial
condition. General existence and
uniqueness theorems are discussed in
textbooks on differential equations.

in the solution that describes a particular physical situation. The general solution to a first-
order equation generally depends on one arbitrary constant, so we can pick out a particular
solution y(x) by specifying the value y(x0) for some fixed x0 (Figure 3). This specification
is called an initial condition. A differential equation together with an initial condition is
called an initial value problem.
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EXAMPLE 2 Initial Value Problem Solve the initial value problemy

1

−1

−2

2

3

4 Unique
solution

satisfying
y(0) = 3

t
1−1

FIGURE 3 The initial condition y(0) = 3
determines one curve in the family of
solutions to y′ = −ty.

y′ = −ty, y(0) = 3

Solution Use separation of variables to find the general solution:

dy

dt
= −ty ⇒ dy

y
= −t dt

∫
dy

y
= −

∫
t dt

ln |y| = −1

2
t2 + C

|y| = e−t2/2+C = eC e−t2/2

Thus, y = ±eC e−t2/2. Since C is arbitrary, eC represents an arbitrary positive number,
and ±eC is an arbitrary nonzero number. We replace ±eC by C and write the general
solution as

y = Ce−t2/2 3

Now use the initial condition y(0) = Ce−02/2 = 3. Thus, C = 3 and y = 3e−t2/2 is the

If we set C = 0 in Eq. (3), we obtain the
solution y = 0. The separation of variables
procedure did not directly yield this
solution because we divided by y (and thus
assumed implicitly that y �= 0). solution to the initial value problem (Figure 3).

In the context of differential equations, the term “modeling” means finding a differ-

Volume of water
leaked Bv(y)Δt

is equal to

Cross-sectional
area A(y)

Change in
volume A(y)Δy

v(y)Δt

Δy

y
Area B

FIGURE 4 Water leaks out of a tank through
a hole of area B at the bottom.

ential equation that describes a given physical situation. As an example, consider water
leaking through a hole at the bottom of a tank (Figure 4). The problem is to find the water
level y(t) at time t . We solve it by showing that y(t) satisfies a differential equation.

The key observation is that the water lost during the interval from t to t + �t can be
computed in two ways. Let

v(y) = velocity of the water flowing through the hole
when the tank is filled to height y

B = area of the hole

A(y) = area of horizontal cross section of the tank at height y

First, we observe that the water exiting through the hole during a time interval �t forms a
cylinder of base B and height v(y)�t (because the water travels a distance v(y)�t—see
Figure 4). The volume of this cylinder is approximately Bv(y)�t [approximately but not
exactly, because v(y) may not be constant]. Thus,

Water lost between t and t + �t ≈ Bv(y)�t

Second, we note that if the water level drops by an amount �y during the interval
�t , then the volume of water lost is approximately A(y)�y (Figure 4). Therefore,

Water lost between t and t + �t ≈ A(y) �y

This is also an approximation because the cross-sectional area may not be constant. Com-
paring the two results, we obtain A(y)�y ≈ Bv(y)�t , or

�y

�t
≈ Bv(y)

A(y)
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Now take the limit as �t → 0 to obtain the differential equationLike most if not all mathematical models,
our model of water draining from a tank is
at best an approximation. The differential
equation (4) does not take into account
viscosity (resistance of a fluid to flow). This
can be remedied by using the differential
equation

dy

dt
= k

Bv(y)

A(y)

where k < 1 is a viscosity constant.
Furthermore, Torricelli’s Law is valid only
when the hole size B is small relative to
the cross-sectional areas A(y).

dy

dt
= Bv(y)

A(y)
4

To use Eq. (4), we need to know the velocity of the water leaving the hole. This is
given by Torricelli’s Law (g = 9.8 m/s2):

v(y) = −√
2gy = −√

2(9.8)y ≈ −4.43
√

y m/s 5

EXAMPLE 3 Application of Torricelli’s Law A cylindrical tank of height 4 m and
radius 1 m is filled with water. Water drains through a square hole of side 2 cm in the
bottom. Determine the water level y(t) at time t (seconds). How long does it take for the
tank to go from full to empty?

Solution We use units of centimeters.

Step 1. Write down and solve the differential equation.
The horizontal cross section of the cylinder is a circle of radius r = 100 cm and area
A(y) = πr2 = 10,000π cm2 (Figure 5). The hole is a square of side 2 cm and area

y (t)

1 m

4 m

Hole = square of side 2 cm

FIGURE 5

B = 4 cm2. By Torricelli’s Law [Eq. (5)], v(y) = −44.3
√

y cm/s, so Eq. (4) becomes

dy

dt
= Bv(y)

A(y)
= −4(44.3

√
y)

10,000π
≈ −0.0056

√
y 6

Solve using separation of variables:∫
dy√

y
= −0.0056

∫
dt

2y1/2 = −0.0056t + C 7

y =
(

−0.0028t + 1

2
C

)2

Since C is arbitrary, we may replace 1
2C by C and write

y = (C − 0.0028t)2

Step 2. Use the initial condition.
The tank is full at t = 0, so we have the initial condition y(0) = 400 cm. Thus

y(0) = C2 = 400 ⇒ C = ±20

Which sign is correct? You might think that both sign choices are possible, but notice
that the water level y is a decreasing function of t , and the function y = (C − 0.0028t)2

decreases to 0 only if C is positive. Alternatively, we can see directly from Eq. (7) that
C > 0, because 2y1/2 is nonnegative. Thus,

y(t) = (20 − 0.0028t)2

To determine the time te that it takes to empty the tank, we solve

y(te) = (20 − 0.0028te)
2 = 0 ⇒ te ≈ 7142 s

Thus, the tank is empty after 7142 s, or nearly two hours (Figure 6).

y(t) = (20 − 0.0028t)2

te

400

300

200

100

Water level (cm)

t (s)
5000 10,000

Tank empty

FIGURE 6
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CONCEPTUAL INSIGHT The previous example highlights the need to analyze solutions
to differential equations rather than relying on algebra alone. The algebra seemed to
suggest that C = ±20, but further analysis showed that C = −20 does not yield a
solution for t ≥ 0. Note also that the function

y(t) = (20 − 0.0028t)2

is a solution only for t ≤ te—that is, until the tank is empty. This function cannot satisfy
Eq. (6) for t > te because its derivative is positive for t > te (Figure 6), but solutions
of Eq. (6) have nonpositive derivatives.

9.1 SUMMARY

• A differential equation has order n if y(n) is the highest-order derivative appearing in
the equation.
• A differential equation is linear if it can be written as

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = b(x)

• Separable first-order equation
dy

dx
= f (x)g(y)

• Separation of Variables (for a separable equation): move all terms involving y to the
left and all terms involving x to the right and integrate:

dy

g(y)
= f (x) dx∫

dy

g(y)
=

∫
f (x) dx

• Differential equation for water leaking through a hole of area B in a tank of cross-
sectional areas A(y):

dy

dt
= Bv(y)

A(y)

Torricelli’s Law: v(y) = −√
2gy, where g = 9.8 m/s2.

9.1 EXERCISES

Preliminary Questions
1. Determine the order of the following differential equations:

(a) x5y′ = 1 (b) (y′)3 + x = 1

(c) y′′′ + x4y′ = 2 (d) sin(y′′) + x = y

2. Is y′′ = sin x a linear differential equation?

3. Give an example of a nonlinear differential equation of the form
y′ = f (y).

4. Can a nonlinear differential equation be separable? If so, give an
example.

5. Give an example of a linear, nonseparable differential equation.

Exercises
1. Which of the following differential equations are first-order?

(a) y′ = x2 (b) y′′ = y2

(c) (y′)3 + yy′ = sin x (d) x2y′ − exy = sin y

(e) y′′ + 3y′ = y

x
(f) yy′ + x + y = 0
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2. Which of the equations in Exercise 1 are linear?

In Exercises 3–8, verify that the given function is a solution of the
differential equation.

3. y′ − 8x = 0, y = 4x2

4. yy′ + 4x = 0, y =
√

12 − 4x2

5. y′ + 4xy = 0, y = 25e−2x2

6. (x2 − 1)y′ + xy = 0, y = 4(x2 − 1)−1/2

7. y′′ − 2xy′ + 8y = 0, y = 4x4 − 12x2 + 3

8. y′′ − 2y′ + 5y = 0, y = ex sin 2x

9. Which of the following equations are separable? Write those that
are separable in the form y′ = f (x)g(y) (but do not solve).

(a) xy′ − 9y2 = 0 (b)
√

4 − x2y′ = e3y sin x

(c) y′ = x2 + y2 (d) y′ = 9 − y2

10. The following differential equations appear similar but have very
different solutions.

dy

dx
= x,

dy

dx
= y

Solve both subject to the initial condition y(1) = 2.

11. Consider the differential equation y3y′ − 9x2 = 0.

(a) Write it as y3 dy = 9x2 dx.

(b) Integrate both sides to obtain 1
4y4 = 3x3 + C.

(c) Verify that y = (12x3 + C)1/4 is the general solution.

(d) Find the particular solution satisfying y(1) = 2.

12. Verify that x2y′ + e−y = 0 is separable.

(a) Write it as ey dy = −x−2 dx.

(b) Integrate both sides to obtain ey = x−1 + C.

(c) Verify that y = ln(x−1 + C) is the general solution.

(d) Find the particular solution satisfying y(2) = 4.

In Exercises 13–28, use separation of variables to find the general
solution.

13. y′ + 4xy2 = 0 14. y′ + x2y = 0

15.
dy

dt
− 20t4e−y = 0 16. t3y′ + 4y2 = 0

17. 2y′ + 5y = 4 18.
dy

dt
= 8

√
y

19.
√

1 − x2 y′ = xy 20. y′ = y2(1 − x2)

21. yy′ = x 22. (ln y)y′ − ty = 0

23.
dx

dt
= (t + 1)(x2 + 1) 24. (1 + x2)y′ = x3y

25. y′ = x sec y 26.
dy

dθ
= tan y

27.
dy

dt
= y tan t 28.

dx

dt
= t tan x

In Exercises 29–42, solve the initial value problem.

29. y′ + 2y = 0, y(ln 5) = 3

30. y′ − 3y + 12 = 0, y(2) = 1

31. yy′ = xe−y2
, y(0) = −2

32. y2 dy

dx
= x−3, y(1) = 0

33. y′ = (x − 1)(y − 2), y(2) = 4

34. y′ = (x − 1)(y − 2), y(2) = 2

35. y′ = x(y2 + 1), y(0) = 0

36. (1 − t)
dy

dt
− y = 0, y(2) = −4

37.
dy

dt
= ye−t , y(0) = 1

38.
dy

dt
= te−y , y(1) = 0

39. t2 dy

dt
− t = 1 + y + ty, y(1) = 0

40.
√

1 − x2 y′ = y2 + 1, y(0) = 0

41. y′ = tan y, y(ln 2) = π

2

42. y′ = y2 sin x, y(π) = 2

43. Find all values of a such that y = xa is a solution of

y′′ − 12x−2y = 0

44. Find all values of a such that y = eax is a solution of

y′′ + 4y′ − 12y = 0

In Exercises 45 and 46, let y(t) be a solution of (cos y + 1)
dy

dt
= 2t

such that y(2) = 0.

45. Show that sin y + y = t2 + C. We cannot solve for y as a func-
tion of t , but, assuming that y(2) = 0, find the values of t at which
y(t) = π .

46. Assuming that y(6) = π/3, find an equation of the tangent line to
the graph of y(t) at (6, π/3).

In Exercises 47–52, use Eq. (4) and Torricelli’s Law [Eq. (5)].

47. Water leaks through a hole of area 0.002 m2 at the bottom of a
cylindrical tank that is filled with water and has height 3 m and a base
of area 10 m2. How long does it take (a) for half of the water to leak
out and (b) for the tank to empty?

48. At t = 0, a conical tank of height 300 cm and top radius 100 cm
[Figure 7(A)] is filled with water. Water leaks through a hole in the
bottom of area 3 cm2. Let y(t) be the water level at time t .

(a) Show that the tank’s cross-sectional area at height y is A(y) =
π
9 y2.

(b) Find and solve the differential equation satisfied by y(t)

(c) How long does it take for the tank to empty?
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(A)  Conical tank (B)  Horizontal tank

100 cm

300 cm

Hole Hole

15 m

Radius 4 m

y

y

FIGURE 7

49. The tank in Figure 7(B) is a cylinder of radius 4 m and height
15 m. Assume that the tank is half-filled with water and that water
leaks through a hole in the bottom of area B = 0.001 m2. Determine
the water level y(t) and the time te when the tank is empty.

50. A tank has the shape of the parabola y = x2, revolved around the
y-axis. Water leaks from a hole of area B = 0.0005 m2 at the bottom
of the tank. Let y(t) be the water level at time t . How long does it take
for the tank to empty if it is initially filled to height y0 = 1 m.

51. Atank has the shape of the parabola y = ax2 (where a is a constant)
revolved around the y-axis. Water drains from a hole of area B m2 at
the bottom of the tank.

(a) Show that the water level at time t is

y(t) =
(

y
3/2
0 − 3aB

√
2g

2π
t

)2/3

where y0 is the water level at time t = 0.

(b) Show that if the total volume of water in the tank has volume V

at time t = 0, then y0 = √
2aV/π . Hint: Compute the volume of the

tank as a volume of rotation.

(c) Show that the tank is empty at time

te =
(

2

3B
√

g

) (
2πV 3

a

)1/4

We see that for fixed initial water volume V , the time te is proportional
to a−1/4. A large value of a corresponds to a tall thin tank. Such a tank
drains more quickly than a short wide tank of the same initial volume.

52. A cylindrical tank filled with water has height h and a base
of area A. Water leaks through a hole in the bottom of area B.

(a) Show that the time required for the tank to empty is proportional
to A

√
h/B.

(b) Show that the emptying time is proportional to V h−1/2, where V

is the volume of the tank.

(c) Two tanks have the same volume and a hole of the same size, but
they have different heights and bases. Which tank empties first: the
taller or the shorter tank?

53. Figure 8 shows a circuit consisting of a resistor of R ohms, a ca-
pacitor of C farads, and a battery of voltage V . When the circuit is
completed, the amount of charge q(t) (in coulombs) on the plates of
the capacitor varies according to the differential equation (t in seconds)

R
dq

dt
+ 1

C
q = V

where R, C, and V are constants.

(a) Solve for q(t), assuming that q(0) = 0.

(b) Show that lim
t→∞ q(t) = CV .

(c) Show that the capacitor charges to approximately 63% of its final
value CV after a time period of length τ = RC (τ is called the time
constant of the capacitor).

V C

R

FIGURE 8 An RC circuit.

54. Assume in the circuit of Figure 8 that R = 200 �, C = 0.02 F,
and V = 12 V. How many seconds does it take for the charge on the
capacitor plates to reach half of its limiting value?

55. According to one hypothesis, the growth rate dV/dt of a
cell’s volume V is proportional to its surface area A. Since V has cubic
units such as cm3 and A has square units such as cm2, we may assume
roughly that A ∝ V 2/3, and hence dV/dt = kV 2/3 for some constant
k. If this hypothesis is correct, which dependence of volume on time
would we expect to see (again, roughly speaking) in the laboratory?

(a) Linear (b) Quadratic (c) Cubic

56. We might also guess that the volume V of a melting snowball de-
creases at a rate proportional to its surface area. Argue as in Exercise
55 to find a differential equation satisfied by V . Suppose the snowball
has volume 1000 cm3 and that it loses half of its volume after 5 min.
According to this model, when will the snowball disappear?

57. In general, (fg)′ is not equal to f ′g′, but let f (x) = e3x and find
a function g(x) such that (fg)′ = f ′g′. Do the same for f (x) = x.

58. A boy standing at point B on a dock holds a rope of length � at-
tached to a boat at point A [Figure 9(A)]. As the boy walks along the
dock, holding the rope taut, the boat moves along a curve called a trac-
trix (from the Latin tractus, meaning “to pull”). The segment from a
point P on the curve to the x-axis along the tangent line has constant
length �. Let y = f (x) be the equation of the tractrix.

(a) Show that y2 + (y/y′)2 = �2 and conclude y′ = − y√
�2 − y2

.
Why must we choose the negative square root?

(b) Prove that the tractrix is the graph of

x = � ln

(
� +

√
�2 − y2

y

)
−

√
�2 − y2
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−

�

f (x)
f ´(x)

FIGURE 9

59. Show that the differential equations y′ = 3y/x and y′ = −x/3y

define orthogonal families of curves; that is, the graphs of solutions
to the first equation intersect the graphs of the solutions to the second
equation in right angles (Figure 10). Find these curves explicitly.

x

y

FIGURE 10 Two orthogonal families of curves.

60. Find the family of curves satisfying y′ = x/y and sketch several
members of the family. Then find the differential equation for the or-
thogonal family (see Exercise 59), find its general solution, and add
some members of this orthogonal family to your plot.

61. A 50-kg model rocket lifts off by expelling fuel at a rate of
k = 4.75 kg/s for 10 s. The fuel leaves the end of the rocket with an
exhaust velocity of b = 100 m/s. Let m(t) be the mass of the rocket at
time t . From the law of conservation of momentum, we find the fol-
lowing differential equation for the rocket’s velocity v(t) (in meters per
second):

m(t)v′(t) = −9.8m(t) + b
dm

dt

(a) Show that m(t) = 50 − 4.75t kg.

(b) Solve for v(t) and compute the rocket’s velocity at rocket burnout
(after 10 s).

62. Let v(t) be the velocity of an object of mass m in free fall near the
earth’s surface. If we assume that air resistance is proportional to v2,
then v satisfies the differential equation mdv

dt
= −g + kv2 for some

constant k > 0.

(a) Set α = (g/k)1/2 and rewrite the differential equation as

dv

dt
= − k

m
(α2 − v2)

Then solve using separation of variables with initial condition v(0) = 0.

(b) Show that the terminal velocity lim
t→∞ v(t) is equal to −α.

63. If a bucket of water spins about a vertical axis with constant an-
gular velocity ω (in radians per second), the water climbs up the side
of the bucket until it reaches an equilibrium position (Figure 11). Two
forces act on a particle located at a distance x from the vertical axis: the
gravitational force −mg acting downward and the force of the bucket
on the particle (transmitted indirectly through the liquid) in the direc-
tion perpendicular to the surface of the water. These two forces must
combine to supply a centripetal force mω2x, and this occurs if the di-
agonal of the rectangle in Figure 11 is normal to the water’s surface
(that is, perpendicular to the tangent line). Prove that if y = f (x) is
the equation of the curve obtained by taking a vertical cross section
through the axis, then −1/y′ = −g/(ω2x). Show that y = f (x) is a
parabola.

mg

mω2x

x
x

y

y = f (x)

FIGURE 11

Further Insights and Challenges
64. In Section 6.2, we computed the volume V of a solid as
the integral of cross-sectional area. Explain this formula in terms of
differential equations. Let V (y) be the volume of the solid up to height
y, and let A(y) be the cross-sectional area at height y as in Figure 12.

(a) Explain the following approximation for small �y:

V (y + �y) − V (y) ≈ A(y) �y 8

(b) Use Eq. (8) to justify the differential equation dV /dy = A(y).
Then derive the formula

V =
∫ b

a
A(y) dy

x

y

Volume of slice is
V(y + �y) − V(y) ≈ A(y)�y

Area of cross section
is A(y)y + �y

y0 = a

y

b

FIGURE 12
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65. A basic theorem states that a linear differential equation of order n

has a general solution that depends on n arbitrary constants. There are,
however, nonlinear exceptions.

(a) Show that (y′)2 + y2 = 0 is a first-order equation with only one
solution y = 0.

(b) Show that (y′)2 + y2 + 1 = 0 is a first-order equation with no so-
lutions.

66. Show that y = Cerx is a solution of y′′ + ay′ + by = 0 if and
only if r is a root of P(r) = r2 + ar + b. Then verify directly that
y = C1e3x + C2e−x is a solution of y′′ − 2y′ − 3y = 0 for any con-
stants C1, C2.

67. A spherical tank of radius R is half-filled with water. Suppose that
water leaks through a hole in the bottom of area B. Let y(t) be the water
level at time t (seconds).

(a) Show that
dy

dt
= −8B

√
y

π(2Ry − y2)
.

(b) Show that for some constant C,

π

60B

(
10Ry3/2 − 3y5/2

)
= C − t

(c) Use the initial condition y(0) = R to compute C, and show that
C = te, the time at which the tank is empty.

(d) Show that te is proportional to R5/2 and inversely proportional
to B.

9.2 Models Involving y′ = k(y − b)

We have seen that a quantity grows or decays exponentially if its rate of change is propor-
tional to the amount present. This characteristic property is expressed by the differential
equation y′ = ky. We now study the closely related differential equation

Every first-order, linear differential equation
with constant coefficients can be written in
the form of Eq. (1). This equation is used
to model a variety of phenomena, such as
the cooling process, free-fall with air
resistance, and current in a circuit.

dy

dt
= k(y − b) 1

where k and b are constants and k �= 0. This differential equation describes a quantity y

whose rate of change is proportional to the difference y − b. We can use separation of
variables to show that the general solution is

y(t) = b + Cekt 2

Alternatively, we may observe that (y − b)′ = y′ since b is a constant, so Eq. (1) may be
rewritten

d

dt
(y − b) = k(y − b)

In other words, y − b satisfies the differential equation of an exponential function and
thus y − b = Cekt , or y = b + Cekt , as claimed.

t

y

y = 1 + 2e−2t

y = 1 − 2e−2t
1

3

−1

FIGURE 1 Two solutions to y′ = −2(y − 1)

corresponding to C = 2 and C = −2.

GRAPHICAL INSIGHT The behavior of the solution y(t) as t → ∞ depends on whether C

and k are positive or negative. When k > 0, ekt tends to ∞ and therefore, y(t) tends to ∞
if C > 0 and to −∞ if C < 0. When k < 0, we usually rewrite the differential equation
as y′ = −k(y − b) with k > 0. In this case, y(t) = b + Ce−kt and y(t) approaches the
horizontal asymptote y = b since Ce−kt tends to zero as t → ∞ (Figure 1). However,
y(t) approaches the asymptote from above or below, depending on whether C > 0 or
C < 0.

We now consider some applications of Eq. (1), beginning with Newton’s Law of
Cooling. Let y(t) be the temperature of a hot object that is cooling off in an environment
where the ambient temperature is T0. Newton assumed that the rate of cooling is propor-
tional to the temperature difference y − T0. We express this hypothesis in a precise way

Newton’s Law of Cooling implies that the
object cools quickly when it is much hotter
than its surroundings (when y − T0 is
large). The rate of cooling slows as y

approaches T0. When the object’s initial
temperature is less than T0, y ′ is positive
and Newton’s Law models warming.

by the differential equation

y′ = −k(y − T0) (T0 = ambient temperature)
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The constant k, in units of (time)−1, is called the cooling constant and depends on theREMINDER The differential equation

dy

dt
= k(y − b)

has general solution

y = b + Cekt

physical properties of the object.

EXAMPLE 1 Newton’s Law of Cooling A hot metal bar with cooling constant k =
2.1 min−1 is submerged in a large tank of water held at temperature T0 = 10◦C. Let y(t)

be the bar’s temperature at time t (in minutes).

(a) Find the differential equation satisfied by y(t) and find its general solution.

(b) What is the bar’s temperature after 1 min if its initial temperature was 180◦C?

(c) What was the bar’s initial temperature if it cooled to 80◦C in 30 s?

100

180
200

10 t (min)
0.5 1.0 1.5 2

Temperature
y (°C)

FIGURE 2 Temperature of metal bar as it
cools.

Solution

(a) Since k = 2.1 min−1, y(t) (with t in minutes) satisfies

y′ = −2.1(y − 10)

By Eq. (2), the general solution is y(t) = 10 + Ce−2.1t for some constant C.

(b) If the initial temperature was 180◦C, then y(0) = 10 + C = 180. Thus, C = 170 and
y(t) = 10 + 170e−2.1t (Figure 2). After 1 min,

y(1) = 10 + 170e−2.1(1) ≈ 30.8◦C

(c) If the temperature after 30 s is 80◦C, then y(0.5) = 80, and we have

10 + Ce−2.1(0.5) = 80 ⇒ Ce−1.05 = 70 ⇒ C = 70e1.05 ≈ 200

It follows that y(t) = 10 + 200e−2.1t and the initial temperature was

y(0) = 10 + 200e−2.1(0) = 10 + 200 = 210◦C

The differential equation y′ = k(y − b) is also used to model free-fall when air re-The effect of air resistance depends on the
physical situation. A high-speed bullet is
affected differently than a skydiver. Our
model is fairly realistic for a large object
such as a skydiver falling from high
altitudes.

sistance is taken into account. Assume that the force due to air resistance is proportional
to the velocity v and acts opposite to the direction of the fall. We write this force as −kv,
where k > 0. We take the upward direction to be positive, so v < 0 for a falling object
and −kv is an upward acting force.

The force due to gravity on a falling object of mass m is −mg, where g is the
acceleration due to gravity, so the total force is F = −mg − kv. By Newton’s Law,

F = ma = mv′ (a = v′ is the acceleration)

Thus mv′ = −mg − kv, which can be written

v′ = − k

m

(
v + mg

k

)
3

This equation has the form v′ = −k(v − b) with k replaced by k/m and b = −mg/k. By
Eq. (2) the general solution is

In this model of free fall, k has units of
mass per time, such as kg/s.

v(t) = −mg

k
+ Ce−(k/m)t 4

Since Ce−(k/m)t tends to zero as t → ∞, v(t) tends to a limiting terminal velocity:

Terminal velocity = lim
t→∞ v(t) = −mg

k
5

Without air resistance the velocity would increase indefinitely.
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EXAMPLE 2 An 80-kg skydiver steps out of an airplane.

Skydiver in free fall.

(a) What is her terminal velocity if k = 8 kg/s?
(b) What is her velocity after 30 s?

Solution

(a) By Eq. (5), with k = 8 kg/s and g = 9.8 m/s2, the terminal velocity is

−mg

k
= − (80)9.8

8
= −98 m/s

(b) With t in seconds, we have, by Eq. (4),

v(t) = −98 + Ce−(k/m)t = −98 + Ce−(8/80)t = −98 + Ce−0.1t

We assume that the skydiver leaves the airplane with no initial vertical velocity, so
v(0) = −98 + C = 0, and C = 98. Thus we have v(t) = −98(1 − e−0.1t ) [Figure 3].

Terminal velocity = −98 m/s

t

v (m/s)

−50

−98

10 20 30

FIGURE 3 Velocity of 80-kg skydiver in free
fall with air resistance (k = 8).

The skydiver’s velocity after 30 s is

v(30) = −98(1 − e−0.1(30)) ≈ −93.1 m/s

An annuity is an investment in which a principal P0 is placed in an account that
earns interest (compounded continuously) at a rate r , and money is withdrawn at regular
intervals. To model an annuity by a differential equation, we assume that the money is
withdrawn continuously at a rate of N dollars per year. Let P(t) be the balance in the

Notice in Eq. (6) that P ′(t) is determined
by the growth rate r and the withdrawal
rate N. If no withdrawals occurred, P(t)

would grow with compound interest and
would satisfy P ′(t) = rP (t).

annuity after t years. Then

P ′(t)︸ ︷︷ ︸
Rate of
change

= rP (t)︸ ︷︷ ︸
Growth due
to interest

− N︸︷︷︸
Withdrawal

rate

= r

(
P(t) − N

r

)
6

This equation has the form y′ = k(y − b) with k = r and b = N/r , so by Eq. (2), the
general solution is

P(t) = N

r
+ Cert 7

Since ert tends to infinity as t → ∞, the balance P(t) tends to ∞ if C > 0. If C < 0,
then P(t) tends to −∞ (i.e., the annuity eventually runs out of money). If C = 0, then
P(t) remains constant with value N/r .

EXAMPLE 3 Does an Annuity Pay Out Forever? An annuity earns interest at the rate
r = 0.07, and withdrawals are made continuously at a rate of N = $500/year.

(a) When will the annuity run out of money if the initial deposit is P(0) = $5000?
(b) Show that the balance increases indefinitely if P(0) = $9000.

Solution We have N/r = 500
0.07 ≈ 7143, so P(t) = 7143 + Ce0.07t by Eq. (7).

(a) If P(0) = 5000 = 7143 + Ce0, then C = −2143 and

P(t) = 7143 − 2143e0.07t

The account runs out of money when P(t) = 7143 − 2143e0.07t = 0, or

e0.07t = 7143

2143
⇒ 0.07t = ln

(
7143

2143

)
≈ 1.2

The annuity money runs out at time t = 1.2
0.07 ≈ 17 years.
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(b) If P(0) = 9000 = 7143 + Ce0, then C = 1857 and

P(t) = 7143 + 1857e0.07t

Since the coefficient C = 1857 is positive, the account never runs out of money. In fact,
P(t) increases indefinitely as t → ∞. Figure 4 illustrates the two cases.

B

15,000

10,000

5,000

1,000

5 10 15
t

20

Initial balance $9,000

Initial balance $5,000

FIGURE 4 The balance in an annuity may
increase indefinitely or decrease to zero
(eventually becoming negative), depending
on the size of initial deposit P0.

9.2 SUMMARY

• The general solution of y′ = k(y − b) is y = b + Cekt , where C is a constant.
• The following tables describe the solutions to y′ = k(y − b) (see Figure 5).

Equation (k > 0) Solution Behavior as t → ∞

y′ = k(y − b) y(t) = b + Cekt lim
t→∞ y(t) =

{∞ if C > 0
−∞ if C < 0

y′ = −k(y − b) y(t) = b + Ce−kt lim
t→∞ y(t) = b

x

y

b + C

b − C

b

y = b + Ce−kt

y = b − Ce−ktx

y

b + C

b − C
b

y = b + Cekt

y = b − Cekt

Solutions to y' = k (y − b) with k, C > 0 Solutions to y' = −k (y − b) with k, C > 0

FIGURE 5

• Three applications:

– Newton’s law of cooling: y′ = −k(y − T0), y(t) = temperature of the object,
T0 = ambient temperature, k = cooling constant

– Free-fall with air resistance: v′ = − k

m

(
v + mg

k

)
, v(t) = velocity, m = mass,

k = air resistance constant, g = acceleration due to gravity

– Continuous annuity: P ′ = r

(
P − N

r

)
, P(t) = balance in the annuity, r = interest

rate, N = withdrawal rate

9.2 EXERCISES

Preliminary Questions
1. Write down a solution to y′ = 4(y − 5) that tends to −∞ as

t → ∞.

2. Does y′ = −4(y − 5) have a solution that tends to ∞ as t → ∞?

3. True or false? If k > 0, then all solutions of y′ = −k(y − b) ap-
proach the same limit as t → ∞.

4. As an object cools, its rate of cooling slows. Explain how this
follows from Newton’s Law of Cooling.
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Exercises
1. Find the general solution of y′ = 2(y − 10). Then find the two

solutions satisfying y(0) = 25 and y(0) = 5, and sketch their graphs.

2. Verify directly that y = 12 + Ce−3t satisfies y′ = −3(y − 12) for
all C. Then find the two solutions satisfying y(0) = 20 and y(0) = 0,
and sketch their graphs.

3. Solve y′ = 4y + 24 subject to y(0) = 5.

4. Solve y′ + 6y = 12 subject to y(2) = 10.

In Exercises 5–12, use Newton’s Law of Cooling.

5. A hot anvil with cooling constant k = 0.02 s−1 is submerged in a
large pool of water whose temperature is 10◦C. Let y(t) be the anvil’s
temperature t seconds later.

(a) What is the differential equation satisfied by y(t)?

(b) Find a formula for y(t), assuming the object’s initial temperature
is 100◦C.

(c) How long does it take the object to cool down to 20◦?

6. Frank’s automobile engine runs at 100◦C. On a day when the out-
side temperature is 21◦C, he turns off the ignition and notes that five
minutes later, the engine has cooled to 70◦C.

(a) Determine the engine’s cooling constant k.

(b) What is the formula for y(t)?

(c) When will the engine cool to 40◦C?

7. At 10:30 am, detectives discover a dead body in a room and mea-
sure its temperature at 26◦C. One hour later, the body’s temperature
had dropped to 24.8◦C. Determine the time of death (when the body
temperature was a normal 37◦C), assuming that the temperature in the
room was held constant at 20◦C.

8. A cup of coffee with cooling constant k = 0.09 min−1 is placed in
a room at temperature 20◦C.

(a) How fast is the coffee cooling (in degrees per minute) when its
temperature is T = 80◦C?

(b) Use the Linear Approximation to estimate the change in tempera-
ture over the next 6 s when T = 80◦C.

(c) If the coffee is served at 90◦C, how long will it take to reach an
optimal drinking temperature of 65◦C?

9. A cold metal bar at −30◦C is submerged in a pool maintained at
a temperature of 40◦C. Half a minute later, the temperature of the bar
is 20◦C. How long will it take for the bar to attain a temperature of
30◦C?

10. When a hot object is placed in a water bath whose temperature is
25◦C, it cools from 100 to 50◦C in 150 s. In another bath, the same
cooling occurs in 120 s. Find the temperature of the second bath.

11. Objects A and B are placed in a warm bath at tempera-
ture T0 = 40◦C. Object A has initial temperature −20◦C and cool-
ing constant k = 0.004 s−1. Object B has initial temperature 0◦C and
cooling constant k = 0.002 s−1. Plot the temperatures of A and B for
0 ≤ t ≤ 1000. After how many seconds will the objects have the same
temperature?

12. In Newton’s Law of Cooling, the constant τ = 1/k is called the
“characteristic time.” Show that τ is the time required for the tem-
perature difference (y − T0) to decrease by the factor e−1 ≈ 0.37.
For example, if y(0) = 100◦C and T0 = 0◦C, then the object cools
to 100/e ≈ 37◦C in time τ , to 100/e2 ≈ 13.5◦C in time 2τ , and so on.

In Exercises 13–16, use Eq. (3) as a model for free-fall with air resis-
tance.

13. A 60-kg skydiver jumps out of an airplane. What is her terminal
velocity, in meters per second, assuming that k = 10 kg/s for free-fall
(no parachute)?

14. Find the terminal velocity of a skydiver of weight w = 192 lb if
k = 1.2 lb-s/ft. How long does it take him to reach half of his terminal
velocity if his initial velocity is zero? Mass and weight are related by
w = mg, and Eq. (3) becomes v′ = −(kg/w)(v + w/k) with g = 32
ft/s2.

15. A 80-kg skydiver jumps out of an airplane (with zero initial veloc-
ity). Assume that k = 12 kg/s with a closed parachute and k = 70 kg/s
with an open parachute. What is the skydiver’s velocity at t = 25 s if
the parachute opens after 20 s of free fall?

16. Does a heavier or a lighter skydiver reach terminal velocity
faster?

17. A continuous annuity with withdrawal rate N = $5000/year and
interest rate r = 5% is funded by an initial deposit of P0 = $50,000.

(a) What is the balance in the annuity after 10 years?

(b) When will the annuity run out of funds?

18. Show that a continuous annuity with withdrawal rate N =
$5000/year and interest rate r = 8%, funded by an initial deposit of
P0 = $75,000, never runs out of money.

19. Find the minimum initial deposit P0 that will allow an annuity to
pay out $6000/year indefinitely if it earns interest at a rate of 5%.

20. Find the minimum initial deposit P0 necessary to fund an annu-
ity for 20 years if withdrawals are made at a rate of $10,000/year and
interest is earned at a rate of 7%.

21. An initial deposit of 100,000 euros are placed in an annuity with a
French bank. What is the minimum interest rate the annuity must earn to
allow withdrawals at a rate of 8000 euros/year to continue indefinitely?

22. Show that a continuous annuity never runs out of money if the ini-
tial balance is greater than or equal to N/r , where N is the withdrawal
rate and r the interest rate.

23. Sam borrows $10,000 from a bank at an interest rate of
9% and pays back the loan continuously at a rate of N dollars per year.
Let P(t) denote the amount still owed at time t .

(a) Explain why P(t) satisfies the differential equation

y′ = 0.09y − N

(b) How long will it take Sam to pay back the loan if N = $1200?

(c) Will the loan ever be paid back if N = $800?
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24. April borrows $18,000 at an interest rate of 5% to purchase a new
automobile. At what rate (in dollars per year) must she pay back the
loan, if the loan must be paid off in 5 years? Hint: Set up the differential
equation as in Exercise 23).

25. Let N(t) be the fraction of the population who have heard a given
piece of news t hours after its initial release. According to one model,
the rate N ′(t) at which the news spreads is equal to k times the fraction
of the population that has not yet heard the news, for some constant
k > 0.

(a) Determine the differential equation satisfied by N(t).

(b) Find the solution of this differential equation with the initial con-
dition N(0) = 0 in terms of k.

(c) Suppose that half of the population is aware of an earthquake 8
hours after it occurs. Use the model to calculate k and estimate the per-
centage that will know about the earthquake 12 hours after it occurs.

26. Current in a Circuit When the circuit in Figure 6 (which con-
sists of a battery of V volts, a resistor of R ohms, and an inductor of L

henries) is connected, the current I (t) flowing in the circuit satisfies

L
dI

dt
+ RI = V

with the initial condition I (0) = 0.

(a) Find a formula for I (t) in terms of L, V , and R.

(b) Show that lim
t→∞ I (t) = V/R.

(c) Show that I (t) reaches approximately 63% of its maximum value
at the “characteristic time” τ = L/R.

Inductor

ResistorBattery RV

L

FIGURE 6 Current flow approaches the level Imax = V/R.

Further Insights and Challenges
27. Show that the cooling constant of an object can be determined
from two temperature readings y(t1) and y(t2) at times t1 �= t2 by the
formula

k = 1

t1 − t2
ln

(
y(t2) − T0

y(t1) − T0

)
28. Show that by Newton’s Law of Cooling, the time required to cool
an object from temperature A to temperature B is

t = 1

k
ln

(
A − T0

B − T0

)
where T0 is the ambient temperature.

29. Air Resistance A projectile of mass m = 1 travels straight up
from ground level with initial velocity v0. Suppose that the velocity v

satisfies v′ = −g − kv.

(a) Find a formula for v(t).

(b) Show that the projectile’s height h(t) is given by

h(t) = C(1 − e−kt ) − g

k
t

where C = k−2(g + kv0).

(c) Show that the projectile reaches its maximum height at time
tmax = k−1 ln(1 + kv0/g).

(d) In the absence of air resistance, the maximum height is reached at
time t = v0/g. In view of this, explain why we should expect that

lim
k→0

ln(1 + kv0
g )

k
= v0

g
8

(e) Verify Eq. (8). Hint: Use Theorem 2 in Section 5.8 to show that

lim
k→0

(
1 + kv0

g

)1/k

= ev0/g or use L’Hôpital’s Rule.

9.3 Graphical and Numerical Methods
In the previous two sections, we focused on finding solutions to differential equations.“To imagine yourself subject to a

differential equation, start somewhere.
There you are tugged in some direction, so
you move that way … as you move, the
tugging forces change, pulling you in a new
direction; for your motion to solve the
differential equation you must keep drifting
with and responding to the ambient
forces.”

——From the introduction to Differential
Equations, J. H. Hubbard and Beverly

West, Springer-Verlag, New York, 1991

However, most differential equations cannot be solved explicitly. Fortunately, there are
techniques for analyzing the solutions that do not rely on explicit formulas. In this section,
we discuss the method of slope fields, which provides us with a good visual understanding
of first-order equations. We also discuss Euler’s Method for finding numerical approxi-
mations to solutions.

We use t as the independent variable and write ·
y for dy/dt . The notation ·

y, often
used for time derivatives in physics and engineering, was introduced by Isaac Newton. A
first-order differential equation can then be written in the form

·
y = F(t, y) 1

where F(t, y) is a function of t and y. For example, dy/dt = ty becomes ·
y = ty.
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It is useful to think of Eq. (1) as a set of instructions that “tells a solution” which
direction to go in. Thus, a solution passing through a point (t, y) is “instructed” to continue
in the direction of slope F(t, y). To visualize this set of instructions, we draw a slope field,
which is an array of small segments of slope F(t, y) at points (t, y) lying on a rectangular
grid in the plane.

To illustrate, let’s return to the differential equation:

·
y = −ty

In this case, F(t, y) = −ty. According to Example 2 of Section 9.1, the general solution
is y = Ce−t2/2. Figure 1(A) shows segments of slope −ty at points (t, y) along the
graph of a particular solution y(t). This particular solution passes through (−1, 3), and
according to the differential equation, ·

y(−1) = −ty = −(−1)3 = 3. Thus, the segment
located at the point (−1, 3) has slope 3. The graph of the solution is tangent to each
segment [Figure 1(B)].

(A)  Slope segments

t
1 2−1−2

y

1

2

3

4

Slope at the
point (−1, 3) is
F(−1, 3) = 3 

Slope at the
point (2, 0.5) is
F(2, 0.5) = −1

Solution is tangent
to each slope segment

(B)

t
1 2−1−2

y

1

2

3

4

FIGURE 1 The solution of ·
y = −ty

satisfying y(−1) = 3.

To sketch the slope field for ·
y = −ty, we draw small segments of slope −ty at an

array of points (t, y) in the plane, as in Figure 2(A). The slope field allows us to visualize
all of the solutions at a glance. Starting at any point, we can sketch a solution by drawing
a curve that runs tangent to the slope segments at each point [Figure 2(B)]. The graph of
a solution is also called an integral curve.

(A)  Slope field for F(t, y) = −ty

0 1 2 3 4 5−5
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Segment of slope
F(2, −3) = 6

Segment of slope
F(−1, 3) = 3

Segment of slope
F(2, 3) = −6

Solution with
y (0) = 3

(B)  Solutions of y
.
 = −ty
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FIGURE 2 Slope field for F(t, y) = −ty.
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EXAMPLE 1 Using Isoclines Draw the slope field for

·
y = y − t

and sketch the integral curves satisfying the initial conditions (a) y(0) = 1 and
(b) y(1) = −2.

Solution A good way to sketch the slope field of ·
y = F(t, y) is to choose several values

c and identify the curve F(t, y) = c, called the isocline of slope c. The isocline is the
curve consisting of all points where the slope field has slope c.

In our case, F(t, y) = y − t , so the isocline of fixed slope c has equation y − t = c,
or y = t + c, which is a line. Consider the following values:

• c = 0: This isocline is y − t = 0, or y = t . We draw segments of slope c = 0 at
points along the line y = t , as in Figure 3(A).

• c = 1: This isocline is y − t = 1, or y = t + 1. We draw segments of slope 1 at
points along y = t + 1, as in Figure 3(B).

• c = 2: This isocline is y − t = 2, or y = t + 2. We draw segments of slope 2 at
points along y = t + 2, as in Figure 3(C).

• c = −1: This isocline is y − t = −1, or y = t − 1 [Figure 3(C)].

A more detailed slope field is shown in Figure 3(D). To sketch the solution satisfying
y(0) = 1, begin at the point (t0, y0) = (0, 1) and draw the integral curve that follows
the directions indicated by the slope field. Similarly, the graph of the solution satisfying
y(1) = −2 is the integral curve obtained by starting at (t0, y0) = (1, −2) and moving
along the slope field. Figure 3(E) shows several other solutions (integral curves).

(D)

Solution with
y(1) = −2
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Solution with
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FIGURE 3 Drawing the slope field for ·
y = y − t using isoclines.
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GRAPHICAL INSIGHT Slope fields often let us see the asymptotic behavior of solutions
(as t → ∞) at a glance. Figure 3(E) suggests that the asymptotic behavior depends on
the initial value (the y-intercept): If y(0) > 1, then y(t) tends to ∞, and if y(0) < 1, then
y(t) tends to −∞. We can check this using the general solution y(t) = 1 + t + Cet ,
where y(0) = 1 + C. If y(0) > 1, then C > 0 and y(t) tends to ∞, but if y(0) < 1, then
C < 0 and y(t) tends to −∞. The solution y = 1 + t with initial condition y(0) = 1 is
the straight line shown in Figure 3(D).

EXAMPLE 2 Newton’s Law of Cooling Revisited The temperature y(t) (◦C) of an
object placed in a refrigerator satisfies ·

y = −0.5(y − 4) (t in minutes). Draw the slope
field and describe the behavior of the solutions.

Solution The function F(t, y) = −0.5(y − 4) depends only on y, so slopes of the seg-
ments in the slope field do not vary in the t-direction. The slope F(t, y) is positive for y < 4
and negative for y > 4. More precisely, the slope at height y is −0.5(y − 4) = −0.5y + 2,
so the segments grow steeper with positive slope as y → −∞, and they grow steeper with
negative slope as y → ∞ (Figure 4).

The slope field shows that if the initial temperature satisfiesy0 > 4, theny(t)decreases
to y = 4 as t → ∞. In other words, the object cools down to 4◦C when placed in the
refrigerator. If y0 < 4, then y(t) increases to y = 4 as t → ∞− the object warms up
when placed in the refrigerator. If y0 = 4, then y remains at 4◦C for all time t .

t (min)

y (°C)

4

54321

8

12

−4

Cooling down

Heating up

0

FIGURE 4 Slope field for ·
y = −0.5(y − 4).

CONCEPTUAL INSIGHT Most first-order equations arising in applications have a unique-
ness property: There is precisely one solution y(t) satisfying a given initial condition
y(t0) = y0. Graphically, this means that precisely one integral curve (solution) passes
through the point (t0, y0). Thus, when uniqueness holds, distinct integral curves never
cross or overlap. Figure 5 shows the slope field of ·

y = −√|y|, where uniqueness fails.
We can prove that once an integral curve touches the t-axis, it either remains on the
t-axis or continues along the t-axis for a period of time before moving below the t-axis.
Therefore, infinitely many integral curves pass through each point on the t-axis. How-
ever, the slope field does not show this clearly. This highlights again the need to analyze
solutions rather than rely on visual impressions alone.

t

−1 −0.5 210.5 1.50
−1

−0.5

0

0.5

1

y

FIGURE 5 Overlapping integral curves for·
y = −√|y| (uniqueness fails for this
differential equation).

Euler’s Method
Euler’s Method produces numerical approximations to the solution of a first-order initial
value problem:

Euler’s Method is the simplest method for
solving initial value problems numerically,
but it is not very efficient. Computer
systems use more sophisticated schemes,
making it possible to plot and analyze
solutions to the complex systems of
differential equations arising in areas such
as weather prediction, aerodynamic
modeling, and economic forecasting.

·
y = F(t, y), y(t0) = y0 2

We begin by choosing a small number h, called the time step, and consider the
sequence of times spaced at intervals of size h:

t0, t1 = t0 + h, t2 = t0 + 2h, t3 = t0 + 3h, . . .

In general, tk = t0 + kh. Euler’s Method consists of computing a sequence of values
y1, y2, y3, . . . , yn successively using the formula

yk = yk−1 + hF(tk−1, yk−1) 3

Starting with the initial value y0 = y(t0), we compute y1 = y0 + hF(t0, y0), etc. The
value yk is the Euler approximation to y(tk). We connect the points Pk = (tk, yk) by
segments to obtain an approximation to the graph of y(t) (Figure 6).



520 C H A P T E R 9 INTRODUCTION TO DIFFERENTIAL EQUATIONS

GRAPHICAL INSIGHT The values yk are defined so that the segment joining Pk−1 to Pk

has slope

yk − yk−1

tk − tk−1
= (yk−1 + hF(tk−1, yk−1)) − yk−1

h
= F(tk−1, yk−1)

Thus, in Euler’s method we move from Pk−1 to Pk by traveling in the direction specified
by the slope field at Pk−1 for a time interval of length h (Figure 6).

(t5, y5)

t0 + 5ht0 + 4ht0 + 3ht0 + 2ht0 + ht0

(t0, y0)

(t2, y2)
(t1, y1)

(t3, y3)

(t4, y4)

y

FIGURE 6 In Euler’s Method, we move
from one point to the next by traveling
along the line indicated by the slope field.

EXAMPLE 3 Use Euler’s Method with time step h = 0.2 and n = 4 steps to approx-
imate the solution of ·

y = y − t2, y(0) = 3.

Solution Our initial value at t0 = 0 is y0 = 3. Since h = 0.2, the time values are t1 = 0.2,
t2 = 0.4, t3 = 0.6, and t4 = 0.8. We use Eq. (3) with F(t, y) = y − t2 to calculate

y1 = y0 + hF(t0, y0) = 3 + 0.2(3 − (0)2) = 3.6

y2 = y1 + hF(t1, y1) = 3.6 + 0.2(3.6 − (0.2)2) ≈ 4.3

y3 = y2 + hF(t2, y2) = 4.3 + 0.2(4.3 − (0.4)2) ≈ 5.14

y4 = y3 + hF(t3, y3) = 5.14 + 0.2(5.14 − (0.6)2) ≈ 6.1

Figure 7(A) shows the exact solution y(t) = 2 + 2t + t2 + et together with a plot of the
points (tk, yk) for k = 0, 1, 2, 3, 4 connected by line segments.

t

Time step h = 0.2

0.2 0.4 0.6 0.8

y

3

4

5

6

t

Time step h = 0.1

0.2 0.4 0.6 0.80.1 0.3 0.5 0.7

y

3

4

5

6

FIGURE 7 Euler’s Method applied to·
y = y − t2, y(0) = 3.

CONCEPTUAL INSIGHT Figure 7(B) shows that the time step h = 0.1 gives a better ap-
proximation than h = 0.2. In general, the smaller the time step, the better the approxi-
mation. In fact, if we start at a point (a, y(a)) and use Euler’s Method to approximate
(b, y(b)) using N steps with h = (b − a)/N , then the error is roughly proportional
to 1/N (provided that F(t, y) is a well-behaved function). This is similar to the error
size in the N th left- and right-endpoint approximations to an integral. What this means,
however, is that Euler’s Method is quite inefficient; to cut the error in half, it is nec-
essary to double the number of steps, and to achieve n-digit accuracy requires roughly
10n steps. Fortunately, there are several methods that improve on Euler’s Method in
much the same way as the Midpoint Rule and Simpson’s Rule improve on the endpoint
approximations (see Exercises 22–27).

EXAMPLE 4 Let y(t) be the solution of ·
y = sin t cos y, y(0) = 0.

(a) Use Euler’s Method with time step h = 0.1 to approximate y(0.5).
(b) Use a computer algebra system to implement Euler’s Method with time steps
h = 0.01, 0.001, and 0.0001 to approximate y(0.5).
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Solution

(a) When h = 0.1, yk is an approximation to y(0 + k(0.1)) = y(0.1k), so y5 is an ap-Euler’s Method:

yk = yk−1 + hF(tk−1, yk−1)
proximation to y(0.5). It is convenient to organize calculations in the following table.
Note that the value yk+1 computed in the last column of each line is used in the next line
to continue the process.

tk yk F (tk, yk) = sin tk cos yk yk+1 = yk + hF(tk, yk)

t0 = 0 y0 = 0 (sin 0) cos 0 = 0 y1 = 0 + 0.1(0) = 0
t1 = 0.1 y1 = 0 (sin 0.1) cos 0 ≈ 0.1 y2 ≈ 0 + 0.1(0.1) = 0.01
t2 = 0.2 y2 ≈ 0.01 (sin 0.2) cos(0.01) ≈ 0.2 y3 ≈ 0.01 + 0.1(0.2) = 0.03
t3 = 0.3 y3 ≈ 0.03 (sin 0.3) cos(0.03) ≈ 0.3 y4 ≈ 0.03 + 0.1(0.3) = 0.06
t4 = 0.4 y4 ≈ 0.06 (sin 0.4) cos(0.06) ≈ 0.4 y5 ≈ 0.06 + 0.1(0.4) = 0.10

Thus, Euler’s Method yields the approximation y(0.5) ≈ y5 ≈ 0.1.

(b) When the number of steps is large, the calculations are too lengthy to do by hand,
A typical CAS command to implement
Euler’s Method with time step h = 0.01
reads as follows:

>> For[n = 0; y = 0, n < 50, n++,

>> y = y + (.01) ∗ (Sin[.01 ∗ n] ∗ Cos[y])]
>> y
>> 0.119746

The command For[...] updates the
variable y successively through the values
y1, y2, . . . , y50 according to Euler’s
Method.

but they are easily carried out using a CAS. Note that for h = 0.01, the kth value yk is an
approximation to y(0 + k(0.01)) = y(0.01k), and y50 gives an approximation to y(0.5).
Similarly, when h = 0.001, y500 is an approximation to y(0.5), and when h = 0.0001,
y5,000 is an approximation to y(0.5). Here are the results obtained using a CAS:

Time step h = 0.01 y50 ≈ 0.1197
Time step h = 0.001 y500 ≈ 0.1219
Time step h = 0.0001 y5000 ≈ 0.1221

The values appear to converge and we may assume that y(0.5) ≈ 0.12. However, we see
here that Euler’s Method converges quite slowly.

9.3 SUMMARY

• The slope field for a first-order differential equation ·
y = F(t, y) is obtained by drawing

small segments of slope F(t, y) at points (t, y) lying on a rectangular grid in the plane.
• The graph of a solution (also called an integral curve) satisfying y(t0) = y0 is a curve
through (t0, y0) that runs tangent to the segments of the slope field at each point.
• Euler’s Method : to approximate a solution to ·

y = F(t, y) with initial condition y(t0) =
y0, fix a time step h and set tk = t0 + kh. Define y1, y2, . . . successively by the formula

yk = yk−1 + hF(tk−1, yk−1) 4

The values y0, y1, y2, . . . are approximations to the values y(t0), y(t1), y(t2), . . . .

9.3 EXERCISES

Preliminary Questions
1. What is the slope of the segment in the slope field for ·

y = ty + 1
at the point (2, 3)?

2. What is the equation of the isocline of slope c = 1 for ·
y = y2 − t?

3. For which of the following differential equations are the slopes at
points on a vertical line t = C all equal?

(a) ·
y = ln y (b) ·

y = ln t

4. Let y(t) be the solution to ·
y = F(t, y) with y(1) = 3. How many

iterations of Euler’s Method are required to approximate y(3) if the
time step is h = 0.1?
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Exercises
1. Figure 8 shows the slope field for ·

y = sin y sin t . Sketch the graphs
of the solutions with initial conditions y(0) = 1 and y(0) = −1. Show
that y(t) = 0 is a solution and add its graph to the plot.
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−3 1−2 2−1

t0

−2
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−1

2

3
y

FIGURE 8 Slope field for ·
y = sin y sin t .

2. Figure 9 shows the slope field for ·
y = y2 − t2 . Sketch the integral

curve passing through the point (0, −1), the curve through (0, 0), and
the curve through (0, 2). Is y(t) = 0 a solution?
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y

FIGURE 9 Slope field for ·
y = y2 − t2.

3. Show that f (t) = 1
2

(
t − 1

2

)
is a solution to ·

y = t − 2y. Sketch the
four solutions with y(0) = ±0.5, ±1 on the slope field in Figure 10.
The slope field suggests that every solution approaches f (t) as t → ∞.
Confirm this by showing that y = f (t) + Ce−2t is the general solu-
tion.

t

−1 −0.5 210.5 1.50
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y = (t − )1
2

1
2

FIGURE 10 Slope field for ·
y = t − 2y.

4. One of the slope fields in Figures 11(A) and (B) is the slope field
for ·

y = t2. The other is for ·
y = y2. Identify which is which. In each

case, sketch the solutions with initial conditions y(0) = 1, y(0) = 0,
and y(0) = −1.
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FIGURE 11(A)
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FIGURE 11(B)

5. Consider the differential equation ·
y = t − y.

(a) Sketch the slope field of the differential equation ·
y = t − y in the

range −1 ≤ t ≤ 3, −1 ≤ y ≤ 3. As an aid, observe that the isocline of
slope c is the line t − y = c, so the segments have slope c at points on
the line y = t − c.
(b) Show that y = t − 1 + Ce−t is a solution for all C. Since
lim

t→∞ e−t = 0, these solutions approach the particular solution y =
t − 1 as t → ∞. Explain how this behavior is reflected in your slope
field.

6. Show that the isoclines of ·
y = 1/y are horizontal lines. Sketch

the slope field for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2 and plot the solutions with
initial conditions y(0) = 0 and y(0) = 1.

7. Show that the isoclines of ·
y = t are vertical lines. Sketch the slope

field for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2 and plot the integral curves passing
through (0, −1) and (0, 1).

8. Sketch the slope field of ·
y = ty for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2.

Based on the sketch, determine lim
t→∞ y(t), where y(t) is a solution

with y(0) > 0. What is lim
t→∞ y(t) if y(0) < 0?

9. Match each differential equation with its slope field in Figures
12(A)–(F).

(i) ·
y = −1 (ii) ·

y = y

t
(iii) ·

y = t2y

(iv) ·
y = ty2 (v) ·

y = t2 + y2 (vi) ·
y = t

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(A)
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FIGURE 12(B)
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FIGURE 12(C)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(D)
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FIGURE 12(E)
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FIGURE 12(F)

10. Sketch the solution of ·
y = ty2 satisfying y(0) = 1 in the appro-

priate slope field of Figure 12(A)–(F). Then show, using separation of
variables, that if y(t) is a solution such that y(0) > 0, then y(t) tends
to infinity as t → √

2/y(0).

11. (a) Sketch the slope field of ·
y = t/y in the region −2 ≤ t ≤ 2,

−2 ≤ y ≤ 2.

(b) Check that y = ±
√

t2 + C is the general solution.

(c) Sketch the solutions on the slope field with initial conditions
y(0) = 1 and y(0) = −1.

12. Sketch the slope field of ·
y = t2 − y in the region −3 ≤ t ≤ 3,

−3 ≤ y ≤ 3 and sketch the solutions satisfying y(1) = 0, y(1) = 1,
and y(1) = −1.

13. Let F(t, y) = t2 − y and let y(t) be the solution of ·
y = F(t, y)

satisfying y(2) = 3. Let h = 0.1 be the time step in Euler’s Method,
and set y0 = y(2) = 3.

(a) Calculate y1 = y0 + hF(2, 3).

(b) Calculate y2 = y1 + hF(2.1, y1).

(c) Calculate y3 = y2 + hF(2.2, y2) and continue computing y4, y5,
and y6.

(d) Find approximations to y(2.2) and y(2.5).

14. Let y(t) be the solution to ·
y = te−y satisfying y(0) = 0.

(a) Use Euler’s Method with time step h = 0.1 to approximate
y(0.1), y(0.2), . . . , y(0.5).

(b) Use separation of variables to find y(t) exactly.

(c) Compute the errors in the approximations to y(0.1) and y(0.5).

In Exercises 15–20, use Euler’s Method to approximate the given value
of y(t) with the time step h indicated.

15. y(0.5); ·
y = y + t , y(0) = 1, h = 0.1

16. y(0.7); ·
y = 2y, y(0) = 3, h = 0.1

17. y(3.3); ·
y = t2 − y, y(3) = 1, h = 0.05

18. y(3); ·
y = √

t + y, y(2.7) = 5, h = 0.05

19. y(2); ·
y = t sin y, y(1) = 2, h = 0.2

20. y(5.2); ·
y = t − sec y, y(4) = −2, h = 0.2

Further Insights and Challenges
21. If f (t) is continuous on [a, b], then the solution to ·

y = f (t)

with initial condition y(a) = 0 is y(t) = ∫ t
a f (u) du. Show that Eu-

ler’s Method with time step h = (b − a)/N for N steps yields the N th
left-endpoint approximation to y(b) = ∫ b

a f (u) du.

Exercises 22–27: Euler’s Midpoint Method is a variation on Euler’s
Method that is significantly more accurate in general. For time step h

and initial value y0 = y(t0), the values yk are defined successively by

yk = yk−1 + hmk−1

where mk−1 = F

(
tk−1 + h

2
, yk−1 + h

2
F(tk−1, yk−1)

)
.

22. Apply both Euler’s Method and the Euler Midpoint Method with
h = 0.1 to estimate y(1.5), where y(t) satisfies ·

y = y with y(0) = 1.
Find y(t) exactly and compute the errors in these two approximations.

In Exercises 23–26, use Euler’s Midpoint Method with the time step
indicated to approximate the given value of y(t).

23. y(0.5); ·
y = y + t , y(0) = 1, h = 0.1

24. y(2); ·
y = t2 − y, y(1) = 3, h = 0.2

25. y(0.25); ·
y = cos(y + t), y(0) = 1, h = 0.05

26. y(2.3); ·
y = y + t2, y(2) = 1, h = 0.05

27. Assume that f (t) is continuous on [a, b]. Show that Euler’s Mid-
point Method applied to ·

y = f (t) with initial condition y(a) = 0 and
time step h = (b − a)/N for N steps yields the N th midpoint approx-
imation to

y(b) =
∫ b

a
f (u) du
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9.4 The Logistic Equation
The simplest model of population growth is dy/dt = ky, according to which populationsThe logistic equation was first introduced

in 1838 by the Belgian mathematician
Pierre-François Verhulst (1804–1849).
Based on the population of Belgium for
three years (1815, 1830, and 1845),
which was then between 4 and 4.5 million,
Verhulst predicted that the population
would never exceed 9.4 million. This
prediction has held up reasonably well.
Belgium’s current population is around
10.4 million.

grow exponentially. This may be true over short periods of time, but it is clear that no
population can increase without limit. Therefore, population biologists use a variety of
other differential equations that take into account environmental limitations to growth
such as food scarcity and competition between species. One widely used model is based
on the logistic differential equation:

dy

dt
= ky

(
1 − y

A

)
1

Here k > 0 is the growth constant, and A > 0 is a constant called the carrying capacity.
Figure 1 shows a typical S-shaped solution of Eq. (1). As in the previous section, we also
denote dy/dt by ·

y.

Nearly exponential
growth in the beginning

Growth slows as y(t)
approaches the carrying capacityy

A

y0
t

FIGURE 1 Solution of the logistic equation.

CONCEPTUAL INSIGHT The logistic equation ·
y = ky(1 − y/A) differs from the expo-

nential differential equation ·
y = ky only by the additional factor (1 − y/A). As long

as y is small relative to A, this factor is close to 1 and can be ignored, yielding ·
y ≈ ky.

Thus, y(t) grows nearly exponentially when the population is small (Figure 1). As y(t)

approaches A, the factor (1 − y/A) tends to zero. This causes ·
y to decrease and prevents

y(t) from exceeding the carrying capacity A.

The slope field in Figure 2 shows clearly that there are three families of solutions,
depending on the initial value y0 = y(0).

Solutions of the logistic equation with
y0 < 0 are not relevant to populations
because a population cannot be negative
(see Exercise 18).

• If y0 > A, then y(t) is decreasing and approaches A as t → ∞.
• If 0 < y0 < A, then y(t) is increasing and approaches A as t → ∞.
• If y0 < 0, then y(t) is decreasing and lim

t→tb−
y(t) = −∞ for some time tb.

Equation (1) also has two constant solutions: y = 0 and y = A. They correspond to the
roots of ky(1 − y/A) = 0, and they satisfy Eq. (1) because ·

y = 0 when y is a constant.
Constant solutions are called equilibrium or steady-state solutions. The equilibrium
solution y = A is a stable equilibrium because every solution with initial value y0 close
to A approaches the equilibrium y = A as t → ∞. By contrast, y = 0 is an unstable
equilibrium because every nonequilibrium solution with initial value y0 near y = 0 either
increases to A or decreases to −∞.

t

y

0

A Stable equilibrium y = A

Initial value y0 > A

Initial value 0 < y0 < A

Initial value y0 < 0

Unstable equilibrium y = 0

These solutions decrease to A

These solutions increase to A

These solutions decrease to −∞
as t     tb−

tb
−2 0 2 4 6 8

FIGURE 2 Slope field for
dy

dt
= ky

(
1 − y

A

)
.
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Having described the solutions qualitatively, let us now find the nonequilibrium so-
lutions explicitly using separation of variables. Assuming that y �= 0 and y �= A, we have

In Eq. (2), we use the the partial fraction
decomposition

1

y (1 − y/A)
= 1

y
− 1

y − A

dy

dt
= ky

(
1 − y

A

)
dy

y (1 − y/A)
= k dt

∫ (
1

y
− 1

y − A

)
dy =

∫
k dt 2

ln |y| − ln |y − A| = kt + C∣∣∣∣ y

y − A

∣∣∣∣ = ekt+C ⇒ y

y − A
= ±eCekt

Since ±eC takes on arbitrary nonzero values, we replace ±eC with C (nonzero):

y

y − A
= Cekt 3

For t = 0, this gives a useful relation between C and the initial value y0 = y(0):

y0

y0 − A
= C 4

To solve for y, multiply each side of Eq. (3) by (y − A):

y = (y − A)Cekt

y(1 − Cekt ) = −ACekt

y = ACekt

Cekt − 1

As C �= 0, we may divide by Cekt to obtain the general nonequilibrium solution:

dy

dt
= ky

(
1 − y

A

)
, y = A

1 − e−kt /C
5

EXAMPLE 1 Solve ·
y = 0.3y(4 − y) with initial condition y(0) = 1.

Solution Recall that ·
y = dy

dt
. To apply Eq. (5), we must rewrite the equation in the form

·
y = 1.2y

(
1 − y

4

)
Thus, k = 1.2 and A = 4, and the general solution is

y = 4

1 − e−1.2t /C

There are two ways to find C. One way is to solve y(0) = 1 for C directly. An easier way
is to use Eq. (4):

C = y0

y0 − A
= 1

1 − 4
= −1

3

We find that the particular solution is y = 4

1 + 3e−1.2t
(Figure 3).

1 2 3 4 5

y

5

0.5

1

2 Solution satisfying
y(0) = 1

3

4

t

FIGURE 3 Several solutions of·
y = 0.3y(4 − y).
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EXAMPLE 2 Deer Population A deer population (Figure 4) grows logistically with

FIGURE 4

growth constant k = 0.4 year−1 in a forest with a carrying capacity of 1000 deer.

The logistic equation may be too simple to
describe a real deer population accurately,
but it serves as a starting point for more
sophisticated models used by ecologists,
population biologists, and forestry
professionals.

(a) Find the deer population P(t) if the initial population is P0 = 100.

(b) How long does it take for the deer population to reach 500?

Solution The time unit is the year because the unit of k is year−1.

(a) Since k = 0.4 and A = 1000, P(t) satisfies the differential equation

dP

dt
= 0.4P

(
1 − P

1000

)

The general solution is given by Eq. (5):

P(t) = 1000

1 − e−0.4t /C
6

Using Eq. (4) to compute C, we find (Figure 5)

C = P0

P0 − A
= 100

100 − 1000
= −1

9
⇒ P(t) = 1000

1 + 9e−0.4t

(b) To find the time t when P(t) = 500, we could solve the equation

5 10 15

P(t)
1,000

500

100
t

FIGURE 5 Deer population as a function of t

(in years).

P(t) = 1000

1 + 9e−0.4t
= 500

But it is easier to use Eq. (3):

P

P − A
= Cekt

P

P − 1000
= −1

9
e0.4t

Set P = 500 and solve for t :

−1

9
e0.4t = 500

500 − 1000
= −1 ⇒ e0.4t = 9 ⇒ 0.4t = ln 9

This gives t = (ln 9)/0.4 ≈ 5.5 years.

9.4 SUMMARY

• The logistic equation and its general nonequilibrium solution (k > 0 and A > 0):

dy

dt
= ky

(
1 − y

A

)
, y = A

1 − e−kt /C
, or equivalently

y

y − A
= Cekt

• Two equilibrium (constant) solutions:

– y = 0 is an unstable equilibrium.
– y = A is a stable equilibrium.

• If the initial value y0 = y(0) satisfies y0 > 0, then y(t) approaches the stable equilibrium
y = A; that is, lim

t→∞ y(t) = A.
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9.4 EXERCISES

Preliminary Questions
1. Which of the following differential equations is a logistic differen-

tial equation?

(a) ·
y = 2y(1 − y2) (b) ·

y = 2y
(

1 − y

3

)
(c) ·

y = 2y

(
1 − t

4

)
(d) ·

y = 2y(1 − 3y)

2. Is the logistic equation a linear differential equation?

3. Is the logistic equation separable?

Exercises
1. Find the general solution of the logistic equation

·
y = 3y

(
1 − y

5

)
Then find the particular solution satisfying y(0) = 2.

2. Find the solution of ·
y = 2y(3 − y), y(0) = 10.

3. Let y(t) be a solution of ·
y = 0.5y(1 − 0.5y) such that y(0) = 4.

Determine lim
t→∞ y(t) without finding y(t) explicitly.

4. Let y(t) be a solution of ·
y = 5y(1 − y/5). State whether y(t) is

increasing, decreasing, or constant in the following cases:

(a) y(0) = 2 (b) y(0) = 5 (c) y(0) = 8

5. A population of squirrels lives in a forest with a carrying capacity
of 2000. Assume logistic growth with growth constant k = 0.6 yr−1.

(a) Find a formula for the squirrel population P(t), assuming an initial
population of 500 squirrels.
(b) How long will it take for the squirrel population to double?

6. The population P(t) of mosquito larvae growing in a tree hole
increases according to the logistic equation with growth constant
k = 0.3 day−1 and carrying capacity A = 500.

(a) Find a formula for the larvae population P(t), assuming an initial
population of P0 = 50 larvae.
(b) After how many days will the larvae population reach 200?

7. Sunset Lake is stocked with 2000 rainbow trout, and after 1 year
the population has grown to 4500. Assuming logistic growth with a car-
rying capacity of 20,000, find the growth constant k (specify the units)
and determine when the population will increase to 10,000.

8. Spread of a Rumor A rumor spreads through a small town. Let
y(t) be the fraction of the population that has heard the rumor at time t

and assume that the rate at which the rumor spreads is proportional to
the product of the fraction y of the population that has heard the rumor
and the fraction 1 − y that has not yet heard the rumor.

(a) Write down the differential equation satisfied by y in terms of a
proportionality factor k.
(b) Find k (in units of day−1), assuming that 10% of the population
knows the rumor at t = 0 and 40% knows it at t = 2 days.
(c) Using the assumptions of part (b), determine when 75% of the
population will know the rumor.

9. A rumor spreads through a school with 1000 students. At 8 am, 80
students have heard the rumor, and by noon, half the school has heard
it. Using the logistic model of Exercise 8, determine when 90% of the
students will have heard the rumor.

10. A simpler model for the spread of a rumor assumes that the
rate at which the rumor spreads is proportional (with factor k) to the
fraction of the population that has not yet heard the rumor.

(a) Compute the solutions to this model and the model of Exercise 8
with the values k = 0.9 and y0 = 0.1.
(b) Graph the two solutions on the same axis.
(c) Which model seems more realistic? Why?

11. Let k = 1 and A = 1 in the logistic equation.

(a) Find the solutions satisfying y1(0) = 10 and y2(0) = −1.
(b) Find the time t when y1(t) = 5.
(c) When does y2(t) become infinite?

12. A tissue culture grows until it has a maximum area of M cm2. The
area A(t) of the culture at time t may be modeled by the differential
equation

·
A = k

√
A

(
1 − A

M

)
7

where k is a growth constant.

(a) Show that if we set A = u2, then

·
u = 1

2
k

(
1 − u2

M

)

Then find the general solution using separation of variables.
(b) Show that the general solution to Eq. (7) is

A(t) = M

(
Ce(k/

√
M)t − 1

Ce(k/
√

M)t + 1

)2

13. In the model of Exercise 12, let A(t) be the area at time t

(hours) of a growing tissue culture with initial size A(0) = 1 cm2, as-
suming that the maximum area is M = 16 cm2 and the growth constant
is k = 0.1.

(a) Find a formula for A(t). Note: The initial condition is satisfied for
two values of the constant C. Choose the value of C for which A(t) is
increasing.
(b) Determine the area of the culture at t = 10 hours.
(c) Graph the solution using a graphing utility.

14. Show that if a tissue culture grows according to Eq. (7), then the
growth rate reaches a maximum when A = M/3.

15. In 1751, Benjamin Franklin predicted that the U.S. population P(t)

would increase with growth constant k = 0.028 year−1. According to
the census, the U.S. population was 5 million in 1800 and 76 million
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in 1900. Assuming logistic growth with k = 0.028, find the predicted
carrying capacity for the U.S. population. Hint: Use Eqs. (3) and (4) to
show that

P(t)

P (t) − A
= P0

P0 − A
ekt

16. Reverse Logistic Equation Consider the following lo-
gistic equation (with k, B > 0):

dP

dt
= −kP

(
1 − P

B

)
8

(a) Sketch the slope field of this equation.

(b) The general solution is P(t) = B/(1 − ekt /C), where C is a
nonzero constant. Show that P(0) > B if C > 1 and 0 < P(0) < B

if C < 0.

(c) Show that Eq. (8) models an “extinction–explosion” population.
That is, P(t) tends to zero if the initial population satisfies 0 < P(0) <

B, and it tends to ∞ after a finite amount of time if P(0) > B.

(d) Show that P = 0 is a stable equilibrium and P = B an unstable
equilibrium.

Further Insights and Challenges
In Exercises 17 and 18, let y(t) be a solution of the logistic equation

dy

dt
= ky

(
1 − y

A

)
9

where A > 0 and k > 0.

17. (a) Differentiate Eq. (9) with respect to t and use the Chain Rule
to show that

d2y

dt2
= k2y

(
1 − y

A

) (
1 − 2y

A

)

(b) Show that y(t) is concave up if 0 < y < A/2 and concave down
if A/2 < y < A.

(c) Show that if 0 < y(0) < A/2, then y(t) has a point of inflection at
y = A/2 (Figure 6).

(d) Assume that 0 < y(0) < A/2. Find the time t when y(t) reaches
the inflection point.

A

y(0)

A
2

y

t

Inflection point

FIGURE 6 An inflection point occurs at y = A/2 in the logistic curve.

18. Let y = A

1 − e−kt /C
be the general nonequilibrium Eq. (9). If y(t)

has a vertical asymptote at t = tb, that is, if lim
t→tb−

y(t) = ±∞, we say

that the solution “blows up” at t = tb.

(a) Show that if 0 < y(0) < A, then y does not blow up at any time
tb.

(b) Show that if y(0) > A, then y blows up at a time tb, which is
negative (and hence does not correspond to a real time).

(c) Show that y blows up at some positive time tb if and only if
y(0) < 0 (and hence does not correspond to a real population).

9.5 First-Order Linear Equations
This section introduces the method of “integrating factors” for solving first-order linear
equations. Although we already have a method (separation of variables) for solving sepa-
rable equations, this new method applies to all linear equations, whether separable or not
(Figure 1).

First-order Differential Equations

Separable Linear Neither

y’ = f (x)g(y) y’ + A(x)y = B(x) Example:
y’ = y2 + x

FIGURE 1

A first-order linear equation has the form a(x)y′ + b(x)y = c(x), where a(x) is not
the zero function. We divide by a(x) and write the equation in the standard form

y′ + A(x)y = B(x) 1

Note that in this section, x is used as an independent variable (but t is used in Example 3 be-
low). To solve Eq. (1), we shall multiply through by a function α(x), called an integrating
factor, that turns the left-hand side into the derivative of α(x)y:

α(x)
(
y′ + A(x)y

) = (
α(x)y

)′ 2
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Suppose we can find a function α(x) satisfying Eq. (2). Then Eq. (1) yields

α(x)
(
y′ + A(x)y

) = α(x)B(x)(
α(x)y

)′ = α(x)B(x)

We can solve this equation by integration:

α(x)y =
∫

α(x)B(x) dx + C or y = 1

α(x)

(∫
α(x)B(x) dx + C

)

To find α(x), expand Eq. (2), using the Product Rule on the right-hand side:

α(x)y′ + α(x)A(x)y = α(x)y′ + α′(x)y ⇒ α(x)A(x)y = α′(x)y

Dividing by y, we obtain

dα

dx
= α(x)A(x) 3

We solve this equation using separation of variables:

dα

α
= A(x) dx ⇒

∫
dα

α
=

∫
A(x) dx

Therefore, ln |α(x)| = ∫
A(x) dx, and by exponentiation, α(x) = ±e

∫
A(x) dx . Since we

need just one solution of Eq. (3), we choose the positive solution.

In the formula for the integrating factor
α(x), the integral

∫
A(x) dx denotes any

antiderivative of A(x).

THEOREM 1 The general solution of y′ + A(x)y = B(x) is

y = 1

α(x)

(∫
α(x)B(x) dx + C

)
4

where α(x) is an integrating factor:

α(x) = e
∫

A(x) dx 5

EXAMPLE 1 Solve xy′ − 3y = x2, y(1) = 2.

Solution First divide by x to put the equation in the form y′ + A(x)y = B(x):

y′ − 3

x
y = x

Thus A(x) = −3x−1 and B(x) = x.

Step 1. Find an integrating factor.
In our case, A(x) = −3x−1, and by Eq. (5),

α(x) = e
∫

A(x) dx = e
∫
(−3/x) dx = e−3 ln x = eln(x−3) = x−3

Step 2. Find the general solution.
We have found α(x), so we can use Eq. (4) to write down the general solution:
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y = α(x)−1
∫

α(x)B(x) dx = x3
(∫

x−3 · x dx

)

= x3
(∫

x−2 dx

)
= x3

(
−x−1 + C

)
6

y = −x2 + Cx3

CAUTION We have to include the constant of
integration C in Eq. (6), but note that in
the general solution, C does not appear as
an additive constant. The general solution
is y = −x2 + Cx3. It is not correct to
write −x2 + C.

Step 3. Solve the initial value problem.
Now solve for C using the initial condition y(1) = 2:

y(1) = −12 + C · 13 = 2 or C = 3

Therefore, the solution of the initial value problem is y = −x2 + 3 x3.

Finally, let’s check that y = −x2 + 3x3 satisfies our equation xy′ − 3y = x2:

xy′ − 3y = x(−2x + 9x2) − 3(−x2 + 3x3)

= (−2x2 + 9x3) + (3x2 − 9x3) = x2

EXAMPLE 2 Solve the initial value problem: y′ + (1 − x−1)y = x2, y(1) = 2.

Solution This equation has the form y′ + A(x)y = B(x) with A(x) = (1 − x−1). By
Eq. (5), an integrating factor is

Summary: The general solution of
y ′ + A(x)y = B(x) is

y = α(x)−1

(∫
α(x)B(x) + C

)
where

α(x) = e
∫

A(x) dx

α(x) = e
∫
(1−x−1) dx = ex−ln x = exeln x−1 = x−1ex

Using Eq. (4) with B(x) = x2, we obtain the general solution:

y = α(x)−1
(∫

α(x)B(x) dx + C

)
= xe−x

(∫
(x−1ex)x2 dx + C

)

= xe−x

(∫
xex dx + C

)
Integration by Parts shows that

∫
xex dx = (x − 1)ex + C, so we obtain

y = xe−x
(
(x − 1)ex + C

) = x(x − 1) + Cxe−x

The initial condition y(1) = 2 gives

y(1) = 1(1 − 1) + Ce−1 = Ce−1 = 2 ⇒ C = 2e

The desired particular solution is

x

y

1 2 3 4

1

2

3

FIGURE 2 Solutions to y′ + xy = 1 solved
numerically and plotted by computer.

y = x(x − 1) + (2e)xe−x = x(x − 1) + 2xe1−x

CONCEPTUAL INSIGHT We have expressed the general solution of a first-order linear
differential equation in terms of the integrals in Eqs. (4) and (5). Keep in mind, however,
that it is not always possible to evaluate these integrals explicitly. For example, the
general solution of y′ + xy = 1 is

y = e−x2/2
(∫

ex2/2 dx + C

)

The integral
∫

ex2/2 dx cannot be evaluated in elementary terms. However, we can
approximate the integral numerically and plot the solutions by computer (Figure 2).
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In the next example, we use a differential equation to model a “mixing problem,”
which has applications in biology, chemistry, and medicine.

EXAMPLE 3 A Mixing Problem A tank contains 600 liters of water with a sucrose
concentration of 0.2 kg/L. We begin adding water with a sucrose concentration of 0.1 kg/L
at a rate of Rin = 40 L/min (Figure 3). The water mixes instantaneously and exits the

Rout (L/min)

Rin (L/min)

Water level

FIGURE 3

bottom of the tank at a rate of Rout = 20 L/min. Let y(t) be the quantity of sucrose in the
tank at time t (in minutes). Set up a differential equation for y(t) and solve for y(t).

Solution

Step 1. Set up the differential equation.
The derivative dy/dt is the difference of two rates of change, namely the rate at which
sucrose enters the tank and the rate at which it leaves:

dy

dt
= sucrose rate in − sucrose rate out 7

The rate at which sucrose enters the tank is

Sucrose rate in = (0.1 kg/L)(40 L/min)︸ ︷︷ ︸
Concentration times water rate in

= 4 kg/min

Next, we compute the sucrose concentration in the tank at time t . Water flows in at
40 L/min and out at 20 L/min, so there is a net inflow of 20 L/min. The tank has 600 L
at time t = 0, so it has 600 + 20t liters at time t , and

Concentration at time t = kilograms of sucrose in tank

liters of water in tank
= y(t)

600 + 20t
kg/L

The rate at which sucrose leaves the tank is the product of the concentration and the
rate at which water flows out:

Sucrose rate out =
(

y

600 + 20t

kg

L

) (
20

L

min

)
︸ ︷︷ ︸

Concentration times water rate out

= 20y

600 + 20t
= y

t + 30
kg/min

Now Eq. (7) gives us the differential equation

dy

dt
= 4 − y

t + 30
8

Step 2. Find the general solution.
We write Eq. (8) in standard form:

dy

dt
+ 1

t + 30︸ ︷︷ ︸
A(t)

y = 4︸︷︷︸
B(t)

9

An integrating factor is

α(t) = e
∫

A(t) dt = e
∫

dt/(t+30) = eln(t+30) = t + 30

The general solution is

Summary:

sucrose rate in = 4 kg/min

sucrose rate out = y

t + 30
kg/min

dy

dt
= 4 − y

t + 30

α(t) = t + 30

y(t) = 2t + 60 + C

t + 30

y(t) = α(t)−1
(∫

α(t)B(t) dt + C

)

= 1

t + 30

(∫
(t + 30)(4) dt + C

)

= 1

t + 30

(
2(t + 30)2 + C

) = 2t + 60 + C

t + 30
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Step 3. Solve the initial value problem.
At t = 0, the tank contains 600 L of water with a sucrose concentration of 0.2 kg/L.
Thus, the total sucrose at t = 0 is y(0) = (600)(0.2) = 120 kg, and

y(0) = 2(0) + 60 + C

0 + 30
= 60 + C

30
= 120 ⇒ C = 1800

We obtain the following formula (t in minutes), which is valid until the tank overflows:

y(t) = 2t + 60 + 1800

t + 30
kg sucrose

9.5 SUMMARY

• A first-order linear differential equation can always be written in the form

y′ + A(x)y = B(x)

• The general solution is

y = α(x)−1
(∫

α(x)B(x) dx + C

)

where α(x) is an integrating factor: α(x) = e
∫

A(x) dx .

9.5 EXERCISES

Preliminary Questions
1. Which of the following are first-order linear equations?

(a) y′ + x2y = 1 (b) y′ + xy2 = 1

(c) x5y′ + y = ex (d) x5y′ + y = ey

2. If α(x) is an integrating factor for y′ + A(x)y = B(x), then α′(x)

is equal to (choose the correct answer):

(a) B(x) (b) α(x)A(x)

(c) α(x)A′(x) (d) α(x)B(x)

Exercises
1. Consider y′ + x−1y = x3.

(a) Verify that α(x) = x is an integrating factor.
(b) Show that when multiplied by α(x), the differential equation can
be written (xy)′ = x4.
(c) Conclude that xy is an antiderivative of x4 and use this information
to find the general solution.
(d) Find the particular solution satisfying y(1) = 0.

2. Consider
dy

dt
+ 2y = e−3t .

(a) Verify that α(t) = e2t is an integrating factor.
(b) Use Eq. (4) to find the general solution.
(c) Find the particular solution with initial condition y(0) = 1.

3. Let α(x) = ex2
. Verify the identity

(α(x)y)′ = α(x)(y′ + 2xy)

and explain how it is used to find the general solution of

y′ + 2xy = x

4. Find the solution of y′ − y = e2x , y(0) = 1.

In Exercises 5–18, find the general solution of the first-order linear
differential equation.

5. xy′ + y = x 6. xy′ − y = x2 − x

7. 3xy′ − y = x−1 8. y′ + xy = x

9. y′ + 3x−1y = x + x−1 10. y′ + x−1y = cos(x2)

11. xy′ = y − x 12. xy′ = x−2 − 3y

x

13. y′ + y = ex 14. y′ + (sec x)y = cos x

15. y′ + (tan x)y = cos x 16. e2xy′ = 1 − exy

17. y′ − (ln x)y = xx 18. y′ + y = cos x

In Exercises 19–26, solve the initial value problem.

19. y′ + 3y = e2x , y(0) = −1 20. xy′ + y = ex , y(1) = 3
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21. y′ + 1

x + 1
y = x−2, y(1) = 2

22. y′ + y = sin x, y(0) = 1

23. (sin x)y′ = (cos x)y + 1, y
(π

4

)
= 0

24. y′ + (sec t)y = sec t , y
(π

4

)
= 1

25. y′ + (tanh x)y = 1, y(0) = 3

26. y′ + x

1 + x2
y = 1

(1 + x2)3/2
, y(1) = 0

27. Find the general solution of y′ + ny = emx for all m, n. Note: The
case m = −n must be treated separately.

28. Find the general solution of y′ + ny = cos x for all n.

In Exercises 29–32, a 1000 L tank contains 500 L of water with a salt
concentration of 10 g/L. Water with a salt concentration of 50 g/L flows
into the tank at a rate of 80 L/min. The fluid mixes instantaneously and
is pumped out at a specified rate Rout . Let y(t) denote the quantity of
salt in the tank at time t .

29. Assume that Rout = 40 L/min.

(a) Set up and solve the differential equation for y(t).
(b) What is the salt concentration when the tank overflows?

30. Find the salt concentration when the tank overflows, assuming that
Rout = 60 L/min.

31. Find the limiting salt concentration as t → ∞ assuming that
Rout = 80 L/min.

32. Assuming that Rout = 120 L/min. Find y(t). Then calculate the
tank volume and the salt concentration at t = 10 minutes.

33. Water flows into a tank at the variable rate of Rin =
20/(1 + t) gal/min and out at the constant rate Rout = 5 gal/min. Let
V (t) be the volume of water in the tank at time t .

(a) Set up a differential equation for V (t) and solve it with the initial
condition V (0) = 100.
(b) Find the maximum value of V .
(c) Plot V (t) and estimate the time t when the tank is empty.

34. A stream feeds into a lake at a rate of 1000 m3/day. The stream is
polluted with a toxin whose concentration is 5 g/m3. Assume that the
lake has volume 106 m3 and that water flows out of the lake at the same
rate of 1000 m3/day.

(a) Set up a differential equation for the concentration c(t) of toxin
in the lake and solve for c(t), assuming that c(0) = 0. Hint: Find the
differential equation for the quantity of toxin y(t), and observe that
c(t) = y(t)/106.
(b) What is the limiting concentration for large t?

In Exercises 35–38, consider a series circuit (Figure 4) consisting of
a resistor of R ohms, an inductor of L henries, and a variable voltage
source of V (t) volts (time t in seconds). The current through the circuit
I (t) (in amperes) satisfies the differential equation

dI

dt
+ R

L
I = 1

L
V (t) 10

35. Find the solution to Eq. (10) with initial condition I (0) = 0, assum-
ing that R = 100 �, L = 5 H, and V (t) is constant with V (t) = 10 V.

36. Assume that R = 110 �, L = 10 H, and V (t) = e−t .

(a) Solve Eq. (10) with initial condition I (0) = 0.

(b) Calculate tm and I (tm), where tm is the time at which I (t) has a
maximum value.

(c) Use a computer algebra system to sketch the graph of the
solution for 0 ≤ t ≤ 3.

37. Assume that V (t) = V is constant and I (0) = 0.

(a) Solve for I (t).

(b) Show that lim
t→∞ I (t) = V/R and that I (t) reaches approximately

63% of its limiting value after L/R seconds.

(c) How long does it take for I (t) to reach 90% of its limiting value if
R = 500 �, L = 4 H, and V = 20 V?

38. Solve for I (t), assuming that R = 500 �, L = 4 H, and V =
20 cos(80) V?

LV(t)

R

FIGURE 4 RL circuit.

39. Tank 1 in Figure 5 is filled with V1 liters of water con-
taining blue dye at an initial concentration of c0 g/L. Water flows into
the tank at a rate of R L/min, is mixed instantaneously with the dye
solution, and flows out through the bottom at the same rate R. Let c1(t)

be the dye concentration in the tank at time t .

(a) Explain why c1 satisfies the differential equation
dc1

dt
= − R

V1
c1.

(b) Solve for c1(t) with V1 = 300 L, R = 50, and c0 = 10 g/L.

R  (L/min)

Tank 2

R  (L/min)

R (L/min)

Tank 1

FIGURE 5
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40. Continuing with the previous exercise, let Tank 2 be an-
other tank filled with V2 gal of water.Assume that the dye solution from
Tank 1 empties into Tank 2 as in Figure 5, mixes instantaneously, and
leaves Tank 2 at the same rate R. Let c2(t) be the dye concentration in
Tank 2 at time t .

(a) Explain why c2 satisfies the differential equation

dc2

dt
= R

V2
(c1 − c2)

(b) Use the solution to Exercise 39 to solve for c2(t) if V1 = 300,
V2 = 200, R = 50, and c0 = 10.
(c) Find the maximum concentration in Tank 2.
(d) Plot the solution.

41. Let a, b, r be constants. Show that

y = Ce−kt + a + bk

(
k sin rt − r cos rt

k2 + r2

)
is a general solution of

dy

dt
= −k

(
y − a − b sin rt

)

42. Assume that the outside temperature varies as

T (t) = 15 + 5 sin(πt/12)

where t = 0 is 12 noon. A house is heated to 25◦C at t = 0 and after
that, its temperature y(t) varies according to Newton’s Law of Cooling
(Figure 6):

dy

dt
= −0.1

(
y(t) − T (t)

)
Use Exercise 41 to solve for y(t).

y(t)

T(t)

t (hours)

y(°C)

12 24 36 48 60 8472

5

10

15

20

25

FIGURE 6 House temperature y(t)

Further Insights and Challenges
43. Let α(x) be an integrating factor for y′ + A(x)y = B(x). The dif-
ferential equation y′ + A(x)y = 0 is called the associated homoge-
neous equation.

(a) Show that 1/α(x) is a solution of the associated homogeneous
equation.
(b) Show that if y = f (x) is a particular solution of y′ + A(x)y =
B(x), then f (x) + C/α(x) is also a solution for any constant C.

44. Use the Fundamental Theorem of Calculus and the Product Rule
to verify directly that for any x0, the function

f (x) = α(x)−1
∫ x

x0

α(t)B(t) dt

is a solution of the initial value problem

y′ + A(x)y = B(x), y(x0) = 0

where α(x) is an integrating factor [a solution to Eq. (3)].

45. Transient Currents Suppose the circuit described by Eq. (10) is
driven by a sinusoidal voltage source V (t) = V sin ωt (where V and ω

are constant).

(a) Show that

I (t) = V

R2 + L2ω2
(R sin ωt − Lω cos ωt) + Ce−(R/L) t

(b) Let Z =
√

R2 + L2ω2. Choose θ so that Z cos θ = R and
Z sin θ = Lω. Use the addition formula for the sine function to show
that

I (t) = V

Z
sin(ωt − θ) + Ce−(R/L) t

This shows that the current in the circuit varies sinusoidally apart from
a DC term (called the transient current in electronics) that decreases
exponentially.

CHAPTER REVIEW EXERCISES

1. Which of the following differential equations are linear? Determine
the order of each equation.

(a) y′ = y5 − 3x4y (b) y′ = x5 − 3x4y

(c) y = y′′′ − 3x
√

y (d) sin x · y′′ = y − 1

2. Find a value of c such that y = x − 2 + ecx is a solution of
2y′ + y = x.

In Exercises 3–6, solve using separation of variables.

3.
dy

dt
= t2y−3 4. xyy′ = 1 − x2

5. x
dy

dx
− y = 1 6. y′ = xy2

x2 + 1

In Exercises 7–10, solve the initial value problem using separation of
variables.

7. y′ = cos2x, y(0) = π

4
8. y′ = cos2y, y(0) = π

4
9. y′ = xy2, y(1) = 2 10. xyy′ = 1, y(3) = 2

11. Figure 1 shows the slope field for ·
y = sin y + ty. Sketch the graphs

of the solutions with the initial conditions y(0) = 1 , y(0) = 0, and
y(0) = −1.



Chapter Review Exercises 535

0 1−2 2−1

−2

−1

0

1

2

t

y

FIGURE 1

12. Which of the equations (i)–(iii) corresponds to the slope field in
Figure 2?

(i) ·
y = 1 − y2 (ii) ·

y = 1 + y2 (iii) ·
y = y2

0 1−2 2−1

−2

−1

0

1

y

t

2

FIGURE 2

13. Let y(t) be the solution to the differential equation with slope field
as shown in Figure 2, satisfying y(0) = 0. Sketch the graph of y(t).
Then use your answer to Exercise 12 to solve for y(t).

14. Let y(t) be the solution of 4 ·
y = y2 + t satisfying y(2) = 1. Carry

out Euler’s Method with time step h = 0.05 for n = 6 steps.

15. Let y(t) be the solution of (x3 + 1)
·
y = y satisfying y(0) = 1.

Compute approximations to y(0.1), y(0.2), and y(0.3) using Euler’s
Method with time step h = 0.1.

In Exercises 16–19, solve using the method of integrating factors.

16.
dy

dt
= y + t2, y(0) = 4 17.

dy

dx
= y

x
+ x, y(1) = 3

18.
dy

dt
= y − 3t , y(−1) = 2

19. y′ + 2y = 1 + e−x , y(0) = −4

In Exercises 20–27, solve using the appropriate method.

20. x2y′ = x2 + 1, y(1) = 10

21. y′ + (tan x)y = cos2 x, y(π) = 2

22. xy′ = 2y + x − 1, y
( 3

2

) = 9

23. (y − 1)y′ = t , y(1) = −3

24.
(√

y + 1
)
y′ = ytet2

, y(0) = 1

25.
dw

dx
= k

1 + w2

x
, w(1) = 1

26. y′ + 3y − 1

t
= t + 2 27. y′ + y

x
= sin x

28. Find the solutions to y′ = 4(y − 12) satisfying y(0) = 20 and
y(0) = 0, and sketch their graphs.

29. Find the solutions to y′ = −2y + 8 satisfying y(0) = 3 and y(0) =
4, and sketch their graphs.

30. Show that y = sin−1 x satisfies the differential equation
y′ = sec y with initial condition y(0) = 0.

31. What is the limit lim
t→∞ y(t) if y(t) is a solution of:

(a)
dy

dt
= −4(y − 12)? (b)

dy

dt
= 4(y − 12)?

(c)
dy

dt
= −4y − 12?

In Exercises 32–35, let P(t) denote the balance at time t (years) of an
annuity that earns 5% interest continuously compounded and pays out
$20,000/year continuously.

32. Find the differential equation satisfied by P(t).

33. Determine P(5) if P(0) = $200,000.

34. When does the annuity run out of money if P(0) = $300,000?

35. What is the minimum initial balance that will allow the annuity to
make payments indefinitely?

36. State whether the differential equation can be solved using separa-
tion of variables, the method of integrating factors, both, or neither.

(a) y′ = y + x2 (b) xy′ = y + 1

(c) y′ = y2 + x2 (d) xy′ = y2

37. Let A and B be constants. Prove that if A > 0, then all solutions

of dy
dt

+ Ay = B approach the same limit as t → ∞.

38. At time t = 0, a tank of height 5 m in the shape of an inverted pyra-
mid whose cross section at the top is a square of side 2 m is filled with
water. Water flows through a hole at the bottom of area 0.002 m2. Use
Torricelli’s Law to determine the time required for the tank to empty.

39. The trough in Figure 3 (dimensions in centimeters) is filled with
water. At time t = 0 (in seconds), water begins leaking through a hole
at the bottom of area 4 cm2. Let y(t) be the water height at time t . Find
a differential equation for y(t) and solve it to determine when the water
level decreases to 60 cm.

180

120

360

260

FIGURE 3
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40. Find the solution of the logistic equation ·
y = 0.4y(4 − y) satisfy-

ing y(0) = 8.

41. Let y(t) be the solution of ·
y = 0.3y(2 − y) with y(0) = 1. Deter-

mine lim
t→∞ y(t) without solving for y explicitly.

42. Suppose that y′ = ky(1 − y/8) has a solution satisfying y(0) = 12
and y(10) = 24. Find k.

43. Alake has a carrying capacity of 1000 fish.Assume that the fish pop-
ulation grows logistically with growth constant k = 0.2 day−1. How
many days will it take for the population to reach 900 fish if the initial
population is 20 fish?

44. A rabbit population on an island increases exponentially

with growth rate k = 0.12 months−1. When the population reaches 300
rabbits (say, at time t = 0), wolves begin eating the rabbits at a rate of
r rabbits per month.
(a) Find a differential equation satisfied by the rabbit population P(t).
(b) How large can r be without the rabbit population becoming extinct?

45. Show that y = sin(tan−1 x + C) is the general solution of

y′ =
√

1 − y2/
(
1 + x2)

. Then use the addition formula for the sine
function to show that the general solution may be written

y = (cos C)x + sin C√
1 + x2

46. A tank is filled with 300 liters of contaminated water containing
3 kg of toxin. Pure water is pumped in at a rate of 40 L/min, mixes
instantaneously, and is then pumped out at the same rate. Let y(t) be
the quantity of toxin present in the tank at time t .

(a) Find a differential equation satisfied by y(t).

(b) Solve for y(t).

(c) Find the time at which there is 0.01 kg of toxin present.

47. At t = 0, a tank of volume 300 L is filled with 100 L of water con-
taining salt at a concentration of 8 g/L. Fresh water flows in at a rate of
40 L/min, mixes instantaneously, and exits at the same rate. Let c1(t)

be the salt concentration at time t .

(a) Find a differential equation satisfied by c1(t) Hint: Find the differ-
ential equation for the quantity of salt y(t), and observe that c1(t) =
y(t)/100.

(b) Find the salt concentration c1(t) in the tank as a function of time.

48. The outflow of the tank in Exercise 47 is directed into a second
tank containing V liters of fresh water where it mixes instantaneously
and exits at the same rate of 40 L/min. Determine the salt concentration
c2(t) in the second tank as a function of time in the following two cases:

(a) V = 200 (b) V = 300

In each case, determine the maximum concentration.
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Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided. Questions designated as
BC indicate BC-only topics.

1. Which of the following is the solution to y′ = 2y, with ini-
tial condition y(0) = 6?

(A) y = y2 + 6

(B) y = 3e2x

(C) y = 6e2x

(D) y = 2ex + 4

(E) y = e2x + 5

2. The solution to y′ = 2y − 6 with y(0) = 5 is y =
(A) 5e2x

(B) 6e2x − 1

(C) 2e2x + 3

(D) 2ex + 3

(E) 6ex − 1

3. The general solution to y′ = 2x(y2 + 1) is

(A) y = tan(x2) + C

(B) y = tan(x2 + C)

(C) y2 = x2 + C

(D) y2 = (x + C)2

(E) ln(y2 + 1) = x2 + C

4. A solution to y′ + 4y = 0 is y =
(A) −2y2

(B) 4 − ex

(C)
1

4e4x

(D) 4e−x

(E) e4x

5. A tank contains 200 gallons of salt water that has a con-
centration of 0.4 pounds of salt per gallon. Water with a
concentration of 0.7 pounds of salt per gallon starts pour-
ing into the tank at the rate of 3 gallons per minute, where it
continuously mixes with what is already in the tank, and the
new mixture flows out of the tank at 3 gallons per minute.
Let A(t) be the amount of salt in the tank at time t . Then
A(t) satisfies which of the following differential equations?

(A)
dA

dt
= 0.4 + 2.1t

(B)
dA

dt
= 80 + 2.1t

(C)
dA

dt
= 2.1t − 3A

200

(D)
dA

dt
= 2.1 − 3A

200

(E)
dA

dt
= 80 + 2.1t − 3A

200

AP9-1
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6. A tank contains 300 gallons of salt water that has a con-
centration of 0.4 pounds of salt per gallon. Water with a
concentration of 0.8 pounds of salt per gallon starts pour-
ing into the tank at the rate of 6 gallons per minute, where it
continuously mixes with what is already in the tank, and the
new mixture flows out of the tank at 2 gallons per minute.
Let A(t) be the amount of salt in the tank at time t . Then
A(t) satisfies which of the following differential equations?

(A)
dA

dt
= 120 + 4.8t

(B)
dA

dt
= 120 + 3.6t

(C)
dA

dt
= 3.6t − 2A

300

(D)
dA

dt
= 4.8 − 2A

300

(E)
dA

dt
= 4.8 − 2A

300 + 4t

7. A solution to y′ = x

y
with y(0) = 2 is

(A) y = √
x2 + 4

(B) y = √
x2 + 1 + 1

(C) y = 2e−x2

(D) y = x2

2
+ 2

(E) y = e−x + 1

8. BC If y(x) is a solution to
dy

dx
= 2y(5 − y) with y(0) = 3,

then as x → ∞,
(A) y(x) increases to ∞.
(B) y(x) increases to 5.
(C) y(x) decreases to 5.
(D) y(x) decreases to 2.
(E) y(x) decreases to 0.

9. BC If y(x) is a solution to y′ = 3y(6 − y) with y(0) = 10,
then as x → ∞,
(A) y(x) increases to ∞.
(B) y(x) increases to 6.
(C) y(x) decreases to 6.
(D) y(x) decreases to 3.
(E) y(x) decreases to 0.

10. If the rate of change of a population is given by
dP

dt
=

3.1(P − 2)(P − 10), P > 0, for what values of P is the
population increasing?
(A) all P > 0
(B) only when 0 < P < 2
(C) 2 < P < 10
(D) 0 < P < 2 and 10 < P

(E) all P > 0 except P = 2 and P = 10

11. The rate at which a certain disease spreads is proportional
to the product of the percentage of the population with the
disease and the percentage of the population that does not
have the disease. If the constant of proportionality is 0.03,
and y is the percent of people with the disease, then which
of the following equations gives R(t), the rate at which the
disease is spreading?

(A) R(t) = 0.03y

(B) R(t) = 0.03
dy

dt

(C) R(t) = 0.03y(1 − y)

(D)
dR

dt
= 0.03R(1 − R)

(E)
dR

dt
= 0.03R

12. BC If y′ = 2x + y and y(1) = 3, use Euler’s method with
step size h = �x = 0.2 to approximate y(1.4).

(A) 3.40

(B) 4.00

(C) 5.20

(D) 5.28

(E) 6.40

13. The half-life of a certain substance is 31 days. If at t = 0,
there are 200 grams of the substance, and A(t) is the amount
of the substance at time t , what is the equation that describes
this situation?

(A) A(t) = 200 − 2
t

31

(B) A(t) = 200 − 100
t

31

(C)
dA

dt
= 200

(
1

2

)t/31

(D)
dA

dt
= ln 1

2

31
A(t), A(0) = 200

(E)
dA

dt
= 200

31
A(t), A(0) = 200
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14. Which of the following slopefields could be the one for
dy

dx
= x + y?

(A)

−1−2 0 1 2
−2

−1

0

1

2

(B)

−1 0 1 2
−2

−1

0

1

2

−2

(C)

−1 0 1 2
−2

−1

0

1

2

−2

(D)

−1 0 1 2
−2

−1

0

1

2

−2

(E)

−1 0 1 2
−2

−1

0

1

2

−2

15. The slopefield below represents the slopefield for which of
the following differential equations?

−1 0 1 2
−2

−1

0

1

2

−2

(A) y′ = y

(B) y′ = y2

(C) y′ = x

(D) y′ = x2

(E) y′ = x · y

16. If
dy

dt
= 2y(12 − 3y) and y(0) = 1, then y is increasing the

fastest when

(A) y = 0

(B) y = 1

(C) y = 2

(D) y = 3

(E) y = 4

17. If a filter is removing one-third of the amount of pollutant in
a tank full of liquid every 4 hours, and if A(t) is the amount

of the pollutant, then
dA

dt
=

(A) 1
3A

(B) 1
4 ln 2

3A

(C) 1
4A

(D) 1
4 ln 1

3A

(E) 1
12A

18. BC If
dy

dt
= 2y(12 − 3y) and y(0) = 1, then the maximum

value of y is

(A) y = 1

(B) y = 2

(C) y = 4

(D) y = 12

(E) Never attained; y has no maximum value.
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19. If
dy

dt
= 6 − 2y, then the substitution w = y − 3 leads to

the equation

(A)
dw

dt
= 6 − 2w

(B)
dw

dt
= 6

(C)
dw

dt
= −2w

(D)
dy

dt
= −2w

(E)
dy

dt
= w + 3

20. The slopefield below could represent which of the following
equations?

−1 0 1 2
−2

−1

0

1

2

−2

(A) y′ = y

(B) y′ = y2

(C) y′ = x2

(D) y′ = x3

(E) y′ = xy

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will
be scored on the correctness and completeness of your meth-
ods, as well as your actual answer. You will usually not be given
credit for answers that don’t include supporting work.

1. Consider the differential equation y′ = y(6 − 2y).
(a) Show that the substitution w = 1

y
leads to the equation

dw

dt
= 2 − 6w.

(b) Use separation of variables to solve
dw

dt
= 2 − 6w.

(c) Use your answer to (b) to solve y′ = y(6 − 2y).

2. The following slopefield is for the equation y′ = −x

y
.

−2 −1 0 1 2
−2

−1

0

1

2

(a) Draw the graph of the unique function y = f (x) that is
a solution to the differential equation for this slopefield
whose graph goes through the point (0, −1).

(b) Explain, in a sentence or two, why this is not the slope-
field for y′ = −x · y.

(c) Is y = 1
3x

a solution to x2y′′ − 2x · y′ − 4y = 0?
Show your reasoning.

(d) Find all K so that y = xK is a solution to x2y′′ − 2x ·
y′ − 4y = 0.

3. Consider the differential equation y′ = 2x · y2 + 2x.

(a) Use separation of variables to find the general solution,
solving explicitly for y.

(b) Find the specific solution such that y(0) = 1, and give
the domain of this solution.

4. The following slopefield is for the equation y · y′ = x.

−10 −5 0 5 10
−10

−5

0

5

10

(a) Draw a solution curve that passes through the point
(−1, 4). Label it A.

(b) Draw a solution curve that passes through the point
(4, −1). Label it B.

(c) Find the general solution by separating variables.

(d) Write the specific solution that gives curve A, specify-
ing domain.

(e) Write the specific solution that gives curve B, specify-
ing domain.

Answers to odd-numbered questions can be found in the back of
the book.



Our knowledge of what stars are made of is

based on the study of absorption spectra, the

sequences of wavelengths absorbed by gases in

the star’s atmosphere.

10 INFINITE SERIES

T he theory of infinite series is a third branch of calculus, in addition to differential
and integral calculus. Infinite series yield a new perspective on functions and on many

interesting numbers. Two examples are the infinite series for the exponential function

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

and the Gregory–Leibniz series (see Exercise 53 in Section 2)

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

The first shows that ex can be expressed as an “infinite polynomial,” and the second reveals
that π is related to the reciprocals of the odd integers in an unexpected way. To make sense
of infinite series, we need to define precisely what it means to add up infinitely many terms.
Limits play a key role here, just as they do in differential and integral calculus.

10.1 Sequences
Sequences of numbers appear in diverse situations. If you divide a cake in half, and then

1 1
2

1
4

1
8

FIGURE 1

divide the remaining half in half, and continue dividing in half indefinitely (Figure 1),
then the fraction of cake remaining at each step forms the sequence

1,
1

2
,

1

4
,

1

8
, . . .

This is the sequence of values of the function f (n) = 1

2n
for n = 0, 1, 2, . . . .

Formally, a sequence is an ordered collection of numbers defined by a function f (n)

on a set of integers. The values an = f (n) are called the terms of the sequence, and n is
called the index. Informally, we think of a sequence {an} as a list of terms:

a1, a2, a3, a4, . . .

The sequence does not have to start at n = 1, but may start at n = 0, n = 2, or any other
integer. When an is given by a formula, we refer to an as the general term.

The sequence bn is the Balmer series of
absorption wavelengths of the hydrogen
atom in nanometers. It plays a key role in
spectroscopy.

General term Domain Sequence

an = 1 − 1

n
n ≥ 1 0,

1

2
,

2

3
,

3

4
,

4

5
, . . .

an = (−1)nn n ≥ 0 0, −1, 2, −3, 4, . . .

bn = 364.5n2

n2 − 4
n ≥ 3 656.1, 486, 433.9, 410.1, 396.9, . . .

The sequence in the next example is defined recursively. The first term is given and
the nth term an is computed in terms of the preceding term an−1.

537
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EXAMPLE 1 Recursive Sequence Compute a2, a3, a4 for the sequence defined re-
cursively by

a1 = 1, an = 1

2

(
an−1 + 2

an−1

)

Solution

You may recognize the sequence in
Example 1 as the sequence of
approximations to

√
2 ≈ 1.4142136

produced by Newton’s method with starting
value a1 = 1. As n tends to infinity, an

approaches
√

2.

a2 = 1

2

(
a1 + 2

a1

)
= 1

2

(
1 + 2

1

)
= 3

2
= 1.5

a3 = 1

2

(
a2 + 2

a2

)
= 1

2

(
3

2
+ 2

3/2

)
= 17

12
≈ 1.4167

a4 = 1

2

(
a3 + 2

a3

)
= 1

2

(
17

12
+ 2

17/12

)
= 577

408
≈ 1.414216

Our main goal is to study convergence of sequences. A sequence {an} converges to a
limit L if |an − L| becomes arbitrary small when n is sufficiently large. Here is the formal
definition.

DEFINITION Limit of a Sequence We say that {an} converges to a limit L, and we
write

lim
n→∞ an = L or an → L

if, for every ε > 0, there is a number M such that |an − L| < ε for all n > M .

• If no limit exists, we say that {an} diverges.
• If the terms increase without bound, we say that {an} diverges to infinity.

If {an} converges, then its limit L is unique. A good way to visualize the limit is
to plot the points (1, a1), (2, a2), (3, a3), . . . , as in Figure 2. The sequence converges to

1 2 3 4 5 6 7

−�
+�

L

y

n

FIGURE 2 Plot of a sequence with limit L.
For any ε, the dots eventually remain
within an ε-band around L.

L if, for every ε > 0, the plotted points eventually remain within an ε-band around the
horizontal line y = L. Figure 3 shows the plot of a sequence converging to L = 1. On the
other hand, we can show that the sequence an = cos n in Figure 4 has no limit.

y

n
1410 122 4 6 8

1.5

1

0.5

FIGURE 3 The sequence an = n + 4

n + 1
.

y

n
1410 122 4 6

8

1

−1

FIGURE 4 The sequence an = cos n has no
limit.

EXAMPLE 2 Proving Convergence Let an = n + 4

n + 1
. Prove formally that lim

n→∞
an =1.

Solution The definition requires us to find, for every ε > 0, a number M such that

|an − 1| < ε for all n > M 1
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We have

|an − 1| =
∣∣∣∣n + 4

n + 1
− 1

∣∣∣∣ = 3

n + 1

Therefore, |an − 1| < ε if

3

n + 1
< ε or n >

3

ε
− 1

In other words, Eq. (1) is valid with M = 3
ε

− 1. This proves that lim
n→∞ an = 1.

Note the following two facts about sequences:

• The limit does not change if we change or drop finitely many terms of the sequence.
• If C is a constant and an = C for all n sufficiently large, then lim

n→∞ an = C.

Many of the sequences we consider are defined by functions; that is, an = f (n) for
some function f (x). For example,

an = n − 1

n
is defined by f (x) = x − 1

x

A fact we will use often is that if f (x) approaches a limit L as x → ∞, then the sequence
an = f (n) approaches the same limit L (Figure 5). Indeed, for all ε > 0, we can find M

1 2 3 4 5 6 7 8 9 10

L

y

x

a1 = f (1)

a2 = f (2) y = f (x)

a3 = f (3)

FIGURE 5 If f (x) converges to L, then the
sequence an = f (n) also converges to L.

so that |f (x) − L| < ε for all x > M . It follows automatically that |f (n) − L| < ε for
all integers n > M .

THEOREM 1 Sequence Defined by a Function If lim
x→∞ f (x) exists, then the sequence

an = f (n) converges to the same limit:

lim
n→∞ an = lim

x→∞ f (x)

EXAMPLE 3 Find the limit of the sequence

22 − 2

22
,

32 − 2

32
,

42 − 2

42
,

52 − 2

52
, . . .

Solution This is the sequence with general term

an = n2 − 2

n2
= 1 − 2

n

Therefore, we apply Theorem 1 with f (x) = 1 − 2
x

:

lim
n→∞ an = lim

x→∞

(
1 − 2

x

)
= 1 − lim

x→∞
2

x
= 1 − 0 = 1

EXAMPLE 4 Calculate lim
n→∞

n + ln n

n2
.

Solution Apply Theorem 1, using L’Hôpital’s Rule in the second step:

lim
n→∞

n + ln n

n2
= lim

x→∞
x + ln x

x2
= lim

x→∞
1 + (1/x)

2x
= 0
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The limit of the Balmer wavelengths bn in the next example plays a role in physics and
chemistry because it determines the ionization energy of the hydrogen atom. Table 1 sug-

TABLE 1
Balmer Wavelengths

n bn

3 656.1
4 486
5 433.9
6 410.1
7 396.9

10 379.7
20 368.2
40 365.4
60 364.9
80 364.7

100 364.6

gests that bn approaches 364.5. Figure 6 shows the graph, and in Figure 7, the wavelengths
are shown “crowding in” toward their limiting value.

y = f (x)
b3

b4
b5

3

364.5

200

400

600

800

4 5 6 7

y

x

FIGURE 6 The sequence and the function
approach the same limit.
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FIGURE 7

EXAMPLE 5 Balmer Wavelengths Calculate the limit of the Balmer wavelengths

bn = 364.5n2

n2 − 4
, where n ≥ 3.

Solution Apply Theorem 1 with f (x) = 364.5x2

x2 − 4
:

lim
n→∞ bn = lim

x→∞
364.5x2

x2 − 4
= lim

x→∞
364.5

1 − 4/x2
= 364.5

lim
x→∞(1 − 4/x2)

= 364.5

A geometric sequence is a sequence an = crn, where c and r are nonzero constants.
Each term is r times the previous term; that is, an/an−1 = r . The number r is called
the common ratio. For instance, if r = 3 and c = 2, we obtain the sequence (starting at
n = 0)

2, 2 · 3, 2 · 32, 2 · 33, 2 · 34, 2 · 35, . . .

In the next example, we determine when a geometric series converges. Recall that
{an} diverges to ∞ if the terms an increase beyond all bounds (Figure 8); that is,

lim
n→∞ an = ∞ if, for every number N , an > N for all sufficiently large n

We define lim
n→∞ an = −∞ similarly.

1 2 3 4 5 6

c

y

x

f (x) = crx  (r > 1)

FIGURE 8 If r > 1, the geometric sequence
an = rn diverges to ∞.

x
1 2 3 4 5 6

y

f (x) = crx  (0 < r < 1)

c

FIGURE 9 If 0 < r < 1, the geometric
sequence an = rn converges to 0.

EXAMPLE 6 Geometric Sequences with r ≥ 0 Prove that for r ≥ 0 and c > 0,

lim
n→∞ crn =

⎧⎪⎨
⎪⎩

0 if 0 ≤ r < 1

c if r = 1

∞ if r > 1

Solution Set f (r) = crx . If 0 ≤ r < 1, then (Figure 9)

lim
n→∞ crn = lim

x→∞ f (x) = c lim
x→∞ rx = 0

If r > 1, then both f (x) and the sequence {crn} diverge to ∞ (because c > 0) (Figure 8).
If r = 1, then crn = c for all n, and the limit is c.
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The limit laws we have used for functions also apply to sequences and are proved in
a similar fashion.

THEOREM 2 Limit Laws for Sequences Assume that {an} and {bn} are convergent
sequences with

lim
n→∞ an = L, lim

n→∞ bn = M

Then:

(i) lim
n→∞(an ± bn) = lim

n→∞ an ± lim
n→∞ bn = L ± M

(ii) lim
n→∞ anbn =

(
lim

n→∞ an

)(
lim

n→∞ bn

)
= LM

(iii) lim
n→∞

an

bn

=
lim

n→∞ an

lim
n→∞ bn

= L

M
if M �= 0

(iv) lim
n→∞ can = c lim

n→∞ an = cL for any constant c

THEOREM 3 Squeeze Theorem for Sequences Let {an}, {bn}, {cn} be sequences
such that for some number M ,

bn ≤ an ≤ cn for n > M and lim
n→∞ bn = lim

n→∞ cn = L

Then lim
n→∞ an = L.

EXAMPLE 7 Show that if lim
n→∞ |an| = 0, then lim

n→∞ an = 0.

Solution We have

−|an| ≤ an ≤ |an|
By hypothesis, lim

n→∞ |an| = 0, and thus also lim
n→∞ −|an| = − lim

n→∞ |an| = 0. Therefore,

we can apply the Squeeze Theorem to conclude that lim
n→∞ an = 0.

EXAMPLE 8 Geometric Sequences with r < 0 Prove that for c �= 0,

lim
n→∞ crn =

{
0 if −1 < r < 0

diverges if r ≤ −1

Solution If −1 < r < 0, then 0 < |r| < 1 and lim
n→∞ |crn| = 0 by Example 6. Thus

lim
n→∞ crn = 0 by Example 7. If r = −1, then the sequence crn = (−1)nc alternates in

sign and does not approach a limit. The sequence also diverges if r < −1 because crn

alternates in sign and |crn| grows arbitrarily large.

As another application of the Squeeze Theorem, consider the sequence

REMINDER n! (n-factorial) is the
number

n! = n(n − 1)(n − 2) · · · 2 · 1

For example, 4! = 4 · 3 · 2 · 1 = 24.

an = 5n

n!
Both the numerator and the denominator grow without bound, so it is not clear in advance
whether {an} converges. Figure 10 and Table 2 suggest that an increases initially and then

5 10 15

10

20

y

n

FIGURE 10 Graph of an = 5n

n! .

tends to zero. In the next example, we verify that an = Rn/n! converges to zero for all R.
This fact is used in the discussion of Taylor series in Section 10.7.

TABLE 2

n an = 5n

n!
1 5
2 12.5
3 20.83
4 26.04

10 2.69
15 0.023
20 0.000039
50 2.92×10−30
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EXAMPLE 9 Prove that lim
n→∞

Rn

n! = 0 for all R.

Solution Assume first that R > 0 and let M be the positive integer such that

M ≤ R < M + 1

For n > M , we write Rn/n! as a product of n factors:

Rn

n! =
(

R

1

R

2
· · · R

M

)
︸ ︷︷ ︸
Call this constant C

(
R

M + 1

)(
R

M + 2

)
· · ·

(
R

n

)
︸ ︷︷ ︸

Each factor is less than 1

≤ C

(
R

n

)
2

The first M factors are ≥ 1 and the last n − M factors are < 1. If we lump together the
first M factors and call the product C, and drop all the remaining factors except the last
factor R/n, we see that

0 ≤ Rn

n! ≤ CR

n

Since CR/n → 0, the Squeeze Theorem gives us lim
n→∞ Rn/n! = 0 as claimed. If R < 0,

the limit is also zero by Example 7 because
∣∣Rn/n!∣∣ tends to zero.

Given a sequence {an} and a function f (x), we can form the new sequence f (an). It
is useful to know that if f (x) is continuous and an → L, then f (an) → f (L). A proof is
given in Appendix D.

THEOREM 4 If f (x) is continuous and lim
n→∞ an = L, then

lim
n→∞ f (an) = f

(
lim

n→∞ an

)
= f (L)

In other words, we may “bring a limit inside a continuous function.”

EXAMPLE 10 Apply Theorem 4 to the sequence an = 3n

n + 1
and to the functions

(a) f (x) = ex and (b) g(x) = x2.

Solution Observe first that

L = lim
n→∞ an = lim

n→∞
3n

n + 1
= lim

n→∞
3

1 + n−1
= 3

(a) With f (x) = ex we have f (an) = ean = e
3n

n+1 . According to Theorem 4,

lim
n→∞ e

3n
n+1 = lim

n→∞ f (an) = f
(

lim
n→∞ an

)
= e

lim
n→∞

3n
n+1 = e3

(b) With g(x) = x2 we have g(an) = a2
n, and according to Theorem 4,

lim
n→∞

(
3n

n + 1

)2

= lim
n→∞ g(an) = g

(
lim

n→∞ an

)
=

(
lim

n→∞
3n

n + 1

)2

= 32 = 9

Of great importance for understanding convergence are the concepts of a bounded
sequence and a monotonic sequence.
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DEFINITION Bounded Sequences A sequence {an} is:

• Bounded from above if there is a number M such that an ≤ M for all n. The
number M is called an upper bound.

• Bounded from below if there is a number m such that an ≥ m for all n. The
number m is called a lower bound.

The sequence {an} is called bounded if it is bounded from above and below.Asequence
that is not bounded is called an unbounded sequence.

Upper and lower bounds are not unique. If M is an upper bound, then any larger

1 2 3 4 5 6 7

L

M
Upper
bound

Another
upper
bound

m

Lower
bound

y

n
Another

lower
bound

FIGURE 11 A convergent sequence is
bounded.

number is also an upper bound, and if m is a lower bound, then any smaller number is
also a lower bound (Figure 11).

As we might expect, a convergent sequence {an} is necessarily bounded because the
terms an get closer and closer to the limit. This fact is recorded in the next theorem.

THEOREM 5 Convergent Sequences Are Bounded If {an} converges, then {an} is
bounded.

Proof Let L = lim
n→∞ an. Then there exists N > 0 such that |an − L| < 1 for n > N . In

other words,

L − 1 < an < L + 1 for n > N

If M is any number larger than L + 1 and also larger than the numbers a1, a2, . . . , aN ,
then an < M for all n. Thus, M is an upper bound. Similarly, any number m smaller than
L − 1 and also smaller than the numbers a1, a2, . . . , aN is a lower bound.

There are two ways that a sequence {an} can diverge. One way is by being unbounded.
For example, the unbounded sequence an = n diverges:

1, 2, 3, 4, 5, 6, . . .

However, a sequence can diverge even if it is bounded. This is the case with an = (−1)n+1,
whose terms an bounce back and forth but never settle down to approach a limit:

1, −1, 1, −1, 1, −1, . . .

There is no surefire method for determining whether a sequence {an} converges,
unless the sequence happens to be both bounded and monotonic. By definition, {an} is
monotonic if it is either increasing or decreasing:

• {an} is increasing if an < an+1 for all n.
• {an} is decreasing if an > an+1 for all n.

Intuitively, if {an} is increasing and bounded above by M , then the terms must bunch up
near some limiting value L that is not greater than M (Figure 12). See Appendix B for a
proof of the next theorem.

x
0

a1 a2 a3 a4 a5

L M

The limit
An upper

bound

FIGURE 12 An increasing sequence with
upper bound M approaches a limit L.
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THEOREM 6 Bounded Monotonic Sequences Converge

• If {an} is increasing and an ≤ M , then {an} converges and lim
n→∞ an ≤ M .

• If {an} is decreasing and an ≥ m, then {an} converges and lim
n→∞ an ≥ m.

EXAMPLE 11 Verify that an = √
n + 1 − √

n is decreasing and bounded below. Does
lim

n→∞ an exist?
TABLE 3

an = √
n + 1 − √

n

a1 ≈ 0.4142
a2 ≈ 0.3178
a3 ≈ 0.2679
a4 ≈ 0.2361
a5 ≈ 0.2134
a6 ≈ 0.1963
a7 ≈ 0.1827
a8 ≈ 0.1716

Solution The function f (x) = √
x + 1 − √

x is decreasing because its derivative is neg-
ative:

f ′(x) = 1

2
√

x + 1
− 1

2
√

x
< 0 for x > 0

It follows that an = f (n) is decreasing (see Table 3). Furthermore, an > 0 for all n, so
the sequence has lower bound m = 0. Theorem 6 guarantees that L = lim

n→∞ an exists and

L ≥ 0. In fact, we can show that L = 0 by noting that f (x) = 1/(
√

x + 1 + √
x) and

hence lim
x→∞ f (x) = 0.

EXAMPLE 12 Show that the following sequence is bounded and increasing:

a1 = √
2, a2 =

√
2
√

2, a3 =
√

2

√
2
√

2, . . .

Then prove that L = lim
n→∞ an exists and compute its value.

Solution If we knew in advance that the limit L exists, we could find its value as follows.
The idea is that L “contains a copy” of itself under the square root sign:

L =
√

2

√
2

√
2
√

2 · · · =

√√√√√2

⎛
⎝
√

2

√
2
√

2 · · ·
⎞
⎠ = √

2L

Thus L2 = 2L, which implies that L = 2 or L = 0. We eliminate L = 0 because the terms
an are positive and increasing (as shown below), so we must have L = 2 (see Table 4).

This argument is phrased more formally by noting that the sequence is defined recur-
sively by

a1 = √
2, an+1 = √

2an

If an converges to L, then the sequence bn = an+1 also converges to L (because it is the
same sequence, with terms shifted one to the left). Then, using Theorem 4, we would have

L = lim
n→∞ an+1 = lim

n→∞
√

2an =
√

2 lim
n→∞ an = √

2L

However, none of this is valid unless we know in advance that the limit L exists. By

TABLE 4 Recursive
Sequence an+1 = √

2an

a1 1.4142
a2 1.6818
a3 1.8340
a4 1.9152
a5 1.9571
a6 1.9785
a7 1.9892
a8 1.9946

Theorem 6, it suffices to show that {an} is bounded above and increasing.

Step 1. Show that {an} is bounded above.
We claim that M = 2 is an upper bound. We certainly have a1 < 2 because a1 = √

2 ≈
1.414. On the other hand,

if an < 2, then an+1 < 2 3
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This is true because an+1 = √
2an <

√
2 · 2 = 2. Now, since a1 < 2, we can apply (3)

to conclude that a2 < 2. Similarly, a2 < 2 implies a3 < 2, and so on for all n. Formally
speaking, this is a proof by induction.

Step 2. Show that {an} is increasing.
Since an is positive and an < 2, we have

an+1 = √
2an >

√
an · an = an

This shows that {an} is increasing.

We conclude that the limit L exists and hence L = 2.

10.1 SUMMARY

• A sequence {an} converges to a limit L if, for every ε > 0, there is a number M such
that

|an − L| < ε for all n > M

We write lim
n→∞ an = L or an → L.

• If no limit exists, we say that {an} diverges.
• In particular, if the terms increase without bound, we say that {an} diverges to infinity.
• If an = f (n) and lim

x→∞ f (x) = L, then lim
n→∞ an = L.

• A geometric sequence is a sequence an = crn, where c and r are nonzero.
• The Basic Limit Laws and the Squeeze Theorem apply to sequences.
• If f (x) is continuous and lim

n→∞ an = L, then lim
n→∞ f (an) = f (L).

• A sequence {an} is

– bounded above by M if an ≤ M for all n.

– bounded below by m if an ≥ m for all n.

If {an} is bounded above and below, {an} is called bounded.
• A sequence {an} is monotonic if it is increasing (an < an+1) or decreasing (an > an+1).
• Bounded monotonic sequences converge (Theorem 6).

10.1 EXERCISES

Preliminary Questions
1. What is a4 for the sequence an = n2 − n?

2. Which of the following sequences converge to zero?

(a)
n2

n2 + 1
(b) 2n (c)

(−1

2

)n

3. Let an be the nth decimal approximation to
√

2. That is, a1 = 1,
a2 = 1.4, a3 = 1.41, etc. What is lim

n→∞ an?

4. Which of the following sequences is defined recursively?

(a) an = √
4 + n (b) bn = √

4 + bn−1

5. Theorem 5 says that every convergent sequence is bounded. De-
termine if the following statements are true or false and if false, give a
counterexample.

(a) If {an} is bounded, then it converges.

(b) If {an} is not bounded, then it diverges.

(c) If {an} diverges, then it is not bounded.
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Exercises
1. Match each sequence with its general term:

a1, a2, a3, a4, . . . General term

(a) 1
2 , 2

3 , 3
4 , 4

5 , . . . (i) cos πn

(b) −1, 1, −1, 1, . . . (ii)
n!
2n

(c) 1, −1, 1, −1, . . . (iii) (−1)n+1

(d) 1
2 , 2

4 , 6
8 , 24

16 . . . (iv)
n

n + 1

2. Let an = 1

2n − 1
for n = 1, 2, 3, . . . .Write out the first three terms

of the following sequences.

(a) bn = an+1 (b) cn = an+3

(c) dn = a2
n (d) en = 2an − an+1

In Exercises 3–12, calculate the first four terms of the sequence, starting
with n = 1.

3. cn = 3n

n! 4. bn = (2n − 1)!
n!

5. a1 = 2, an+1 = 2a2
n − 3

6. b1 = 1, bn = bn−1 + 1

bn−1

7. bn = 5 + cos πn 8. cn = (−1)2n+1

9. cn = 1 + 1

2
+ 1

3
+ · · · + 1

n

10. an = n + (n + 1) + (n + 2) + · · · + (2n)

11. b1 = 2, b2 = 3, bn = 2bn−1 + bn−2

12. cn = n-place decimal approximation to e

13. Find a formula for the nth term of each sequence.

(a)
1

1
,
−1

8
,

1

27
, . . . (b)

2

6
,

3

7
,

4

8
, . . .

14. Suppose that lim
n→∞ an = 4 and lim

n→∞ bn = 7. Determine:

(a) lim
n→∞(an + bn) (b) lim

n→∞ a3
n

(c) lim
n→∞ cos(πbn) (d) lim

n→∞(a2
n − 2anbn)

In Exercises 15–26, use Theorem 1 to determine the limit of the sequence
or state that the sequence diverges.

15. an = 12 16. an = 20 − 4

n2

17. bn = 5n − 1

12n + 9
18. an = 4 + n − 3n2

4n2 + 1

19. cn = −2−n 20. zn =
(

1

3

)n

21. cn = 9n 22. zn = 10−1/n

23. an = n√
n2 + 1

24. an = n√
n3 + 1

25. an = ln

(
12n + 2

−9 + 4n

)
26. rn = ln n − ln(n2 + 1)

In Exercises 27–30, use Theorem 4 to determine the limit of the se-
quence.

27. an =
√

4 + 1

n
28. an = e4n/(3n+9)

29. an = cos−1

(
n3

2n3 + 1

)
30. an = tan−1(e−n)

31. Let an = n

n + 1
. Find a number M such that:

(a) |an − 1| ≤ 0.001 for n ≥ M .

(b) |an − 1| ≤ 0.00001 for n ≥ M .

Then use the limit definition to prove that lim
n→∞ an = 1.

32. Let bn = ( 1
3

)n.

(a) Find a value of M such that |bn| ≤ 10−5 for n ≥ M .

(b) Use the limit definition to prove that lim
n→∞ bn = 0.

33. Use the limit definition to prove that lim
n→∞ n−2 = 0.

34. Use the limit definition to prove that lim
n→∞

n

n + n−1
= 1.

In Exercises 35–62, use the appropriate limit laws and theorems to
determine the limit of the sequence or show that it diverges.

35. an = 10 +
(

−1

9

)n

36. dn = √
n + 3 − √

n

37. cn = 1.01n 38. bn = e1−n2

39. an = 21/n 40. bn = n1/n

41. cn = 9n

n! 42. an = 82n

n!

43. an = 3n2 + n + 2

2n2 − 3
44. an =

√
n√

n + 4

45. an = cos n

n
46. cn = (−1)n√

n

47. dn = ln 5n − ln n!
48. dn = ln(n2 + 4) − ln(n2 − 1)

49. an =
(

2 + 4

n2

)1/3
50. bn = tan−1

(
1 − 2

n

)

51. cn = ln

(
2n + 1

3n + 4

)
52. cn = n

n + n1/n

53. yn = en

2n
54. an = n

2n
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55. yn = en + (−3)n

5n
56. bn = (−1)nn3 + 2−n

3n3 + 4−n

57. an = n sin
π

n
58. bn = n!

πn

59. bn = 3 − 4n

2 + 7 · 4n
60. an = 3 − 4n

2 + 7 · 3n

61. an =
(

1 + 1

n

)n

62. an =
(

1 + 1

n2

)n

In Exercises 63–66, find the limit of the sequence using L’Hôpital’s
Rule.

63. an = (ln n)2

n
64. bn = √

n ln

(
1 + 1

n

)

65. cn = n
(√

n2 + 1 − n
)

66. dn = n2( 3
√

n3 + 1 − n
)

In Exercises 67–70, use the Squeeze Theorem to evaluate lim
n→∞ an by

verifying the given inequality.

67. an = 1√
n4 + n8

,
1√
2n4

≤ an ≤ 1√
2n2

68. cn = 1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

69. an = (2n + 3n)1/n, 3 ≤ an ≤ (2 · 3n)1/n = 21/n · 3

70. an = (n + 10n)1/n, 10 ≤ an ≤ (2 · 10n)1/n

71. Which of the following statements is equivalent to the as-
sertion lim

n→∞ an = L? Explain.

(a) For every ε > 0, the interval (L − ε, L + ε) contains at least one
element of the sequence {an}.
(b) For every ε > 0, the interval (L − ε, L + ε) contains all but at
most finitely many elements of the sequence {an}.

72. Show that an = 1

2n + 1
is decreasing.

73. Show that an = 3n2

n2 + 2
is increasing. Find an upper bound.

74. Show that an = 3√
n + 1 − n is decreasing.

75. Give an example of a divergent sequence {an} such that lim
n→∞ |an|

converges.

76. Give an example of divergent sequences {an} and {bn} such that
{an + bn} converges.

77. Using the limit definition, prove that if {an} converges and {bn}
diverges, then {an + bn} diverges.

78. Use the limit definition to prove that if {an} is a convergent se-
quence of integers with limit L, then there exists a number M such that
an = L for all n ≥ M .

79. Theorem 1 states that if lim
x→∞ f (x) = L, then the sequence an =

f (n) converges and lim
n→∞ an = L. Show that the converse is false. In

other words, find a function f (x) such that an = f (n) converges but
lim

x→∞ f (x) does not exist.

80. Use the limit definition to prove that the limit does not change
if a finite number of terms are added or removed from a convergent
sequence.

81. Let bn = an+1. Use the limit definition to prove that if {an} con-
verges, then {bn} also converges and lim

n→∞ an = lim
n→∞ bn.

82. Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero.

Show that lim
n→∞ an exists if and only if there exists an integer M such

that the sign of an does not change for n > M .

83. Proceed as in Example 12 to show that the sequence
√

3,

√
3
√

3,√
3

√
3
√

3, . . . is increasing and bounded above by M = 3. Then prove
that the limit exists and find its value.

84. Let {an} be the sequence defined recursively by

a0 = 0, an+1 = √
2 + an

Thus, a1 = √
2, a2 =

√
2 + √

2, a3 =
√

2 +
√

2 + √
2, . . . .

(a) Show that if an < 2, then an+1 < 2. Conclude by induction that
an < 2 for all n.

(b) Show that if an < 2, then an ≤ an+1. Conclude by induction that
{an} is increasing.

(c) Use (a) and (b) to conclude that L = lim
n→∞ an exists. Then compute

L by showing that L = √
2 + L.

Further Insights and Challenges
85. Show that lim

n→∞
n
√

n! = ∞. Hint: Verify that n! ≥ (n/2)n/2 by ob-

serving that half of the factors of n! are greater than or equal to n/2.

86. Let bn =
n
√

n!
n

.

(a) Show that ln bn = 1

n

n∑
k=1

ln
k

n
.

(b) Show that ln bn converges to
∫ 1

0
ln x dx, and conclude that

bn → e−1.
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87. Given positive numbers a1 < b1, define two sequences recursively
by

an+1 = √
anbn, bn+1 = an + bn

2

(a) Show that an ≤ bn for all n (Figure 13).

(b) Show that {an} is increasing and {bn} is decreasing.

(c) Show that bn+1 − an+1 ≤ bn − an

2
.

(d) Prove that both {an} and {bn} converge and have the same limit.
This limit, denoted AGM(a1, b1), is called the arithmetic-geometric
mean of a1 and b1.

(e) Estimate AGM(1,
√

2) to three decimal places.

x
an an+1

AGM(a1, b1)

bn+1 bn

Geometric
mean

Arithmetic
mean

FIGURE 13

88. Let cn = 1

n
+ 1

n + 1
+ 1

n + 2
+ · · · + 1

2n
.

(a) Calculate c1, c2, c3, c4.

(b) Use a comparison of rectangles with the area under y = x−1 over
the interval [n, 2n] to prove that∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n

(c) Use the Squeeze Theorem to determine lim
n→∞ cn.

89. Let an = Hn − ln n, where Hn is the nth harmonic num-
ber

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n

(a) Show that an ≥ 0 for n ≥ 1. Hint: Show that Hn ≥
∫ n+1

1

dx

x
.

(b) Show that {an} is decreasing by interpreting an − an+1 as an area.

(c) Prove that lim
n→∞ an exists.

This limit, denoted γ , is known as Euler’s Constant. It appears in many
areas of mathematics, including analysis and number theory, and has
been calculated to more than 100 million decimal places, but it is still
not known whether γ is an irrational number. The first 10 digits are
γ ≈ 0.5772156649.

10.2 Summing an Infinite Series
Many quantities that arise in applications cannot be computed exactly. We cannot write
down an exact decimal expression for the number π or for values of the sine function
such as sin 1. However, sometimes these quantities can be represented as infinite sums.
For example, using Taylor series (Section 10.7), we can show that

sin 1 = 1 − 1

3! + 1

5! − 1

7! + 1

9! − 1

11! + · · · 1

Infinite sums of this type are called infinite series.
What precisely does Eq. (1) mean? It is impossible to add up infinitely many numbers,

but what we can do is compute the partial sums SN , defined as the finite sum of the terms
up to and including N th term. Here are the first five partial sums of the infinite series for
sin 1:

S1 = 1

S2 = 1 − 1

3! = 1 − 1

6
≈ 0.833

S3 = 1 − 1

3! + 1

5! = 1 − 1

6
+ 1

120
≈ 0.841667

S4 = 1 − 1

6
+ 1

120
− 1

5040
≈ 0.841468

S5 = 1 − 1

6
+ 1

120
− 1

5040
+ 1

362,880
≈ 0.8414709846
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Compare these values with the value obtained from a calculator:

sin 1 ≈ 0.8414709848079 (calculator value)

We see that S5 differs from sin 1 by less than 10−9. This suggests that the partial sums
converge to sin 1, and in fact, we will prove that

sin 1 = lim
N→∞ SN

(Example 2 in Section 10.7). So although we cannot add up infinitely many numbers, it
makes sense to define the sum of an infinite series as a limit of partial sums.

In general, an infinite series is an expression of the form• Infinite series may begin with any
index. For example,

∞∑
n=3

1

n
= 1

3
+ 1

4
+ 1

5
+ · · ·

When it is not necessary to specify the
starting point, we write simply

∑
an.

• Any letter may be used for the index.
Thus, we may write am, ak , ai , etc.

∞∑
n=1

an = a1 + a2 + a3 + a4 + · · ·

where {an} is any sequence. For example,

Sequence General term Infinite series

1

3
,

1

9
,

1

27
, . . . an = 1

3n

∞∑
n=1

1

3n
= 1

3
+ 1

9
+ 1

27
+ 1

81
+ · · ·

1

1
,

1

4
,

1

9
,

1

16
, . . . an = 1

n2

∞∑
n=1

1

n2
= 1

1
+ 1

4
+ 1

9
+ 1

16
+ · · ·

The N th partial sum SN is the finite sum of the terms up to and including aN :

SN =
N∑

n=1

an = a1 + a2 + a3 + · · · + aN

If the series begins at k, then SN =
N∑

n=k

an.

DEFINITION Convergence of an Infinite Series An infinite series
∞∑

n=k

an converges

to the sum S if its partial sums converge to S:

lim
N→∞ SN = S

In this case, we write S =
∞∑

n=k

an.

• If the limit does not exist, we say that the infinite series diverges.
• If the limit is infinite, we say that the infinite series diverges to infinity.

We can investigate series numerically by computing several partial sums SN . If the
partial sums show a trend of convergence to some number S, then we have evidence (but
not proof) that the series converges to S. The next example treats a telescoping series,
where the partial sums are particularly easy to evaluate.
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EXAMPLE 1 Telescoping Series Investigate numerically:

S =
∞∑

n=1

1

n(n + 1)
= 1

1(2)
+ 1

2(3)
+ 1

3(4)
+ 1

4(5)
+ · · ·

Then compute the sum S using the identity:

1

n(n + 1)
= 1

n
− 1

n + 1

Solution The values of the partial sums listed in Table 1 suggest convergence to S = 1.
TABLE 1 Partial Sums

for
∞∑

n=1

1

n(n + 1)

N SN

10 0.90909
50 0.98039

100 0.990099
200 0.995025
300 0.996678

To prove this, we observe that because of the identity, each partial sum collapses down to
just two terms:

S1 = 1

1(2)
= 1

1
− 1

2

S2 = 1

1(2)
+ 1

2(3)
=

(
1

1
− 1

2

)
+
(

1

2
− 1

3

)
= 1 − 1

3

S3 = 1

1(2)
+ 1

2(3)
+ 1

3(4)
=

(
1

1
− 1

2

)
+
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
= 1 − 1

4

In general,In most cases (apart from telescoping
series and the geometric series introduced
below), there is no simple formula like
Eq. (2) for the partial sum SN . Therefore,
we shall develop techniques that do not
rely on formulas for SN .

SN =
(

1

1
− 1

2

)
+
(

1

2
− 1

3

)
+ · · · +

(
1

N
− 1

N + 1

)
= 1 − 1

N + 1
2

The sum S is the limit of the partial sums:

S = lim
N→∞ SN = lim

N→∞

(
1 − 1

N + 1

)
= 1

It is important to keep in mind the difference between a sequence {an} and an infinite

series
∞∑

n=1

an.

EXAMPLE 2 Sequences versus Series Discuss the difference between {an} and
∞∑

n=1

an, where an = 1

n(n + 1)
.

Solution The sequence is the list of numbers 1
1(2)

, 1
2(3)

, 1
3(4)

, . . . . This sequence con-Make sure you understand the difference
between sequences and series.

• With a sequence, we consider the limit
of the individual terms an.

• With a series, we are interested in the
sum of the terms

a1 + a2 + a3 + · · ·
which is defined as the limit of the
partial sums.

verges to zero:

lim
n→∞ an = lim

n→∞
1

n(n + 1)
= 0

The infinite series is the sum of the numbers an, defined formally as the limit of the partial
sums. This sum is not zero. In fact, the sum is equal to 1 by Example 1:

∞∑
n=1

an =
∞∑

n=1

1

n(n + 1)
= 1

1(2)
+ 1

2(3)
+ 1

3(4)
+ · · · = 1

The next theorem shows that infinite series may be added or subtracted like ordinary
sums, provided that the series converge.
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THEOREM 1 Linearity of Infinite Series If
∑

an and
∑

bn converge, then∑
(an ± bn) and

∑
can also converge (c any constant), and∑

an +
∑

bn =
∑

(an + bn)∑
an −

∑
bn =

∑
(an − bn)∑

can = c
∑

an (c any constant)

Proof These rules follow from the corresponding linearity rules for limits. For example,

∞∑
n=1

(an + bn) = lim
N→∞

N∑
n=1

(an + bn) = lim
N→∞

(
N∑

n=1

an +
N∑

n=1

bn

)

= lim
N→∞

N∑
n=1

an + lim
N→∞

∞∑
n=1

bn =
∞∑

n=1

an +
∞∑

n=1

bn

A main goal in this chapter is to develop techniques for determining whether a series
converges or diverges. It is easy to give examples of series that diverge:

• S =
∞∑

n=1

1 diverges to infinity (the partial sums increase without bound):

S1 = 1, S2 = 1 + 1 = 2, S3 = 1 + 1 + 1 = 3, S4 = 1 + 1 + 1 + 1 = 4, . . .

•
∞∑

n=1

(−1)n−1 diverges (the partial sums jump between 1 and 0):

S1 = 1, S2 = 1 − 1 = 0, S3 = 1 − 1 + 1 = 1, S4 = 1 − 1 + 1 − 1 = 0, . . .

Next, we study the geometric series, which converge or diverge depending on the common
ratio r .

A geometric series with common ratio r �= 0 is a series defined by a geometric
sequence crn, where c �= 0. If the series begins at n = 0, then

S =
∞∑

n=0

crn = c + cr + cr2 + cr3 + cr4 + cr5 + · · ·

For r = 1
2 and c = 1, we can visualize the geometric series starting at n = 1 (Figure 1):

0 1

0 1

0 1+

0 11
2 1

2

1
2

3
4

1
2

3
4

7
8

1
2

3
4

7
8

15
16

1
2

1
4

+1
2

1
4

+ 1
8

+1
2

1
4

+ 1
8

+ 1
16

FIGURE 1 Partial sums of
∞∑

n=1

1

2n
.

S =
∞∑

n=1

1

2n
= 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · = 1

Adding up the terms corresponds to moving stepwise from 0 to 1, where each step is a
move to the right by half of the remaining distance. Thus S = 1.

There is a simple device for computing the partial sums of a geometric series:

SN = c + cr + cr2 + cr3 + · · · + crN

rSN = cr + cr2 + cr3 + · · · + crN + crN+1

SN − rSN = c − crN+1

SN(1 − r) = c(1 − rN+1)
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If r �= 1, we may divide by (1 − r) to obtain

SN = c + cr + cr2 + cr3 + · · · + crN = c(1 − rN+1)

1 − r
3

This formula enables us to sum the geometric series.

Geometric series are important because
they

• arise often in applications.
• can be evaluated explicitly.
• are used to study other, nongeometric

series (by comparison).

THEOREM 2 Sum of a Geometric Series Let c �= 0. If |r| < 1, then

∞∑
n=0

crn = c + cr + cr2 + cr3 + · · · = c

1 − r
4

∞∑
n=M

crn = crM + crM+1 + crM+2 + crM+3 + · · · = crM

1 − r
5

If |r| ≥ 1, then the geometric series diverges.

Proof If r = 1, then the series certainly diverges because the partial sums SN = Nc grow
arbitrarily large. If r �= 1, then Eq. (3) yields

S = lim
N→∞ SN = lim

N→∞
c(1 − rN+1)

1 − r
= c

1 − r
− c

1 − r
lim

N→∞ rN+1

If |r| < 1, then lim
N→∞ rN+1 = 0 and we obtain Eq. (4). If |r| ≥ 1 and r �= 1, then

lim
N→∞ rN+1 does not exist and the geometric series diverges. Finally, if the series starts

with crM rather than cr0, then

S = crM + crM+1 + crM+2 + crM+3 + · · · = rM
∞∑

n=0

crn = crM

1 − r

EXAMPLE 3 Evaluate
∞∑

n=0

5−n.

Solution This is a geometric series with r = 5−1. By Eq. (4),

∞∑
n=0

5−n = 1 + 1

5
+ 1

52
+ 1

53
+ · · · = 1

1 − 5−1
= 5

4

EXAMPLE 4 Evaluate
∞∑

n=3

7

(
−3

4

)n

= 7

(
−3

4

)3

+ 7

(
−3

4

)4

+ 7

(
−3

4

)5

+ · · ·.

Solution This is a geometric series with r = − 3
4 and c = 7, starting at n = 3. By Eq. (5),

∞∑
n=3

7

(
−3

4

)n

= 7
(− 3

4

)3

1 − (− 3
4

) = −27

16
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EXAMPLE 5 Evaluate S =
∞∑

n=0

2 + 3n

5n
.

Solution Write S as a sum of two geometric series. This is valid by Theorem 1 because
both geometric series converge:

∞∑
n=0

2 + 3n

5n
=

∞∑
n=0

2

5n
+

∞∑
n=0

3n

5n
=

Both geometric series converge︷ ︸︸ ︷
2

∞∑
n=0

1

5n
+

∞∑
n=0

(
3

5

)n

= 2 · 1

1 − 1
5

+ 1

1 − 3
5

= 5

CONCEPTUAL INSIGHT Sometimes, the following incorrect argument is given for sum-
ming a geometric series:

S = 1

2
+ 1

4
+ 1

8
+ · · ·

2S = 1 + 1

2
+ 1

4
+ 1

8
+ · · · = 1 + S

Thus, 2S = 1 + S, or S = 1. The answer is correct, so why is the argument wrong? It
is wrong because we do not know in advance that the series converges. Observe what
happens when this argument is applied to a divergent series:

S = 1 + 2 + 4 + 8 + 16 + · · ·
2S = 2 + 4 + 8 + 16 + · · · = S − 1

This would yield 2S = S − 1, or S = −1, which is absurd because S diverges. We avoid
such erroneous conclusions by carefully defining the sum of an infinite series as the limit
of partial sums.

The infinite series
∞∑

k=1

1 diverges because the N th partial sum SN = N diverges to

infinity. It is less clear whether the following series converges or diverges:

∞∑
n=1

(−1)n+1 n

n + 1
= 1

2
− 2

3
+ 3

4
− 4

5
+ 5

6
− · · ·

We now introduce a useful test that allows us to conclude that this series diverges.

THEOREM 3 Divergence Test If the nth term an does not converge to zero, then the

series
∞∑

n=1

an diverges.

Proof First, note that an = Sn − Sn−1 because

The Divergence Test (also called the
nth-Term Test) is often stated as follows:

If
∞∑

n=1

an converges, then lim
n→∞ an = 0.

In practice, we use it to prove that a given
series diverges.

Sn = (
a1 + a2 + · · · + an−1

) + an = Sn−1 + an
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If
∞∑

n=1

an converges with sum S, then

lim
n→∞ an = lim

n→∞(Sn − Sn−1) = lim
n→∞ Sn − lim

n→∞ Sn−1 = S − S = 0

Therefore, if an does not converge to zero,
∞∑

n=1

an cannot converge.

EXAMPLE 6 Prove the divergence of S =
∞∑

n=1

n

4n + 1
.

Solution We have

lim
n→∞ an = lim

n→∞
n

4n + 1
= lim

n→∞
1

4 + 1/n
= 1

4

The nth term an does not converge to zero, so the series diverges by Theorem 3.

EXAMPLE 7 Determine the convergence or divergence of

S =
∞∑

n=1

(−1)n−1 n

n + 1
= 1

2
− 2

3
+ 3

4
− 4

5
+ · · ·

Solution The general term an = (−1)n−1 n

n + 1
does not approach a limit. Indeed,

n

n + 1
tends to 1, so the odd terms a2n+1 tend to 1, and the even terms a2n tend to −1. Because
lim

n→∞ an does not exist, the series S diverges by Theorem 3.

The Divergence Test tells only part of the story. If an does not tend to zero, then
∑

an

certainly diverges. But what if an does tend to zero? In this case, the series may converge
or it may diverge. In other words, lim

n→∞ an = 0 is a necessary condition of convergence,

but it is not sufficient. As we show in the next example, it is possible for a series to diverge
even though its terms tend to zero.

EXAMPLE 8 Sequence Tends to Zero, yet the Series Diverges Prove the divergence

y

n
1 2 3 4

Terms of sequence, an

Partial sums, SN

5 6 7 8 9 10 11 12

5

4

3

2

1

FIGURE 2 The partial sums of

∞∑
n=1

1√
n

diverge even though the terms an = 1/
√

n

tend to zero.

of ∞∑
n=1

1√
n

= 1√
1

+ 1√
2

+ 1√
3

+ · · ·

Solution The general term 1/
√

N tends to zero. However, because each term in the sum
SN is greater than or equal to 1/

√
N , we have

SN =
N terms︷ ︸︸ ︷

1√
1

+ 1√
2

+ · · · + 1√
N

≥ 1√
N

+ 1√
N

+ · · · + 1√
N

= N

(
1√
N

)
= √

N

This shows that SN ≥ √
N . But

√
N increases without bound (Figure 2). Therefore SN

also increases without bound. This proves that the series diverges.
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HISTORICAL
PERSPECTIVE

Geometric series were used as early as the third
century bce by Archimedes in a brilliant argu-
ment for determining the area S of a “parabolic
segment” (shaded region in Figure 3). Given two
points A and C on a parabola, there is a point B

between A and C where the tangent line is par-
allel to AC (apparently, Archimedes knew the
Mean Value Theorem more than 2000 years be-
fore the invention of calculus). Let T be the area
of triangle 
ABC. Archimedes proved that if D

is chosen in a similar fashion relative to AB and
E is chosen relative to BC, then

1

4
T = Area(
ADB) + Area(
BEC) 6

This construction of triangles can be continued.
The next step would be to construct the four tri-
angles on the segments AD, DB, BE, EC, of

total area 1
4

2
T . Then construct eight triangles

of total area 1
4

3
T , etc. In this way, we obtain in-

finitely many triangles that completely fill up the
parabolic segment. By the formula for the sum
of a geometric series,

S = T + 1

4
T + 1

16
T + · · · = T

∞∑
n=0

1

4n
= 4

3
T

For this and many other achievements, Archi-
medes is ranked together with Newton and
Gauss as one of the greatest scientists of all time.

The modern study of infinite series began
in the seventeenth century with Newton, Leib-
niz, and their contemporaries. The divergence

of
∞∑

n=1

1/n (called the harmonic series) was

known to the medieval scholar Nicole d’Oresme
(1323–1382), but his proof was lost for cen-
turies, and the result was rediscovered on more
than one occasion. It was also known that the

sum of the reciprocal squares
∞∑

n=1

1/n2 con-

verges, and in the 1640s, the Italian Pietro Men-
goli put forward the challenge of finding its sum.
Despite the efforts of the best mathematicians
of the day, including Leibniz and the Bernoulli
brothers Jakob and Johann, the problem resisted
solution for nearly a century. In 1735, the great
master Leonhard Euler (at the time, 28 years old)
astonished his contemporaries by proving that

1

12
+ 1

22
+ 1

32
+ 1

42
+ 1

52
+ 1

62
+ · · · = π2

6

This formula, surprising in itself, plays a role
in a variety of mathematical fields. A theorem
from number theory states that two whole num-
bers, chosen randomly, have no common factor
with probability 6/π2 ≈ 0.6 (the reciprocal of
Euler’s result). On the other hand, Euler’s re-
sult and its generalizations appear in the field of
statistical mechanics.

Archimedes (287 BCE–212 BCE), who
discovered the law of the lever, said “Give
me a place to stand on, and I can move the
earth” (quoted by Pappus of Alexandria
c. AD 340).

B

C

A

B

C

A

E

D

Area S Area T

FIGURE 3 Archimedes showed that the area
S of the parabolic segment is 4

3T , where T

is the area of 
ABC.

10.2 SUMMARY

• An infinite series is an expression

∞∑
n=1

an = a1 + a2 + a3 + a4 + · · ·

We call an the general term of the series. An infinite series can begin at n = k for any
integer k.
• The N th partial sum is the finite sum of the terms up to and including the N th term:

SN =
N∑

n=1

an = a1 + a2 + a3 + · · · + aN

• By definition, the sum of an infinite series is the limit S = lim
N→∞ SN . If the limit exists,

we say that the infinite series is convergent or converges to the sum S. If the limit does
not exist, we say that the infinite series diverges.
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• If the partial sums SN increase without bound, we say that S diverges to infinity.

• Divergence Test: If {an} does not tend to zero, then
∞∑

n=1

an diverges. However, a series

may diverge even if its general term {an} tends to zero.
• Partial sum of a geometric series:

c + cr + cr2 + cr3 + · · · + crN = c
(
1 − rN+1

)
1 − r

• Geometric series: If |r| < 1, then

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1

1 − r

∞∑
n=M

crn = crM + crM+1 + crM+2 + · · · = crM

1 − r

The geometric series diverges if |r| ≥ 1.

10.2 EXERCISES

Preliminary Questions
1. What role do partial sums play in defining the sum of an infinite

series?

2. What is the sum of the following infinite series?

1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ · · ·

3. What happens if you apply the formula for the sum of a geometric
series to the following series? Is the formula valid?

1 + 3 + 32 + 33 + 34 + · · ·

4. Arvind asserts that
∞∑

n=1

1

n2
= 0 because

1

n2
tends to zero. Is this

valid reasoning?

5. Colleen claims that
∞∑

n=1

1√
n

converges because

lim
n→∞

1√
n

= 0

Is this valid reasoning?

6. Find an N such that SN > 25 for the series
∞∑

n=1

2.

7. Does there exist an N such that SN > 25 for the series
∞∑

n=1

2−n?
Explain.

8. Give an example of a divergent infinite series whose general term
tends to zero.

Exercises
1. Find a formula for the general term an (not the partial sum) of the

infinite series.

(a)
1

3
+ 1

9
+ 1

27
+ 1

81
+ · · · (b)

1

1
+ 5

2
+ 25

4
+ 125

8
+ · · ·

(c)
1

1
− 22

2 · 1
+ 33

3 · 2 · 1
− 44

4 · 3 · 2 · 1
+ · · ·

(d)
2

12 + 1
+ 1

22 + 1
+ 2

32 + 1
+ 1

42 + 1
+ · · ·

2. Write in summation notation:

(a) 1 + 1

4
+ 1

9
+ 1

16
+ · · · (b)

1

9
+ 1

16
+ 1

25
+ 1

36
+ · · ·

(c) 1 − 1

3
+ 1

5
− 1

7
+ · · ·

(d)
125

9
+ 625

16
+ 3125

25
+ 15,625

36
+ · · ·

In Exercises 3–6, compute the partial sums S2, S4, and S6.

3. 1 + 1

22
+ 1

32
+ 1

42
+ · · · 4.

∞∑
k=1

(−1)kk−1

5.
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · 6.

∞∑
j=1

1

j !
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7. The series S = 1 + ( 1
5

) + ( 1
5

)2 + ( 1
5

)3 + · · · converges to 5
4 . Cal-

culate SN for N = 1, 2, . . . until you find an SN that approximates 5
4

with an error less than 0.0001.

8. The series S = 1

0! − 1

1! + 1

2! − 1

3! + · · · is known to converge to

e−1 (recall that 0! = 1). Calculate SN for N = 1, 2, . . . until you find
an SN that approximates e−1 with an error less than 0.001.

In Exercises 9 and 10, use a computer algebra system to compute S10,
S100, S500, and S1000 for the series. Do these values suggest conver-
gence to the given value?

9.

π − 3

4
= 1

2 · 3 · 4
− 1

4 · 5 · 6
+ 1

6 · 7 · 8
− 1

8 · 9 · 10
+ · · ·

10.

π4

90
= 1 + 1

24
+ 1

34
+ 1

44
+ · · ·

11. Calculate S3, S4, and S5 and then find the sum of the telescoping
series

S =
∞∑

n=1

(
1

n + 1
− 1

n + 2

)

12. Write
∞∑

n=3

1

n(n − 1)
as a telescoping series and find its sum.

13. Calculate S3, S4, and S5 and then find the sum S =
∞∑

n=1

1

4n2 − 1using the identity

1

4n2 − 1
= 1

2

(
1

2n − 1
− 1

2n + 1

)

14. Use partial fractions to rewrite
∞∑

n=1

1

n(n + 3)
as a telescoping series

and find its sum.

15. Find the sum of
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · .

16. Find a formula for the partial sum SN of
∞∑

n=1

(−1)n−1 and show
that the series diverges.

In Exercises 17–22, use Theorem 3 to prove that the following series
diverge.

17.
∞∑

n=1

n

10n + 12
18.

∞∑
n=1

n√
n2 + 1

19.
0

1
− 1

2
+ 2

3
− 3

4
+ · · · 20.

∞∑
n=1

(−1)nn2

21. cos
1

2
+ cos

1

3
+ cos

1

4
+ · · · 22.

∞∑
n=0

(√
4n2 + 1 − n

)
In Exercises 23–36, use the formula for the sum of a geometric series
to find the sum or state that the series diverges.

23.
1

1
+ 1

8
+ 1

82
+ · · · 24.

43

53
+ 44

54
+ 45

55 + · · ·

25.
∞∑

n=3

(
3

11

)−n

26.
∞∑

n=2

7 · (−3)n

5n

27.
∞∑

n=−4

(
−4

9

)n

28.
∞∑

n=0

(π

e

)n

29.
∞∑

n=1

e−n 30.
∞∑

n=2

e3−2n

31.
∞∑

n=0

8 + 2n

5n
32.

∞∑
n=0

3(−2)n − 5n

8n

33. 5 − 5

4
+ 5

42
− 5

43
+ · · ·

34.
23

7
+ 24

72
+ 25

73
+ 26

74
+ · · ·

35.
7

8
− 49

64
+ 343

512
− 2401

4096
+ · · ·

36.
25

9
+ 5

3
+ 1 + 3

5
+ 9

25
+ 27

125
+ · · ·

37. Which of the following are not geometric series?

(a)
∞∑

n=0

7n

29n
(b)

∞∑
n=3

1

n4

(c)
∞∑

n=0

n2

2n
(d)

∞∑
n=5

π−n

38. Use the method of Example 8 to show that
∞∑

k=1

1

k1/3
diverges.

39. Prove that if
∞∑

n=1

an converges and
∞∑

n=1

bn diverges, then
∞∑

n=1

(an + bn) diverges. Hint: If not, derive a contradiction by writ-

ing

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

40. Prove the divergence of
∞∑

n=0

9n + 2n

5n
.

41. Give a counterexample to show that each of the following
statements is false.

(a) If the general term an tends to zero, then
∞∑

n=1

an = 0.

(b) The N th partial sum of the infinite series defined by {an} is aN .

(c) If an tends to zero, then
∞∑

n=1

an converges.
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(d) If an tends to L, then
∞∑

n=1

an = L.

42. Suppose that S =
∞∑

n=1

an is an infinite series with partial sum

SN = 5 − 2

N2
.

(a) What are the values of
10∑

n=1

an and
16∑

n=5

an?

(b) What is the value of a3?

(c) Find a general formula for an.

(d) Find the sum
∞∑

n=1

an.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

1
2

1
2

1
4

1
8

1
16

y

x
1

FIGURE 4

44. The winner of a lottery receives m dollars at the end of each year
for N years. The present value (PV) of this prize in today’s dollars

is PV =
N∑

i=1

m(1 + r)−i , where r is the interest rate. Calculate PV if

m = $50,000, r = 0.06, and N = 20. What is PV if N = ∞?

45. Find the total length of the infinite zigzag path in Figure 5 (each
zag occurs at an angle of π

4 ).

1

π/4 π/4

FIGURE 5

46. Evaluate
∞∑

n=1

1

n(n + 1)(n + 2)
. Hint: Find constants A, B, and C

such that

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2

47. Show that if a is a positive integer, then

∞∑
n=1

1

n(n + a)
= 1

a

(
1 + 1

2
+ · · · + 1

a

)

48. A ball dropped from a height of 10 ft begins to bounce. Each time it
strikes the ground, it returns to two-thirds of its previous height. What
is the total distance traveled by the ball if it bounces infinitely many
times?

49. Let {bn} be a sequence and let an = bn − bn−1. Show that
∞∑

n=1

an

converges if and only if lim
n→∞ bn exists.

50. Assumptions Matter Show, by giving counterexamples, that the

assertions of Theorem 1 are not valid if the series
∞∑

n=0

an and
∞∑

n=0

bn

are not convergent.

Further Insights and Challenges
Exercises 51–53 use the formula

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r
7

51. Professor George Andrews of Pennsylvania State University ob-
served that we can use Eq. (7) to calculate the derivative of f (x) = xN

(for N ≥ 0). Assume that a �= 0 and let x = ra. Show that

f ′(a) = lim
x→a

xN − aN

x − a
= aN−1 lim

r→1

rN − 1

r − 1

and evaluate the limit.

52. Pierre de Fermat used geometric series to compute the area under
the graph of f (x) = xN over [0, A]. For 0 < r < 1, let F(r) be the
sum of the areas of the infinitely many right-endpoint rectangles with
endpoints Arn, as in Figure 6. As r tends to 1, the rectangles become
narrower and F(r) tends to the area under the graph.

(a) Show that F(r) = AN+1 1 − r

1 − rN+1
.

(b) Use Eq. (7) to evaluate
∫ A

0
xN dx = lim

r→1
F(r).

y

f (x) = xN

r3A r2A rA A
x

FIGURE 6

53. Verify the Gregory–Leibniz formula as follows.
(a) Set r = −x2 in Eq. (7) and rearrange to show that

1

1 + x2
= 1 − x2 + x4 − · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2
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(b) Show, by integrating over [0, 1], that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · + (−1)N−1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Use the Comparison Theorem for integrals to prove that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Hint: Observe that the integrand is ≤ x2N .
(d) Prove that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

Hint: Use (b) and (c) to show that the partial sums SN of satisfy∣∣SN − π
4

∣∣ ≤ 1
2N+1 , and thereby conclude that lim

N→∞ SN = π
4 .

54. Cantor’s Disappearing Table (following Larry Knop of Hamilton
College) Take a table of length L (Figure 7). At stage 1, remove the
section of length L/4 centered at the midpoint. Two sections remain,
each with length less than L/2. At stage 2, remove sections of length
L/42 from each of these two sections (this stage removes L/8 of the
table). Now four sections remain, each of length less than L/4. At stage
3, remove the four central sections of length L/43, etc.

(a) Show that at the N th stage, each remaining section has length less
than L/2N and that the total amount of table removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)

(b) Show that in the limit as N → ∞, precisely one-half of the table
remains.

This result is curious, because there are no nonzero intervals of table left
(at each stage, the remaining sections have a length less than L/2N ). So
the table has “disappeared.” However, we can place any object longer

than L/4 on the table. It will not fall through because it will not fit
through any of the removed sections.

L/16 L/16L/4

FIGURE 7

55. The Koch snowflake (described in 1904 by Swedish mathemati-
cian Helge von Koch) is an infinitely jagged “fractal” curve obtained
as a limit of polygonal curves (it is continuous but has no tangent line
at any point). Begin with an equilateral triangle (stage 0) and produce
stage 1 by replacing each edge with four edges of one-third the length,
arranged as in Figure 8. Continue the process: At the nth stage, replace
each edge with four edges of one-third the length.

(a) Show that the perimeter Pn of the polygon at the nth stage satisfies
Pn = 4

3Pn−1. Prove that lim
n→∞ Pn = ∞. The snowflake has infinite

length.

(b) Let A0 be the area of the original equilateral triangle. Show that
(3)4n−1 new triangles are added at the nth stage, each with area A0/9n

(for n ≥ 1). Show that the total area of the Koch snowflake is 8
5A0.

Stage 1 Stage 3Stage 2

FIGURE 8

10.3 Convergence of Series with Positive Terms
The next three sections develop techniques for determining whether an infinite series
converges or diverges. This is easier than finding the sum of an infinite series, which is
possible only in special cases.

In this section, we consider positive series
∑

an, where an > 0 for all n. We can

a1 a2 a3 aN x

y

3

2

1

1 2 3 N

FIGURE 1 The partial sum SN is the sum of
the areas of the N shaded rectangles.

visualize the terms of a positive series as rectangles of width 1 and height an (Figure 1).
The partial sum

SN = a1 + a2 + · · · + aN

is equal to the area of the first N rectangles.
The key feature of positive series is that their partial sums form an increasing sequence:

SN < SN+1

for all N . This is because SN+1 is obtained from SN by adding a positive number:

SN+1 = (
a1 + a2 + · · · + aN

) + aN+1 = SN + aN+1︸ ︷︷ ︸
Positive
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Recall that an increasing sequence converges if it is bounded above. Otherwise, it diverges
(Theorem 6, Section 10.1). It follows that a positive series behaves in one of two ways
(this is the dichotomy referred to in the next theorem).

• Theorem 1 remains true if an ≥ 0. It is
not necessary to assume that an > 0.

• It also remains true if an > 0 for all
n ≥ M for some M, because the
convergence of a series is not affected
by the first M terms.

THEOREM 1 Dichotomy for Positive Series If S =
∞∑

n=1

an is a positive series, then

either:

(i) The partial sums SN are bounded above. In this case, S converges. Or,

(ii) The partial sums SN are not bounded above. In this case, S diverges.

Assumptions Matter The dichotomy does not hold for nonpositive series. Consider

S =
∞∑

n=1

(−1)n−1 = 1 − 1 + 1 − 1 + 1 − 1 + · · ·

The partial sums are bounded (because SN = 1 or 0), but S diverges.
Our first application of Theorem 1 is the following Integral Test. It is extremely useful

because integrals are easier to evaluate than series in most cases.
The Integral Test is valid for any series
∞∑

n=k

f (n), provided that for some M > 0,

f (x) is positive, decreasing, and
continuous for x ≥ M. The convergence of
the series is determined by the
convergence of∫ ∞

M

f (x) dx

THEOREM 2 Integral Test Let an = f (n), where f (x) is positive, decreasing, and
continuous for x ≥ 1.

(i) If
∫ ∞

1
f (x) dx converges, then

∞∑
n=1

an converges.

(ii) If
∫ ∞

1
f (x) dx diverges, then

∞∑
n=1

an diverges.

Proof Because f (x) is decreasing, the shaded rectangles in Figure 2 lie below the graph
of f (x), and therefore for all N

a2 + · · · + aN︸ ︷︷ ︸
Area of shaded rectangles in Figure 2

≤
∫ N

1
f (x) dx ≤

∫ ∞

1
f (x) dx

If the improper integral on the right converges, then the sums a2 + · · · + aN remain

a1 a3a2 a4 aN

x

y

N

y = f (x)

1 2 3 4

FIGURE 2

bounded. In this case, SN also remains bounded, and the infinite series converges by the
Dichotomy Theorem (Theorem 1). This proves (i).

On the other hand, the rectangles in Figure 3 lie above the graph of f (x), so

∫ N

1
f (x) dx ≤ a1 + a2 + · · · + aN−1︸ ︷︷ ︸

Area of shaded rectangles in Figure 3

1

If
∫∞

1 f (x) dx diverges, then
∫ N

1 f (x) dx tends to ∞, and Eq. (1) shows that SN also

a2a1 a3 aN−1

x

y

N

y = f (x)

1 2 3 4

FIGURE 3 tends to ∞. This proves (ii).



S E C T I O N 10.3 Convergence of Series with Positive Terms 561

EXAMPLE 1 The Harmonic Series Diverges Show that
∞∑

n=1

1

n
diverges.

The infinite series

∞∑
n=1

1

n

is called the “harmonic series.”

Solution Let f (x) = 1
x

. Then f (n) = 1
n

, and the Integral Test applies because f is pos-
itive, decreasing, and continuous for x ≥ 1. The integral diverges:∫ ∞

1

dx

x
= lim

R→∞

∫ R

1

dx

x
= lim

R→∞ ln R = ∞

Therefore, the series
∞∑

n=1

1

n
diverges.

EXAMPLE 2 Does
∞∑

n=1

n

(n2 + 1)2
= 1

22
+ 2

52
+ 3

102
+ · · · converge?

Solution The function f (x) = x

(x2 + 1)2
is positive and continuous for x ≥ 1. It is de-

creasing because f ′(x) is negative:

f ′(x) = 1 − 3x2

(x2 + 1)3
< 0 for x ≥ 1

Therefore, the Integral Test applies. Using the substitution u = x2 + 1, du = 2x dx, we
have ∫ ∞

1

x

(x2 + 1)2
dx = lim

R→∞

∫ R

1

x

(x2 + 1)2
dx = lim

R→∞
1

2

∫ R

2

du

u2

= lim
R→∞

−1

2u

∣∣∣∣R
2

= lim
R→∞

(
1

4
− 1

2R

)
= 1

4

The integral converges. Therefore,
∞∑

n=1

n

(n2 + 1)2
also converges.

The sum of the reciprocal powers n−p is called a p-series.

THEOREM 3 Convergence of p-Series The infinite series
∞∑

n=1

1

np
converges if p > 1

and diverges otherwise.

Proof If p ≤ 0, then the general term n−p does not tend to zero, so the series diverges. If
p > 0, then f (x) = x−p is positive and decreasing, so the Integral Test applies.According
to Theorem 1 in Section 7.6,

∫ ∞

1

1

xp
dx =

⎧⎨
⎩

1

p − 1
if p > 1

∞ if p ≤ 1

Therefore,
∞∑

n=1

1

np
converges for p > 1 and diverges for p ≤ 1.
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Here are two examples of p-series:

p = 1

3
:

∞∑
n=1

1
3
√

n
= 1

3
√

1
+ 1

3
√

2
+ 1

3
√

3
+ 1

3
√

4
+ · · · = ∞ diverges

p = 2 :
∞∑

n=1

1

n2
= 1

1
+ 1

22
+ 1

32
+ 1

42
+ · · · converges

Another powerful method for determining convergence of positive series is compari-
son. Suppose that 0 ≤ an ≤ bn. Figure 4 suggests that if the larger sum

∑
bn converges,

b1

b2

b3 bN

y

x
1 2 3 N

aNa3a2a1

FIGURE 4 The series
∑

an is dominated

by the series
∑

bn.

then the smaller sum
∑

an also converges. Similarly, if the smaller sum diverges, then
the larger sum also diverges.

THEOREM 4 Comparison Test
Assume that there exists M > 0 such that 0 ≤ an ≤ bn for n ≥ M .

(i) If
∞∑

n=1

bn converges, then
∞∑

n=1

an also converges.

(ii) If
∞∑

n=1

an diverges, then
∞∑

n=1

bn also diverges.

Proof We can assume, without loss of generality, that M = 1. If S =
∞∑

n=1

bn converges,

then the partial sums of
∞∑

n=1

an are bounded above by S because

a1 + a2 + · · · + aN ≤ b1 + b2 + · · · + bN ≤
∞∑

n=1

bn = S 2

Therefore,
∞∑

n=1

an converges by the Dichotomy Theorem (Theorem 1). This proves (i).

On the other hand, if
∞∑

n=1

an diverges, then
∞∑

n=1

bn must also diverge. Otherwise we would

have a contradiction to (i).

EXAMPLE 3 Does
∞∑

n=1

1√
n 3n

converge?

Solution For n ≥ 1, we haveIn words, the Comparison Test states that
for positive series:

• Convergence of the larger series forces
convergence of the smaller series.

• Divergence of the smaller series forces
divergence of the larger series.

1√
n 3n

≤ 1

3n

The larger series
∞∑

n=1

1

3n
converges because it is a geometric series with r = 1

3 < 1. By

the Comparison Test, the smaller series
∞∑

n=1

1√
n 3n

also converges.
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EXAMPLE 4 Does S =
∞∑

n=2

1

(n2 + 3)1/3
converge?

Solution Let us show that

1

n
≤ 1

(n2 + 3)1/3
for n ≥ 2

This inequality is equivalent to (n2 + 3) ≤ n3, so we must show that

f (x) = x3 − (x2 + 3) ≥ 0 for x ≥ 2

The function f (x) is increasing because its derivative f ′(x) = 3x
(
x − 2

3

)
is positive for

x ≥ 2. Since f (2) = 1, it follows that f (x) ≥ 1 for x ≥ 2, and our original inequality

follows. We know that the smaller harmonic series
∞∑

n=2

1

n
diverges. Therefore, the larger

series
∞∑

n=2

1

(n2 + 1)1/3
also diverges.

EXAMPLE 5 Using the Comparison Correctly Study the convergence of

∞∑
n=2

1

n(ln n)2

Solution We might be tempted to compare
∞∑

n=2

1

n(ln n)2
to the harmonic series

∞∑
n=2

1

n

using the inequality (valid for n ≥ 3)

1

n(ln n)2
≤ 1

n

However,
∞∑

n=2

1

n
diverges, and this says nothing about the smaller series

∑ 1

n(ln n)2
.

Fortunately, the Integral Test can be used. The substitution u = ln x yields∫ ∞

2

dx

x(ln x)2
=

∫ ∞

ln 2

du

u2
= lim

R→∞

(
1

ln 2
− 1

R

)
= 1

ln 2
< ∞

The Integral Test shows that
∞∑

n=2

1

n(ln n)2
converges.

Suppose we wish to study the convergence of

S =
∞∑

n=2

n2

n4 − n − 1

For large n, the general term is very close to 1/n2:

n2

n4 − n − 1
= 1

n2 − n−1 − n−2
≈ 1

n2
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Thus we might try to compare S with
∞∑

n=2

1

n2
. Unfortunately, however, the inequality goes

in the wrong direction:

n2

n4 − n − 1
>

n2

n4
= 1

n2

Although the smaller series
∞∑

n=2

1

n2
converges, we cannot use the Comparison Theorem

to say anything about our larger series. In this situation, the following variation of the
Comparison Test can be used.

THEOREM 5 Limit Comparison Test Let {an} and {bn} be positive sequences.Assume
that the following limit exists:

L = lim
n→∞

an

bn

• If L > 0, then
∑

an converges if and only if
∑

bn converges.

• If L = ∞ and
∑

an converges, then
∑

bn converges.

• If L = 0 and
∑

bn converges, then
∑

an converges.

CAUTION The Limit Comparison Test is not
valid if the series are not positive. See
Exercise 44 in Section 10.4.

Proof Assume first that L is finite (possibly zero) and that
∑

bn converges. Choose a
positive number R > L. Then 0 ≤ an/bn ≤ R for all n sufficiently large because an/bn

approaches L. Therefore an ≤ Rbn. The series
∑

Rbn converges because it is a multiple

of the convergent series
∑

bn. Therefore
∑

an converges by the Comparison Test.

Next, suppose that L is nonzero (positive or infinite) and that
∑

an converges.

Let L−1 = lim
n→∞ bn/an. Then L−1 is finite and we can apply the result of the previous

paragraph with the roles of {an} and {bn} reversed to conclude that
∑

bn converges.

CONCEPTUAL INSIGHT To remember the different cases of the Limit Comparison Test,
you can think of it this way. If L > 0, then an ≈ Lbn for large n. In other words, the
series

∑
an and

∑
bn are roughly multiples of each other, so one converges if and

only if the other converges. If L = ∞, then an is much larger than bn (for large n), so if∑
an converges,

∑
bn certainly converges. Finally, if L = 0, then bn is much larger

than an and the convergence of
∑

bn yields the convergence of
∑

an.

EXAMPLE 6 Show that
∞∑

n=2

n2

n4 − n − 1
converges.

Solution Let

an = n2

n4 − n − 1
and bn = 1

n2
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We observed above that an ≈ bn for large n. To apply the Limit Comparison Test, we
observe that the limit L exists and L > 0:

L = lim
n→∞

an

bn

= lim
n→∞

n2

n4 − n − 1
· n2

1
= lim

n→∞
1

1 − n−3 − n−4
= 1

Since
∞∑

n=2

1

n2
converges, our series

∞∑
n=2

n2

n4 − n − 1
also converges by Theorem 5.

EXAMPLE 7 Determine whether
∞∑

n=3

1√
n2 + 4

converges.

Solution Apply the Limit Comparison Test with an = 1√
n2 + 4

and bn = 1

n
. Then

L = lim
n→∞

an

bn

= lim
n→∞

n√
n2 + 4

= lim
n→∞

1√
1 + 4/n2

= 1

Since
∞∑

n=3

1

n
diverges and L > 0, the series

∞∑
n=3

1√
n2 + 4

also diverges.

10.3 SUMMARY

• The partial sums SN of a positive series S =
∑

an form an increasing sequence.
• Dichotomy Theorem: A positive series S converges if its partial sums SN remain
bounded. Otherwise, it diverges.
• Integral Test: Assume that f is positive, decreasing, and continuous for x > M . Set
an = f (n). If

∫∞
M

f (x) dx converges, then S =
∑

an converges, and if
∫∞
M

f (x) dx

diverges, then S =
∑

an diverges.

• p-Series: The series
∞∑

n=1

1

np
converges if p > 1 and diverges if p ≤ 1.

• Comparison Test: Assume there exists M > 0 such that 0 ≤ an ≤ bn for all n ≥ M . If∑
bn converges, then

∑
an converges, and if

∑
an diverges, then

∑
bn diverges.

• Limit Comparison Test: Assume that {an} and {bn} are positive and that the following
limit exists:

L = lim
n→∞

an

bn

– If L > 0, then
∑

an converges if and only if
∑

bn converges.

– If L = ∞ and
∑

an converges, then
∑

bn converges.

– If L = 0 and
∑

bn converges, then
∑

an converges.
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10.3 EXERCISES

Preliminary Questions

1. Let S =
∞∑

n=1

an. If the partial sums SN are increasing, then (choose

the correct conclusion):
(a) {an} is an increasing sequence.
(b) {an} is a positive sequence.

2. What are the hypotheses of the Integral Test?

3. Which test would you use to determine whether
∞∑

n=1

n−3.2

converges?

4. Which test would you use to determine whether
∞∑

n=1

1

2n + √
n

converges?

5. Ralph hopes to investigate the convergence of
∞∑

n=1

e−n

n
by com-

paring it with
∞∑

n=1

1

n
. Is Ralph on the right track?

Exercises
In Exercises 1–14, use the Integral Test to determine whether the infinite
series is convergent.

1.
∞∑

n=1

1

n4
2.

∞∑
n=1

1

n + 3

3.
∞∑

n=1

n−1/3 4.
∞∑

n=5

1√
n − 4

5.
∞∑

n=25

n2

(n3 + 9)5/2
6.

∞∑
n=1

n

(n2 + 1)3/5

7.
∞∑

n=1

1

n2 + 1
8.

∞∑
n=4

1

n2 − 1

9.
∞∑

n=1

1

n(n + 1)
10.

∞∑
n=1

ne−n2

11.
∞∑

n=2

1

n(ln n)2
12.

∞∑
n=1

ln n

n2

13.
∞∑

n=1

1

2ln n
14.

∞∑
n=1

1

3ln n

15. Show that
∞∑

n=1

1

n3 + 8n
converges by using the Comparison Test

with
∞∑

n=1

n−3.

16. Show that
∞∑

n=2

1√
n2 − 3

diverges by comparing with
∞∑

n=2

n−1.

17. Let S =
∞∑

n=1

1

n + √
n

. Verify that for n ≥ 1,

1

n + √
n

≤ 1

n
,

1

n + √
n

≤ 1√
n

Can either inequality be used to show that S diverges? Show that
1

n + √
n

≥ 1

2n
and conclude that S diverges.

18. Which of the following inequalities can be used to study the con-

vergence of
∞∑

n=2

1

n2 + √
n

? Explain.

1

n2 + √
n

≤ 1√
n

,
1

n2 + √
n

≤ 1

n2

In Exercises 19–30, use the Comparison Test to determine whether the
infinite series is convergent.

19.
∞∑

n=1

1

n2n
20.

∞∑
n=1

n3

n5 + 4n + 1

21.
∞∑

n=1

1

n1/3 + 2n
22.

∞∑
n=1

1√
n3 + 2n − 1

23.
∞∑

m=1

4

m! + 4m
24.

∞∑
n=4

√
n

n − 3

25.
∞∑

k=1

sin2 k

k2
26.

∞∑
k=2

k1/3

k5/4 − k

27.
∞∑

n=1

2

3n + 3−n
28.

∞∑
k=1

2−k2

29.
∞∑

n=1

1

(n + 1)! 30.
∞∑

n=1

n!
n3

Exercise 31–36: For all a > 0 and b > 1, the inequalities

ln n ≤ na, na < bn

are true for n sufficiently large (this can be proved using L’Hopital’s
Rule). Use this, together with the Comparison Theorem, to determine
whether the series converges or diverges.

31.
∞∑

n=1

ln n

n3
32.

∞∑
m=2

1

ln m
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33.
∞∑

n=1

(ln n)100

n1.1
34.

∞∑
n=1

1

(ln n)10

35.
∞∑

n=1

n

3n
36.

∞∑
n=1

n5

2n

37. Show that
∞∑

n=1

sin
1

n2
converges. Hint: Use the inequality sin x ≤ x

for x ≥ 0.

38. Does
∞∑

n=1

sin(1/n)

ln n
converge?

In Exercises 39–48, use the Limit Comparison Test to prove conver-
gence or divergence of the infinite series.

39.
∞∑

n=2

n2

n4 − 1
40.

∞∑
n=2

1

n2 − √
n

41.
∞∑

n=2

n√
n3 + 1

42.
∞∑

n=2

n3√
n7 + 2n2 + 1

43.
∞∑

n=3

3n + 5

n(n − 1)(n − 2)
44.

∞∑
n=1

en + n

e2n − n2

45.
∞∑

n=1

1√
n + ln n

46.
∞∑

n=1

ln(n + 4)

n5/2

47.
∞∑

n=1

(
1 − cos

1

n

)
Hint: Compare with

∞∑
n=1

n−2.

48.
∞∑

n=1

(1 − 2−1/n) Hint: Compare with the harmonic series.

In Exercises 49–74, determine convergence or divergence using any
method covered so far.

49.
∞∑

n=4

1

n2 − 9
50.

∞∑
n=1

cos2 n

n2

51.
∞∑

n=1

√
n

4n + 9
52.

∞∑
n=1

n − cos n

n3

53.
∞∑

n=1

n2 − n

n5 + n
54.

∞∑
n=1

1

n2 + sin n

55.
∞∑

n=5

(4/5)−n 56.
∞∑

n=1

1

3n2

57.
∞∑

n=2

1

n3/2 ln n
58.

∞∑
n=2

(ln n)12

n9/8

59.
∞∑

k=1

41/k 60.
∞∑

n=1

4n

5n − 2n

61.
∞∑

n=2

1

(ln n)4
62.

∞∑
n=1

2n

3n − n

63.
∞∑

n=1

1

n ln n − n
64.

∞∑
n=1

1

n(ln n)2 − n

65.
∞∑

n=1

1

nn
66.

∞∑
n=1

n2 − 4n3/2

n3

67.
∞∑

n=1

1 + (−1)n

n
68.

∞∑
n=1

2 + (−1)n

n3/2

69.
∞∑

n=1

sin
1

n
70.

∞∑
n=1

sin(1/n)√
n

71.
∞∑

n=1

2n + 1

4n
72.

∞∑
n=3

1

e
√

n

73.
∞∑

n=4

ln n

n2 − 3n
74.

∞∑
n=1

1

3ln n

75.
∞∑

n=2

1

n1/2 ln n
76.

∞∑
n=1

1

n3/2 − ln4 n

77.
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17
78.

∞∑
n=1

n

4−n + 5−n

79. For which a does
∞∑

n=2

1

n(ln n)a
converge?

80. For which a does
∞∑

n=2

1

na ln n
converge?

Approximating Infinite Sums In Exercises 81–83, let an = f (n),
where f (x) is a continuous, decreasing function such that f (x) ≥ 0
and

∫∞
1 f (x) dx converges.

81. Show that

∫ ∞
1

f (x) dx ≤
∞∑

n=1

an ≤ a1 +
∫ ∞

1
f (x) dx 3

82. Using Eq. (3), show that

5 ≤
∞∑

n=1

1

n1.2
≤ 6

This series converges slowly. Use a computer algebra system to verify
that SN < 5 for N ≤ 43,128 and S43,129 ≈ 5.00000021.
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83. Let S =
∞∑

n=1

an. Arguing as in Exercise 81, show that

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤ S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx 4

Conclude that

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1 5

This provides a method for approximating S with an error of at most
aM+1.

84. Use Eq. (4) with M = 43,129 to prove that

5.5915810 ≤
∞∑

n=1

1

n1.2
≤ 5.5915839

85. Apply Eq. (4) with M = 40,000 to show that

1.644934066 ≤
∞∑

n=1

1

n2
≤ 1.644934068

Is this consistent with Euler’s result, according to which this infinite
series has sum π2/6?

86. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−6

to within an error less than 10−4. Check that your result is consistent
with that of Euler, who proved that the sum is equal to π6/945.

87. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−5

to within an error less than 10−4.

1
2

1
4

1
61

8

1
4

1
2

≈ 1.04 book lengths25
24

+ 1
6

+ 1
8

+ 25
24

=

FIGURE 5

88. How far can a stack of identical books (of mass m and unit length)
extend without tipping over? The stack will not tip over if the (n + 1)st
book is placed at the bottom of the stack with its right edge located at
the center of mass of the first n books (Figure 5). Let cn be the center
of mass of the first n books, measured along the x-axis, where we take
the positive x-axis to the left of the origin as in Figure 6. Recall that
if an object of mass m1 has center of mass at x1 and a second object
of m2 has center of mass x2, then the center of mass of the system has
x-coordinate

m1x1 + m2x2

m1 + m2

(a) Show that if the (n + 1)st book is placed with its right edge at cn,
then its center of mass is located at cn + 1

2 .

(b) Consider the first n books as a single object of mass nm with cen-
ter of mass at cn and the (n + 1)st book as a second object of mass m.
Show that if the (n + 1)st book is placed with its right edge at cn, then

cn+1 = cn + 1

2(n + 1)
.

(c) Prove that lim
n→∞ cn = ∞. Thus, by using enough books, the stack

can be extended as far as desired without tipping over.

89. The following argument proves the divergence of the harmonic

series S =
∞∑

n=1

1/n without using the Integral Test. Let

S1 = 1 + 1

3
+ 1

5
+ · · · , S2 = 1

2
+ 1

4
+ 1

6
+ · · ·

Show that if S converges, then

(a) S1 and S2 also converge and S = S1 + S2.

(b) S1 > S2 and S2 = 1
2S.

Observe that (b) contradicts (a), and conclude that S diverges.

x

1

. . .
1
6

1
4

1
2

0c1c2c3cncn+1

1
2(n + 1)

2
3

4

n
n + 1

FIGURE 6

Further Insights and Challenges

90. Let S =
∞∑

n=2

an, where an = (ln(ln n))− ln n.

(a) Show, by taking logarithms, that an = n− ln(ln(ln n)).

(b) Show that ln(ln(ln n)) ≥ 2 if n > C, where C = eee2
.

(c) Show that S converges.

91. Kummer’s Acceleration Method Suppose we wish to approx-

imate S =
∞∑

n=1

1/n2. There is a similar telescoping series whose value

can be computed exactly (Example 1 in Section 10.2):

∞∑
n=1

1

n(n + 1)
= 1
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(a) Verify that

S =
∞∑

n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)

Thus for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
6

(b) Explain what has been gained. Why is Eq. (6) a better approxima-

tion to S than is
M∑

n=1

1/n2?

(c) Compute

1000∑
n=1

1

n2
, 1 +

100∑
n=1

1

n2(n + 1)

Which is a better approximation to S, whose exact value is π2/6?

92. The series S =
∞∑

k=1

k−3 has been computed to more than

100 million digits. The first 30 digits are

S = 1.202056903159594285399738161511

Approximate S using the Acceleration Method of Exercise 91 with

M = 100 and auxiliary series R =
∞∑

n=1

(n(n + 1)(n + 2))−1. Accord-

ing to Exercise 46 in Section 10.2, R is a telescoping series with the
sum R = 1

4 .

10.4 Absolute and Conditional Convergence
In the previous section, we studied positive series, but we still lack the tools to analyze
series with both positive and negative terms. One of the keys to understanding such series
is the concept of absolute convergence.

DEFINITION Absolute Convergence The series
∑

an converges absolutely if∑
|an| converges.

EXAMPLE 1 Verify that the series

∞∑
n=1

(−1)n−1

n2
= 1

12
− 1

22
+ 1

32
− 1

42
+ · · ·

converges absolutely.

Solution This series converges absolutely because the positive series (with absolute val-
ues) is a p-series with p = 2 > 1:

∞∑
n=1

∣∣∣ (−1)n−1

n2

∣∣∣ = 1

12
+ 1

22
+ 1

32
+ 1

42
+ · · · (convergent p-series)

The next theorem tells us that if the series of absolute values converges, then the
original series also converges.

THEOREM 1 Absolute Convergence Implies Convergence If
∑

|an| converges,

then
∑

an also converges.

Proof We have −|an| ≤ an ≤ |an|. By adding |an| to all parts of the inequality, we get

0 ≤ |an| + an ≤ 2|an|. If
∑

|an| converges, then
∑

2|an| also converges, and therefore,∑
(an + |an|) converges by the Comparison Test. Our original series converges because

it is the difference of two convergent series:∑
an =

∑
(an + |an|) −

∑
|an|
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EXAMPLE 2 Verify that S =
∞∑

n=1

(−1)n−1

n2
converges.

Solution We showed that S converges absolutely in Example 1. By Theorem 1, S itself
converges.

EXAMPLE 3 Does S =
∞∑

n=1

(−1)n−1

√
n

= 1√
1

− 1√
2

+ 1√
3

− · · · converge abso-
lutely?

Solution The positive series
∞∑

n=1

1√
n

is a p-series with p = 1
2 . It diverges because p < 1.

Therefore, S does not converge absolutely.

The series in the previous example does not converge absolutely, but we still do
not know whether or not it converges. A series

∑
an may converge without converging

absolutely. In this case, we say that
∑

an is conditionally convergent.

DEFINITION Conditional Convergence An infinite series
∑

an converges condi-

tionally if
∑

an converges but
∑

|an| diverges.

If a series is not absolutely convergent, how can we determine whether it is condition-
ally convergent? This is often a more difficult question, because we cannot use the Integral
Test or the Comparison Test (they apply only to positive series). However, convergence
is guaranteed in the particular case of an alternating series

S =
∞∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · ·

where the terms an are positive and decrease to zero (Figure 1).

a1 a3

−a2 −a4 −a6

a5
x

y

FIGURE 1 An alternating series with
decreasing terms. The sum is the signed
area, which is at most a1.

THEOREM 2 Leibniz Test for Alternating Series Assume that {an} is a positive se-
quence that is decreasing and converges to 0:

a1 > a2 > a3 > a4 > · · · > 0, lim
n→∞ an = 0

Then the following alternating series converges:

S =
∞∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · ·

Furthermore,

0 < S < a1 and S2N < S < S2N+1 N ≥ 1

Assumptions Matter The Leibniz Test is not
valid if we drop the assumption that an is
decreasing (see Exercise 35).
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Proof We will prove that the partial sums zigzag above and below the sum S as in Figure 2.

1 2 3 4 5 6 7 8 9 10

S

y

x

S1

S3 S5 S7 S9

S10S8S6S4
S2

FIGURE 2 The partial sums of an alternating
series zigzag above and below the limit.
The odd partial sums decrease and the even
partial sums increase.

Note first that the even partial sums are increasing. Indeed, the odd-numbered terms occur
with a plus sign and thus, for example,

S4 + a5 − a6 = S6

But a5 − a6 > 0 because an is decreasing, and therefore S4 < S6. In general,

S2N + (a2N+1 − a2N+2) = S2N+2

where a2n+1 − a2N+2 > 0. Thus S2N < S2N+2 and

0 < S2 < S4 < S6 < · · ·

Similarly,

S2N−1 − (a2N − a2N+1) = S2N+1

Therefore S2N+1 < S2N−1, and the sequence of odd partial sums is decreasing:

· · · < S7 < S5 < S3 < S1

Finally, S2N < S2N + a2N+1 = S2N+1. The picture is as follows:

0 < S2 < S4 < S6 < · · · < S7 < S5 < S3 < S1

Now, because bounded monotonic sequences converge (Theorem 6 of Section 10.1), the
even and odd partial sums approach limits that are sandwiched in the middle:

0 < S2 < S4 < · · · < lim
N→∞ S2N ≤ lim

N→∞ S2N+1 < · · · < S5 < S3 < S1 1

These two limits must have a common value L because

lim
N→∞ S2N+1 − lim

N→∞ S2N = lim
N→∞(S2N+1 − S2N) = lim

N→∞ a2N+1 = 0

Therefore, lim
N→∞ SN = L and the infinite series converges to S = L. From Eq. (1) we also

see that 0 < S < S1 = a1 and S2N < S < S2N+1 for all N as claimed.

EXAMPLE 4 Show that S =
∞∑

n=1

(−1)n−1

√
n

= 1√
1

− 1√
2

+ 1√
3

− · · · convergesThe Leibniz Test is the only test for
conditional convergence developed in this
text. Other tests, such as Abel’s Criterion
and the Dirichlet Test, are discussed in
textbooks on Analysis.

conditionally and that 0 ≤ S ≤ 1.

Solution The terms an = 1/
√

n are positive and decreasing, and lim
n→∞ an = 0. Therefore,

S converges by the Leibniz Test. Furthermore, 0 ≤ S ≤ 1 because a1 = 1. However, the

positive series
∞∑

n=1

1/
√

n diverges because it is a p-series with p = 1
2 < 1. Therefore, S

is conditionally convergent but not absolutely convergent (Figure 3).
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0.5

1

S

5 10 15 20

y

n

S1
S3 S5

S6S4S2

12

10

8

6

4

2

10 20 30 5040

y

n

(A) Partial sums of S =
∞∑

n=1

(−1)n−1 1√
n

(B) Partial sums of
∞∑

n=1

1√
n

FIGURE 3

The inequality S2N < S < S2N+1 in Theorem 2 gives us important information about
the error; it tells us that |SN − S| is less than |SN − SN+1| = aN+1 for all N .

THEOREM 3 Let S =
∞∑

n=1

(−1)n−1an, where {an} is a positive decreasing sequence

that converges to 0. Then

∣∣S − SN

∣∣ < aN+1 2

In other words, the error committed when we approximate S by SN is less than the size
of the first omitted term aN+1.

EXAMPLE 5 Alternating Harmonic Series Show that S =
∞∑

n=1

(−1)n−1

n
converges

conditionally. Then:

(a) Show that |S − S6| < 1
7 .

(b) Find an N such that SN approximates S with an error less than 10−3.

Solution The terms an = 1/n are positive and decreasing, and lim
n→∞ an = 0. Therefore,

S converges by the Leibniz Test. The harmonic series
∞∑

n=1

1/n diverges, so S converges

conditionally but not absolutely. Now, applying Eq. (2), we have

|S − SN | < aN+1 = 1

N + 1

For N = 6, we obtain |S − S6| < a7 = 1
7 . We can make the error less than 10−3 by

choosing N so that

1

N + 1
≤ 10−3 ⇒ N + 1 ≥ 103 ⇒ N ≥ 999

Using a computer algebra system, we find that S999 ≈ 0.69365. In Exercise 84 of Section
10.7, we will prove that S = ln 2 ≈ 0.69314, and thus we can verify that

|S − S999| ≈ | ln 2 − 0.69365| ≈ 0.0005 < 10−3
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CONCEPTUAL INSIGHT The convergence of an infinite series
∑

an depends on two
factors: (1) how quickly an tends to zero, and (2) how much cancellation takes place
among the terms. Consider

Harmonic series (diverges): 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · ·

p-Series with p = 2 (converges): 1 + 1

22
+ 1

32
+ 1

42
+ 1

52
+ · · ·

Alternating harmonic series (converges): 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

The harmonic series diverges because reciprocals 1/n do not tend to zero quickly
enough. By contrast, the reciprocal squares 1/n2 tend to zero quickly enough for the
p-series with p = 2 to converge. The alternating harmonic series converges, but only
due to the cancellation among the terms.

10.4 SUMMARY

•
∑

an converges absolutely if the positive series
∑

|an| converges.

• Absolute convergence implies convergence: If
∑

|an| converges, then
∑

an also con-
verges.

•
∑

an converges conditionally if
∑

an converges but
∑

|an| diverges.

• Leibniz Test: If {an} is positive and decreasing and lim
n→∞ an = 0, then the alternating

series

S =
∞∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + a5 − · · ·

converges. Furthermore, |S − SN | < aN+1.

• We have developed two ways to handle nonpositive series: Show absolute convergence
if possible, or use the Leibniz Test, if applicable.

10.4 EXERCISES

Preliminary Questions
1. Give an example of a series such that

∑
an converges but

∑
|an|

diverges.

2. Which of the following statements is equivalent to Theorem 1?

(a) If
∞∑

n=0

|an| diverges, then
∞∑

n=0

an also diverges.

(b) If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges.

(c) If
∞∑

n=0

an converges, then
∞∑

n=0

|an| also converges.

3. Lathika argues that
∞∑

n=1

(−1)n
√

n is an alternating series and there-

fore converges. Is Lathika right?

4. Suppose that an is positive, decreasing, and tends to 0, and let

S =
∞∑

n=1

(−1)n−1an. What can we say about |S − S100| if a101 =

10−3? Is S larger or smaller than S100?
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Exercises
1. Show that

∞∑
n=0

(−1)n

2n

converges absolutely.

2. Show that the following series converges conditionally:

∞∑
n=1

(−1)n−1 1

n2/3
= 1

12/3
− 1

22/3
+ 1

32/3
− 1

42/3
+ · · ·

In Exercises 3–10, determine whether the series converges absolutely,
conditionally, or not at all.

3.
∞∑

n=1

(−1)n−1

n1/3
4.

∞∑
n=1

(−1)n n4

n3 + 1

5.
∞∑

n=0

(−1)n−1

(1.1)n
6.

∞∑
n=1

sin( πn
4 )

n2

7.
∞∑

n=2

(−1)n

n ln n
8.

∞∑
n=1

(−1)n

1 + 1
n

9.
∞∑

n=2

cos nπ

(ln n)2
10.

∞∑
n=1

cos n

2n

11. Let S =
∞∑

n=1

(−1)n+1 1

n3
.

(a) Calculate Sn for 1 ≤ n ≤ 10.
(b) Use Eq. (2) to show that 0.9 ≤ S ≤ 0.902.

12. Use Eq. (2) to approximate

∞∑
n=1

(−1)n+1

n!

to four decimal places.

13. Approximate
∞∑

n=1

(−1)n+1

n4
to three decimal places.

14. Let

S =
∞∑

n=1

(−1)n−1 n

n2 + 1

Use a computer algebra system to calculate and plot the partial sums
Sn for 1 ≤ n ≤ 100. Observe that the partial sums zigzag above and
below the limit.

In Exercises 15–16, find a value of N such that SN approximates the
series with an error of at most 10−5. If you have a CAS, compute this
value of SN .

15.
∞∑

n=1

(−1)n+1

n(n + 2)(n + 3)
16.

∞∑
n=1

(−1)n+1 ln n

n!

In Exercises 17–32, determine convergence or divergence by any
method.

17.
∞∑

n=0

7−n 18.
∞∑

n=1

1

n7.5

19.
∞∑

n=1

1

5n − 3n
20.

∞∑
n=2

n

n2 − n

21.
∞∑

n=1

1

3n4 + 12n
22.

∞∑
n=1

(−1)n√
n2 + 1

23.
∞∑

n=1

1√
n2 + 1

24.
∞∑

n=0

(−1)nn√
n2 + 1

25.
∞∑

n=1

3n + (−2)n

5n
26.

∞∑
n=1

(−1)n+1

(2n + 1)!

27.
∞∑

n=1

(−1)nn2e−n3/3 28.
∞∑

n=1

ne−n3/3

29.
∞∑

n=2

(−1)n

n1/2(ln n)2
30.

∞∑
n=2

1

n(ln n)1/4

31.
∞∑

n=1

ln n

n1.05
32.

∞∑
n=2

1

(ln n)2

33. Show that

S = 1

2
− 1

2
+ 1

3
− 1

3
+ 1

4
− 1

4
+ · · ·

converges by computing the partial sums. Does it converge absolutely?

34. The Leibniz Test cannot be applied to

1

2
− 1

3
+ 1

22
− 1

32
+ 1

23
− 1

33
+ · · ·

Why not? Show that it converges by another method.

35. Assumptions Matter Show by counterexample that the
Leibniz Test does not remain true if the sequence an tends to zero but
is not assumed nonincreasing. Hint: Consider

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n
− 1

2n

)
+ · · ·

36. Determine whether the following series converges conditionally:

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

37. Prove that if
∑

an converges absolutely, then
∑

a2
n also con-

verges. Then give an example where
∑

an is only conditionally con-

vergent and
∑

a2
n diverges.
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Further Insights and Challenges
38. Prove the following variant of the Leibniz Test: If {an} is a positive,
decreasing sequence with lim

n→∞ an = 0, then the series

a1 + a2 − 2a3 + a4 + a5 − 2a6 + · · ·
converges. Hint: Show that S3N is increasing and bounded by a1 + a2,
and continue as in the proof of the Leibniz Test.

39. Use Exercise 38 to show that the following series converges:

S = 1

ln 2
+ 1

ln 3
− 2

ln 4
+ 1

ln 5
+ 1

ln 6
− 2

ln 7
+ · · ·

40. Prove the conditional convergence of

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

41. Show that the following series diverges:

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

Hint: Use the result of Exercise 40 to write S as the sum of a convergent
series and a divergent series.

42. Prove that

∞∑
n=1

(−1)n+1 (ln n)a

n

converges for all exponents a. Hint: Show that f (x) = (ln x)a/x is
decreasing for x sufficiently large.

43. We say that {bn} is a rearrangement of {an} if {bn} has the same
terms as {an} but occurring in a different order. Show that if {bn} is

a rearrangement of {an} and S =
∞∑

n=1

an converges absolutely, then

T =
∞∑

n=1

bn also converges absolutely. (This result does not hold if

S is only conditionally convergent.) Hint: Prove that the partial sums
N∑

n=1

|bn| are bounded. It can be shown further that S = T .

44. Assumptions Matter In 1829, Lejeune Dirichlet pointed out that
the great French mathematicianAugustin Louis Cauchy made a mistake
in a published paper by improperly assuming the Limit Comparison Test
to be valid for nonpositive series. Here are Dirichlet’s two series:

∞∑
n=1

(−1)n√
n

,

∞∑
n=1

(−1)n√
n

(
1 + (−1)n√

n

)

Explain how they provide a counterexample to the Limit Comparison
Test when the series are not assumed to be positive.

10.5 The Ratio and Root Tests
Series such as

S = 1 + 2

1! + 22

2! + 23

3! + 24

4! + · · ·

arise in applications, but the convergence tests developed so far cannot be applied easily.
Fortunately, the Ratio Test can be used for this and many other series.

THEOREM 1 Ratio Test Assume that the following limit exists:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
(i) If ρ < 1, then

∑
an converges absolutely.

(ii) If ρ > 1, then
∑

an diverges.

(iii) If ρ = 1, the test is inconclusive (the series may converge or diverge).

Proof The idea is to compare with a geometric series. If ρ < 1, we may choose a number
r such that ρ < r < 1. Since |an+1/an| converges to ρ, there exists a number M such that
|an+1/an| < r for all n ≥ M . Therefore,

The symbol ρ is a lowercase “rho,” the
seventeenth letter of the Greek alphabet.
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|aM+1| < r|aM |
|aM+2| < r|aM+1| < r(r|aM |) = r2|aM |
|aM+3| < r|aM+2| < r3|aM |

In general, |aM+n| < rn|aM |, and thus,

∞∑
n=M

|an| =
∞∑

n=0

|aM+n| ≤
∞∑

n=0

|aM | rn = |aM |
∞∑

n=0

rn

The geometric series on the right converges because 0 < r < 1, so
∞∑

n=M

|an| converges by

the Comparison Test and thus
∑

an converges absolutely.
If ρ > 1, choose r such that 1 < r < ρ. Then there exists a number M such that

|an+1/an| > r for all n ≥ M . Arguing as before with the inequalities reversed, we find
that |aM+n| ≥ rn|aM |. Since rn tends to ∞, the terms aM+n do not tend to zero, and
consequently,

∑
an diverges. Finally, Example 4 below shows that both convergence

and divergence are possible when ρ = 1, so the test is inconclusive in this case.

EXAMPLE 1 Prove that
∞∑

n=1

2n

n! converges.

Solution Compute the ratio and its limit with an = 2n

n! . Note that (n + 1)! = (n + 1)n!
and thus

an+1

an

= 2n+1

(n + 1)!
n!
2n

= 2n+1

2n

n!
(n + 1)! = 2

n + 1

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2

n + 1
= 0

Since ρ < 1, the series
∞∑

n=1

2n

n! converges by the Ratio Test.

EXAMPLE 2 Does
∞∑

n=1

n2

2n
converge?

Solution Apply the Ratio Test with an = n2

2n
:

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2

2n+1

2n

n2
= 1

2

(
n2 + 2n + 1

n2

)
= 1

2

(
1 + 2

n
+ 1

n2

)

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
lim

n→∞

(
1 + 2

n
+ 1

n2

)
= 1

2

Since ρ < 1, the series converges by the Ratio Test.
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EXAMPLE 3 Does
∞∑

n=0

(−1)n
n!

1000n
converge?

Solution This series diverges by the Ratio Test because ρ > 1:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)!
1000n+1

1000n

n! = lim
n→∞

n + 1

1000
= ∞

EXAMPLE 4 Ratio Test Inconclusive Show that both convergence and divergence

are possible when ρ = 1 by considering
∞∑

n=1

n2 and
∞∑

n=1

n−2.

Solution For an = n2, we have

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)2

n2
= lim

n→∞
n2 + 2n + 1

n2
= lim

n→∞

(
1 + 2

n
+ 1

n2

)
= 1

On the other hand, for bn = n−2,

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = 1

lim
n→∞

∣∣∣ an+1
an

∣∣∣ = 1

Thus, ρ = 1 in both cases, but
∞∑

n=1

n2 diverges and
∞∑

n=1

n−2 converges. This shows that

both convergence and divergence are possible when ρ = 1.

Our next test is based on the limit of the nth roots n
√

an rather than the ratios an+1/an.
Its proof, like that of the Ratio Test, is based on a comparison with a geometric series (see
Exercise 57).

THEOREM 2 Root Test Assume that the following limit exists:

L = lim
n→∞

n
√|an|

(i) If L < 1, then
∑

an converges absolutely.

(ii) If L > 1, then
∑

an diverges.

(iii) If L = 1, the test is inconclusive (the series may converge or diverge).

EXAMPLE 5 Does
∞∑

n=1

(
n

2n + 3

)n

converge?

Solution We have L = lim
n→∞

n
√

an = lim
n→∞

n

2n + 3
= 1

2
. Since L < 1, the series con-

verges by the Root Test.
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10.5 SUMMARY

• Ratio Test: Assume that ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists. Then
∑

an

– Converges absolutely if ρ < 1.
– Diverges if ρ > 1.
– Inconclusive if ρ = 1.

• Root Test: Assume that L = lim
n→∞

n
√|an| exists. Then

∑
an

– Converges absolutely if L < 1.
– Diverges if L > 1.
– Inconclusive if L = 1.

10.5 EXERCISES

Preliminary Questions
1. In the Ratio Test, is ρ equal to lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ or lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣?
2. Is the Ratio Test conclusive for

∞∑
n=1

1

2n
? Is it conclusive for

∞∑
n=1

1

n
?

3. Can the Ratio Test be used to show convergence if the series is
only conditionally convergent?

Exercises
In Exercises 1–20, apply the Ratio Test to determine convergence or
divergence, or state that the Ratio Test is inconclusive.

1.
∞∑

n=1

1

5n
2.

∞∑
n=1

(−1)n−1n

5n

3.
∞∑

n=1

1

nn
4.

∞∑
n=0

3n + 2

5n3 + 1

5.
∞∑

n=1

n

n2 + 1
6.

∞∑
n=1

2n

n

7.
∞∑

n=1

2n

n100
8.

∞∑
n=1

n3

3n2

9.
∞∑

n=1

10n

2n2 10.
∞∑

n=1

en

n!

11.
∞∑

n=1

en

nn
12.

∞∑
n=1

n40

n!

13.
∞∑

n=0

n!
6n

14.
∞∑

n=1

n!
n9

15.
∞∑

n=2

1

n ln n
16.

∞∑
n=1

1

(2n)!

17.
∞∑

n=1

n2

(2n + 1)! 18.
∞∑

n=1

(n!)3

(3n)!

19.
∞∑

n=2

1

2n + 1
20.

∞∑
n=2

1

ln n

21. Show that
∞∑

n=1

nk 3−n converges for all exponents k.

22. Show that
∞∑

n=1

n2xn converges if |x| < 1.

23. Show that
∞∑

n=1

2nxn converges if |x| < 1
2 .

24. Show that
∞∑

n=1

rn

n! converges for all r .

25. Show that
∞∑

n=1

rn

n
converges if |r| < 1.

26. Is there any value of k such that
∞∑

n=1

2n

nk
converges?

27. Show that
∞∑

n=1

n!
nn

converges. Hint: Use lim
n→∞

(
1 + 1

n

)n

= e.
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In Exercises 28–33, assume that |an+1/an| converges to ρ = 1
3 . What

can you say about the convergence of the given series?

28.
∞∑

n=1

nan 29.
∞∑

n=1

n3an 30.
∞∑

n=1

2nan

31.
∞∑

n=1

3nan 32.
∞∑

n=1

4nan 33.
∞∑

n=1

a2
n

34. Assume that
∣∣an+1/an

∣∣ converges to ρ = 4. Does
∑∞

n=1 a−1
n con-

verge (assume that an �= 0 for all n)?

35. Is the Ratio Test conclusive for the p-series
∞∑

n=1

1

np
?

In Exercises 36–41, use the Root Test to determine convergence or
divergence (or state that the test is inconclusive).

36.
∞∑

n=0

1

10n
37.

∞∑
n=1

1

nn

38.
∞∑

k=0

(
k

k + 10

)k

39.
∞∑

k=0

(
k

3k + 1

)k

40.
∞∑

n=1

(
1 + 1

n

)−n

41.
∞∑

n=4

(
1 + 1

n

)−n2

42. Prove that
∞∑

n=1

2n2

n! diverges. Hint: Use 2n2 = (2n)n and n! ≤ nn.

In Exercises 43–56, determine convergence or divergence using any
method covered in the text so far.

43.
∞∑

n=1

2n + 4n

7n
44.

∞∑
n=1

n3

n!

45.
∞∑

n=1

n3

5n
46.

∞∑
n=2

1

n(ln n)3

47.
∞∑

n=2

1√
n3 − n2

48.
∞∑

n=1

n2 + 4n

3n4 + 9

49.
∞∑

n=1

n−0.8 50.
∞∑

n=1

(0.8)−nn−0.8

51.
∞∑

n=1

4−2n+1 52.
∞∑

n=1

(−1)n−1
√

n

53.
∞∑

n=1

sin
1

n2
54.

∞∑
n=1

(−1)n cos
1

n

55.
∞∑

n=1

(−2)n√
n

56.
∞∑

n=1

(
n

n + 12

)n

Further Insights and Challenges

57. Proof of the Root Test Let S =
∞∑

n=0

an be a positive
series, and assume that L = lim

n→∞
n
√

an exists.

(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1
and show that an ≤ Rn for n sufficiently large. Then compare with the

geometric series
∑

Rn.

(b) Show that S diverges if L > 1.

58. Show that the Ratio Test does not apply, but verify convergence
using the Comparison Test for the series

1

2
+ 1

32
+ 1

23
+ 1

34
+ 1

25 + · · ·

59. Let S =
∞∑

n=1

cnn!
nn

, where c is a constant.

(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.

(b) It is known that lim
n→∞

enn!
nn+1/2

= √
2π . Verify this numerically.

(c) Use the Limit Comparison Test to prove that S diverges for c = e.

10.6 Power Series
A power series with center c is an infinite series

F(x) =
∞∑

n=0

an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·

where x is a variable. For example,

F(x) = 1 + (x − 2) + 2(x − 2)2 + 3(x − 2)3 + · · · 1

is a power series with center c = 2.
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A power series F(x) =
∞∑

n=0

an(x − c)n converges for some values of x and mayMany functions that arise in applications
can be represented as power series. This
includes not only the familiar
trigonometric, exponential, logarithm, and
root functions, but also the host of “special
functions” of physics and engineering such
as Bessel functions and elliptic functions.

diverge for others. For example, if we set x = 9
4 in the power series of Eq. (1), we obtain

an infinite series that converges by the Ratio Test:

F

(
9

4

)
= 1 +

(
9

4
− 2

)
+ 2

(
9

4
− 2

)2

+ 3

(
9

4
− 2

)3

+ · · ·

= 1 +
(

1

4

)
+ 2

(
1

4

)2

+ 3

(
1

4

)3

+ · · ·

On the other hand, the power series in Eq. (1) diverges for x = 3:

F(3) = 1 + (3 − 2) + 2(3 − 2)2 + 3(3 − 2)3 + · · ·
= 1 + 1 + 2 + 3 + · · ·

There is a surprisingly simple way to describe the set of values x at which a power
series F(x) converges. According to our next theorem, either F(x) converges absolutely
for all values of x or there is a radius of convergence R such that

F(x) converges absolutely when |x − c| < R and diverges when |x − c| > R.

This means that F(x) converges for x in an interval of convergence consisting of the
open interval (c − R, c + R) and possibly one or both of the endpoints c − R and c + R

(Figure 1). Note that F(x) automatically converges at x = c because

F(c) = a0 + a1(c − c) + a2(c − c)2 + a3(c − c)3 + · · · = a0

We set R = 0 if F(x) converges only for x = c, and we set R = ∞ if F(x) converges for
all values of x.

Converges absolutelyDiverges Diverges

Possible convergence at the endpoints

c − R

|x − c | < R 

c + Rc
x

FIGURE 1 Interval of convergence of a
power series.

THEOREM 1 Radius of Convergence Every power series

F(x) =
∞∑

n=0

an(x − c)n

has a radius of convergence R, which is either a nonnegative number (R ≥ 0) or infinity
(R = ∞). If R is finite, F(x) converges absolutely when |x − c| < R and diverges
when |x − c| > R. If R = ∞, then F(x) converges absolutely for all x.

Proof We assume that c = 0 to simplify the notation. If F(x) converges only at x = 0,
then R = 0. Otherwise, F(x) converges for some nonzero value x = B. We claim that
F(x) must then converge absolutely for all |x| < |B|. To prove this, note that because

F(B) =
∞∑

n=0

anB
n converges, the general term anB

n tends to zero. In particular, there

exists M > 0 such that |anB
n| < M for all n. Therefore,
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∞∑
n=0

|anx
n| =

∞∑
n=0

|anB
n|

∣∣∣ x
B

∣∣∣n < M

∞∑
n=0

∣∣∣ x
B

∣∣∣n

If |x| < |B|, then |x/B| < 1 and the series on the right is a convergent geometric series.
By the Comparison Test, the series on the left also converges. This proves that F(x)

converges absolutely if |x| < |B|.
Now let S be the set of numbers x such that F(x) converges. Then S contains 0,Least Upper Bound Property: If S is a set

of real numbers with an upper bound M

(that is, x ≤ M for all x ∈ S), then S has a
least upper bound L. See Appendix B.

and we have shown that if S contains a number B �= 0, then S contains the open interval
(−|B|, |B|). If S is bounded, then S has a least upper bound L > 0 (see marginal note).
In this case, there exist numbers B ∈ S smaller than but arbitrarily close to L, and thus S

contains (−B, B) for all 0 < B < L. It follows that S contains the open interval (−L, L).
The set S cannot contain any number x with |x| > L, but S may contain one or both of
the endpoints x = ±L. So in this case, F(x) has radius of convergence R = L. If S is not
bounded, then S contains intervals (−B, B) for B arbitrarily large. In this case, S is the
entire real line R, and the radius of convergence is R = ∞.

From Theorem 1, we see that there are two steps in determining the interval of con-
vergence of F(x):

Step 1. Find the radius of convergence R (using the Ratio Test, in most cases).

Step 2. Check convergence at the endpoints (if R �= 0 or ∞).

EXAMPLE 1 Using the Ratio Test Where does F(x) =
∞∑

n=0

xn

2n
converge?

Solution

Step 1. Find the radius of convergence.

Let an = xn

2n
and compute the ratio ρ of the Ratio Test:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

2n+1

∣∣∣∣ ·
∣∣∣∣2n

xn

∣∣∣∣ = lim
n→∞

1

2
|x| = 1

2
|x|

We find that

ρ < 1 if
1

2
|x| < 1, that is, if |x| < 2

Thus F(x) converges if |x| < 2. Similarly, ρ > 1 if 1
2 |x| > 1, or |x| > 2. Thus F(x)

converges if |x| > 2. Therefore, the radius of convergence is R = 2.

Step 2. Check the endpoints.
The Ratio Test is inconclusive for x = ±2, so we must check these cases directly:

F(2) =
∞∑

n=0

2n

2n
= 1 + 1 + 1 + 1 + 1 + 1 · · ·

F(−2) =
∞∑

n=0

(−2)n

2n
= 1 − 1 + 1 − 1 + 1 − 1 · · ·

Both series diverge. We conclude that F(x) converges only for |x| < 2 (Figure 2).

x
2

DivergesDiverges

Diverges Diverges
Converges
absolutely

−2 0

FIGURE 2 The power series

∞∑
n=0

xn

2n

has interval of convergence (−2, 2).
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EXAMPLE 2 Where does F(x) =
∞∑

n=1

(−1)n

4n n
(x − 5)n converge?

Solution We compute ρ with an = (−1)n

4n n
(x − 5)n:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x − 5)n+1

4n+1(n + 1)

4nn

(x − 5)n

∣∣∣∣
= |x − 5| lim

n→∞

∣∣∣∣ n

4(n + 1)

∣∣∣∣
= 1

4
|x − 5|

We find that

ρ < 1 if
1

4
|x − 5| < 1, that is, if |x − 5| < 4

Thus F(x) converges absolutely on the open interval (1, 9) of radius 4 with center c = 5.
In other words, the radius of convergence is R = 4. Next, we check the endpoints:

x
9

ConvergesDiverges

Diverges Diverges
Converges
absolutely

1 5

FIGURE 3 The power series

∞∑
n=1

(−1)n

4nn
(x − 5)n

has interval of convergence (1, 9].

x = 9:
∞∑

n=1

(−1)n

4nn
(9 − 5)n =

∞∑
n=1

(−1)n

n
converges (Leibniz Test)

x = 1:
∞∑

n=1

(−1)n

4nn
(−4)n =

∞∑
n=1

1

n
diverges (harmonic series)

We conclude that F(x) converges for x in the half-open interval (1, 9] shown in Figure 3.

Some power series contain only even powers or only odd powers of x. The Ratio Test
can still be used to find the radius of convergence.

EXAMPLE 3 An Even Power Series Where does
∞∑

n=0

x2n

(2n)! converge?

Solution Although this power series has only even powers of x, we can still apply the
Ratio Test with an = x2n/(2n)!. We have

an+1 = x2(n+1)

(2(n + 1))! = x2n+2

(2n + 2)!
Furthermore, (2n + 2)! = (2n + 2)(2n + 1)(2n)!, so

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

x2n+2

(2n + 2)!
(2n)!
x2n

= |x|2 lim
n→∞

1

(2n + 2)(2n + 1)
= 0

Thus ρ = 0 for all x, and F(x) converges for all x. The radius of convergence is R = ∞.
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Geometric series are important examples of power series. Recall the formulaWhen a function f (x) is represented by a
power series on an interval I , we refer to
the power series expansion of f (x) on I .

∞∑
n=0

rn = 1/(1 − r), valid for |r| < 1. Writing x in place of r , we obtain a power se-

ries expansion with radius of convergence R = 1:

1

1 − x
=

∞∑
n=0

xn for |x| < 1 2

The next two examples show that we can modify this formula to find the power series
expansions of other functions.

EXAMPLE 4 Geometric Series Prove that

1

1 − 2x
=

∞∑
n=0

2nxn for |x| <
1

2

Solution Substitute 2x for x in Eq. (2):

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn 3

Expansion (2) is valid for |x| < 1, so Eq. (3) is valid for |2x| < 1, or |x| < 1
2 .

EXAMPLE 5 Find a power series expansion with center c = 0 for

f (x) = 1

2 + x2

and find the interval of convergence.

Solution We need to rewrite f (x) so we can use Eq. (2). We have

1

2 + x2
= 1

2

(
1

1 + 1
2x2

)
= 1

2

(
1

1 − ( − 1
2x2

)
)

= 1

2

(
1

1 − u

)

where u = − 1
2x2. Now substitute u = − 1

2x2 for x in Eq. (2) to obtain

f (x) = 1

2 + x2
= 1

2

∞∑
n=0

(
−x2

2

)n

=
∞∑

n=0

(−1)nx2n

2n+1

This expansion is valid if |−x2/2| < 1, or |x| <
√

2. The interval of convergence is
(−√

2,
√

2).

Our next theorem tells us that within the interval of convergence, we can treat a power
series as though it were a polynomial; that is, we can differentiate and integrate term by
term.
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THEOREM 2 Term-by-Term Differentiation and Integration Assume that

F(x) =
∞∑

n=0

an(x − c)n

has radius of convergence R > 0. Then F(x) is differentiable on (c − R, c + R) [or
for all x if R = ∞]. Furthermore, we can integrate and differentiate term by term. For
x ∈ (c − R, c + R),

F ′(x) =
∞∑

n=1

nan(x − c)n−1

∫
F(x) dx = A +

∞∑
n=0

an

n + 1
(x − c)n+1 (A any constant)

These series have the same radius of convergence R.

The proof of Theorem 2 is somewhat
technical and is omitted. See Exercise 66
for a proof that F(x) is continuous.

EXAMPLE 6 Differentiating a Power Series Prove that for −1 < x < 1,

1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

Solution The geometric series has radius of convergence R = 1:

1

1 − x
= 1 + x + x2 + x3 + x4 + · · ·

By Theorem 2, we can differentiate term by term for |x| < 1 to obtain

d

dx

( 1

1 − x

)
= d

dx
(1 + x + x2 + x3 + x4 + · · · )

1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

Theorem 2 is a powerful tool in the study of power series.

EXAMPLE 7 Power Series for Arctangent Prove that for −1 < x < 1,

tan−1 x =
∞∑

n=0

(−1)nx2n+1

2n + 1
= x − x3

3
+ x5

5
− x7

7
+ · · · 4

Solution Recall that tan−1 x is an antiderivative of (1 + x2)−1. We obtain a power series
expansion of this antiderivative by substituting −x2 for x in the geometric series of Eq. (2):

1

1 + x2
= 1 − x2 + x4 − x6 + · · ·

This expansion is valid for |x2| < 1—that is, for |x| < 1. By Theorem 2, we can integrate
series term by term. The resulting expansion is also valid for |x| < 1:

tan−1 x =
∫

dx

1 + x2
=

∫
(1 − x2 + x4 − x6 + · · · ) dx

= A + x − x3

3
+ x5

5
− x7

7
+ · · ·

Setting x = 0, we obtain A = tan−1 0 = 0. Thus Eq. (4) is valid for −1 < x < 1.
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GRAPHICAL INSIGHT Let’s examine the expansion of the previous example graphically.
The partial sums of the power series for f (x) = tan−1 x are

SN(x) = x − x3

3
+ x5

5
− x7

7
+ · · · + (−1)N

x2N+1

2N + 1

For large N we can expect SN(x) to provide a good approximation to f (x) = tan−1 x

on the interval (−1, 1), where the power series expansion is valid. Figure 4 confirms
this expectation: The graphs of S50(x) and S51(x) are nearly indistinguishable from
the graph of tan−1 x on (−1, 1). Thus we may use the partial sums to approximate the
arctangent. For example, tan−1(0.3) is approximated by

S4(0.3) = 0.3 − (0.3)3

3
+ (0.3)5

5
− (0.3)7

7
+ (0.3)9

9
≈ 0.2914569

Since the power series is an alternating series, the error is less than the first omitted
term:

|tan−1(0.3) − S4(0.3)| <
(0.3)11

11
≈ 1.61 × 10−7

The situation changes drastically in the region |x| > 1, where the power series diverges
and the partial sums SN(x) deviate sharply from tan−1 x.

21−2 −1

1

−1

x

y y = S50(x)

y = tan−1x

21−2 −1

1

−1

x

yy = S51(x)

y = tan−1x

(A) (B)
FIGURE 4 S50(x) and S51(x) are nearly
indistinguishable from tan−1 x on (−1, 1).

Power Series Solutions of Differential Equations
Power series are a basic tool in the study of differential equations. To illustrate, consider
the differential equation with initial condition

y′ = y, y(0) = 1

We know that f (x) = ex is the unique solution, but let’s try to find a power series that
satisfies this initial value problem. We have

F(x) =
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

F ′(x) =
∞∑

n=0

nanx
n−1 = a1 + 2a2x + 3a3x

2 + 4a4x
3 + · · ·

Therefore, F ′(x) = F(x) if

a0 = a1, a1 = 2a2, a2 = 3a3, a3 = 4a4, . . .
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In other words, F ′(x) = F(x) if an−1 = nan, or

an = an−1

n

An equation of this type is called a recursion relation. It enables us to determine all of the
coefficients an successively from the first coefficient a0, which may be chosen arbitrarily.
For example,

n = 1: a1 = a0

1

n = 2: a2 = a1

2
= a0

2 · 1
= a0

2!
n = 3: a3 = a2

3
= a1

3 · 2
= a0

3 · 2 · 1
= a0

3!
To obtain a general formula for an, apply the recursion relation n times:

an = an−1

n
= an−2

n(n − 1)
= an−3

n(n − 1)(n − 2)
= · · · = a0

n!
We conclude that

F(x) = a0

∞∑
n=0

xn

n!
In Example 3, we showed that this power series has radius of convergence R = ∞, so
y = F(x) satisfies y′ = y for all x. Moreover, F(0) = a0, so the initial condition y(0) = 1
is satisfied with a0 = 1.

What we have shown is that f (x) = ex and F(x) with a0 = 1 are both solutions of
the initial value problem. They must be equal because the solution is unique. This proves
that for all x,

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

In this example, we knew in advance that y = ex is a solution of y′ = y, but suppose
we are given a differential equation whose solution is unknown. We can try to find a

solution in the form of a power series F(x) =
∞∑

n=0

anx
n. In favorable cases, the differential

equation leads to a recursion relation that enables us to determine the coefficients an.

EXAMPLE 8 Find a power series solution to the initial value problemThe solution in Example 8 is called the
“Bessel function of order 1.” The Bessel
function of order n is a solution of

x2y ′′ + xy ′ + (x2 − n2)y = 0

These functions have applications in many
areas of physics and engineering.

x2y′′ + xy′ + (x2 − 1)y = 0, y′(0) = 1 5

Solution Assume that Eq. (5) has a power series solution F(x) =
∞∑

n=0

anx
n. Then

y′ = F ′(x) =
∞∑

n=0

nanx
n−1 = a1 + 2a2x + 3a3x

2 + · · ·

y′′ = F ′′(x) =
∞∑

n=0

n(n − 1)anx
n−2 = 2a2 + 6a3x + 12a4x

2 + · · ·
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Now substitute the series for y, y′, and y′′ into the differential equation (5) to determine
the recursion relation satisfied by the coefficients an:

In Eq. (6), we combine the first three series
into a single series using

n(n − 1) + n − 1 = n2 − 1

and we shift the fourth series to begin at
n = 2 rather than n = 0.

x2y′′ + xy′ + (x2 − 1)y

= x2
∞∑

n=0

n(n − 1)anx
n−2 + x

∞∑
n=0

nanx
n−1 + (x2 − 1)

∞∑
n=0

anx
n

=
∞∑

n=0

n(n − 1)anx
n +

∞∑
n=0

nanx
n −

∞∑
n=0

anx
n +

∞∑
n=0

anx
n+2 6

=
∞∑

n=0

(n2 − 1)anx
n +

∞∑
n=2

an−2x
n = 0

The differential equation is satisfied if

∞∑
n=0

(n2 − 1)anx
n = −

∞∑
n=2

an−2x
n

The first few terms on each side of this equation are

−a0 + 0 · x + 3a2x
2 + 8a3x

3 + 15a4x
4 + · · · = 0 + 0 · x − a0x

2 − a1x
3 − a2x

4 − · · ·
Matching up the coefficients of xn, we find that

−a0 = 0, 3a2 = −a0, 8a3 = −a1, 15a4 = −a2 7

In general, (n2 − 1)an = −an−2, and this yields the recursion relation

an = − an−2

n2 − 1
for n ≥ 2 8

Note that a0 = 0 by Eq. (7). The recursion relation forces all of the even coefficients a2,
a4, a6, . . . to be zero:

a2 = a0

22 − 1
so a2 = 0, and then a4 = a2

42 − 1
= 0 so a4 = 0, etc.

As for the odd coefficients, a1 may be chosen arbitrarily. Because F ′(0) = a1, we set
a1 = 1 to obtain a solution y = F(x) satisfying F ′(0) = 1. Now apply Eq. (8):

n = 3: a3 = − a1

32 − 1
= − 1

32 − 1

n = 5: a5 = − a3

52 − 1
= 1

(52 − 1)(32 − 1)

n = 7: a7 = − a5

72 − 1
= − 1

(72 − 1)(32 − 1)(52 − 1)

This shows the general pattern of coefficients. To express the coefficients in a compact
form, let n = 2k + 1. Then the denominator in the recursion relation (8) can be written

n2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k = 4k(k + 1)

and

a2k+1 = − a2k−1

4k(k + 1)
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Applying this recursion relation k times, we obtain the closed formula

a2k+1 = (−1)k
(

1

4k(k + 1)

)(
1

4(k − 1)k

)
· · ·

(
1

4(1)(2)

)
= (−1)k

4k k! (k + 1)!
Thus we obtain a power series representation of our solution:

F(x) =
∞∑

k=0

(−1)k

4kk!(k + 1)!x
2k+1

A straightforward application of the Ratio Test shows that F(x) has an infinite radius of
convergence. Therefore, F(x) is a solution of the initial value problem for all x.

10.6 SUMMARY

• A power series is an infinite series of the form

F(x) =
∞∑

n=0

an(x − c)n

The constant c is called the center of F(x).

Possible convergence at the endpoints

|x − c | < R 

x
c + R

Diverges Diverges

Converges
absolutely

c − R c

FIGURE 5 Interval of convergence of a
power series.

• Every power series F(x) has a radius of convergence R (Figure 5) such that

– F(x) converges absolutely for |x − c| < R and diverges for |x − c| > R.
– F(x) may converge or diverge at the endpoints c − R and c + R.

We set R = 0 if F(x) converges only for x = c and R = ∞ if F(x) converges for all x.
• The interval of convergence of F(x) consists of the open interval (c − R, c + R) and
possibly one or both endpoints c − R and c + R.
• In many cases, the Ratio Test can be used to find the radius of convergence R. It is
necessary to check convergence at the endpoints separately.
• If R > 0, then F(x) is differentiable on (c − R, c + R) and

F ′(x) =
∞∑

n=1

nan(x − c)n−1,

∫
F(x) dx = A +

∞∑
n=0

an

n + 1
(x − c)n+1

(A is any constant). These two power series have the same radius of convergence R.

• The expansion
1

1 − x
=

∞∑
n=0

xn is valid for |x| < 1. It can be used to derive expansions

of other related functions by substitution, integration, or differentiation.

10.6 EXERCISES

Preliminary Questions
1. Suppose that

∑
anxn converges for x = 5. Must it also converge

for x = 4? What about x = −3?

2. Suppose that
∑

an(x − 6)n converges for x = 10. At which of
the points (a)–(d) must it also converge?

(a) x = 8 (b) x = 11 (c) x = 3 (d) x = 0

3. What is the radius of convergence of F(3x) if F(x) is a power
series with radius of convergence R = 12?

4. The power series F(x) =
∞∑

n=1

nxn has radius of convergence

R = 1. What is the power series expansion of F ′(x) and what is its
radius of convergence?
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Exercises
1. Use the Ratio Test to determine the radius of convergence R of
∞∑

n=0

xn

2n
. Does it converge at the endpoints x = ±R?

2. Use the Ratio Test to show that
∞∑

n=1

xn

√
n2n

has radius of conver-

gence R = 2. Then determine whether it converges at the endpoints
R = ±2.

3. Show that the power series (a)–(c) have the same radius of con-
vergence. Then show that (a) diverges at both endpoints, (b) converges
at one endpoint but diverges at the other, and (c) converges at both
endpoints.

(a)
∞∑

n=1

xn

3n
(b)

∞∑
n=1

xn

n3n
(c)

∞∑
n=1

xn

n23n

4. Repeat Exercise 3 for the following series:

(a)
∞∑

n=1

(x − 5)n

9n
(b)

∞∑
n=1

(x − 5)n

n9n
(c)

∞∑
n=1

(x − 5)n

n29n

5. Show that
∞∑

n=0

nnxn diverges for all x �= 0.

6. For which values of x does
∞∑

n=0

n!xn converge?

7. Use the Ratio Test to show that
∞∑

n=0

x2n

3n
has radius of convergence

R = √
3.

8. Show that
∞∑

n=0

x3n+1

64n
has radius of convergence R = 4.

In Exercises 9–34, find the interval of convergence.

9.
∞∑

n=0

nxn 10.
∞∑

n=1

2n

n
xn

11.
∞∑

n=1

(−1)n
x2n+1

2nn
12.

∞∑
n=0

(−1)n
n

4n
x2n

13.
∞∑

n=4

xn

n5 14.
∞∑

n=8

n7xn

15.
∞∑

n=0

xn

(n!)2
16.

∞∑
n=0

8n

n! xn

17.
∞∑

n=0

(2n)!
(n!)2

xn 18.
∞∑

n=0

4n

(2n + 1)!x
2n−1

19.
∞∑

n=0

(−1)nxn√
n2 + 1

20.
∞∑

n=0

xn

n4 + 2

21.
∞∑

n=15

x2n+1

3n + 1
22.

∞∑
n=1

xn

n − 4 ln n

23.
∞∑

n=2

xn

ln n
24.

∞∑
n=2

x3n+2

ln n

25.
∞∑

n=1

n(x − 3)n 26.
∞∑

n=1

(−5)n(x − 3)n

n2

27.
∞∑

n=1

(−1)nn5(x − 7)n 28.
∞∑

n=0

27n(x − 1)3n+2

29.
∞∑

n=1

2n

3n
(x + 3)n 30.

∞∑
n=0

(x − 4)n

n!

31.
∞∑

n=0

(−5)n

n! (x + 10)n 32.
∞∑

n=10

n! (x + 5)n

33.
∞∑

n=12

en(x − 2)n 34.
∞∑

n=2

(x + 4)n

(n ln n)2

In Exercises 35–40, use Eq. (2) to expand the function in a power series
with center c = 0 and determine the interval of convergence.

35. f (x) = 1

1 − 3x
36. f (x) = 1

1 + 3x

37. f (x) = 1

3 − x
38. f (x) = 1

4 + 3x

39. f (x) = 1

1 + x2
40. f (x) = 1

16 + 2x3

41. Use the equalities

1

1 − x
= 1

−3 − (x − 4)
= − 1

3

1 + (
x−4

3

)
to show that for |x − 4| < 3,

1

1 − x
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1

42. Use the method of Exercise 41 to expand 1/(1 − x) in power series
with centers c = 2 and c = −2. Determine the interval of convergence.

43. Use the method of Exercise 41 to expand 1/(4 − x) in a power
series with center c = 5. Determine the interval of convergence.

44. Find a power series that converges only for x in [2, 6).

45. Apply integration to the expansion

1

1 + x
=

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + · · ·

to prove that for −1 < x < 1,

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · ·
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46. Use the result of Exercise 45 to prove that

ln
3

2
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Use your knowledge of alternating series to find an N such that the
partial sum SN approximates ln 3

2 to within an error of at most 10−3.

Confirm using a calculator to compute both SN and ln 3
2 .

47. Let F(x) = (x + 1) ln(1 + x) − x.

(a) Apply integration to the result of Exercise 45 to prove that for
−1 < x < 1,

F(x) =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluate at x = 1
2 to prove

3

2
ln

3

2
− 1

2
= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + · · ·

(c) Use a calculator to verify that the partial sum S4 approximates the
left-hand side with an error no greater than the term a5 of the series.

48. Prove that for |x| < 1,∫
dx

x4 + 1
= x − x5

5
+ x9

9
− · · ·

Use the first two terms to approximate
∫ 1/2

0 dx/(x4 + 1) numerically.
Use the fact that you have an alternating series to show that the error
in this approximation is at most 0.00022.

49. Use the result of Example 7 to show that

F(x) = x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · ·

is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0. What is
the radius of convergence of this power series?

50. Verify that function F(x) = x tan−1 x − 1
2 log(x2 + 1) is an anti-

derivative of f (x) = tan−1 x satisfying F(0) = 0. Then use the result
of Exercise 49 with x = π

6 to show that

π

6
√

3
− 1

2
ln

4

3
= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ · · ·

Use a calculator to compare the value of the left-hand side with the
partial sum S4 of the series on the right.

51. Evaluate
∞∑

n=1

n

2n
. Hint: Use differentiation to show that

(1 − x)−2 =
∞∑

n=1

nxn−1 (for |x| < 1)

52. Use the power series for (1 + x2)−1 and differentiation to prove
that for |x| < 1,

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

53. Show that the following series converges absolutely for |x| < 1
and compute its sum:

F(x) = 1 − x − x2 + x3 − x4 − x5 + x6 − x7 − x8 + · · ·
Hint: Write F(x) as a sum of three geometric series with common ratio
x3.

54. Show that for |x| < 1,

1 + 2x

1 + x + x2
= 1 + x − 2x2 + x3 + x4 − 2x5 + x6 + x7 − 2x8 + · · ·

Hint: Use the hint from Exercise 53.

55. Find all values of x such that
∞∑

n=1

xn2

n! converges.

56. Find all values of x such that the following series converges:

F(x) = 1 + 3x + x2 + 27x3 + x4 + 243x5 + · · ·

57. Find a power series P(x) =
∞∑

n=0

anxn satisfying the differential

equation y′ = −y with initial condition y(0) = 1. Then use Theorem
1 of Section 5.8 to conclude that P(x) = e−x .

58. Let C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .

(a) Show that C(x) has an infinite radius of convergence.

(b) Prove that C(x) and f (x) = cos x are both solutions of y′′ = −y

with initial conditions y(0) = 1, y′(0) = 0. This initial value problem
has a unique solution, so we have C(x) = cos x for all x.

59. Use the power series for y = ex to show that

1

e
= 1

2! − 1

3! + 1

4! − · · ·

Use your knowledge of alternating series to find an N such that the
partial sum SN approximates e−1 to within an error of at most 10−3.
Confirm this using a calculator to compute both SN and e−1.

60. Let P(x) =
∑
n=0

anxn be a power series solution to y′ = 2xy with

initial condition y(0) = 1.

(a) Show that the odd coefficients a2k+1 are all zero.

(b) Prove that a2k = a2k−2/k and use this result to determine the co-
efficients a2k .

61. Find a power series P(x) satisfying the differential equation

y′′ − xy′ + y = 0 9

with initial condition y(0) = 1, y′(0) = 0. What is the radius of con-
vergence of the power series?

62. Find a power series satisfying Eq. (9) with initial condition y(0) =
0, y′(0) = 1.
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63. Prove that

J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 3)!x
2k+2

is a solution of the Bessel differential equation of order 2:

x2y′′ + xy′ + (x2 − 4)y = 0

64. Why is it impossible to expand f (x) = |x| as a power
series that converges in an interval around x = 0? Explain using The-
orem 2.

Further Insights and Challenges

65. Suppose that the coefficients of F(x) =
∞∑

n=0

anxn are periodic;

that is, for some whole number M > 0, we have aM+n = an. Prove
that F(x) converges absolutely for |x| < 1 and that

F(x) = a0 + a1x + · · · + aM−1xM−1

1 − xM

Hint: Use the hint for Exercise 53.

66. Continuity of Power Series Let F(x) =
∞∑

n=0

anxn be a power
series with radius of convergence R > 0.

(a) Prove the inequality

|xn − yn| ≤ n|x − y|(|x|n−1 + |y|n−1) 10

Hint: xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1).

(b) Choose R1 with 0 < R1 < R. Show that the infinite series

M =
∞∑

n=0

2n|an|Rn
1 converges. Hint: Show that n|an|Rn

1 < |an|xn for

all n sufficiently large if R1 < x < R.

(c) Use Eq. (10) to show that if |x| < R1 and |y| < R1, then |F(x) −
F(y)| ≤ M|x − y|.
(d) Prove that if |x| < R, then F(x) is continuous at x. Hint: Choose
R1 such that |x| < R1 < R. Show that if ε > 0 is given, then |F(x) −
F(y)| ≤ ε for all y such that |x − y| < δ, where δ is any positive num-
ber that is less than ε/M and R1 − |x| (see Figure 6).

(     )(     )( ) x
0 R1 R−R x

x − δ x + δ

FIGURE 6 If x > 0, choose δ > 0 less than ε/M and R1 − x.

10.7 Taylor Series
In this section we develop general methods for finding power series representations.
Suppose that f (x) is represented by a power series centered at x = c on an interval
(c − R, c + R) with R > 0:

f (x) =
∞∑

n=0

an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + · · ·

According to Theorem 2 in Section 10.6, we can compute the derivatives of f (x) by
differentiating the series expansion term by term:

f (x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·
f ′(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + 4a4(x − c)3 + · · ·
f ′′(x) = 2a2 + 2 · 3a3(x − c) + 3 · 4a4(x − c)2 + 4 · 5a5(x − c)3 + · · ·
f ′′′(x) = 2 · 3a3 + 2 · 3 · 4a4(x − 2) + 3 · 4 · 5a5(x − 2)2 + · · ·

In general,

f (k)(x) = k!ak +
(

2 · 3 · · · (k + 1)
)
ak+1(x − c) + · · ·

Setting x = c in each of these series, we find that

f (c) = a0, f ′(c) = a1, f ′′(c) = 2a2, f ′′′(c) = 2 · 3a2, . . . , f (k)(c) = k!ak, . . .
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We see that ak is the kth coefficient of the Taylor polynomial studied in Section 8.4:

ak = f (k)(c)

k! 1

Therefore f (x) = T (x), where T (x) is the Taylor series of f (x) centered at x = c:

T (x) = f (c) + f ′(c)(x − c) + f ′′(c)
2! (x − c)2 + f ′′′(c)

3! (x − c)3 + · · ·
This proves the next theorem.

THEOREM 1 Taylor Series Expansion If f (x) is represented by a power series cen-
tered at c in an interval |x − c| < R with R > 0, then that power series is the Taylor
series

T (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n

In the special case c = 0, T (x) is also called the Maclaurin series:

f (x) =
∞∑

n=0

f (n)(0)

n! xn = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + f (4)(0)

4! x4 + · · ·

EXAMPLE 1 Find the Taylor series for f (x) = x−3 centered at c = 1.

Solution The derivatives of f (x) are f ′(x) = −3x−4, f ′′(x) = (−3)(−4)x−5, and in
general,

f (n)(x) = (−1)n(3)(4) · · · (n + 2)x−3−n

Note that (3)(4) · · · (n + 2) = 1
2 (n + 2)!. Therefore,

f (n)(1) = (−1)n
1

2
(n + 2)!

Noting that (n + 2)! = (n + 2)(n + 1)n!, we write the coefficients of the Taylor series as:

an = f (n)(1)

n! = (−1)n 1
2 (n + 2)!
n! = (−1)n

(n + 2)(n + 1)

2

The Taylor series for f (x) = x−3 centered at c = 1 is

T (x) = 1 − 3(x − 1) + 6(x − 1)2 − 10(x − 1)3 + · · ·

=
∞∑

n=0

(−1)n
(n + 2)(n + 1)

2
(x − 1)n

Theorem 1 tells us that if we want to represent a function f (x) by a power series
centered at c, then the only candidate for the job is the Taylor series:

T (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n
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However, there is no guarantee that T (x) converges to f (x), even if T (x) converges. ToSee Exercise 92 for an example where a
Taylor series T (x) converges but does not
converge to f (x).

study convergence, we consider the kth partial sum, which is the Taylor polynomial of
degree k:

Tk(x) = f (c) + f ′(c)(x − c) + f ′′(c)
2! (x − c)2 + · · · + f (k)(c)

k! (x − c)k

In Section 8.4, we defined the remainder

Rk(x) = f (x) − Tk(x)

Since T (x) is the limit of the partial sums Tk(x), we see that

The Taylor series converges to f (x) if and only if lim
k→∞ Rk(x) = 0.

There is no general method for determining whether Rk(x) tends to zero, but the following
theorem can be applied in some important cases.

REMINDER f (x) is called “infinitely
differentiable” if f (n)(x) exists for all n. THEOREM 2 Let I = (c − R, c + R), where R > 0. Suppose there exists K > 0

such that all derivatives of f are bounded by K on I :

|f (k)(x)| ≤ K for all k ≥ 0 and x ∈ I

Then f (x) is represented by its Taylor series in I :

f (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n for all x ∈ I

Proof According to the Error Bound for Taylor polynomials (Theorem 2 in Section 8.4),

|Rk(x)| = |f (x) − Tk(x)| ≤ K
|x − c|k+1

(k + 1)!
If x ∈ I , then |x − c| < R and

|Rk(x)| ≤ K
Rk+1

(k + 1)!

We showed in Example 9 of Section 10.1 that Rk/k! tends to zero as k → ∞. Therefore,
lim

k→∞ Rk(x) = 0 for all x ∈ (c − R, c + R), as required.

EXAMPLE 2 Expansions of Sine and Cosine Show that the following Maclaurin ex-

Taylor expansions were studied throughout
the seventeenth and eighteenth centuries
by Gregory, Leibniz, Newton, Maclaurin,
Taylor, Euler, and others. These
developments were anticipated by the great
Hindu mathematician Madhava (c.
1340–1425), who discovered the
expansions of sine and cosine and many
other results two centuries earlier.

pansions are valid for all x.

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · ·
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cos x =
∞∑

n=0

(−1)n
x2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · ·

Solution Recall that the derivatives of f (x) = sin x and their values at x = 0 form a
repeating pattern of period 4:

f (x) f ′(x) f ′′(x) f ′′′(x) f (4)(x) · · ·
sin x cos x − sin x − cos x sin x · · ·

0 1 0 −1 0 · · ·
In other words, the even derivatives are zero and the odd derivatives alternate in sign:
f (2n+1)(0) = (−1)n. Therefore, the nonzero Taylor coefficients for sin x are

a2n+1 = (−1)n

(2n + 1)!
For f (x) = cos x, the situation is reversed. The odd derivatives are zero and the

even derivatives alternate in sign:f (2n)(0) = (−1)n cos 0 = (−1)n. Therefore the nonzero
Taylor coefficients for cos x are a2n = (−1)n/(2n)!.

We can apply Theorem 2 with K = 1 and any value of R because both sine and cosine
satisfy |f (n)(x)| ≤ 1 for all x and n. The conclusion is that the Taylor series converges to
f (x) for |x| < R. Since R is arbitrary, the Taylor expansions hold for all x.

EXAMPLE 3 Taylor Expansion of f (x) = ex at x = c Find the Taylor series T (x) of
f (x) = ex at x = c.

Solution We have f (n)(c) = ec for all x, and thus

T (x) =
∞∑

n=0

ec

n! (x − c)n

Because ex is increasing for all R > 0 we have |f (k)(x)| ≤ ec+R for x ∈ (c − R, c + R).
Applying Theorem 2 with K = ec+R , we conclude that T (x) converges to f (x) for all
x ∈ (c − R, c + R). Since R is arbitrary, the Taylor expansion holds for all x. For c = 0,
we obtain the standard Maclaurin series

ex = 1 + x + x2

2! + x3

3! + · · ·

Shortcuts to Finding Taylor Series
There are several methods for generating new Taylor series from known ones. First of
all, we can differentiate and integrate Taylor series term by term within its interval of
convergence, by Theorem 2 of Section 10.6. We can also multiply two Taylor series or
substitute one Taylor series into another (we omit the proofs of these facts).

EXAMPLE 4 Find the Maclaurin series for f (x) = x2ex .In Example 4, we can also write the
Maclaurin series as

∞∑
n=0

xn+2

n!

Solution Multiply the known Maclaurin series for ex by x2.

x2ex = x2
(

1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
)

= x2 + x3 + x4

2! + x5

3! + x6

4! + x7

5! + · · · =
∞∑

n=2

xn

(n − 2)!
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EXAMPLE 5 Substitution Find the Maclaurin series for e−x2
.

Solution Substitute −x2 in the Maclaurin series for ex .

e−x2 =
∞∑

n=0

(−x2)

n!
n

=
∞∑

n=0

(−1)nx2n

n! = 1 − x2 + x4

2! − x6

3! + x8

4! − · · · 2

The Taylor expansion of ex is valid for all x, so this expansion is also valid for all x.

EXAMPLE 6 Integration Find the Maclaurin series for f (x) = ln(1 + x).

Solution We integrate the geometric series with common ratio −x (valid for |x| < 1):

1

1 + x
= 1 − x + x2 − x3 + · · ·

ln(1 + x) =
∫

dx

1 + x
= x − x2

2
+ x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)n−1 xn

n

The constant of integration on the right is zero because ln(1 + x) = 0 for x = 0. This
expansion is valid for |x| < 1. It also holds for x = 1 (see Exercise 84).

In many cases, there is no convenient general formula for the Taylor coefficients, but
we can still compute as many coefficients as desired.

EXAMPLE 7 Multiplying Taylor Series Write out the terms up to degree five in the
Maclaurin series for f (x) = ex cos x.

Solution We multiply the fifth-order Taylor polynomials of ex and cos x together, drop-
ping the terms of degree greater than 5:(

1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120

)(
1 − x2

2
+ x4

24

)
Distributing the term on the left (and ignoring terms of degree greater than 5), we obtain(

1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120

)
−
(

1 + x + x2

2
+ x3

6

)(
x2

2

)
+ (1 + x)

(
x4

24

)

= 1 + x − x3

3
− x4

6
− x5

30︸ ︷︷ ︸
Retain terms of degree ≤ 5

We conclude that the fifth Maclaurin polynomial for f (x) = ex cos x is

T5(x) = 1 + x − x3

3
− x4

6
− x5

30

In the next example, we express the definite integral of sin(x2) as an infinite series.

321

1

−1

y

x

FIGURE 1 Graph of T12(x) for the power
series expansion of the antiderivative

F(x) =
∫ x

0
sin(t2) dt

This is useful because the integral cannot be evaluated explicitly. Figure 1 shows the graph
of the Taylor polynomial T12(x) of the Taylor series expansion of the antiderivative.

EXAMPLE 8 Let J =
∫ 1

0
sin(x2) dx.

(a) Express J as an infinite series.
(b) Determine J to within an error less than 10−4.
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Solution

(a) The Maclaurin expansion for sin x is valid for all x, so we have

sin x =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1 ⇒ sin(x2) =

∞∑
n=0

(−1)n

(2n + 1)!x
4n+2

We obtain an infinite series for J by integration:

J =
∫ 1

0
sin(x2) dx =

∞∑
n=0

(−1)n

(2n + 1)!
∫ 1

0
x4n+2dx =

∞∑
n=0

(−1)n

(2n + 1)!
(

1

4n + 3

)

= 1

3
− 1

42
+ 1

1320
− 1

75,600
+ · · · 3

(b) The infinite series for J is an alternating series with decreasing terms, so the sum of
the first N terms is accurate to within an error that is less than the (N + 1)st term. The
absolute value of the fourth term 1/75,600 is smaller than 10−4 so we obtain the desired
accuracy using the first three terms of the series for J :

J ≈ 1

3
− 1

42
+ 1

1320
≈ 0.31028

The error satisfies ∣∣∣∣J −
(

1

3
− 1

42
+ 1

1320

)∣∣∣∣ <
1

75,600
≈ 1.3 × 10−5

The percentage error is less than 0.005% with just three terms.

Binomial Series
Isaac Newton discovered an important generalization of the Binomial Theorem around
1665. For any number a (integer or not) and integer n ≥ 0, we define the binomial
coefficient: (

a

n

)
= a(a − 1)(a − 2) · · · (a − n + 1)

n! ,

(
a

0

)
= 1

For example, (
6

3

)
= 6 · 5 · 4

3 · 2 · 1
= 20,

( 4
3
3

)
=

4
3 · 1

3 · ( − 2
3

)
3 · 2 · 1

= − 4

81

Let

f (x) = (1 + x)a

The Binomial Theorem of algebra (see Appendix C) states that for any whole number a,

(r + s)a = ra +
(

a

1

)
ra−1s +

(
a

2

)
ra−2s2 + · · · +

(
a

a − 1

)
rsa−1 + sa

Setting r = 1 and s = x, we obtain the expansion of f (x):

(1 + x)a = 1 +
(

a

1

)
x +

(
a

2

)
x2 + · · · +

(
a

a − 1

)
xa−1 + xa
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We derive Newton’s generalization by computing the Maclaurin series of f (x) without
assuming that a is a whole number. Observe that the derivatives follow a pattern:

f (x) = (1 + x)a f (0) = 1

f ′(x) = a(1 + x)a−1 f ′(0) = a

f ′′(x) = a(a − 1)(1 + x)a−2 f ′′(0) = a(a − 1)

f ′′′(x) = a(a − 1)(a − 2)(1 + x)a−3 f ′′′(0) = a(a − 1)(a − 2)

In general, f (n)(0) = a(a − 1)(a − 2) · · · (a − n + 1) and

f (n)(0)

n! = a(a − 1)(a − 2) · · · (a − n + 1)

n! =
(

a

n

)

Hence the Maclaurin series for f (x) = (1 + x)a is the binomial series
When a is a whole number,

(
a

n

)
is zero for

n > a, and in this case, the binomial
series breaks off at degree n. The binomial
series is an infinite series when a is not a
whole number.

∞∑
n=0

(
a

n

)
xn = 1 + ax + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · +
(

a

n

)
xn + · · ·

The Ratio Test shows that this series has radius of convergence R = 1 (Exercise 86) and
an additional argument (developed in Exercise 87) shows that it converges to (1 + x)a for
|x| < 1 .

THEOREM 3 The Binomial Series For any exponent a and for |x| < 1,

(1 + x)a = 1 + a

1!x + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · +
(

a

n

)
xn + · · ·

EXAMPLE 9 Find the terms through degree four in the Maclaurin expansion of

f (x) = (1 + x)4/3

Solution The binomial coefficients
(
a
n

)
for a = 4

3 for 0 < n < 4 are

1,

4
3

1! = 4

3
,

4
3

( 1
3

)
2! = 2

9
,

4
3

( 1
3

)( − 2
3

)
3! = − 4

81
,

4
3

( 1
3

)( − 2
3

)( − 5
3

)
4! = 5

243

Therefore, (1 + x)4/3 ≈ 1 + 4
3x + 2

9x2 − 4
81x3 + 5

243x4 + · · · .

EXAMPLE 10 Find the Maclaurin series for

f (x) = 1√
1 − x2

Solution First, let’s find the coefficients in the binomial series for (1 + x)−1/2:

1,
− 1

2

1! = −1

2
,

− 1
2

( − 3
2

)
1 · 2

= 1 · 3

2 · 4
,

− 1
2

( − 3
2

)( − 5
2

)
1 · 2 · 3

= 1 · 3 · 5

2 · 4 · 6

The general pattern is(− 1
2

n

)
= − 1

2

( − 3
2

)( − 5
2

) · · · ( − 2n−1
2

)
1 · 2 · 3 · · · n = (−1)n

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · 2n
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Thus, the following binomial expansion is valid for |x| < 1:

1√
1 + x

= 1 +
∞∑

n=1

(−1)n
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
xn = 1 − 1

2
x + 1 · 3

2 · 4
x2 − · · ·

If |x| < 1, then |x|2 < 1, and we can substitute −x2 for x to obtain

1√
1 − x2

= 1 +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n
x2n = 1 + 1

2
x2 + 1 · 3

2 · 4
x4 + · · · 4

Taylor series are particularly useful for studying the so-called special functions (such
as Bessel and hypergeometric functions) that appear in a wide range of physics and en-
gineering applications. One example is the following elliptic function of the first kind,
defined for |k| < 1:

E(k) =
∫ π/2

0

dt√
1 − k2 sin2 t

This function is used in physics to compute the period T of pendulum of length L released
from an angle θ (Figure 2). We can use the “small-angle approximation” T ≈ 2π

√
L/g

when θ is small, but this approximation breaks down for large angles (Figure 3). The exact
value of the period is T = 4

√
L/gE(k), where k = sin 1

2θ .

θ

FIGURE 2 Pendulum released at an angle θ .

π

Period T

Angle θ

8

6

4

2

π
2

Small-angle
approximation

FIGURE 3 The period T of a 1-meter
pendulum as a function of the angle θ at
which it is released.

EXAMPLE 11 Elliptic Function Find the Maclaurin series for E(k) and estimate E(k)

for k = sin π
6 .

Solution Substitute x = k sin t in the Taylor expansion (4):

1√
1 − k2 sin2 t

= 1 + 1

2
k2 sin2 t + 1 · 3

2 · 4
k4 sin4 t + 1 · 3 · 5

2 · 4 · 6
k6 sin6 t + · · ·

This expansion is valid because |k| < 1 and hence |x| = |k sin t | < 1. Thus E(k) is equal
to

∫ π/2

0

dt√
1 − k2 sin2 t

=
∫ π/2

0
dt +

∞∑
n=1

1 · 3 · · · (2n − 1)

2 · 4 · (2n)

(∫ π/2

0
sin2n t dt

)
k2n

According to Exercise 78 in Section 7.2,

∫ π/2

0
sin2n t dt =

(
1 · 3 · · · (2n − 1)

2 · 4 · (2n)

)
π

2

This yields

E(k) = π

2
+ π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)2

2 · 4 · · · (2n)

)2

k2n
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We approximate E(k) for k = sin
(

π
6

) = 1
2 using the first five terms:

E

(
1

2

)
≈ π

2

(
1 +

(
1

2

)2 (1

2

)2

+
(

1 · 3

2 · 4

)2 (1

2

)4

+
(

1 · 3 · 5

2 · 4 · 6

)2 (1

2

)6

+
(

1 · 3 · 5 · 7

2 · 4 · 6 · 8

)2 (1

2

)8
)

≈ 1.68517

The value given by a computer algebra system to seven places is E
( 1

2

) ≈ 1.6856325.

TABLE 1

Function f (x) Maclaurin series Converges to f (x) for

ex
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · All x

sin x

∞∑
n=0

(−1)nx2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · · All x

cos x

∞∑
n=0

(−1)nx2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · · All x

1

1 − x

∞∑
n=0

xn = 1 + x + x2 + x3 + x4 + · · · |x| < 1

1

1 + x

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + x4 − · · · |x| < 1

ln(1 + x)

∞∑
n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · · |x| < 1 and x = 1

tan−1 x

∞∑
n=0

(−1)nx2n+1

2n + 1
= x − x3

3
+ x5

5
− x7

7
+ · · · |x| < 1 and x = 1

(1 + x)a
∞∑

n=0

(
a

n

)
xn = 1 + ax + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · |x| < 1

10.7 SUMMARY

• Taylor series of f (x) centered at x = c:

T (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n

The partial sum Tk(x) is the kth Taylor polynomial.
• Maclaurin series (c = 0):

T (x) =
∞∑

n=0

f (n)(0)

n! xn
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• If f (x) is represented by a power series
∞∑

n=0

an(x − c)n for |x − c| < R with R > 0,

then this power series is necessarily the Taylor series centered at x = c.
• A function f (x) is represented by its Taylor series T (x) if and only if the remainder
Rk(x) = f (x) − Tk(x) tends to zero as k → ∞.
• Let I = (c − R, c + R) with R > 0. Suppose that there exists K > 0 such that
|f (k)(x)| < K for all x ∈ I and all k. Then f (x) is represented by its Taylor series
on I ; that is, f (x) = T (x) for x ∈ I .
• A good way to find the Taylor series of a function is to start with known Taylor series and
apply one of the operations: differentiation, integration, multiplication, or substitution.
• For any exponent a, the binomial expansion is valid for |x| < 1:

(1 + x)a = 1 + ax + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · +
(

a

n

)
xn + · · ·

10.7 EXERCISES

Preliminary Questions
1. Determine f (0) and f ′′′(0) for a function f (x) with Maclaurin

series

T (x) = 3 + 2x + 12x2 + 5x3 + · · ·

2. Determine f (−2) and f (4)(−2) for a function with Taylor series

T (x) = 3(x + 2) + (x + 2)2 − 4(x + 2)3 + 2(x + 2)4 + · · ·

3. What is the easiest way to find the Maclaurin series for the function
f (x) = sin(x2)?

4. Find the Taylor series for f (x) centered at c = 3 if f (3) = 4 and
f ′(x) has a Taylor expansion

f ′(x) =
∞∑

n=1

(x − 3)n

n

5. Let T (x) be the Maclaurin series of f (x). Which of the following
guarantees that f (2) = T (2)?

(a) T (x) converges for x = 2.

(b) The remainder Rk(2) approaches a limit as k → ∞.

(c) The remainder Rk(2) approaches zero as k → ∞.

Exercises
1. Write out the first four terms of the Maclaurin series of f (x) if

f (0) = 2, f ′(0) = 3, f ′′(0) = 4, f ′′′(0) = 12

2. Write out the first four terms of the Taylor series of f (x) centered
at c = 3 if

f (3) = 1, f ′(3) = 2, f ′′(3) = 12, f ′′′(3) = 3

In Exercises 3–18, find the Maclaurin series and find the interval on
which the expansion is valid.

3. f (x) = 1

1 − 2x
4. f (x) = x

1 − x4

5. f (x) = cos 3x 6. f (x) = sin(2x)

7. f (x) = sin(x2) 8. f (x) = e4x

9. f (x) = ln(1 − x2) 10. f (x) = (1 − x)−1/2

11. f (x) = tan−1(x2) 12. f (x) = x2ex2

13. f (x) = ex−2 14. f (x) = 1 − cos x

x

15. f (x) = ln(1 − 5x) 16. f (x) = (x2 + 2x)ex

17. f (x) = sinh x 18. f (x) = cosh x

In Exercises 19–28, find the terms through degree four of the Maclaurin
series of f (x). Use multiplication and substitution as necessary.

19. f (x) = ex sin x 20. f (x) = ex ln(1 − x)

21. f (x) = sin x

1 − x
22. f (x) = 1

1 + sin x

23. f (x) = (1 + x)1/4 24. f (x) = (1 + x)−3/2

25. f (x) = ex tan−1 x 26. f (x) = sin (x3 − x)

27. f (x) = esin x 28. f (x) = e(ex)

In Exercises 29–38, find the Taylor series centered at c and find the
interval on which the expansion is valid.

29. f (x) = 1

x
, c = 1 30. f (x) = e3x , c = −1
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31. f (x) = 1

1 − x
, c = 5 32. f (x) = sin x, c = π

2

33. f (x) = x4 + 3x − 1, c = 2

34. f (x) = x4 + 3x − 1, c = 0

35. f (x) = 1

x2
, c = 4 36. f (x) = √

x, c = 4

37. f (x) = 1

1 − x2
, c = 3 38. f (x) = 1

3x − 2
, c = −1

39. Use the identity cos2 x = 1
2 (1 + cos 2x) to find the Maclaurin se-

ries for cos2 x.

40. Show that for |x| < 1,

tanh−1 x = x + x3

3
+ x5

5
+ · · ·

Hint: Recall that
d

dx
tanh−1 x = 1

1 − x2
.

41. Use the Maclaurin series for ln(1 + x) and ln(1 − x) to show that

1

2
ln

(
1 + x

1 − x

)
= x + x3

3
+ x5

5
+ · · ·

for |x| < 1. What can you conclude by comparing this result with that
of Exercise 40?

42. Differentiate the Maclaurin series for
1

1 − x
twice to find the

Maclaurin series of
1

(1 − x)3
.

43. Show, by integrating the Maclaurin series for f (x) = 1√
1 − x2

,
that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1

44. Use the first five terms of the Maclaurin series in Exercise 43 to
approximate sin−1 1

2 . Compare the result with the calculator value.

45. How many terms of the Maclaurin series of f (x) = ln(1 + x) are
needed to compute ln 1.2 to within an error of at most 0.0001? Make
the computation and compare the result with the calculator value.

46. Show that

π − π3

3! + π5

5! − π7

7! + · · ·

converges to zero. How many terms must be computed to get within
0.01 of zero?

47. Use the Maclaurin expansion for e−t2
to express the function

F(x) = ∫ x
0 e−t2

dt as an alternating power series in x (Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate
the integral for x = 1 to within an error of at most 0.001?

(b) Carry out the computation and check your answer using a
computer algebra system.

F(x)

T15(x)

1 2

y

x

FIGURE 4 The Maclaurin polynomial T15(x) for F(t) =
∫ x

0
e−t2

dt.

48. Let F(x) =
∫ x

0

sin t dt

t
. Show that

F(x) = x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

Evaluate F(1) to three decimal places.

In Exercises 49–52, express the definite integral as an infinite series
and find its value to within an error of at most 10−4.

49.
∫ 1

0
cos(x2) dx 50.

∫ 1

0
tan−1(x2) dx

51.
∫ 1

0
e−x3

dx 52.
∫ 1

0

dx√
x4 + 1

In Exercises 53–56, express the integral as an infinite series.

53.
∫ x

0

1 − cos(t)

t
dt , for all x

54.
∫ x

0

t − sin t

t
dt , for all x

55.
∫ x

0
ln(1 + t2) dt , for |x| < 1

56.
∫ x

0

dt√
1 − t4

, for |x| < 1

57. Which function has Maclaurin series
∞∑

n=0

(−1)n2nxn?

58. Which function has Maclaurin series

∞∑
k=0

(−1)k

3k+1
(x − 3)k?

For which values of x is the expansion valid?

In Exercises 59–62, use Theorem 2 to prove that the f (x) is represented
by its Maclaurin series on the interval I .

59. f (x) = ln(1 + x), I = (− 1
2 , 1

2

)
60. f (x) = e−x , I = (−c, c) for all c > 0

61. f (x) = sinh x, I = R (see Exercise 17)

62. f (x) = (1 + x)100, I = R
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In Exercises 63–66, find the functions with the following Maclaurin
series (refer to Table 1 on page 599).

63. 1 + x3 + x6

2! + x9

3! + x12

4! + · · ·

64. 1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · ·

65. 1 − 53x3

3! + 55x5

5! − 57x7

7! + · · ·

66. x4 − x12

3
+ x20

5
− x28

7
+ · · ·

In Exercises 67 and 68, let

f (x) = 1

(1 − x)(1 − 2x)

67. Find the Maclaurin series of f (x) using the identity

f (x) = 2

1 − 2x
− 1

1 − x

68. Find the Taylor series for f (x) at c = 2. Hint: Rewrite the identity
of Exercise 67 as

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)

69. When a voltage V is applied to a series circuit consisting of a
resistor R and an inductor L, the current at time t is

I (t) =
(

V

R

) (
1 − e−Rt/L

)

Expand I (t) in a Maclaurin series. Show that I (t) ≈ V t

L
for small t .

70. Use the result of Exercise 69 and your knowledge of alternating
series to show that

V t

L

(
1 − R

2L
t

)
≤ I (t) ≤ V t

L
(for all t)

71. Find the Maclaurin series for f (x) = cos(x3) and use it to deter-
mine f (6)(0).

72. Find f (7)(0) and f (8)(0) for f (x) = tan−1 x using the Maclaurin
series.

73. Use substitution to find the first three terms of the Maclau-

rin series for f (x) = ex20
. How does the result show that f (k)(0) = 0

for 1 ≤ k ≤ 19?

74. Use the binomial series to find f (8)(0) for f (x) =
√

1 − x2.

75. Does the Maclaurin series for f (x) = (1 + x)3/4 converge to f (x)

at x = 2? Give numerical evidence to support your answer.

76. Explain the steps required to verify that the Maclaurin se-
ries for f (x) = ex converges to f (x) for all x.

77. Let f (x) = √
1 + x.

(a) Use a graphing calculator to compare the graph of f with the graphs
of the first five Taylor polynomials for f . What do they suggest about
the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f

is valid for x = 1 and x = −1.

78. Use the first five terms of the Maclaurin series for the elliptic func-
tion E(k) to estimate the period T of a 1-meter pendulum released at
an angle θ = π

4 (see Example 11).

79. Use Example 11 and the approximation sin x ≈ x to show that
the period T of a pendulum released at an angle θ has the following
second-order approximation:

T ≈ 2π

√
L

g

(
1 + θ2

16

)

In Exercises 80–83, find the Maclaurin series of the function and use it
to calculate the limit.

80. lim
x→0

cos x − 1 + x2

2

x4
81. lim

x→0

sin x − x + x3

6
x5

82. lim
x→0

tan−1 x − x cos x − 1
6x3

x5 83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)

Further Insights and Challenges
84. In this exercise we show that the Maclaurin expansion of f (x) =
ln(1 + x) is valid for x = 1.

(a) Show that for all x �= −1,

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x

(b) Integrate from 0 to 1 to obtain

ln 2 =
N∑

n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1 dx

1 + x

(c) Verify that the integral on the right tends to zero as N → ∞ by
showing that it is smaller than

∫ 1
0 xN+1dx.

(d) Prove the formula

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · ·

85. Let g(t) = 1

1 + t2
− t

1 + t2
.

(a) Show that
∫ 1

0
g(t) dt = π

4
− 1

2
ln 2.

(b) Show that g(t) = 1 − t − t2 + t3 − t4 − t5 + · · · .

(c) Evaluate S = 1 − 1
2 − 1

3 + 1
4 − 1

5 − 1
6 + · · · .
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In Exercises 86 and 87, we investigate the convergence of the binomial
series

Ta(x) =
∞∑

n=0

(
a

n

)
xn

86. Prove that Ta(x) has radius of convergence R = 1 if a is not a
whole number. What is the radius of convergence if a is a whole num-
ber?

87. By Exercise 86, Ta(x) converges for |x| < 1, but we do not yet
know whether Ta(x) = (1 + x)a .

(a) Verify the identity

a

(
a

n

)
= n

(
a

n

)
+ (n + 1)

(
a

n + 1

)

(b) Use (a) to show that y = Ta(x) satisfies the differential equation
(1 + x)y′ = ay with initial condition y(0) = 1.

(c) Prove that Ta(x) = (1 + x)a for |x| < 1 by showing that the

derivative of the ratio
Ta(x)

(1 + x)a
is zero.

88. The function G(k) = ∫ π/2
0

√
1 − k2 sin2 t dt is called an elliptic

function of the second kind. Prove that for |k| < 1,

G(k) = π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · · · 4 · (2n)

)2 k2n

2n − 1

89. Assume that a < b and let L be the arc length (circumference) of

the ellipse
(
x
a

)2 + ( y
b

)2 = 1 shown in Figure 5. There is no explicit
formula for L, but it is known that L = 4bG(k), with G(k) as in Exer-
cise 88 and k =

√
1 − a2/b2. Use the first three terms of the expansion

of Exercise 88 to estimate L when a = 4 and b = 5.

a

b
y

x

FIGURE 5 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

90. Use Exercise 88 to prove that if a < b and a/b is near 1 (a nearly
circular ellipse), then

L ≈ π

2

(
3b + a2

b

)
Hint: Use the first two terms of the series for G(k).

91. Irrationality of e Prove that e is an irrational number using the
following argument by contradiction. Suppose that e = M/N , where
M, N are nonzero integers.

(a) Show that M! e−1 is a whole number.

(b) Use the power series for ex at x = −1 to show that there is an
integer B such that M! e−1 equals

B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)

(c) Use your knowledge of alternating series with decreasing terms to
conclude that 0 < |M! e−1 − B| < 1 and observe that this contradicts
(a). Hence, e is not equal to M/N .

92. Use the result of Exercise 73 in Section 4.5 to show that the Maclau-
rin series of the function

f (x) =
{

e−1/x2
for x �= 0

0 for x = 0

is T (x) = 0. This provides an example of a function f (x) whose
Maclaurin series converges but does not converge to f (x) (except at
x = 0).

CHAPTER REVIEW EXERCISES

1. Let an = n − 3

n! and bn = an+3. Calculate the first three terms in

each sequence.

(a) a2
n (b) bn

(c) anbn (d) 2an+1 − 3an

2. Prove that lim
n→∞

2n − 1

3n + 2
= 2

3
using the limit definition.

In Exercises 3–8, compute the limit (or state that it does not exist)
assuming that lim

n→∞ an = 2.

3. lim
n→∞(5an − 2a2

n) 4. lim
n→∞

1

an

5. lim
n→∞ ean 6. lim

n→∞ cos(πan)

7. lim
n→∞(−1)nan 8. lim

n→∞
an + n

an + n2

In Exercises 9–22, determine the limit of the sequence or show that the
sequence diverges.

9. an = √
n + 5 − √

n + 2 10. an = 3n3 − n

1 − 2n3

11. an = 21/n2
12. an = 10n

n!
13. bm = 1 + (−1)m 14. bm = 1 + (−1)m

m
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15. bn = tan−1
(

n + 2

n + 5

)
16. an = 100n

n! − 3 + πn

5n

17. bn =
√

n2 + n −
√

n2 + 1

18. cn =
√

n2 + n −
√

n2 − n 19. bm =
(

1 + 1

m

)3m

20. cn =
(

1 + 3

n

)n

21. bn = n
(

ln(n + 1) − ln n
)

22. cn = ln(n2 + 1)

ln(n3 + 1)

23. Use the Squeeze Theorem to show that lim
n→∞

arctan(n2)√
n

= 0.

24. Give an example of a divergent sequence {an} such that {sin an}
is convergent.

25. Calculate lim
n→∞

an+1

an
, where an = 1

2
3n − 1

3
2n.

26. Define an+1 = √
an + 6 with a1 = 2.

(a) Compute an for n = 2, 3, 4, 5.

(b) Show that {an} is increasing and is bounded by 3.

(c) Prove that lim
n→∞ an exists and find its value.

27. Calculate the partial sums S4 and S7 of the series
∞∑

n=1

n − 2

n2 + 2n
.

28. Find the sum 1 − 1

4
+ 1

42
− 1

43
+ · · · .

29. Find the sum
4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · .

30. Find the sum
∞∑

n=2

(
2

e

)n

.

31. Find the sum
∞∑

n=−1

2n+3

3n
.

32. Show that
∞∑

n=1

(
b − tan−1 n2) diverges if b �= π

2
.

33. Give an example of divergent series
∞∑

n=1

an and
∞∑

n=1

bn such that∞∑
n=1

(an + bn) = 1.

34. Let S =
∞∑

n=1

(
1

n
− 1

n + 2

)
. Compute SN for N = 1, 2, 3, 4.

Find S by showing that

SN = 3

2
− 1

N + 1
− 1

N + 2

35. Evaluate S =
∞∑

n=3

1

n(n + 3)
.

36. Find the total area of the infinitely many circles on the interval
[0, 1] in Figure 1.

1
8

1
4

1
2

x

1
0

FIGURE 1

In Exercises 37–40, use the Integral Test to determine whether the in-
finite series converges.

37.
∞∑

n=1

n2

n3 + 1
38.

∞∑
n=1

n2

(n3 + 1)1.01

39.
∞∑

n=1

1

(n + 2)(ln(n + 2))3
40.

∞∑
n=1

n3

en4

In Exercises 41–48, use the Comparison or Limit Comparison Test to
determine whether the infinite series converges.

41.
∞∑

n=1

1

(n + 1)2
42.

∞∑
n=1

1√
n + n

43.
∞∑

n=2

n2 + 1

n3.5 − 2
44.

∞∑
n=1

1

n − ln n

45.
∞∑

n=2

n√
n5 + 5

46.
∞∑

n=1

1

3n − 2n

47.
∞∑

n=1

n10 + 10n

n11 + 11n
48.

∞∑
n=1

n20 + 21n

n21 + 20n

49. Determine the convergence of
∞∑

n=1

2n + n

3n − 2
using the Limit Com-

parison Test with bn = ( 2
3

)n.

50. Determine the convergence of
∞∑

n=1

ln n

1.5n
using the Limit Compar-

ison Test with bn = 1

1.4n
.

51. Let an = 1 −
√

1 − 1
n . Show that lim

n→∞ an = 0 and that
∞∑

n=1

an

diverges. Hint: Show that an ≥ 1
2n

.

52. Determine whether
∞∑

n=2

(
1 −

√
1 − 1

n2

)
converges.

53. Let S =
∞∑

n=1

n

(n2 + 1)2
.

(a) Show that S converges.
(b) Use Eq. (4) in Exercise 83 of Section 10.3 with M = 99
to approximate S. What is the maximum size of the error?
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In Exercises 54–57, determine whether the series converges absolutely.
If it does not, determine whether it converges conditionally.

54.
∞∑

n=1

(−1)n

3√n + 2n
55.

∞∑
n=1

(−1)n

n1.1 ln(n + 1)

56.
∞∑

n=1

cos
(
π
4 + πn

)
√

n
57.

∞∑
n=1

cos
(
π
4 + 2πn

)
√

n

58. Use a computer algebra system to approximate
∞∑

n=1

(−1)n

n3 + √
n

to within an error of at most 10−5.

59. Catalan’s constant is defined by K =
∞∑

k=0

(−1)k

(2k + 1)2
.

(a) How many terms of the series are needed to calculate K with an
error of less than 10−6?

(b) Carry out the calculation.

60. Give an example of conditionally convergent series
∞∑

n=1

an and∞∑
n=1

bn such that
∞∑

n=1

(an + bn) converges absolutely.

61. Let
∞∑

n=1

an be an absolutely convergent series. Determine whether

the following series are convergent or divergent:

(a)
∞∑

n=1

(
an + 1

n2

)
(b)

∞∑
n=1

(−1)nan

(c)
∞∑

n=1

1

1 + a2
n

(d)
∞∑

n=1

|an|
n

62. Let {an} be a positive sequence such that lim
n→∞

n
√

an = 1
2 . Deter-

mine whether the following series converge or diverge:

(a)
∞∑

n=1

2an (b)
∞∑

n=1

3nan (c)
∞∑

n=1

√
an

In Exercises 63–70, apply the Ratio Test to determine convergence or
divergence, or state that the Ratio Test is inconclusive.

63.
∞∑

n=1

n5

5n
64.

∞∑
n=1

√
n + 1

n8

65.
∞∑

n=1

1

n2n + n3
66.

∞∑
n=1

n4

n!

67.
∞∑

n=1

2n2

n! 68.
∞∑

n=4

ln n

n3/2

69.
∞∑

n=1

(n

2

)n 1

n! 70.
∞∑

n=1

(n

4

)n 1

n!

In Exercises 71–74, apply the Root Test to determine convergence or
divergence, or state that the Root Test is inconclusive.

71.
∞∑

n=1

1

4n
72.

∞∑
n=1

(
2

n

)n

73.
∞∑

n=1

(
3

4n

)n

74.
∞∑

n=1

(
cos

1

n

)n3

In Exercises 75–92, determine convergence or divergence using any
method covered in the text.

75.
∞∑

n=1

(
2

3

)n

76.
∞∑

n=1

π7n

e8n

77.
∞∑

n=1

e−0.02n 78.
∞∑

n=1

ne−0.02n

79.
∞∑

n=1

(−1)n−1
√

n + √
n + 1

80.
∞∑

n=10

1

n(ln n)3/2

81.
∞∑

n=2

(−1)n

ln n
82.

∞∑
n=1

en

n!

83.
∞∑

n=1

1

n
√

n + ln n
84.

∞∑
n=1

1
3√n(1 + √

n)

85.
∞∑

n=1

(
1√
n

− 1√
n + 1

)
86.

∞∑
n=1

(
ln n − ln(n + 1)

)

87.
∞∑

n=1

1

n + √
n

88.
∞∑

n=2

cos(πn)

n2/3

89.
∞∑

n=2

1

nln n
90.

∞∑
n=2

1

ln3 n

91.
∞∑

n=1

sin2 π

n
92.

∞∑
n=0

22n

n!

In Exercises 93–98, find the interval of convergence of the power series.

93.
∞∑

n=0

2nxn

n! 94.
∞∑

n=0

xn

n + 1

95.
∞∑

n=0

n6

n8 + 1
(x − 3)n 96.

∞∑
n=0

nxn

97.
∞∑

n=0

(nx)n 98.
∞∑

n=0

(2x − 3)n

n ln n

99. Expand f (x) = 2

4 − 3x
as a power series centered at c = 0. De-

termine the values of x for which the series converges.
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100. Prove that

∞∑
n=0

ne−nx = e−x

(1 − e−x)2

Hint: Express the left-hand side as the derivative of a geometric series.

101. Let F(x) =
∞∑

k=0

x2k

2k · k! .

(a) Show that F(x) has infinite radius of convergence.
(b) Show that y = F(x) is a solution of

y′′ = xy′ + y, y(0) = 1, y′(0) = 0

(c) Plot the partial sums SN for N = 1, 3, 5, 7 on the same
set of axes.

102. Find a power series P(x) =
∞∑

n=0

anxn that satisfies the Laguerre
differential equation

xy′′ + (1 − x)y′ − y = 0

with initial condition satisfying P(0) = 1.

In Exercises 103–112, find the Taylor series centered at c.

103. f (x) = e4x , c = 0 104. f (x) = e2x , c = −1

105. f (x) = x4, c = 2

106. f (x) = x3 − x, c = −2

107. f (x) = sin x, c = π 108. f (x) = ex−1, c = −1

109. f (x) = 1

1 − 2x
, c = −2

110. f (x) = 1

(1 − 2x)2
, c = −2 111. f (x) = ln

x

2
, c = 2

112. f (x) = x ln
(

1 + x

2

)
, c = 0

In Exercises 113–116, find the first three terms of the Maclaurin series
of f (x) and use it to calculate f (3)(0).

113. f (x) = (x2 − x)ex2
114. f (x) = tan−1(x2 − x)

115. f (x) = 1

1 + tan x
116. f (x) = (sin x)

√
1 + x

117. Calculate
π

2
− π3

233! + π5

255! − π7

277! + · · · .

118. Find the Maclaurin series of the function F(x) =
∫ x

0

et − 1

t
dt .



CHAPTER 10 INFINITE
SERIES PREPARING FOR
THE AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided. All questions cover BC
topics.

1. If the radius of convergence for the series
∞∑

n=0
cn(x + 4)n is

5, then which of the following must be true?

I The series converges for x = −8.

II The series converges for x = −1.

III The series converges for x = 1.

(A) I only

(B) II only

(C) I and II only

(D) II and III only

(E) I, II, and III

2.
∞∑

n=2

3

5n
=

(A) 3
20

(B) 9
20

(C) 9
10

(D) 5
2

(E) 15
4

3. If the series
∞∑

n=0
cnx

n converges for x = 6, then which of

the following must be true?

I The series converges for x = −6.

II The series converges for x = −3.

III The series diverges for x = 8.

(A) I only

(B) II only

(C) I and III only

(D) II and III only

(E) I, II, and III

4.
∞∑

n=0

2 + 3n

5n
is

(A) 15
4

(B) 25
6

(C) 9
2

(D) 5

(E) divergent

AP10-1



AP10-2 CHAPTER 10 INFINITE SERIES

5. If
N∑

k=0

ck = 3N2 + 7

2N2 + 5
, then

∞∑
k=0

ck is

(A) 1

(B) 7
5

(C) 10
7

(D) 3
2

(E) divergent

6.
∞∑

k=2

(
1

k
− 1

k + 1

)
is

(A) 0

(B) 1
6

(C) 1
2

(D) 1

(E) divergent

7.
∞∑

k=1

(
1

k
− 1

k + 2

)
is

(A) 0

(B) 1
2

(C) 1

(D) 3
2

(E) divergent

8. Let a1 = 2 and an+1 = 1

2

(
an + 36

an

)
. Given that

lim
n→∞ an = L, then L =
(A) 2

(B) 4

(C) 6

(D) 8

(E) ∞

9. lim
n→∞

(
1 − 1

n

)n

is

(A) 0

(B) 1
e

(C) 1

(D) e

(E) nonexistent

10. lim
N→∞

N∑
k=0

2k + 3

5k + 6
is

(A) 2
5

(B) 1
2

(C) 5
11

(D) 5
3

(E) nonexistent

11. The series 2 − 4

3
+ 2

3
+ · · · + (−2)n

n! + · · · is

(A)
1 − e2

e2

(B)
1

e2

(C)
e2 − 1

e2

(D)
e2 + 1

e2

(E) divergent

12.
∞∑

n=1

2n + 5

np + 7
converges only for

(A) p > 1

(B) p ≥ 2

(C) p > 2

(D) p ≥ 3

(E) no values of p

13. For the series 1
4 − 1

2 + 1
16 − 1

4 + 1
64 − 1

6 + · · · + an + · · · ,

where an =

⎧⎪⎨
⎪⎩

1

2n+1
if n is odd

−1

n
if n is even

, which of the following

is true?

I lim
n→0

an = 0

II The series is an alternating series.

III The series converges.

(A) II only

(B) I and II only

(C) II and III only

(D) I and III only

(E) I, II, and III
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14. The interval of convergence for the series
∞∑

n=1

x3n

n8n
is

(A) (−8, 8)

(B) [−8, 8)

(C) (−2, 2)

(D) [−2, 2)

(E) [−1, 1)

15. If
∞∑

n=0
cnx

n, the Maclaurin series for f (x), has radius of

convergence equal to R, which of the following must be
true?

I The series
∞∑

n=0
cnx

n converges absolutely on (−R, R).

II The series
∞∑

n=0
cnx

n converges conditionally for

x = −R.

III The series
∞∑

n=1
ncnx

n−1 equals f ′(x) on (−R, R).

(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

16.
∫ x

0

1

1 + t4
dt =

(A)
∞∑

n=0

x4n

(B)
∞∑

n=1

x4n

4n

(C)
∞∑

n=1

(−x)4n

4n

(D)
∞∑

n=0

(−1)n
x4n+1

4n + 1

(E)
∞∑

n=0

(−1)n
x4n+1

(4n + 1)!

17.
1

1 + 4x2
=

(A) 1 + 4x + 8x2 + 16x3 + · · · for −1 < x < 1

(B) 1 + 4x2 + 16x4 + 64x6 + · · · for −1 < x < 1

(C) 1 − 4x2 + 16x4 − 64x6 + · · · for −2 < x < 2

(D) 1 − 4x2 + 16x4 − 64x6 + · · · for − 1
2 < x < 1

2

(E) 1 + 4x2 + 16x4 + 64x6 + · · · for − 1
2 < x < 1

2

18. If f (x) = 1 − x2

3! + x4

5! − x6

7! + · · · + (−1)n
x2n

(2n + 1)! +
· · · , then f

(π

2

)
=

(A) 0

(B) 2
π

(C) 1

(D) e−π/2

(E) eπ2/4

19. If an =

⎧⎪⎪⎨
⎪⎪⎩

1

2n
for n even

3

5n
for n odd

, then
∞∑

n=0
an =

(A) 47
24

(B) 133
66

(C) 11
4

(D) 17
6

(E) 13
4

20. Which of the following are true statements?

I If
∞∑

n=0
an converges conditionally, then

∞∑
n=0

(−1)nan converges.

II If
∞∑

n=0
|an| converges, then

∞∑
n=0

an converges.

III If lim
n→∞ an = 0, then

∞∑
n=0

(−1)nan converges.

(A) I only

(B) II only

(C) I and II only

(D) I and III only

(E) I, II, and III
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Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will be
scored on the correctness and completeness of your methods, as
well as your actual answer. You will usually not be given credit
for answers that don’t include supporting work. All questions
cover BC topics.

1. A particle is traveling on the x-axis. The particle starts
x0 = 3 and travels to the left and stops at x1 = −2.4. It then
travels to the right and stops at x2 = 1.92. It continues in
this manner, going from xn−1 = xn, where xn = −0.8xn−1.
(a) Let Dn = |xn − xn−1|, the distance the particle moves

on its nth travel segment. Prove
∞∑

n=1
Dn is a geometric

series.
(b) What is the total distance traveled by the particle?
(c) What is the total distance traveled by the particle as it

moves to the left?
(d) If the particle takes 4 seconds to travel the first seg-

ment from 3 to −2.4, and if the time required for the
particle to travel the nth segment is proportional to the
square root of the length of the segment, how long is
the particle in motion?

2. A function is called odd if f (−x) = −f (x), and is called
even if f (−x) = f (x). Let y = f (x) be an odd function,

defined for all x, with Maclaurin series
∞∑

n=0
cnx

n which con-

verges to f (x).
(a) Show c0 = 0.
(b) Show f ′(x) is an even function and that f ′′(x) is an

odd function.
(c) Use (a) and (b) to show cn = 0 for all even numbers n.
(d) If ck > 0 if k is odd, find the Maclaurin series for

g(x) =
{

f (x)

x
for x �= 0

c1 for x = 0
and use it to show g(x)

has a local minimum at x = 0.

3. Let f (x) =
∞∑

n=0

n + 1

n2 + 1
xn.

(a) Find the interval of convergence for the series.

(b) Let g(x) be the function such that g′(x) = f (x) and
g(0) = 3. Find the Maclaurin series for g(x).

(c) For what x does the series for g(x) converge? Justify
your answer.

4. Let f (x) = 1

(1 − x)2
and let

∞∑
n=0

cnx
n be the Maclaurin

series for f (x).

(a) Find c0, c1, c2, and c3.

(b) For what x does the series
∞∑

n=0
cnx

n converge? Justify

your answer.

(c) If the Maclaurin series for g(x) = 2

(1 − x)3
is

∞∑
n=0

bnx
n, what is the relationship between the coef-

ficients bn and cn?

Answers to odd-numbered questions can be found in the back of
the book.



The beautiful shell of a chambered nautilus

grows in the shape of an equiangular spiral, a

curve described in polar coordinates by an

equation r = eaθ .

11 PARAMETRIC
EQUATIONS, POLAR
COORDINATES, AND
VECTOR FUNCTIONS

T his chapter introduces two important new tools. First, we consider parametric equa-
tions, which describe curves in a form that is particularly useful for analyzing motion

and is indispensable in fields such as computer graphics and computer-aided design. We
then study polar coordinates, an alternative to rectangular coordinates that simplifies com-
putations in many applications. The chapter closes with a discussion of vector geometry
and the calculus of vector functions.

11.1 Parametric Equations
Imagine a particle moving along a curve C in the plane as in Figure 1. We can describeWe use the term “particle” when we treat

an object as a moving point, ignoring its
internal structure.

the particle’s motion by specifying its coordinates as functions of time t :

x = f (t), y = g(t) 1

In other words, at time t , the particle is located at the point

c(t) = (f (t), g(t))

The equations (1) are called parametric equations, and C is called a parametric curve.
We refer to c(t) as a parametrization with parameter t .

x

y

t = 0
t = 4

Position at time t

( f (t), g(t))

Curve

FIGURE 1 Particle moving along a curve C
in the plane.

Because x and y are functions of t , we often write c(t) = (x(t), y(t)) instead of
(f (t), g(t)). Of course, we are free to use any variable for the parameter (such as s or θ ).
In plots of parametric curves, the direction of motion is often indicated by an arrow as in
Figure 1.

607
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EXAMPLE 1 Sketch the curve with parametric equations

x = 2t − 4, y = 3 + t2 2

Solution First compute the x- and y-coordinates for several values of t as in Table 1,
and plot the corresponding points (x, y) as in Figure 2. Then join the points by a smooth
curve, indicating the direction of motion with an arrow.

TABLE 1

t x = 2t − 4 y = 3 + t2

−2 −8 7
0 −4 3
2 0 7
4 4 19

40−8 −4

y

x

   t = 0
(−4, 3) 

t = −2
(−8, 7)

t = 2
(0, 7)

t = 4
(4, 19)

FIGURE 2 The parametric curve
x = 2t − 4, y = 3 + t2.

CONCEPTUAL INSIGHT The graph of a function y = f (x) can always be parametrized
in a simple way as

c(t) = (t, f (t))

For example, the parabola y = x2 is parametrized by c(t) = (t, t2) and the curve y = et

by c(t) = (t, et ).An advantage of parametric equations is that they enable us to describe
curves that are not graphs of functions. For example, the curve in Figure 3 is not of the
form y = f (x) but it can be expressed parametrically.

y

2−2
x

FIGURE 3 The parametric curve

x = 5 cos(3t) cos
( 2

3 sin(5t)
)
,

y = 4 sin(3t) cos
( 2

3 sin(5t)
)
. As we have just noted, a parametric curve c(t) need not be the graph of a function. If

it is, however, it may be possible to find the function f (x) by “eliminating the parameter”
as in the next example.

EXAMPLE 2 Eliminating the Parameter Describe the parametric curve

c(t) = (2t − 4, 3 + t2)

of the previous example in the form y = f (x).

Solution We “eliminate the parameter” by solving for y as a function of x. First, express
t in terms of x: Since x = 2t − 4, we have t = 1

2x + 2. Then substitute

y = 3 + t2 = 3 +
(

1

2
x + 2

)2

= 7 + 2x + 1

4
x2

Thus, c(t) traces out the graph of f (x) = 7 + 2x + 1
4x2 shown in Figure 2.

EXAMPLE 3 A bullet follows the trajectory

1000 2000 3000

t = 20.4

t = 40.8

t = 0 x (m)

y (m)

2000

1000
t = 5

FIGURE 4 Trajectory of bullet.

c(t) = (80t, 200t − 4.9t2)

until it hits the ground, with t in seconds and distance in meters (Figure 4). Find:

(a) The bullet’s height at t = 5 s. (b) Its maximum height.
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Solution The height of the bullet at time t is y(t) = 200t − 4.9t2.CAUTION The graph of height versus time
for an object tossed in the air is a parabola
(by Galileo’s formula). But keep in mind
that Figure 4 is not a graph of height versus
time. It shows the actual path of the bullet
(which has both a vertical and a horizontal
displacement).

(a) The height at t = 5 s is

y(5) = 200(5) − 4.9(52) = 877.5 m

(b) The maximum height occurs at the critical point of y(t):

y′(t) = d

dt
(200t − 4.9t2) = 200 − 9.8t = 0 ⇒ t = 200

9.8
≈ 20.4 s

The bullet’s maximum height is y(20.4) = 200(20.4) − 4.9(20.4)2 ≈ 2041 m.

We now discuss parametrizations of lines and circles. They will appear frequently in
later chapters.

THEOREM 1 Parametrization of a Line

(a) The line through P = (a, b) of slope m is parametrized by

x = a + rt, y = b + st − ∞ < t < ∞ 3

for any r and s (with r �= 0) such that m = s/r .

(b) The line through P = (a, b) and Q = (c, d) has parametrization

x = a + t (c − a), y = b + t (d − b) − ∞ < t < ∞ 4

The segment from P to Q corresponds to 0 ≤ 1 ≤ t .

Solution (a) Solve x = a + rt for t in terms of x to obtain t = (x − a)/r . Then

a a + 1 a + 2

t = −1

t = 0, P = (a, b)

t = 1

t = 2

x

b

b + m

b + 2m

b − m

y

a − 1

FIGURE 5 The line

y − a = m(x − b)

has parametrization

c(t) = (a + t, b + mt)

This corresponds to r = 1, s = m in Eq. 3.

y = b + st = b + s

(
x − a

r

)
= b + m(x − a) or y − b = m(x − a)

This is the equation of the line through P = (a, b) of slope m. The choice r = 1 and
s = m yields the parametrization in Figure 5.

The parametrization in (b) defines a line that satisfies (x(0), y(0)) = (a, b) and
(x(1), y(1)) = (c, d). Thus, it parametrizes the line through P and Q and traces the
segment from P to Q as t varies from 0 to 1.

EXAMPLE 4 Parametrization of a Line Find parametric equations for the line through
P = (3, −1) of slope m = 4.

Solution We can parametrize the line by taking r = 1 and s = 4 in Eq. (3):

x = 3 + t, y = −1 + 4t

This is also written as c(t) = (3 + t, −1 + 4t). Another parametrization of the line is
c(t) = (3 + 5t, −1 + 20t), corresponding to r = 5 and s = 20 in Eq. (3).
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The circle of radius R centered at the origin has the parametrization

x = R cos θ, y = R sin θ

The parameter θ represents the angle corresponding to the point (x, y) on the circle
(Figure 6). The circle is traversed once in the counterclockwise direction as θ varies over

a
x

b

y
(a + Rcos θ, b + Rsin θ)

(a, b)

(Rcos θ, Rsin θ)

θ

θ

FIGURE 6 Parametrization of a circle of
radius R with center (a, b).

a half-open interval of length 2π such as [0, 2π) or [−π, π).
More generally, the circle of radius R with center (a, b) has parametrization (Figure 6)

x = a + R cos θ, y = b + R sin θ 5

As a check, let’s verify that a point (x, y) given by Eq. (5) satisfies the equation of the
circle of radius R centered at (a, b):

(x − a)2 + (y − b)2 = (a + R cos θ − a)2 + (b + R sin θ − b)2

= R2 cos2 θ + R2 sin2 θ = R2

In general, to translate (meaning “to move”) a parametric curve horizontally a units and
vertically b units, replace c(t) = (x(t), y(t)) by c(t) = (a + x(t), b + y(t)).

Suppose we have a parametrization c(t) = (x(t), y(t)) where x(t) is an even function
and y(t) is an odd function, that is, x(−t) = x(t) and y(−t) = −y(t). In this case, c(−t)

is the reflection of c(t) across the x-axis:

c(−t) = (x(−t), y(−t)) = (x(t), −y(t))

The curve, therefore, is symmetric with respect to the x-axis. We apply this remark in the
next example and in Example 7 below.

EXAMPLE 5 Parametrization of an Ellipse Verify that the ellipse with equation(
x
a

)2 + ( y
b

)2 = 1 is parametrized by

c(t) = (a cos t, b sin t) (for −π ≤ t ≤ π )

Plot the case a = 4, b = 2.

Solution To verify that c(t) parametrizes the ellipse, show that the equation of the ellipse

TABLE 2

t x(t) = 4 cos t y(t) = 2 sin t

0 4 0

π

6
2
√

3 1

π

3
2

√
3

π

2
0 2

2π

3
−2

√
3

5π

6
−2

√
3 1

π −4 0

is satisfied with x = a cos t , y = b sin t :(x

a

)2 +
(y

b

)2 =
(

a cos t

a

)2

+
(

b sin t

b

)2

= cos2 t + sin2 t = 1

To plot the casea = 4,b = 2, we connect the points corresponding to the t-values inTable 2
(see Figure 7). This gives us the top half of the ellipse corresponding to 0 ≤ t ≤ π . Then
we observe that x(t) = 4 cos t is even and y(t) = 2 sin t is odd. As noted above, this tells
us that the bottom half of the ellipse is obtained by symmetry with respect to the x-axis.

−4

−2

2

y

t =   

t =
t =

4
x

t =
t = 0

  
6

2  
3 t =

t =

π

π
  
3
π

  
2
ππ

5  
6
π

FIGURE 7 Ellipse with parametric equations x = 4 cos t , y = 2 sin t .
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A parametric curve c(t) is also called a path. This term emphasizes that c(t) describes
not just an underlying curve C, but a particular way of moving along the curve.

CONCEPTUAL INSIGHT The parametric equations for the ellipse in Example 5 illustrate
a key difference between the path c(t) and its underlying curve C. The curve C is an
ellipse in the plane, whereas c(t) describes a particular, counterclockwise motion of a
particle along the ellipse. If we let t vary from 0 to 4π , then the particle goes around
the ellipse twice.

A key feature of parametrizations is that they are not unique. In fact, every curve
can be parametrized in infinitely many different ways. For instance, the parabola y = x2

is parametrized not only by (t, t2) but also by (t3, t6), or (t5, t10), and so on.

EXAMPLE 6 Different Parametrizations of the Same Curve Describe the motion of a
particle moving along each of the following paths.

(a) c1(t) = (t3, t6) (b) c2(t) = (t2, t4) (c) c3(t) = (cos t, cos2 t)

−1

y y

x
1−1 1 −1

y

1
x x

(−1, 1)

t > 0

t < 0 (1, 1)

(A)  c1(t) = (t3, t6) (B)  c2(t) = (t2, t4) (C)  c3(t) = (cos t, cos2 t )

t = ..., −π, π, 3π, ... t = ..., −2π, 0, 2π, 4π, ...

FIGURE 8 Three parametrizations of
portions of the parabola.

Solution Each of these parametrizations satisfies y = x2, so all three parametrize portions
of the parabola y = x2.

(a) As t varies from −∞ to ∞, the function t3 also varies from −∞ to ∞. Therefore,
c1(t) = (t3, t6) traces the entire parabola y = x2, moving from left to right and passing
through each point once [Figure 8(A)].

(b) Since x = t2 ≥ 0, the path c2(t) = (t2, t4) traces only the right half of the parabola.
The particle comes in toward the origin as t varies from −∞ to 0, and it goes back out to
the right as t varies from 0 to ∞ [Figure 8(B)].

(c) As t varies from −∞ and ∞, cos t oscillates between 1 and −1. Thus a particle
following the path c3(t) = (cos t, cos2 t) oscillates back and forth between the points
(1, 1) and (−1, 1) on the parabola. [Figure 8(C)].

EXAMPLE 7 Using Symmetry to Sketch a Loop Sketch the curve

c(t) = (t2 + 1, t3 − 4t)

Label the points corresponding to t = 0, ±1, ±2, ±2.5.

Solution

Step 1. Use symmetry.
Observe that x(t) = t2 + 1 is an even function and that y(t) = t3 − 4t is an odd func-
tion. As noted before Example 5, this tells us that c(t) is symmetric with respect to
the x-axis. Therefore, we will plot the curve for t ≥ 0 and reflect across the x-axis to
obtain the part for t ≤ 0.
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Step 2. Analyze x(t), y(t) as functions of t .
We havex(t) = t2 + 1 andy(t) = t3 − 4t .Thex-coordinatex(t) = t2 + 1 increases to
∞ as t → ∞. To analyze the y-coordinate, we graph y(t) = t3 − 4t = t (t − 2)(t + 2)

as a function of t (not as a function of x). Since y(t) is the height above the x-axis,
Figure 9(A) shows that

y(t) < 0 for 0 < t < 2, ⇒ curve below x-axis

y(t) > 0 for t > 2, ⇒ curve above x-axis

So the curve starts at c(0) = (1, 0), dips below the x-axis and returns to the x-axis at
t = 2. Both x(t) and y(t) tend to ∞ as t → ∞. The curve is concave up because y(t)

increases more rapidly than x(t).
Step 3. Plot points and join by an arc.

The points c(0), c(1), c(2), c(2.5) tabulated in Table 3 are plotted and joined by an arc
to create the sketch for t ≥ 0 as in Figure 9(B). The sketch is completed by reflecting
across the x-axis as in Figure 9(C).

TABLE 3

t x = t2 + 1 y = t3 − 4t

0 1 0
1 2 −3
2 5 0
2.5 7.25 5.625

y

t = 2.5

t = 1

t = −2
t = 2t = 0t = 2t = 0

t = −2.5

t = −1

(C) Complete sketch using
symmetry.

10

8

−8

3

−3

x

y

3−3 1−1 2−2
t

y

t = 2.5

t = 1

y = t3 − 4t

(B) Graph for t ≥ 0(A) Graph of y-coordinate
y(t) = t3 − 4t

5 510

8

−8

3

−3

x

FIGURE 9 The curve c(t) = (t2 + 1, t3 − 4t).

A cycloid is a curve traced by a point on the circumference of a rolling wheel as in
Figure 10. Cycloids are famous for their “brachistochrone property” (see the marginal
note below).

1

y

x
0 π π2 π3 π4FIGURE 10 A cycloid.

EXAMPLE 8 Parametrizing the Cycloid Find parametric equations for the cycloid
generated by a point P on the unit circle.

A stellar cast of mathematicians (including
Galileo, Pascal, Newton, Leibniz, Huygens,
and Bernoulli) studied the cycloid and
discovered many of its remarkable
properties. A slide designed so that an
object sliding down (without friction)
reaches the bottom in the least time must
have the shape of an inverted cycloid. This
is the brachistochrone property, a term
derived from the Greek brachistos,
“shortest,” and chronos, “time.”

Solution The point P is located at the origin at t = 0. At time t , the circle has rolled t

radians along the x axis and the center C of the circle then has coordinates (t, 1) as in
Figure 11(A). Figure 11(B) shows that we get from C to P by moving down cos t units
and to the left sin t units, giving us the parametric equations

x(t) = t − sin t, y(t) = 1 − cos t 5
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x

1

11

y

O

sin t
x

y

t

P

Position of P at time t(A) P has coordinates
x = t − sin t, y = 1 − cos t

(B)

1

1 cos ttt

y

C = (t, 1)

P

C

t xO x

FIGURE 11

The argument in Example 8 shows in a similar fashion that the cycloid generated by
a circle of radius R has parametric equations

x = Rt − R sin t, y = R − R cos t 6

Next, we address the problem of finding tangent lines to parametric curves. The slope
of the tangent line is the derivative dy/dx, but we have to use the Chain Rule to compute
it because y is not given explicitly as a function of x. Write x = f (t), y = g(t). Then, by
the Chain Rule in Leibniz notation,

g′(t) = dy

dt
= dy

dx

dx

dt
= dy

dx
f ′(t)

If f ′(t) �= 0, we can divide by f ′(t) to obtainNOTATION In this section, we write
f ′(t), x ′(t), y ′(t), and so on to denote the
derivative with respect to t . dy

dx
= g′(t)

f ′(t)

This calculation is valid if f (t) and g(t) are differentiable, f ′(t) is continuous, and f ′(t) �=
0. In this case, the inverse t = f −1(x) exists, and the composite y = g(f −1(x)) is a
differentiable function of x.

CAUTION Do not confuse dy/dx with the
derivatives dx/dt and dy/dt , which are
derivatives with respect to the parameter t .
Only dy/dx is the slope of the tangent line.

THEOREM 2 Slope of the Tangent Line Let c(t) = (x(t), y(t)), where x(t) and y(t)

are differentiable. Assume that x′(t) is continuous and x′(t) �= 0. Then

dy

dx
= dy/dt

dx/dt
= y′(t)

x′(t)
7

EXAMPLE 9 Let c(t) = (t2 + 1, t3 − 4t). Find:

105
x

y

t = 3

t = 

5

10

15

−5

−10

−15

t = − 2

�3

t = −3

2

�3

FIGURE 12 Horizontal tangent lines on
c(t) = (t2 + 1, t3 − 4t).

(a) An equation of the tangent line at t = 3

(b) The points where the tangent is horizontal (Figure 12).

Solution We have

dy

dx
= y′(t)

x′(t)
= (t3 − 4t)′

(t2 + 1)′
= 3t2 − 4

2t
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(a) The slope at t = 3 is

dy

dx
= 3t2 − 4

2t

∣∣∣∣
t=3

= 3(3)2 − 4

2(3)
= 23

6

Since c(3) = (10, 15), the equation of the tangent line in point-slope form is

y − 15 = 23

6
(x − 10)

(b) The slope dy/dx is zero if y′(t) = 0 and x′(t) �= 0. We have y′(t) = 3t2 − 4 = 0
for t = ±2/

√
3 (and x′(t) = 2t �= 0 for these values of t). Therefore, the tangent line is

horizontal at the points

c

(
− 2√

3

)
=

(
7

3
,

16

3
√

3

)
, c

(
2√
3

)
=

(
7

3
, − 16

3
√

3

)

Parametric curves are widely used in the field of computer graphics. A particularlyBézier curves were invented in the 1960s
by the French engineer Pierre Bézier
(1910–1999), who worked for the Renault
car company. They are based on the
properties of Bernstein polynomials,
introduced 50 years earlier by the Russian
mathematician Sergei Bernstein to study
the approximation of continuous functions
by polynomials. Today, Bézier curves are
used in standard graphics programs, such
as Adobe IllustratorTM and Corel DrawTM,
and in the construction and storage of
computer fonts such as TrueTypeTM and
PostScriptTM fonts.

important class of curves are Bézier curves, which we discuss here briefly in the cubic
case. Given four “control points” (Figure 13):

P0 = (a0, b0), P1 = (a1, b1), P2 = (a2, b2), P3 = (a3, b3)

the Bézier curve c(t) = (x(t), y(t)) is defined for 0 ≤ t ≤ 1 by

x(t) = a0(1 − t)3 + 3a1t (1 − t)2 + 3a2t
2(1 − t) + a3t

3 8

y(t) = b0(1 − t)3 + 3b1t (1 − t)2 + 3b2t
2(1 − t) + b3t

3 9

P3

P3 = (a3, b3)

P2 = (a2, b2)
P1 = (a1, b1)

P0 = (a0, b0)
P1

P0

P2

FIGURE 13 Cubic Bézier curves specified
by four control points.

Note that c(0) = (a0, b0) and c(1) = (a3, b3), so the Bézier curve begins at P0 and ends
at P3 (Figure 13). It can also be shown that the Bézier curve is contained within the
quadrilateral (shown in blue) with vertices P0, P1, P2, P3. However, c(t) does not pass
through P1 and P2. Instead, these intermediate control points determine the slopes of the
tangent lines at P0 and P3, as we show in the next example (also, see Exercises 65–68).

EXAMPLE 10 Show that the Bézier curve is tangent to segment P0P1 at P0.

Hand sketch made in 1964 by Pierre Bézier
for the French automobile manufacturer
Renault.

Solution The Bézier curve passes through P0 at t = 0, so we must show that the slope
of the tangent line at t = 0 is equal to the slope of P0P1. To find the slope, we compute
the derivatives:

x′(t) = −3a0(1 − t)2 + 3a1(1 − 4t + 3t2) + a2(2t − 3t2) + 3a3t
2

y′(t) = −3b0(1 − t)2 + 3b1(1 − 4t + 3t2) + b2(2t − 3t2) + 3b3t
2

Evaluating at t = 0, we obtain x′(0) = 3(a1 − a0), y′(0) = 3(b1 − b0), and

dy

dx

∣∣∣∣
t=0

= y′(0)

x′(0)
= 3(b1 − b0)

3(a1 − a0)
= b1 − b0

a1 − a0

This is equal to the slope of the line through P0 = (a0, b0) and P1 = (a1, b1) as claimed
(provided that a1 �= a0).
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11.1 SUMMARY

• A parametric curve c(t) = (f (t), g(t)) describes the path of a particle moving along a
curve as a function of the parameter t .
• Parametrizations are not unique: Every curve C can be parametrized in infinitely many
ways. Furthermore, the path c(t) may traverse all or part of C more than once.
• Slope of the tangent line at c(t):

dy

dx
= dy/dt

dx/dt
= y′(t)

x′(t)
(valid if x′(t) �= 0)

• Do not confuse the slope of the tangent line dy/dx with the derivatives dy/dt and
dx/dt , with respect to t .
• Standard parametrizations:

– Line of slope m = s/r through P = (a, b): c(t) = (a + rt, b + st).
– Circle of radius R centered at P = (a, b): c(t) = (a + R cos t, b + R sin t).
– Cycloid generated by a circle of radius R: c(t) = (R(t − sin t), R(1 − cos t)).

11.1 EXERCISES

Preliminary Questions
1. Describe the shape of the curve x = 3 cos t, y = 3 sin t .

2. How does x = 4 + 3 cos t, y = 5 + 3 sin t differ from the curve in
the previous question?

3. What is the maximum height of a particle whose path has paramet-
ric equations x = t9, y = 4 − t2?

4. Can the parametric curve (t, sin t) be represented as a graph
y = f (x)? What about (sin t, t)?

5. Match the derivatives with a verbal description:

(a)
dx

dt
(b)

dy

dt
(c)

dy

dx

(i) Slope of the tangent line to the curve

(ii) Vertical rate of change with respect to time

(iii) Horizontal rate of change with respect to time

Exercises
1. Find the coordinates at times t = 0, 2, 4 of a particle following the

path x = 1 + t3, y = 9 − 3t2.

2. Find the coordinates at t = 0, π
4 , π of a particle moving along the

path c(t) = (cos 2t, sin2 t).

3. Show that the path traced by the bullet in Example 3 is a parabola
by eliminating the parameter.

4. Use the table of values to sketch the parametric curve (x(t), y(t)),
indicating the direction of motion.

t −3 −2 −1 0 1 2 3

x −15 0 3 0 −3 0 15

y 5 0 −3 −4 −3 0 5

5. Graph the parametric curves. Include arrows indicating the direc-
tion of motion.

(a) (t, t), −∞ < t < ∞ (b) (sin t, sin t), 0 ≤ t ≤ 2π

(c) (et , et ), −∞ < t < ∞ (d) (t3, t3), −1 ≤ t ≤ 1

6. Give two different parametrizations of the line through (4, 1) with
slope 2.

In Exercises 7–14, express in the form y = f (x) by eliminating the
parameter.

7. x = t + 3, y = 4t 8. x = t−1, y = t−2

9. x = t , y = tan−1(t3 + et ) 10. x = t2, y = t3 + 1

11. x = e−2t , y = 6e4t 12. x = 1 + t−1, y = t2

13. x = ln t , y = 2 − t 14. x = cos t , y = tan t

In Exercises 15–18, graph the curve and draw an arrow specifying the
direction corresponding to motion.

15. x = 1
2 t , y = 2t2 16. x = 2 + 4t , y = 3 + 2t

17. x = πt , y = sin t 18. x = t2, y = t3
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19. Match the parametrizations (a)–(d) below with their plots in Fig-
ure 14, and draw an arrow indicating the direction of motion.

2π

xx

yy

1555

(II) (III)(I)

x x

1020
5

yy

(IV)

FIGURE 14

(a) c(t) = (sin t, −t) (b) c(t) = (t2 − 9, 8t − t3)

(c) c(t) = (1 − t, t2 − 9) (d) c(t) = (4t + 2, 5 − 3t)

20. A particle follows the trajectory

x(t) = 1

4
t3 + 2t, y(t) = 20t − t2

with t in seconds and distance in centimeters.

(a) What is the particle’s maximum height?

(b) When does the particle hit the ground and how far from the origin
does it land?

21. Find an interval of t-values such that c(t) = (cos t, sin t) traces the
lower half of the unit circle.

22. Find an interval of t-values such that c(t) = (2t + 1, 4t − 5)

parametrizes the segment from (0, −7) to (7, 7).

In Exercises 23–38, find parametric equations for the given curve.

23. y = 9 − 4x 24. y = 8x2 − 3x

25. 4x − y2 = 5 26. x2 + y2 = 49

27. (x + 9)2 + (y − 4)2 = 49 28.
(x

5

)2 +
( y

12

)2 = 1

29. Line of slope 8 through (−4, 9)

30. Line through (2, 5) perpendicular to y = 3x

31. Line through (3, 1) and (−5, 4)

32. Line through
( 1

3 , 1
6

)
and

( − 7
6 , 5

3

)
33. Segment joining (1, 1) and (2, 3)

34. Segment joining (−3, 0) and (0, 4)

35. Circle of radius 4 with center (3, 9)

36. Ellipse of Exercise 28, with its center translated to (7, 4)

37. y = x2, translated so that the minimum occurs at (−4, −8)

38. y = cos x translated so that a maximum occurs at (3, 5)

In Exercises 39–42, find a parametrization c(t) of the curve satisfying
the given condition.

39. y = 3x − 4, c(0) = (2, 2)

40. y = 3x − 4, c(3) = (2, 2)

41. y = x2, c(0) = (3, 9)

42. x2 + y2 = 4, c(0) = ( 1
2 ,

√
3

2

)
43. Describe c(t) = (sec t, tan t) for 0 ≤ t < π

2 in the form y = f (x).
Specify the domain of x.

44. Find a parametrization of the right branch (x > 0) of the hyperbola

(x

a

)2 −
(y

b

)2 = 1

using the functions cosh t and sinh t . How can you parametrize the
branch x < 0?

45. The graphs of x(t) and y(t) as functions of t are shown in Figure
15(A). Which of (I)–(III) is the plot of c(t) = (x(t), y(t))? Explain.

yyyy
x(t)

y(t)
xxxt

(A) (III)(II)(I)

FIGURE 15

46. Which graph, (I) or (II), is the graph of x(t) and which is the graph
of y(t) for the parametric curve in Figure 16(A)?

y y

(A)

x

(I)

t

y

(II)

t

FIGURE 16

47. Sketch c(t) = (t3 − 4t, t2) following the steps in Example 7.

48. Sketch c(t) = (t2 − 4t, 9 − t2) for −4 ≤ t ≤ 10.

In Exercises 49–52, use Eq. (7) to find dy/dx at the given point.

49. (t3, t2 − 1), t = −4 50. (2t + 9, 7t − 9), t = 1

51. (s−1 − 3s, s3), s = −1 52. (sin 2θ, cos 3θ), θ = π
6

In Exercises 53–56, find an equation y = f (x) for the parametric curve
and compute dy/dx in two ways: using Eq. (7) and by differentiating
f (x).

53. c(t) = (2t + 1, 1 − 9t) 54. c(t) = ( 1
2 t, 1

4 t2 − t
)

55. x = s3, y = s6 + s−3
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56. x = cos θ , y = cos θ + sin2 θ

57. Find the points on the curve c(t) = (3t2 − 2t, t3 − 6t) where the
tangent line has slope 3.

58. Find the equation of the tangent line to the cycloid generated by a
circle of radius 4 at t = π

2 .

In Exercises 59–62, let c(t) = (t2 − 9, t2 − 8t) (see Figure 17).

60

40

20

604020
x

y

FIGURE 17 Plot of c(t) = (t2 − 9, t2 − 8t).

59. Draw an arrow indicating the direction of motion, and determine
the interval of t-values corresponding to the portion of the curve in each
of the four quadrants.

60. Find the equation of the tangent line at t = 4.

61. Find the points where the tangent has slope 1
2 .

62. Find the points where the tangent is horizontal or vertical.

63. Let A and B be the points where the ray of angle θ intersects the
two concentric circles of radii r < R centered at the origin (Figure 18).
Let P be the point of intersection of the horizontal line through A and
the vertical line through B. Express the coordinates of P as a function
of θ and describe the curve traced by P for 0 ≤ θ ≤ 2π .

x

y

B

P

Rr

A

θ

FIGURE 18

64. A 10-ft ladder slides down a wall as its bottom B is pulled away
from the wall (Figure 19). Using the angle θ as parameter, find the
parametric equations for the path followed by (a) the top of the ladder
A, (b) the bottom of the ladder B, and (c) the point P located 4 ft from
the top of the ladder. Show that P describes an ellipse.

y

B

P = (x, y)

6

4

θ x

A

FIGURE 19

In Exercises 65–68, refer to the Bézier curve defined by Eqs. (8) and (9).

65. Show that the Bézier curve with control points

P0 = (1, 4), P1 = (3, 12), P2 = (6, 15), P3 = (7, 4)

has parametrization

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3)

Verify that the slope at t = 0 is equal to the slope of the segment P0P1.

66. Find an equation of the tangent line to the Bézier curve in Exercise
65 at t = 1

3 .

67. Find and plot the Bézier curve c(t) passing through the
control points

P0 = (3, 2), P1 = (0, 2), P2 = (5, 4), P3 = (2, 4)

68. Show that a cubic Bézier curve is tangent to the segment P2P3
at P3.

69. A bullet fired from a gun follows the trajectory

x = at, y = bt − 16t2 (a, b > 0)

Show that the bullet leaves the gun at an angle θ = tan−1 (
b
a

)
and lands

at a distance ab/16 from the origin.

70. Plot c(t) = (t3 − 4t, t4 − 12t2 + 48) for −3 ≤ t ≤ 3.
Find the points where the tangent line is horizontal or vertical.

71. Plot the astroid x = cos3 θ , y = sin3 θ and find the equa-
tion of the tangent line at θ = π

3 .

72. Find the equation of the tangent line at t = π
4 to the cycloid gen-

erated by the unit circle with parametric equation (5).

73. Find the points with horizontal tangent line on the cycloid with
parametric equation (5).
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74. Property of the Cycloid Prove that the tangent line at a point P

on the cycloid always passes through the top point on the rolling circle
as indicated in Figure 20. Assume the generating circle of the cycloid
has radius 1.

Tangent line

Cycloid

y

x

P

FIGURE 20

75. A curtate cycloid (Figure 21) is the curve traced by a point at a
distance h from the center of a circle of radius R rolling along the
x-axis where h < R. Show that this curve has parametric equations
x = Rt − h sin t , y = R − h cos t .

y

h
R

x
4π2π

FIGURE 21 Curtate cycloid.

76. Use a computer algebra system to explore what happens
when h > R in the parametric equations of Exercise 75. Describe the
result.

77. Show that the line of slope t through (−1, 0) intersects the
unit circle in the point with coordinates

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
10

Conclude that these equations parametrize the unit circle with the point
(−1, 0) excluded (Figure 22). Show further that t = y/(x + 1).

(x, y)

(−1, 0)

Slope t

y

x

FIGURE 22 Unit circle.

78. The folium of Descartes is the curve with equation x3 + y3 =
3axy, where a �= 0 is a constant (Figure 23).

(a) Show that the line y = tx intersects the folium at the origin and
at one other point P for all t �= −1, 0. Express the coordinates of P

in terms of t to obtain a parametrization of the folium. Indicate the
direction of the parametrization on the graph.

(b) Describe the interval of t-values parametrizing the parts of the
curve in quadrants I, II, and IV. Note that t = −1 is a point of discon-
tinuity of the parametrization.

(c) Calculate dy/dx as a function of t and find the points with hori-
zontal or vertical tangent.

2−2

−2

x

2
II I

III IV

y

FIGURE 23 Folium x3 + y3 = 3axy.

79. Use the results of Exercise 78 to show that the asymptote of the
folium is the line x + y = −a. Hint: Show that lim

t→−1
(x + y) = −a.

80. Find a parametrization of x2n+1 + y2n+1 = axnyn, where a and
n are constants.

81. Second Derivative for a Parametrized Curve Given a param-
etrized curve c(t) = (x(t), y(t)), show that

d

dt

( dy

dx

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

Use this to prove the formula

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)3
11

82. The second derivative of y = x2 is dy2/d2x = 2. Verify that
Eq. (11) applied to c(t) = (t, t2) yields dy2/d2x = 2. In fact, any
parametrization may be used. Check that c(t) = (t3, t6) and c(t) =
(tan t, tan2 t) also yield dy2/d2x = 2.

In Exercises 83–86, use Eq. (11) to find d2y/dx2.

83. x = t3 + t2, y = 7t2 − 4, t = 2

84. x = s−1 + s, y = 4 − s−2, s = 1

85. x = 8t + 9, y = 1 − 4t , t = −3

86. x = cos θ , y = sin θ , θ = π
4

87. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t3 − 4t)

is concave up.

88. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t4 − 4t)

is concave up.
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89. Area Under a Parametrized Curve Let c(t) = (x(t), y(t)),
where y(t) > 0 and x′(t) > 0 (Figure 24). Show that the area A under
c(t) for t0 ≤ t ≤ t1 is

A =
∫ t1

t0

y(t)x′(t) dt 12

Hint: Because it is increasing, the function x(t) has an inverse t = g(x)

and c(t) is the graph of y = y(g(x)). Apply the change-of-variables

formula to A = ∫ x(t1)
x(t0)

y(g(x)) dx.

y
c(t)

x(t1)x(t0)
xx

FIGURE 24

90. Calculate the area under y = x2 over [0, 1] using Eq. (12) with the
parametrizations (t3, t6) and (t2, t4).

91. What does Eq. (12) say if c(t) = (t, f (t))?

92. Sketch the graph of c(t) = (ln t, 2 − t) for 1 ≤ t ≤ 2 and compute
the area under the graph using Eq. (12).

93. Galileo tried unsuccessfully to find the area under a cycloid.Around
1630, Gilles de Roberval proved that the area under one arch of the cy-
cloid c(t) = (Rt − R sin t, R − R cos t) generated by a circle of radius
R is equal to three times the area of the circle (Figure 25). Verify Rober-
val’s result using Eq. (12).

x

y

R

πRπR 2

FIGURE 25 The area of one arch of the cycloid equals three times the
area of the generating circle.

Further Insights and Challenges
94. Prove the following generalization of Exercise 93: For all t > 0,
the area of the cycloidal sector OPC is equal to three times the area of
the circular segment cut by the chord PC in Figure 26.

R
tP

O C = (Rt, 0)
x

y

R
t

(B) Circular segment cut
by the chord PC

(A) Cycloidal sector OPC 

P

O C = (Rt, 0)
x

y

FIGURE 26

95. Derive the formula for the slope of the tangent line to
a parametric curve c(t) = (x(t), y(t)) using a method different from
that presented in the text. Assume that x′(t0) and y′(t0) exist and that
x′(t0) �= 0. Show that

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= y′(t0)

x′(t0)

Then explain why this limit is equal to the slope dy/dx. Draw a diagram
showing that the ratio in the limit is the slope of a secant line.

96. Verify that the tractrix curve (� > 0)

c(t) =
(

t − � tanh
t

�
, � sech

t

�

)

has the following property: For all t , the segment from c(t) to (t, 0) is
tangent to the curve and has length � (Figure 27).

y

t

�

�

c(t)

x

FIGURE 27 The tractrix c(t) =
(

t − � tanh
t

�
, � sech

t

�

)
.

97. In Exercise 54 of Section 9.1, we described the tractrix by the
differential equation

dy

dx
= − y√

�2 − y2

Show that the curve c(t) identified as the tractrix in Exercise 96 satisfies
this differential equation. Note that the derivative on the left is taken
with respect to x, not t .

In Exercises 98 and 99, refer to Figure 28.

98. In the parametrization c(t) = (a cos t, b sin t) of an ellipse, t is
not an angular parameter unless a = b (in which case the ellipse is a
circle). However, t can be interpreted in terms of area: Show that if
c(t) = (x, y), then t = (2/ab)A, where A is the area of the shaded
region in Figure 28. Hint: Use Eq. (12).
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q

y

b

a x

(x, y)

FIGURE 28 The parameter θ on the ellipse
(x

a

)2 +
(y

b

)2 = 1.

99. Show that the parametrization of the ellipse by the angle θ is

x = ab cos θ√
a2 sin2 θ + b2 cos2 θ

y = ab sin θ√
a2 sin2 θ + b2 cos2 θ

11.2 Arc Length and Speed
We now derive a formula for the arc length of a curve in parametric form. Recall that in
Section 8.1, arc length was defined as the limit of the lengths of polygonal approximations
(Figure 1).

x

y

N = 5 N = 10

P5 = c(t5) P4 = c(t4)

x

y

P3 = c(t3)

P2 = c(t2)

P1 = c(t1)

P0 = c(t0)

P10 = c(t10)

P1 = c(t1)

P0 = c(t0)

FIGURE 1 Polygonal approximations for
N = 5 and N = 10.

Given a parametrization c(t) = (x(t), y(t)) for a ≤ t ≤ b, we construct a polygonal ap-
proximation L consisting of the N segments by joining points

P0 = c(t0), P1 = c(t1), . . . , PN = c(tN )

corresponding to a choice of values t0 = a < t1 < t2 < · · · < tN = b. By the distance
formula,

Pi−1Pi =
√(

x(ti) − x(ti−1)
)2 + (

y(ti) − y(ti−1)
)2 1

Now assume that x(t) and y(t) are differentiable. According to the Mean Value Theorem,
there are values t∗i and t∗∗

i in the interval [ti−1, ti] such that

x(ti) − x(ti−1) = x′(t∗i )�ti, y(ti) − y(ti−1) = y′(t∗∗
i )�ti

where �ti = ti − ti−1, and therefore,

Pi−1Pi =
√

x′(t∗i )2�t2
i + y′(t∗∗

i )2�t2
i =

√
x′(t∗i )2 + y′(t∗∗

i )2 �ti

The length of the polygonal approximation L is equal to the sum

N∑
i=1

Pi−1Pi =
N∑

i=1

√
x′(t∗i )2 + y′(t∗∗

i )2 �ti 2

This is nearly a Riemann sum for the function
√

x′(t)2 + y′(t)2. It would be a true Riemann
sum if the intermediate values t∗i and t∗∗

i were equal. Although they are not necessarily
equal, it can be shown (and we will take for granted) that if x′(t) and y′(t) are continuous,
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then the sum in Eq. (2) still approaches the integral as the widths �ti tend to 0. Thus,

Because of the square root, the arc length
integral cannot be evaluated explicitly
except in special cases, but we can always
approximate it numerically.

s = lim
N∑

i=1

Pi−1Pi =
∫ b

a

√
x′(t)2 + y′(t)2 dt

THEOREM 1 Arc Length Let c(t) = (x(t), y(t)), where x′(t) and y′(t) exist and are
continuous. Then the arc length s of c(t) for a ≤ t ≤ b is equal to

s =
∫ b

a

√
x′(t)2 + y′(t)2 dt 3

The graph of a function y = f (x) has parametrization c(t) = (t, f (t)). In this case,√
x′(t)2 + y′(t)2 =

√
1 + f ′(t)2

and Eq. (3) reduces to the arc length formula derived in Section 8.1.
As mentioned above, the arc length integral can be evaluated explicitly only in special

cases. The circle and the cycloid are two such cases.

EXAMPLE 1 Use Eq. 3 to calculate the arc length of a circle of radius R.

Solution With the parametrization x = R cos θ , y = R sin θ ,

x′(θ)2 + y′(θ)2 = (−R sin θ)2 + (R cos θ)2 = R2(sin2 θ + cos2 θ) = R2

We obtain the expected result:

s =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ =

∫ 2π

0
R dθ = 2πR

EXAMPLE 2 Length of the Cycloid Calculate the length s of one arch of the cycloid

t = 
2

π2

π2

t = π

π4

4

x

y

FIGURE 2 One arch of the cycloid generated
by a circle of radius 2.

REMINDER

1 − cos t

2
= sin2 t

2

generated by a circle of radius R = 2 (Figure 2).

Solution We use the parametrization of the cycloid in Eq. (6) of Section 1:

x(t) = 2(t − sin t), y(t) = 2(1 − cos t)

x′(t) = 2(1 − cos t), y′(t) = 2 sin t

Thus,

x′(t)2 + y′(t)2 = 22(1 − cos t)2 + 22 sin2 t

= 4 − 8 cos t + 4 cos2 t + 4 sin2 t

= 8 − 8 cos t

= 16 sin2 t

2
(Use the identity recalled in the margin.)

One arch of the cycloid is traced as t varies from 0 to 2π , and thus

s =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0
4 sin

t

2
dt = −8 cos

t

2

∣∣∣∣2π

0
= −8(−1) + 8 = 16

Note that because sin t
2 ≥ 0 for 0 ≤ t ≤ 2π , we did not need an absolute value when

taking the square root of 16 sin2 t
2 .
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Now consider a particle moving along a path c(t). The distance traveled by the particleIn Section 7, we will discuss not just the
speed but also the velocity of a particle
moving along a curved path. Velocity is
“speed plus direction” and is represented
by a vector.

over the time interval [t0, t] is given by the arc length integral:

s(t) =
∫ t

t0

√
x′(u)2 + y′(u)2 du

On the other hand, speed is defined as the rate of change of distance traveled with respect
to time, so by the Fundamental Theorem of Calculus,

Speed = ds

dt
= d

dt

∫ t

t0

√
x′(u)2 + y′(u)2 du =

√
x′(t)2 + y′(t)2

THEOREM 2 Speed Along a Parametrized Path The speed of c(t) = (x(t), y(t)) is

Speed = ds

dt
=

√
x′(t)2 + y′(t)2

The next example illustrates the difference between distance traveled along a path
and displacement (also called net change in position). The displacement along a path is
the distance between the initial point c(t0) and the endpoint c(t1). The distance traveled
is greater than the displacement unless the particle happens to move in a straight line
(Figure 3).

y

x

c (t0)
c (t1)

Displacement over [t0, t1]

Path

FIGURE 3 The distance along the path is
greater than or equal to the displacement.

EXAMPLE 3 A particle travels along the path c(t) = (2t, 1 + t3/2). Find:

y

9

6

3

4 8
x

c(0)

c(4) = (8, 9)

Displacement d

Path of length s

FIGURE 4 The path c(t) = (2t, 1 + t3/2).

(a) The particle’s speed at t = 1 (assume units of meters and minutes).
(b) The distance traveled s and displacement d during the interval 0 ≤ t ≤ 4.

Solution We have

x′(t) = 2, y′(t) = 3

2
t1/2

The speed at time t is

s′(t) =
√

x′(t)2 + y′(t)2 =
√

4 + 9

4
t m/min

(a) The particle’s speed at t = 1 is s′(1) =
√

4 + 9
4 = 2.5 m/min.

(b) The distance traveled in the first 4 min is

s =
∫ 4

0

√
4 + 9

4
t dt = 8

27

(
4 + 9

4
t

)3/2 ∣∣∣∣4

0
= 8

27

(
133/2 − 8

) ≈ 11.52 m

The displacement d is the distance from the initial point c(0) = (0, 1) to the endpoint
c(4) = (8, 1 + 43/2) = (8, 9) (see Figure 4):

d =
√

(8 − 0)2 + (9 − 1)2 = 8
√

2 ≈ 11.31 m

In physics, we often describe the path of a particle moving with constant speed along

�

� �

y

x

R
(R cos    t, R sin    t)

θ =    t

FIGURE 5 A particle moving on a circle of
radius R with angular velocity ω has speed
|ωR|.

a circle of radius R in terms of a constant ω (lowercase Greek omega) as follows:

c(t) = (R cos ωt, R sin ωt)

The constant ω, called the angular velocity, is the rate of change with respect to time of
the particle’s angle θ (Figure 5).
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EXAMPLE 4 Angular Velocity Calculate the speed of the circular path of radius R

and angular velocity ω. What is the speed if R = 3 m and ω = 4 rad/s?

Solution We have x = R cos ωt and y = R sin ωt , and

x′(t) = −ωR sin ωt, y′(t) = ωR cos ωt

The particle’s speed is

ds

dt
=

√
x′(t)2 + y′(t)2 =

√
(−ωR sin ωt)2 + (ωR cos ωt)2

=
√

ω2R2(sin2 ωt + cos2 ωt) = |ω|R
Thus, the speed is constant with value |ω|R. If R = 3 m and ω = 4 rad/s, then the speed
is |ω|R = 3(4) = 12 m/s.

Consider the surface obtained by rotating a parametric curve c(t) = (x(t), y(t)) about
the x-axis. The surface area is given by Eq. (4) in the next theorem. It can be derived in
much the same way as the formula for a surface of revolution of a graph y = f (x) in
Section 8.1. In this theorem, we assume that y(t) ≥ 0 so that the curve c(t) lies above the
x-axis, and that x(t) is increasing so that the curve does not reverse direction.

THEOREM 3 Surface Area Let c(t) = (x(t), y(t)), where y(t) ≥ 0, x(t) is increas-
ing, and x′(t) and y′(t) are continuous. Then the surface obtained by rotating c(t) about
the x-axis for a ≤ t ≤ b has surface area

S = 2π

∫ b

a

y(t)

√
x′(t)2 + y′(t)2 dt 4

EXAMPLE 5 Calculate the surface area of the surface obtained by rotating the tractrix
c(t) = (t − tanh t, sech t) about the x-axis for 0 ≤ t < ∞.

1

y

x

c(t) = (t − tanh t, sech t)

1 2 3

FIGURE 6 Surface generated by revolving
the tractrix about the x-axis.

Solution Note that the surface extends infinitely to the right (Figure 6). We have

x′(t) = d

dt
(t − tanh t) = 1 − sech2 t, y′(t) = d

dt
sech t = − sech t tanh t

Using the identities 1 − sech2 t = tanh2 t and sech2 t = 1 − tanh2 t , we obtain

x′(t)2 + y′(t)2 = (1 − sech2 t)2 + (− sech t tanh t)2

= (tanh2 t)2 + (1 − tanh2 t) tanh2 t = tanh2 t

The surface area is given by an improper integral, which we evaluate using the integral
formula recalled in the margin:

REMINDER

sech t = 1

cosh t
= 2

et + e−t

1 − sech2 t = tanh2 t

d

dt
tanh t = sech2 t

d

dt
sech t = − sech t tanh t∫

sech t tanh t dt = − sech t + C

S = 2π

∫ ∞

0
sech t

√
tanh2 t dt = 2π

∫ ∞

0
sech t tanh t dt = 2π lim

R→∞

∫ R

0
sech t tanh t dt

= 2π lim
R→∞(− sech t)

∣∣∣R
0

= 2π lim
R→∞(sech 0 − sech R) = 2π sech 0 = 2π

Here we use that sech R = 1

eR + e−R
tends to zero (because eR → ∞ while e−R → 0).
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11.2 SUMMARY

• Arc length of c(t) = (x(t), y(t)) for a ≤ t ≤ b:

s = arc length =
∫ b

a

√
x′(t)2 + y′(t)2 dt

• The arc length is the distance along the path c(t). The displacement is the distance from
the starting point c(a) to the endpoint c(b).
• Arc length integral:

s(t) =
∫ t

t0

√
x′(u)2 + y′(u)2 du

• Speed at time t :
ds

dt
=

√
x′(t)2 + y′(t)2

• Surface area of the surface obtained by rotating c(t) = (x(t), y(t)) about the x-axis for
a ≤ t ≤ b:

S = 2π

∫ b

a

y(t)

√
x′(t)2 + y′(t)2 dt

11.2 EXERCISES

Preliminary Questions
1. What is the definition of arc length?

2. What is the interpretation of
√

x′(t)2 + y′(t)2 for a particle fol-
lowing the trajectory (x(t), y(t))?

3. A particle travels along a path from (0, 0) to (3, 4). What is the

displacement? Can the distance traveled be determined from the infor-
mation given?

4. Aparticle traverses the parabola y = x2 with constant speed 3 cm/s.
What is the distance traveled during the first minute? Hint: No compu-
tation is necessary.

Exercises
In Exercises 1–10, use Eq. (3) to find the length of the path over the
given interval.

1. (3t + 1, 9 − 4t), 0 ≤ t ≤ 2

2. (1 + 2t, 2 + 4t), 1 ≤ t ≤ 4 3. (2t2, 3t2 − 1), 0 ≤ t ≤ 4

4. (3t, 4t3/2), 0 ≤ t ≤ 1 5. (3t2, 4t3), 1 ≤ t ≤ 4

6. (t3 + 1, t2 − 3), 0 ≤ t ≤ 1

7. (sin 3t, cos 3t), 0 ≤ t ≤ π

8. (sin θ − θ cos θ, cos θ + θ sin θ), 0 ≤ θ ≤ 2

In Exercises 9 and 10, use the identity

1 − cos t

2
= sin2 t

2

9. (2 cos t − cos 2t, 2 sin t − sin 2t), 0 ≤ t ≤ π
2

10. (5(θ − sin θ), 5(1 − cos θ)), 0 ≤ θ ≤ 2π

11. Show that one arch of a cycloid generated by a circle of radius R

has length 8R.

12. Find the length of the spiral c(t) = (t cos t, t sin t) for 0 ≤ t ≤ 2π

to three decimal places (Figure 7). Hint: Use the formula∫ √
1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln

(
t +

√
1 + t2

)
y

x

5

10−10

−10

t = 0

t = 2π

FIGURE 7 The spiral c(t) = (t cos t, t sin t).

13. Find the length of the tractrix (see Figure 6)

c(t) = (t − tanh(t), sech(t)), 0 ≤ t ≤ A
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14. Find a numerical approximation to the length of c(t) =
(cos 5t, sin 3t) for 0 ≤ t ≤ 2π (Figure 8).

y

x

1

1

FIGURE 8

In Exercises 15–18, determine the speed s at time t (assume units of
meters and seconds).

15. (t3, t2), t = 2 16. (3 sin 5t, 8 cos 5t), t = π
4

17. (5t + 1, 4t − 3), t = 9 18. (ln(t2 + 1), t3), t = 1

19. Find the minimum speed of a particle with trajectory c(t) =
(t3 − 4t, t2 + 1) for t ≥ 0. Hint: It is easier to find the minimum of
the square of the speed.

20. Find the minimum speed of a particle with trajectory c(t) =
(t3, t−2) for t ≥ 0.5.

21. Find the speed of the cycloid c(t) = (4t − 4 sin t, 4 − 4 cos t) at
points where the tangent line is horizontal.

22. Calculate the arc length integral s(t) for the logarithmic spiral
c(t) = (et cos t, et sin t).

In Exercises 23–26, plot the curve and use the Midpoint Rule
with N = 10, 20, 30, and 50 to approximate its length.

23. c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π

24. c(t) = (t − sin 2t, 1 − cos 2t) for 0 ≤ t ≤ 2π

25. The ellipse
(x

5

)2 +
(y

3

)2 = 1

26. x = sin 2t , y = sin 3t for 0 ≤ t ≤ 2π

27. If you unwind thread from a stationary circular spool, keeping the
thread taut at all times, then the endpoint traces a curve C called the

involute of the circle (Figure 9). Observe that PQ has length Rθ . Show
that C is parametrized by

c(θ) = (
R(cos θ + θ sin θ), R(sin θ − θ cos θ)

)
Then find the length of the involute for 0 ≤ θ ≤ 2π .

P = (x, y)

y

θ x

R

Q

FIGURE 9 Involute of a circle.

28. Let a > b and set

k =
√

1 − b2

a2

Use a parametric representation to show that the ellipse
(
x
a

)2+( y
b

)2 = 1 has length L = 4aG
(
π
2 , k

)
, where

G(θ, k) =
∫ θ

0

√
1 − k2 sin2 t dt

is the elliptic integral of the second kind.

In Exercises 29–32, use Eq. (4) to compute the surface area of the given
surface.

29. The cone generated by revolving c(t) = (t, mt) about the x-axis
for 0 ≤ t ≤ A

30. A sphere of radius R

31. The surface generated by revolving one arch of the cycloid c(t) =
(t − sin t, 1 − cos t) about the x-axis

32. The surface generated by revolving the astroid c(t) =
(cos3 t, sin3 t) about the x-axis for 0 ≤ t ≤ π

2

Further Insights and Challenges
33. Let b(t) be the “Butterfly Curve”:

x(t) = sin t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

y(t) = cos t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

(a) Use a computer algebra system to plot b(t) and the speed s′(t) for
0 ≤ t ≤ 12π .

(b) Approximate the length b(t) for 0 ≤ t ≤ 10π .

34. Let a ≥ b > 0 and set k = 2
√

ab

a − b
. Show that the trochoid

x = at − b sin t, y = a − b cos t, 0 ≤ t ≤ T

has length 2(a − b)G
(
T
2 , k

)
with G(θ, k) as in Exercise 28.

35. A satellite orbiting at a distance R from the center of the earth
follows the circular path x = R cos ωt , y = R sin ωt .
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(a) Show that the period T (the time of one revolution) is T = 2π/ω.

(b) According to Newton’s laws of motion and gravity,

x′′(t) = −Gme
x

R3
, y′′(t) = −Gme

y

R3

where G is the universal gravitational constant and me is the mass of
the earth. Prove that R3/T 2 = Gme/4π2. Thus, R3/T 2 has the same
value for all orbits (a special case of Kepler’s Third Law).

36. The acceleration due to gravity on the surface of the earth is

g = Gme

R2
e

= 9.8 m/s2, where Re = 6378 km

Use Exercise 35(b) to show that a satellite orbiting at the earth’s sur-
face would have period Te = 2π

√
Re/g ≈ 84.5 min. Then estimate

the distance Rm from the moon to the center of the earth. Assume that
the period of the moon (sidereal month) is Tm ≈ 27.43 days.

11.3 Polar Coordinates
In polar coordinates, we label a point P by coordinates (r, θ), where r is the distancePolar coordinates are appropriate when

distance from the origin or angle plays a
role. For example, the gravitational force
exerted on a planet by the sun depends
only on the distance r from the sun and is
conveniently described in polar
coordinates.

to the origin O and θ is the angle between OP and the positive x-axis (Figure 1). By
convention, an angle is positive if the corresponding rotation is counterclockwise. We call
r the radial coordinate and θ the angular coordinate.

x = r cos θ

y = r sin θ

P = (x, y) (rectangular)
(r, θ) (polar)

r

O

y

y

x
θ

FIGURE 1

Ray    =

(4,      )P =

x

4

O

Circle r = 4

y

θ 2  
3
π

2  
3
π

2  
3
π

FIGURE 2

The point P in Figure 2 has polar coordinates (r, θ) = (
4, 2π

3

)
. It is located at distance

r = 4 from the origin (so it lies on the circle of radius 4), and it lies on the ray of angle
θ = 2π

3 .
Figure 3 shows the two families of grid lines in polar coordinates:

x

y

π
4321

r = 4

7π

4
5π

4

3π

4

7π

6

5π

6

11π

6

5π

3
4π

3

2π

3
5π

6

3π

2

π

3

π

2

π

4
π

6

Q = (3, )

FIGURE 3 Grid lines in polar coordinates.

Circle centered at O ←→ r = constant

Ray starting at O ←→ θ = constant

Every point in the plane other than the origin lies at the intersection of the two grid lines
and these two grid lines determine its polar coordinates. For example, point Q in Figure
3 lies on the circle r = 3 and the ray θ = 5π

6 , so Q = (
3, 5π

6

)
in polar coordinates.

Figure 1 shows that polar and rectangular coordinates are related by the equations
x = r cos θ and y = r sin θ . On the other hand, r2 = x2 + y2 by the distance formula,
and tan θ = y/x if x �= 0. This yields the conversion formulas:

Polar to Rectangular Rectangular to Polar

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ = y

x
(x �= 0)
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EXAMPLE 1 From Polar to Rectangular Coordinates Find the rectangular coordinates
of point Q in Figure 3.

Solution The point Q = (r, θ) = (
3, 5π

6

)
has rectangular coordinates:

x = r cos θ = 3 cos

(
5π

6

)
= 3

(
−

√
3

2

)
= −3

√
3

2

y = r sin θ = 3 sin

(
5π

6

)
= 3

(
1

2

)
= 3

2

EXAMPLE 2 From Rectangular to Polar Coordinates Find the polar coordinates ofy

P = (3, 2)

x

r

32

2

21

1

θ

FIGURE 4 The polar coordinates of P

satisfy r =
√

32 + 22 and tan θ = 2
3 .

point P in Figure 4.

Solution Since P = (x, y) = (3, 2),

r =
√

x2 + y2 =
√

32 + 22 = √
13 ≈ 3.6

tan θ = y

x
= 2

3

and because P lies in the first quadrant,

θ = tan−1 y

x
= tan−1 2

3
≈ 0.588

Thus, P has polar coordinates (r, θ) ≈ (3.6, 0.588).

A few remarks are in order before proceeding:

• The angular coordinate is not unique because (r, θ) and (r, θ + 2πn) label the sameBy definition,

−π

2
< tan−1 x <

π

2

If r > 0, a coordinate θ of P = (x, y) is

θ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tan−1 y

x
if x > 0

tan−1 y

x
+ π if x < 0

±π

2
if x = 0

point for any integer n. For instance, point P in Figure 5 has radial coordinate r = 2,
but its angular coordinate can be any one of π

2 , 5π
2 , . . . or − 3π

2 , − 7π
2 , . . . .

• The origin O has no well-defined angular coordinate, so we assign to O the polar
coordinates (0, θ) for any angle θ .

• By convention, we allow negative radial coordinates. By definition, (−r, θ) is the
reflection of (r, θ) through the origin (Figure 6). With this convention, (−r, θ) and
(r, θ + π) represent the same point.

• We may specify unique polar coordinates for points other than the origin by placing
restrictions on r and θ . We commonly choose r > 0 and 0 ≤ θ < 2π .

π

2

5π

2

y

P = (0, 2) (rectangular)

x

FIGURE 5 The angular coordinate of P = (0, 2)

is π
2 or any angle π

2 + 2πn, where n is an
integer.

y

(r, θ)

(−r, θ)
or (r, θ + π)

θ + π 

x
θ

FIGURE 6 Relation between (r, θ) and
(−r, θ).
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When determining the angular coordinate of a point P = (x, y), remember that therey

x

P = (−1, 1)

(1, −1)

4
3

7
4

−
4

FIGURE 7

are two angles between 0 and 2π satisfying tan θ = y/x. You must choose θ so that (r, θ)

lies in the quadrant containing P .

EXAMPLE 3 Choosing θ Correctly Find two polar representations of P = (−1, 1),
one with r > 0 and one with r < 0.

Solution The point P = (x, y) = (−1, 1) has polar coordinates (r, θ), where

r =
√

(−1)2 + 12 = √
2, tan θ = tan

y

x
= −1

However, θ is not given by

tan−1 y

x
= tan−1

(
1

−1

)
= −π

4

because θ = −π
4 would place P in the fourth quadrant (Figure 7). Since P is in the second

quadrant, the correct angle is

θ = tan−1 y

x
+ π = −π

4
+ π = 3π

4

If we wish to use the negative radial coordinate r = −√
2, then the angle becomes θ = −π

4
or 7π

4 . Thus,

P =
(√

2,
3π

4

)
or

(
−√

2,
7π

4

)

A curve is described in polar coordinates by an equation involving r and θ , which we
call a polar equation. By convention, we allow solutions with r < 0.

A line through the origin O has the simple equation θ = θ0, where θ0 is the angle
between the line and the x-axis (Figure 8). Indeed, the points with θ = θ0 are (r, θ0),
where r is arbitrary (positive, negative, or zero).

EXAMPLE 4 Line Through the Origin Find the polar equation of the line through the
origin of slope 3

2 (Figure 9).

Solution A line of slope m makes an angle θ0 with the x-axis, where m = tan θ0. In our
case, θ0 = tan−1 3

2 ≈ 0.98. The equation of the line is θ = tan−1 3
2 or θ ≈ 0.98.

y

x
O

(r, θ0)

θ0

r > 0

r < 0

FIGURE 8 Lines through O with polar
equation θ = θ0.

y

x
O

θ0

(2, 3)

2

3

FIGURE 9 Line of slope 3
2 through the

origin.

To describe lines that do not pass through the origin, we note that any such line has a
unique point P0 that is closest to the origin. The next example shows how to write down
the polar equation of the line in terms of P0 (Figure 10).
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EXAMPLE 5 Line Not Passing Through O Show thaty

x

P0 = (d, α)

P = (r, θ)

r

d

O

θ

α

Line L

FIGURE 10 P0 is the point on L closest to
the origin.

r = d sec(θ − α) 1

is the polar equation of the line L whose point closest to the origin is P0 = (d, α).

Solution The point P0 is obtained by dropping a perpendicular from the origin to L
(Figure 10), and if P = (r, θ) is any point on L other than P0, then �OPP0 is a right
triangle. Therefore, d/r = cos(θ − α), or r = d sec(θ − α), as claimed.

EXAMPLE 6 Find the polar equation of the line L tangent to the circle r = 4 at the
point with polar coordinates P0 = (

4, π
3

)
.

Solution The point on L closest to the origin is P0 itself (Figure 11). Therefore, we take

y

x

4

P0

3

FIGURE 11 The tangent line has equation

r = 4 sec
(
θ − π

3

)
.

(d, α) = (
4, π

3

)
in Eq. (1) to obtain the equation r = 4 sec

(
θ − π

3

)
.

Often, it is hard to guess the shape of a graph of a polar equation. In some cases, it is
helpful rewrite the equation in rectangular coordinates.

EXAMPLE 7 Converting to Rectangular Coordinates Identify the curve with polar
equation r = 2a cos θ (a a constant).

Solution Multiply the equation by r to obtain r2 = 2ar cos θ . Because r2 = x2 + y2 and
x = r cos θ , this equation becomes

x2 + y2 = 2ax or x2 − 2ax + y2 = 0

Then complete the square to obtain (x − a)2 + y2 = a2. This is the equation of the circle
of radius a and center (a, 0) (Figure 12).

A similar calculation shows that the circle x2 + (y − a)2 = a2 of radius a and center
(0, a) has polar equation r = 2a sin θ . In the next example, we make use of symmetry.
Note that the points (r, θ) and (r, −θ) are symmetric with respect to the x-axis (Figure
13).

y

x
a

r = 2a cos θ

2a

FIGURE 12

y

x

(r, θ)

(r, −θ)

FIGURE 13 The points (r, θ) and
(r, −θ) are symmetric with respect
to the x-axis.

EXAMPLE 8 Symmetry About the x-Axis Sketch the limaçon curve
r = 2 cos θ − 1.

Solution Since cos θ is periodic, it suffices to plot points for −π ≤ θ ≤ π .

Step 1. Plot points.
To get started, we plot points A–G on a grid and join them by a smooth curve (Fig-
ure 14).
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A B C D E F G

θ 0 π
6

π
3

π
2

2π
3

5π
6 π

r = 2 cos θ − 1 1 0.73 0 −1 −2 −2.73 −3

Step 2. Analyze r as a function of θ .
For a better understanding, it is helpful to graph r as a function of θ in rectangular
coordinates. Figure 15(A) shows that

As θ varies from 0 to π
3 , r varies from 1 to 0.

As θ varies from π
3 to π , r is negative and varies from 0 to −3.

We conclude:

xA G

y

π
21

C

D

E

F

B

π

2 π

3

π

6
5π

6

2π

3

FIGURE 14 Plotting r = 2 cos θ − 1 using a
grid. • The graph begins at point A in Figure 15(B) and moves in toward the origin as

θ varies from 0 to π
3 .

• Since r is negative for π
3 ≤ θ ≤ π , the curve continues into the third and fourth

quadrants (rather than into the first and second quadrants), moving toward the
point G = (−3, π) in Figure 15(C).

Step 3. Use symmetry.
Since r(θ) = r(−θ), the curve is symmetric with respect to the x-axis. So the part of the
curve with −π ≤ θ ≤ 0 is obtained by reflection through the x-axis as in Figure 15(D).

1

−2

11

q varies from   /3 to   ,
but r is negative and
varies from 0 to −3.

(C) The entire Limaçon.(D)

x
G

F

E

C A

B

−2

3
x

1

1 3

y

3 3

2

q varies from 0 to   /3;
r varies from 1 to 0.

(B)Variation of r as a function of q .(A)

y

x

1

−1

−2

−3

r

q
33

r = 2cosq − 1

−

r < 0

A
B

D
E

F
G

C

3
2

3
2

6
5

3
2

D

− −

FIGURE 15 The curve r = 2 cos θ − 1 is called the limaçon, from the Latin word for “snail.” It was first described in 1525 by the German artist
Albrecht Dürer.

11.3 SUMMARY

• A point P = (x, y) has polar coordinates (r, θ), where r is the distance to the origin
and θ is the angle between the positive x-axis and the segment OP , measured in the
counterclockwise direction.

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ = y

x
(x �= 0)
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• The angular coordinate θ must be chosen so that (r, θ) lies in the proper quadrant. If
r > 0, then

θ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tan−1 y

x
if x > 0

tan−1 y

x
+ π if x < 0

±π

2
if x = 0

• Nonuniqueness: (r, θ) and (r, θ + 2nπ) represent the same point for all integers n. The
origin O has polar coordinates (0, θ) for any θ .
• Negative radial coordinates: (−r, θ) and (r, θ + π) represent the same point.
• Polar equations:

Curve Polar equation

Circle of radius R, center at the origin r = R

Line through origin of slope m = tan θ0 θ = θ0

Line on which P0 = (d, α) is
the point closest to the origin

r = d sec(θ − α)

Circle of radius a, center at (a, 0)

(x − a)2 + y2 = a2 r = 2a cos θ

Circle of radius a, center at (0, a)

x2 + (y − a)2 = a2 r = 2a sin θ

11.3 EXERCISES

Preliminary Questions
1. Points P and Q with the same radial coordinate (choose the correct

answer):

(a) Lie on the same circle with the center at the origin.

(b) Lie on the same ray based at the origin.

2. Give two polar representations for the point (x, y) = (0, 1), one
with negative r and one with positive r .

3. Describe each of the following curves:

(a) r = 2 (b) r2 = 2 (c) r cos θ = 2

4. If f (−θ) = f (θ), then the curve r = f (θ) is symmetric with re-
spect to the (choose the correct answer):

(a) x-axis (b) y-axis (c) origin

Exercises
1. Find polar coordinates for each of the seven points plotted in Fig-

ure 16.

A

B
E F

C D
G

x

(x, y) =

y

(2  3, 2)

4

4

FIGURE 16

2. Plot the points with polar coordinates:

(a)
(
2, π

6

)
(b)

(
4, 3π

4

)
(c)

(
3, −π

2

)
(d)

(
0, π

6

)
3. Convert from rectangular to polar coordinates.

(a) (1, 0) (b) (3,
√

3) (c) (−2, 2) (d) (−1,
√

3)

4. Convert from rectangular to polar coordinates using a calculator
(make sure your choice of θ gives the correct quadrant).

(a) (2, 3) (b) (4, −7) (c) (−3, −8) (d) (−5, 2)

5. Convert from polar to rectangular coordinates:

(a)
(
3, π

6

)
(b)

(
6, 3π

4

)
(c)

(
0, π

5

)
(d)

(
5, −π

2

)
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6. Which of the following are possible polar coordinates for the point
P with rectangular coordinates (0, −2)?

(a)
(

2,
π

2

)
(b)

(
2,

7π

2

)

(c)
(

−2, −3π

2

)
(d)

(
−2,

7π

2

)

(e)
(
−2, −π

2

)
(f)

(
2, −7π

2

)

7. Describe each shaded sector in Figure 17 by inequalities in r and θ .

(A) (B) (C)

x x x

y y y

3 5 3 5 3 5

45°

FIGURE 17

8. Find the equation in polar coordinates of the line through the origin
with slope 1

2 .

9. What is the slope of the line θ = 3π
5 ?

10. Which of r = 2 sec θ and r = 2 csc θ defines a horizontal line?

In Exercises 11–16, convert to an equation in rectangular coordinates.

11. r = 7 12. r = sin θ

13. r = 2 sin θ 14. r = 2 csc θ

15. r = 1

cos θ − sin θ
16. r = 1

2 − cos θ

In Exercises 17–20, convert to an equation in polar coordinates.

17. x2 + y2 = 5 18. x = 5

19. y = x2 20. xy = 1

21. Match each equation with its description.

(a) r = 2 (i) Vertical line
(b) θ = 2 (ii) Horizontal line
(c) r = 2 sec θ (iii) Circle
(d) r = 2 csc θ (iv) Line through origin

22. Find the values of θ in the plot of r = 4 cos θ corresponding to
points A, B, C, D in Figure 18. Then indicate the portion of the graph
traced out as θ varies in the following intervals:

(a) 0 ≤ θ ≤ π
2 (b) π

2 ≤ θ ≤ π (c) π ≤ θ ≤ 3π
2

x

y

2

−2

2 4

C A

B

D

FIGURE 18 Plot of r = 4 cos θ .

23. Suppose that P = (x, y) has polar coordinates (r, θ). Find the polar
coordinates for the points:

(a) (x, −y) (b) (−x, −y) (c) (−x, y) (d) (y, x)

24. Match each equation in rectangular coordinates with its equation
in polar coordinates.

(a) x2 + y2 = 4 (i) r2(1 − 2 sin2 θ) = 4
(b) x2 + (y − 1)2 = 1 (ii) r(cos θ + sin θ) = 4
(c) x2 − y2 = 4 (iii) r = 2 sin θ

(d) x + y = 4 (iv) r = 2

25. What are the polar equations of the lines parallel to the line
r cos

(
θ − π

3

) = 1?

26. Show that the circle with center at
( 1

2 , 1
2

)
in Figure 26 has polar

equation r = sin θ + cos θ and find the values of θ between 0 and π

corresponding to points A, B, C, and D.

A D

B C
x

y

1
2

1
2( ),

FIGURE 19 Plot of r = sin θ + cos θ .

27. Sketch the curve r = 1
2 θ (the spiral of Archimedes) for θ between

0 and 2π by plotting the points for θ = 0, π
4 , π

2 , . . . , 2π .

28. Sketch r = 3 cos θ − 1 (see Example 8).

29. Sketch the cardioid curve r = 1 + cos θ .

30. Show that the cardioid of Exercise 29 has equation

(x2 + y2 − x)2 = x2 + y2

in rectangular coordinates.

31. Figure 20 displays the graphs of r = sin 2θ in rectangular coor-
dinates and in polar coordinates, where it is a “rose with four petals.”
Identify:

(a) The points in (B) corresponding to points A–I in (A).

(b) The parts of the curve in (B) corresponding to the angle intervals[
0, π

2

]
,
[
π
2 , π

]
,
[
π, 3π

2

]
, and

[ 3π
2 , 2π

]
.
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π

2
π 3π 2π

2

A C E IG

B F

D H

θ x

r y

(A) Graph of r as a function
       of θ, where r = sin 2θ.

(B) Graph of r = sin 2θ 
       in polar coordinates.

FIGURE 20

32. Sketch the curve r = sin 3θ . First fill in the table of r-values be-
low and plot the corresponding points of the curve. Notice that the three
petals of the curve correspond to the angle intervals

[
0, π

3

]
,

[
π
3 , 2π

3

]
,

and
[
π
3 , π

]
. Then plot r = sin 3θ in rectangular coordinates and label

the points on this graph corresponding to (r, θ) in the table.

θ 0 π
12

π
6

π
4

π
3

5π
12 · · · 11π

12 π

r

33. Plot the cissoid r = 2 sin θ tan θ and show that its equa-
tion in rectangular coordinates is

y2 = x3

2 − x

34. Prove that r = 2a cos θ is the equation of the circle in Figure 21
using only the fact that a triangle inscribed in a circle with one side a
diameter is a right triangle.

x

y

r

2a0
θ

FIGURE 21

35. Show that

r = a cos θ + b sin θ

is the equation of a circle passing through the origin. Express the radius
and center (in rectangular coordinates) in terms of a and b.

36. Use the previous exercise to write the equation of the circle of
radius 5 and center (3, 4) in the form r = a cos θ + b sin θ .

37. Use the identity cos 2θ = cos2 θ − sin2 θ to find a polar equation
of the hyperbola x2 − y2 = 1.

38. Find an equation in rectangular coordinates for the curve r2 =
cos 2θ .

39. Show that cos 3θ = cos3 θ − 3 cos θ sin2 θ and use this identity to
find an equation in rectangular coordinates for the curve r = cos 3θ .

40. Use the addition formula for the cosine to show that the line L with
polar equation r cos(θ − α) = d has the equation in rectangular coor-
dinates (cos α)x + (sin α)y = d. Show that L has slope m = − cot α
and y-intercept d/sin α.

In Exercises 41–44, find an equation in polar coordinates of the line L
with the given description.

41. The point on L closest to the origin has polar coordinates
(
2, π

9

)
.

42. The point on L closest to the origin has rectangular coordinates
(−2, 2).

43. L is tangent to the circle r = 2
√

10 at the point with rectangular
coordinates (−2, −6).

44. L has slope 3 and is tangent to the unit circle in the fourth quadrant.

45. Show that every line that does not pass through the origin has a
polar equation of the form

r = b

sin θ − a cos θ

where b �= 0.

46. By the Law of Cosines, the distance d between two points (Figure
22) with polar coordinates (r, θ) and (r0, θ0) is

d2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

Use this distance formula to show that

r2 − 10r cos
(
θ − π

4

)
= 56

is the equation of the circle of radius 9 whose center has polar coordi-
nates

(
5, π

4

)
.

x

y

(r0, θ0)
r0

r

d

θ0
θ

(r, θ)

FIGURE 22

47. For a > 0, a lemniscate curve is the set of points P such that the
product of the distances from P to (a, 0) and (−a, 0) is a2. Show that
the equation of the lemniscate is

(x2 + y2)2 = 2a2(x2 − y2)

Then find the equation in polar coordinates. To obtain the simplest
form of the equation, use the identity cos 2θ = cos2 θ − sin2 θ . Plot
the lemniscate for a = 2 if you have a computer algebra system.
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48. Let c be a fixed constant. Explain the relationship between
the graphs of:
(a) y = f (x + c) and y = f (x) (rectangular)
(b) r = f (θ + c) and r = f (θ) (polar)
(c) y = f (x) + c and y = f (x) (rectangular)
(d) r = f (θ) + c and r = f (θ) (polar)

49. The Derivative in Polar Coordinates Show that a polar curve
r = f (θ) has parametric equations

x = f (θ) cos θ, y = f (θ) sin θ

Then apply Theorem 2 of Section 11.1 to prove

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
2

where f ′(θ) = df /dθ .

Further Insights and Challenges
50. Let f (x) be a periodic function of period 2π—that is,
f (x) = f (x + 2π). Explain how this periodicity is reflected in the
graph of:
(a) y = f (x) in rectangular coordinates
(b) r = f (θ) in polar coordinates

51. Use a graphing utility to convince yourself that the po-
lar equations r = f1(θ) = 2 cos θ − 1 and r = f2(θ) = 2 cos θ + 1
have the same graph. Then explain why. Hint: Show that the points
(f1(θ + π), θ + π) and (f2(θ), θ) coincide.

11.4 Area, Arc Length, and Slope in Polar Coordinates
Integration in polar coordinates involves finding not the area underneath a curve but,
rather, the area of a sector bounded by a curve as in Figure 1(A). Consider the region
bounded by the curve r = f (θ) and the two rays θ = α and θ = β with α < β. To derive
a formula for the area, divide the region into N narrow sectors of angle �θ = (β − α)/N

corresponding to a partition of the interval [α, β]:

θ0 = α < θ1 < θ2 < · · · < θN = β

Recall that a circular sector of angle �θ and radius r has area 1
2 r2�θ (Figure 2). If �θ is

small, the j th narrow sector (Figure 3) is nearly a circular sector of radius rj = f (θj ), so
its area is approximately 1

2 r2
j �θ . The total area is approximated by the sum:

Area of region ≈
N∑

j=1

1

2
r2
j �θ = 1

2

N∑
j=1

f (θj )
2�θ 1

This is a Riemann sum for the integral
1

2

∫ β

α

f (θ)2 dθ . If f (θ) is continuous, then the

sum approaches the integral as N → ∞, and we obtain the following formula.

θr = f (  )

x

y

(A) Region ≤ ≤

α

α β

β

x

y

(B) Region divided into narrow sectors

N = 

rN
rj rj −1 

r0

θ
j θ

1 θ
j−1 θ

β

0 = θ α

θ

FIGURE 1 Area bounded by the curve
r = f (θ) and the two rays θ = α and
θ = β.
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THEOREM 1 Area in Polar Coordinates If f (θ) is a continuous function, then the
area bounded by a curve in polar form r = f (θ) and the rays θ = α and θ = β (with
α < β) is equal to

1

2

∫ β

α

r2 dθ = 1

2

∫ β

α

f (θ)2 dθ 2

We know that r = R defines a circle of radius R. By Eq. (2), the area is equal to
1

2

∫ 2π

0
R2 dθ = 1

2
R2(2π) = πR2, as expected.

EXAMPLE 1 Use Theorem 1 to compute the area of the right semicircle with equation

x

y

r

�θ

FIGURE 2 The area of a circular sector is
exactly 1

2 r2�θ .

x

y

Δ

rj
rj −1 

j θ

θ

j−1 θ

FIGURE 3 The area of the j th sector is
approximately 1

2 r2
j
�θ .

r = 4 sin θ .

Solution The equation r = 4 sin θ defines a circle of radius 2 tangent to the x-axis at the
origin. The right semicircle is “swept out” as θ varies from 0 to π

2 as in Figure 4(A). By
Eq. (2), the area of the right semicircle is

REMINDER In Eq. (4), we use the
identity

sin2 θ = 1

2
(1 − cos 2θ) 3

1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(4 sin θ)2 dθ = 8

∫ π/2

0
sin2 θ dθ 4

= 8
∫ π/2

0

1

2
(1 − cos 2θ) dθ

= (4θ − 2 sin 2θ)

∣∣∣∣π/2

0
= 4

(π

2

)
− 0 = 2π

x

y

2

x

y

2

3

4

6

2 12
5

(A) The polar integral computes the
area swept out by a radial segment.

(B) The ordinary integral in
rectangular coordinates computes
the area underneath a curve.

FIGURE 4

CAUTION Keep in mind that the integral
1
2

∫ β

α
r2 dθ does not compute the area

under a curve as in Figure 4(B), but rather
computes the area “swept out” by a radial
segment as θ varies from α to β, as in
Figure 4(A).

EXAMPLE 2 Sketch r = sin 3θ and compute the area of one “petal.”

Solution To sketch the curve, we first graph r = sin 3θ in rectangular coordinates. Figure
5 shows that the radius r varies from 0 to 1 and back to 0 as θ varies from 0 to π

3 . This
gives petal A in Figure 6. Petal B is traced as θ varies from π

3 to 2π
3 (with r ≤ 0), and

petal C is traced for 2π
3 ≤ θ ≤ π . We find that the area of petal A (using Eq. (3) in the

margin of the previous page to evaluate the integral) is equal to

1

2

∫ π/3

0
(sin 3θ)2 dθ = 1

2

∫ π/3

0

(
1 − cos 6θ

2

)
dθ =

(
1

4
θ − 1

24
sin 6θ

) ∣∣∣∣π/3

0
= π

12
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CA

B

θ

r

π

3
2π π

3

FIGURE 5 Graph of r = sin 3θ as a function
of θ .

y

x

q =
r = −1

B

C A
q =
r = 1

q =
r = 1

3

2

6

3
2

6
5

FIGURE 6 Graph of polar curve r = sin 3θ ,
a “rose with three petals.”

The area between two polar curves r = f1(θ) and r = f2(θ) with f2(θ) ≥ f1(θ), for

x

y

α

β

θr = f1(   )

θr = f2(   )

FIGURE 7 Area between two polar graphs in
a sector.

α ≤ θ ≤ β, is equal to (Figure 7):

Area between two curves = 1

2

∫ β

α

(
f2(θ)2 − f1(θ)2)

dθ 5

EXAMPLE 3 Area Between Two Curves Find the area of the region inside the circle
r = 2 cos θ but outside the circle r = 1 [Figure 8(A)].

Solution The two circles intersect at the points where (r, 2 cos θ) = (r, 1) or in other
words, when 2 cos θ = 1. This yields cos θ = 1

2 , which has solutions θ = ±π
3 .

y

x
2

(I)

(A) (B)

1

−

y

x
2

(II)

y

x
21

(III)

(C)

3

3
r = 1

r = 2 cosθ

FIGURE 8 Region (I) is the difference of
regions (II) and (III).

We see in Figure 8 that region (I) is the difference of regions (II) and (III) in Fig-
ures 8(B) and (C). Therefore,

REMINDER In Eq. (6), we use the
identity

cos2 θ = 1

2
(1 + cos 2θ)

Area of (I) = area of (II) − area of (III)

= 1

2

∫ π/3

−π/3
(2 cos θ)2 dθ − 1

2

∫ π/3

−π/3
(1)2 dθ

= 1

2

∫ π/3

−π/3
(4 cos2 θ − 1) dθ = 1

2

∫ π/3

−π/3
(2 cos 2θ + 1) dθ 6

= 1

2
(sin 2θ + θ)

∣∣∣∣π/3

−π/3
=

√
3

2
+ π

3
≈ 1.91

We close this section by deriving a formula for arc length in polar coordinates. Observe
that a polar curve r = f (θ) has a parametrization with θ as a parameter:

x = r cos θ = f (θ) cos θ, y = r sin θ = f (θ) sin θ
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Using a prime to denote the derivative with respect to θ , we have

x′(θ) = dx

dθ
= −f (θ) sin θ + f ′(θ) cos θ

y′(θ) = dy

dθ
= f (θ) cos θ + f ′(θ) sin θ

Recall from Section 11.2 that arc length is obtained by integrating
√

x′(θ)2 + y′(θ)2.

Straightforward algebra shows that x′(θ)2 + y′(θ)2 = f (θ)2 + f ′(θ)2, and thus

Arc length s =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ 7

EXAMPLE 4 Find the total length of the circle r = 2a cos θ for a > 0.

Solution In this case, f (θ) = 2a cos θ and

y

x
a 2a

θ = 0 or πθ = π

2

θ =

θ =

π

4

3π

4

FIGURE 9 Graph of r = 2a cos θ .

f (θ)2 + f ′(θ)2 = 4a2 cos2 θ + 4a2 sin2 θ = 4a2

The total length of this circle of radius a has the expected value:∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0
(2a) dθ = 2πa

Note that the upper limit of integration is π rather than 2π because the entire circle is
traced out as θ varies from 0 to π (see Figure 9).

To find the slope of a polar curve r = f (θ), remember that the curve is in the x-y

plane, and so the slope is dy
dx

. Since x = r cos θ and y = r sin θ , we use the chain rule.

dy

dx
= dy/dθ

dx/dθ
=

dr
dθ

sin θ + r cos θ

dr
dθ

cos θ − r sin θ
8

EXAMPLE 5 Find an equation of the line tangent to the polar curve r = sin 2θ when
θ = 3π

4 .

Solution When θ = 3π
4 , r = sin 3π

2 = −1. Thus the point will be in the 4th quadrant.

x = r cos θ = −1 cos
3π

4
= (−1)

(
−√

2

2

)
=

√
2

2

y = r sin θ = −1 sin
3π

4
= (−1)

(√
2

2

)
= −√

2

2

Next,

dy

dx
= (2 cos 2θ) sin θ + (sin 2θ)(cos θ)

(2 cos 2θ) cos θ − (sin 2θ)(sin θ)

Substituting θ = 3π
4 , we have dy

dx
= 1. Finally, an equation of the line is

y +
√

2

2
= 1

(
x −

√
2

2

)
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11.4 SUMMARY

• Area of the sector bounded by a polar curve r = f (θ) and two rays θ = α and θ = β

(Figure 10):

Area = 1

2

∫ β

α

f (θ)2 dθ

• Area between r = f1(θ) and r = f2(θ), where f2(θ) ≥ f1(θ) (Figure 11):

Area = 1

2

∫ β

α

(
f2(θ)2 − f1(θ)2)

dθ

θr = f (  )

x

y

α

β

FIGURE 10 Region bounded by the polar
curve r = f (θ) and the rays θ = α, θ = β.

x

y

α

β

θr = f1(  )

θr = f2(  )

FIGURE 11 Region between two polar
curves.

• Arc length of the polar curve r = f (θ) for α ≤ θ ≤ β:

Arc length =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ

11.4 EXERCISES

Preliminary Questions
1. Polar coordinates are suited to finding the area (choose one):

(a) Under a curve between x = a and x = b.

(b) Bounded by a curve and two rays through the origin.

2. Is the formula for area in polar coordinates valid if f (θ) takes
negative values?

3. The horizontal line y = 1 has polar equation r = csc θ . Which area

is represented by the integral
1

2

∫ π/2

π/6
csc2 θ dθ (Figure 12)?

(a) �ABCD (b) �ABC (c) �ACD

y

xA

D

B

C y = 1
1

�3

FIGURE 12

Exercises
1. Sketch the area bounded by the circle r = 5 and the rays θ = π

2
and θ = π , and compute its area as an integral in polar coordinates.

2. Sketch the region bounded by the line r = sec θ and the rays θ = 0
and θ = π

3 . Compute its area in two ways: as an integral in polar coor-
dinates and using geometry.

3. Calculate the area of the circle r = 4 sin θ as an integral in polar
coordinates (see Figure 4). Be careful to choose the correct limits of
integration.

4. Find the area of the shaded triangle in Figure 13 as an integral in
polar coordinates. Then find the rectangular coordinates of P and Q

and compute the area via geometry.
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P

Q

θr = 4 sec(          )−
4
π

x

y

FIGURE 13

5. Find the area of the shaded region in Figure 14. Note that θ varies
from 0 to π

2 .

6. Which interval of θ -values corresponds to the the shaded region in
Figure 15? Find the area of the region.

x

y

θ θr =    2 + 4
8

1 2

FIGURE 14

θ

3

2

y

x

r = 3 − 

FIGURE 15

7. Find the total area enclosed by the cardioid in Figure 16.

y

x
−1−2

FIGURE 16 The cardioid r = 1 − cos θ .

8. Find the area of the shaded region in Figure 16.

9. Find the area of one leaf of the “four-petaled rose” r = sin 2θ (Fig-
ure 17). Then prove that the total area of the rose is equal to one-half
the area of the circumscribed circle.

θr = sin 2 

y

x

FIGURE 17 Four-petaled rose r = sin 2θ .

10. Find the area enclosed by one loop of the lemniscate with equation
r2 = cos 2θ (Figure 18). Choose your limits of integration carefully.

y

x
−1 1

FIGURE 18 The lemniscate r2 = cos 2θ .

11. Sketch the spiral r = θ for 0 ≤ θ ≤ 2π and find the area bounded
by the curve and the first quadrant.

12. Find the area of the intersection of the circles r = sin θ and
r = cos θ .

13. Find the area of region A in Figure 19.

θr = 4 cos
y

x
−1 41 2

Ar = 1

FIGURE 19

14. Find the area of the shaded region in Figure 20, enclosed by the
circle r = 1

2 and a petal of the curve r = cos 3θ . Hint: Compute the
area of both the petal and the region inside the petal and outside the
circle.

θr = cos 3

r = 1
2

y

x

FIGURE 20

15. Find the area of the inner loop of the limaçon with polar equation
r = 2 cos θ − 1 (Figure 21).
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16. Find the area of the shaded region in Figure 21 between the inner
and outer loop of the limaçon r = 2 cos θ − 1.

21

1

−1

y

x

FIGURE 21 The limaçon r = 2 cos θ − 1.

17. Find the area of the part of the circle r = sin θ + cos θ in the fourth
quadrant (see Exercise 26 in Section 11.3).

18. Find the area of the region inside the circle r = 2 sin
(
θ + π

4

)
and

above the line r = sec
(
θ − π

4

)
.

19. Find the area between the two curves in Figure 22(A).

20. Find the area between the two curves in Figure 22(B).

θ

y y

x x

r = 2 + cos 2

θ

θ

θ

r = 2 + sin 2

r = sin 2

r = sin 2

(A) (B)

FIGURE 22

21. Find the area inside both curves in Figure 23.

22. Find the area of the region that lies inside one but not both of the
curves in Figure 23.

y

x

2 + cos 2

2 + sin 2θ

θ

FIGURE 23

23. Calculate the total length of the circle r = 4 sin θ as an integral in
polar coordinates.

24. Sketch the segment r = sec θ for 0 ≤ θ ≤ A. Then compute its
length in two ways: as an integral in polar coordinates and using
trigonometry.

In Exercises 25–30, compute the length of the polar curve.

25. The length of r = θ2 for 0 ≤ θ ≤ π

26. The spiral r = θ for 0 ≤ θ ≤ A

27. The equiangular spiral r = eθ for 0 ≤ θ ≤ 2π

28. The inner loop of r = 2 cos θ − 1 in Figure 21

29. The cardioid r = 1 − cos θ in Figure 16

30. r = cos2 θ

In Exercises 31 and 32, express the length of the curve as an integral
but do not evaluate it.

31. r = (2 − cos θ)−1, 0 ≤ θ ≤ 2π

32. r = sin3 t , 0 ≤ θ ≤ 2π

In Exercises 33–36, use a computer algebra system to calculate the
total length to two decimal places.

33. The three-petal rose r = cos 3θ in Figure 20

34. The curve r = 2 + sin 2θ in Figure 23

35. The curve r = θ sin θ in Figure 24 for 0 ≤ θ ≤ 4π

y

x
5 5

5

10

FIGURE 24 r = θ sin θ for 0 ≤ θ ≤ 4π .

36. r = √
θ , 0 ≤ θ ≤ 4π

37. Use Eq. (8) to find the slope of the tangent line to r = θ at θ = π
2

and θ = π .

38. Use Eq. (8) to find the slope of the tangent line to r = sin θ at
θ = π

3 .

39. Find the polar coordinates of the points on the lemniscate r2 =
cos 2t in Figure 25 where the tangent line is horizontal.

40. Find the equation in rectangular coordinates of the tangent line to
r = 4 cos 3θ at θ = π

6 .
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y

x
−1 1

r2 = cos (2t)

FIGURE 25

41. Use Eq. (8) to show that for r = sin θ + cos θ ,

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ

Then calculate the slopes of the tangent lines at points A, B, C in Fig-
ure 26.

A D

B C
x

y

1
2

1
2( ),

FIGURE 26 Plot of r = sin θ + cos θ .

42. Find the polar coordinates of the points on the cardioid r =
1 + cos θ where the tangent line is horizontal (see Figure 27).

Further Insights and Challenges
43. Suppose that the polar coordinates of a moving particle at
time t are (r(t), θ(t)). Prove that the particle’s speed is equal to√

(dr/dt)2 + r2(dθ/dt)2.

44. Compute the speed at time t = 1 of a particle whose polar
coordinates at time t are r = t , θ = t (use Exercise 43). What would
the speed be if the particle’s rectangular coordinates were x = t , y = t?
Why is the speed increasing in one case and constant in the other?

45. We investigate how the shape of the limaçon curve r =
b + cos θ depends on the constant b (see Figure 27).

(a) Show that the constants b and −b yield the same curve.

(b) Plot the limaçon for b = 0, 0.2, 0.5, 0.8, 1 and describe how the
curve changes.

(c) Plot the limaçon for 1.2, 1.5, 1.8, 2, 2.4 and describe how the curve
changes.

(d) Use Eq. (8) to show that

dy

dx
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ

(e) Find the points where the tangent line is vertical. Note that there
are three cases: 0 ≤ b < 2, b = 1, and b > 2. Do the plots constructed
in (b) and (c) reflect your results?

1 2 33

1

r = 1.5 + cos θ r = 2.3 + cos θr = 1 + cos θ

13 2

1

1 2

1

x

y

x

y

x

y

FIGURE 27

11.5 Vectors in the Plane
Vectors play a role in nearly all areas of mathematics and its applications. In physical
settings, they are used to represent quantities that have both magnitude and direction,
such as velocity and force. They also appear in such diverse fields as computer graphics,
economics, and statistics.

A two-dimensional vector v is determined by two points in the plane: an initial point
P (also called the “tail” or basepoint) and a terminal point Q (also called the “head”). We
write

v = −→
PQ

and we draw v as an arrow pointing from P to Q. This vector is said to be based at P .
Figure 1(A) shows the vector with initial point P = (2, 2) and terminal point Q = (7, 5).
The length or magnitude of v, denoted ‖v‖, is the distance from P to Q.
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The vector v = −→
OR pointing from the origin to a point R is called the position vectorNOTATION In this text, vectors are

represented by boldface lowercase letters
such as v, w, a, b, etc.

of R. Figure 1(B) shows the position vector of the point R = (3, 5).

Q = (7, 5) R = (3, 5)

P = (2, 2)

2 4 6 81 3 5 7

1

2

3

4

5

6

x

y

2 41 3 5

1

2

3

4

5

6

x

y

(B) The position vector OR

O

(A) The vector PQ

FIGURE 1

We now introduce some vector terminology.

• Two vectors v and w of nonzero length are called parallel if the lines through v
and w are parallel. Parallel vectors point either in the same or in opposite directions
[Figure 2(A)].

• A vector v is said to undergo a translation when it is moved parallel to itself
without changing its length or direction. The resulting vector w is called a translate
of v [Figure 2(B)]. Translates have the same length and direction but different

(A) Vectors parallel to v

(B) w is a translate of v

v
w

v

FIGURE 2

basepoints.

In many situations, it is convenient to treat vectors with the same length and direction as
equivalent, even if they have different basepoints. With this in mind, we say that

• v and w are equivalent if w is a translate of v [Figure 3(A)].

Every vector can be translated so that its tail is at the origin [Figure 3(C)]. Therefore,

Every vector v is equivalent to a unique vector v0 based at the origin.

Vectors equivalent
to v (translates of v)

(B)  Inequivalent vectors(A) v0 is the unique vector based
 at the origin and equivalent to v.

(C) 

v0

v
v

v

x

y

FIGURE 3

To work algebraically, we define the components of a vector (Figure 4).

a

b

x

y

v0

P0 = (a, b)

v

Q = (a2, b2)

P = (a1, b1)
a = a2 − a1

b = b2 − b1

FIGURE 4 The vectors v and v0 have
components 〈a, b〉.

DEFINITION Components of a Vector The components of v = −→
PQ, where P =

(a1, b1) and Q = (a2, b2), are the quantities

a = a2 − a1 (x-component), b = b2 − b1 (y-component)

The pair of components is denoted 〈a, b〉.
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• The length of a vector in terms of its components (by the distance formula, see
Figure 4) is

‖v‖ = ‖−→
PQ‖ =

√
a2 + b2

• The zero vector (whose head and tail coincide) is the vector 0 = 〈0, 0〉 of length
zero.

The components 〈a, b〉 determine the length and direction of v, but not its basepoint.• In this text, “angle brackets” are used
to distinguish between the vector
v = 〈a, b〉 and the point P = (a, b).
Some textbooks denote both v and P

by (a, b).
• When referring to vectors, we use the

terms “length” and “magnitude”
interchangeably. The term “norm” is
also commonly used.

Therefore, two vectors have the same components if and only if they are equivalent.
Nevertheless, the standard practice is to describe a vector by its components, and thus we
write

v = 〈a, b〉
Although this notation is ambiguous (because it does not specify the basepoint), it rarely
causes confusion in practice. To further avoid confusion, the following convention will
be in force for the remainder of the text:

We assume all vectors are based at the origin unless otherwise stated.

EXAMPLE 1 Determine whether v1 = −−−→
P1Q1 and v2 = −−−→

P2Q2 are equivalent, where

2 63−1

1

4

5

x

y

Q2 = (2, 1)

Q1 = (6, 5)

P1 = (3, 7)

v1

v2

P2 = (−1, 4)

FIGURE 5

P1 = (3, 7), Q1 = (6, 5) and P2 = (−1, 4), Q2 = (2, 1)

What is the magnitude of v1?

Solution We can test for equivalence by computing the components (Figure 5):

v1 = 〈6 − 3, 5 − 7〉 = 〈3, −2〉 , v2 = 〈2 − (−1), 1 − 4〉 = 〈3, −3〉
The components of v1 and v2 are not the same, so v1 and v2 are not equivalent. Since
v1 = 〈3, −2〉, its magnitude is

‖v1‖ =
√

32 + (−2)2 = √
13

EXAMPLE 2 Sketch the vector v = 〈2, −3〉 based at P = (1, 4) and the vector v0
equivalent to v based at the origin.

Solution The vector v = 〈2, −3〉 based at P = (1, 4) has terminal point Q =
(1 + 2, 4 − 3) = (3, 1), located two units to the right and three units down from P

as shown in Figure 6. The vector v0 equivalent to v based at O has terminal point (2, −3).

3

3

1 2

2

4

1

−3

x

y

Q = (3, 1)

O

P = (1, 4)

v0 = 〈2, −3〉

v = 〈2, −3〉

FIGURE 6 The vectors v and v0 have the
same components but different basepoints.

Vector Algebra
We now define two basic vector operations: vector addition and scalar multiplication.

The vector sum v + w is defined when v and w have the same basepoint: Translate
w to the equivalent vector w′ whose tail coincides with the head of v. The sum v + w is
the vector pointing from the tail of v to the head of w′ [Figure 7(A)]. Alternatively, we
can use the Parallelogram Law: v + w is the vector pointing from the basepoint to the
opposite vertex of the parallelogram formed by v and w [Figure 7(B)].

To add several vectors v1, v2, . . . , vn, translate the vectors to v1 = v′
1, v′

2, . . . , v′
n so

that they lie head to tail as in Figure 8. The vector sum v = v1 + v2 + · · · + vn is the
vector whose terminal point is the terminal point of v′

n.
Vector subtraction v − w is carried out by adding −w to v as in Figure 9(A). Or, more

CAUTION Remember that the vector v − w
points in the direction from the tip of w to
the tip of v (not from the tip of v to the tip
of w).

simply, draw the vector pointing from w to v as in Figure 9(B), and translate it back to the
basepoint to obtain v − w.
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ww

v v v + w
v + w

w´
vv

w´

(B)  Addition via the Parallelogram Law(A)  The vector sum v + w

FIGURE 7

xx

yy

v

v4́

v4

v3́

v3

v2́

v2

v1́v1

FIGURE 8 The sum v = v1 + v2 + v3 + v4.

v

−w

v − w

w

(A) v − w equals v plus (−w) (B) More simply, v − w is the translate
       of the vector pointing from the tip of w
      to the tip of v. 

v
v − w

w

FIGURE 9 Vector subtraction.

The term scalar is another word for “real number,” and we often speak of scalar
versus vector quantities. Thus, the number 8 is a scalar, while 〈8, 2〉 is a vector. If λ is a
scalar and v is a nonzero vector, the scalar multiple λv is defined as follows (Figure 10):

NOTATION λ (pronounced “lambda") is the
eleventh letter in the Greek alphabet. We
use the symbol λ often (but not exclusively)
to denote a scalar.

• λv has length |λ| ‖v‖.
• It points in the same direction as v if λ > 0.
• It points in the opposite direction if λ < 0.

Note that 0v = 0 for all v, and

‖λv‖ = |λ| ‖v‖

In particular, −v has the same length as v but points in the opposite direction. A vector w
is parallel to v if and only if w = λv for some nonzero scalar λ.

3

6

4
2

x

y

P

−v

v

2v

FIGURE 10 Vectors v and 2v are based at P

but 2v is twice as long. Vectors v and −v
have the same length but opposite
directions.

Vector addition and scalar multiplication operations are easily performed using com-
ponents. To add or subtract two vectors v and w, we add or subtract their components.
This follows from the parallelogram law as indicated in Figure 11(A).

Similarly, to multiply v by a scalar λ, we multiply the components of v by λ [Figures
11(B) and (C)]. Indeed, if v = 〈a, b〉 is nonzero, 〈λa, λb〉 has length |λ| ‖v‖. It points in
the same direction as 〈a, b〉 if λ > 0, and in the opposite direction if λ < 0.
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x x

y y

v = 〈a, b〉

v = 〈a, b〉w = 〈c, d〉

(A) (B)

v + w
b + d

d

c

a + c a

b

b

a x

y

λv = 〈λa, λb〉

(C)

λa

λb

FIGURE 11 Vector operations using
components.

Vector Operations Using Components If v = 〈a, b〉 and w = 〈c, d〉, then:

(i) v + w = 〈a + c, b + d〉
(ii) v − w = 〈a − c, b − d〉

(iii) λv = 〈λa, λb〉
(iv) v + 0 = 0 + v = v

We also note that if P = (a1, b1) and Q = (a2, b2), then components of the vector
v = −→

PQ are conveniently computed as the difference

−→
PQ = −−→

OQ − −→
OP = 〈a2, b2〉 − 〈a1, b1〉 = 〈a2 − a1, b2 − b1〉

EXAMPLE 3 For v = 〈1, 4〉, w = 〈3, 2〉, calculate

(a) v + w (b) 5v

31 4

6

4

2

x

y

w = 〈3, 2〉

v + w = 〈4, 6〉

v = 〈1, 4〉

FIGURE 12

Solution

v + w = 〈1, 4〉 + 〈3, 2〉 = 〈1 + 3, 4 + 2〉 = 〈4, 6〉
5v = 5 〈1, 4〉 = 〈5, 20〉

The vector sum is illustrated in Figure 12.

Vector operations obey the usual laws of algebra.

THEOREM 1 Basic Properties of Vector Algebra For all vectors u, v, w and for all
scalars λ,

Commutative Law: v + w = w + v
Associative Law: u + (v + w) = (u + v) + w
Distributive Law for Scalars: λ(v + w) = λv + λw

These properties are verified easily using components. For example, we can check
that vector addition is commutative:

〈a, b〉 + 〈c, d〉 = 〈a + c, b + d〉 = 〈c + a, d + b〉︸ ︷︷ ︸
Commutativity of ordinary addition

= 〈c, d〉 + 〈a, b〉

A linear combination of vectors v and w is a vector

rv + sw
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where r and s are scalars. If v and w are not parallel, then every vector u in the plane
can be expressed as a linear combination u = rv + sw [Figure 13(A)]. The parallelogram
P whose vertices are the origin and the terminal points of v, w and v + w is called the
parallelogram spanned by v and w [Figure 13(B)]. It consists of the linear combinations
rv + sw with 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1.

rv + sw

x

y

The vector u can be expressed as a
linear combination  u = rv + sw. 
In this figure,  r  < 0.

(A) (B) The parallelogram P spanned by v and w
consists of all linear combinations rv + sw
with 0 ≤ r, s ≤ 1.

v

w

swu = rv + sw

rv x

y

v
rv (0 ≤ r ≤ 1)

w

v + w

sw (0 ≤ s ≤ 1)

FIGURE 13

EXAMPLE 4 Linear Combinations Express the vector u = 〈4, 4〉 in Figure 14 as a

w

v x

y

v = 〈6, 2〉 

w = 〈2, 4〉 
u = 〈4, 4〉 

4
5

2
5

FIGURE 14

linear combination of v = 〈6, 2〉 and w = 〈2, 4〉.
Solution We must find r and s such that rv + sw = 〈4, 4〉, or

r 〈6, 2〉 + s 〈2, 4〉 = 〈6r + 2s, 2r + 4s〉 = 〈4, 4〉
The components must be equal, so we have a system of two linear equations:

6r + 2s = 4

2r + 4s = 4

Subtracting the equations, we obtain 4r − 2s = 0 or s = 2r . Setting s = 2r in the first
equation yields 6r + 4r = 4 or r = 2

5 , and then s = 2r = 4
5 . Therefore,

u = 〈4, 4〉 = 2

5
〈6, 2〉 + 4

5
〈2, 4〉

CONCEPTUAL INSIGHT In general, to write a vector u = 〈e, f 〉 as a linear combination
of two other vectors v = 〈a, b〉 and w = 〈c, d〉, we have to solve a system of two linear
equations in two unknowns r and s:

rv + sw = u ⇔ r 〈a, b〉 + s 〈c, d〉 = 〈e, f 〉 ⇔
{
ar + cs = e

br + ds =f

On the other hand, vectors give us a way of visualizing the system of equations geo-
metrically. The solution is represented by a parallelogram as in Figure 14. This relation
between vectors and systems of linear equations extends to any number of variables and
is the starting point for the important subject of linear algebra.
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A vector of length 1 is called a unit vector. Unit vectors are often used to indicate

x

y

1

q

e = 〈cos q, sin q 〉

FIGURE 15 The head of a unit vector lies on
the unit circle.

direction, when it is not necessary to specify length. The head of a unit vector e based at
the origin lies on the unit circle and has components

e = 〈cos θ, sin θ〉
where θ is the angle between e and the positive x-axis (Figure 15).

We can always scale a nonzero vector v = 〈a, b〉 to obtain a unit vector pointing in
the same direction (Figure 16):

ev = 1

‖v‖v

Indeed, we can check that ev is a unit vector as follows:

x

y

1 a

b

q

v = 〈a, b〉

ev

FIGURE 16 Unit vector in the direction of v.

‖ev‖ =
∥∥∥∥ 1

‖v‖v

∥∥∥∥ = 1

‖v‖‖v‖ = 1

If v = 〈a, b〉 makes an angle θ with the positive x-axis, then

v = 〈a, b〉 = ‖v‖ev = ‖v‖ 〈cos θ, sin θ〉 1

EXAMPLE 5 Find the unit vector in the direction of v = 〈3, 5〉.

Solution ‖v‖ = √
32 + 52 = √

34, and thus ev = 1√
34

v =
〈

3√
34

,
5√
34

〉
.

It is customary to introduce a special notation for the unit vectors in the direction of

j

bj

i ai
x

y

1

1

v = ai + bj

FIGURE 17

the positive x- and y-axes (Figure 17):

i = 〈1, 0〉 , j = 〈0, 1〉

The vectors i and j are called the standard basis vectors. Every vector in the plane is a
linear combination of i and j (Figure 17):

v = 〈a, b〉 = ai + bj

For example, 〈4, −2〉 = 4i − 2j. Vector addition is performed by adding the i and j coef-
ficients. For example,

v1

v2

FIGURE 18 When an airplane traveling with
velocity v1 encounters a wind of velocity
v2, its resultant velocity is the vector sum
v1 + v2.

(4i − 2j) + (5i + 7j) = (4 + 5)i + (−2 + 7)j = 9i + 5j

CONCEPTUAL INSIGHT It is often said that quantities such as force and velocity are vec-
tors because they have both magnitude and direction, but there is more to this statement
than meets the eye. A vector quantity must obey the law of vector addition (Figure 18),
so if we say that force is a vector, we are really claiming that forces add according to
the Parallelogram Law. In other words, if forces F1 and F2 act on an object, then the
resultant force is the vector sum F1 + F2. This is a physical fact that must be verified
experimentally. It was well known to scientists and engineers long before the vector
concept was introduced formally in the 1800s.
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EXAMPLE 6 Find the forces on cables 1 and 2 in Figure 19(A).

x

y

Fg = 〈0, −980〉

30°55°
125°

F1

F2

P

55° 30°

Cable 1 Cable 2

P

100 kg

(A) (B) Force diagram

FIGURE 19

Solution Three forces act on the point P in Figure 19(A): the force Fg due to gravity
of 100g = 980 newtons (g = 9.8 m/s2) acting vertically downward, and two unknown
forces F1 and F2 acting through cables 1 and 2, as indicated in Figure 19(B).

Let f1 = ‖F1‖ and f2 = ‖F2‖. Because F1 makes an angle of 125◦ (the supplement
of 55◦) with the positive x-axis, and F2 makes an angle of 30◦, we can use Eq. (1) and the
table in the margin to write these vectors in component form:

θ cos θ sin θ

125◦ −0.573 0.819
30◦ 0.866 0.5

F1 =f1
〈
cos 125◦, sin 125◦〉 ≈ f1 〈−0.573, 0.819〉

F2 =f2
〈
cos 30◦, sin 30◦〉 ≈ f2 〈0.866, 0.5〉

Fg = 〈0, −980〉
Now, the point P is not in motion, so the net force on P is zero:

F1 + F2 + Fg = 0

f1 〈−0.573, 0.819〉 + f2 〈0.866, 0.5〉 + 〈0, −980〉 = 〈0, 0〉
This gives us two equations in two unknowns:

−0.573f1 + 0.866f2 = 0, 0.819f1 + 0.5f2 − 980 = 0

By the first equation, f2 = ( 0.573
0.866

)
f1. Substitution in the second equation yields

0.819f1 + 0.5

(
0.573

0.866

)
f1 − 980 ≈ 1.15f1 − 980 = 0

Therefore, the forces in newtons are

f1 ≈ 980

1.15
≈ 852 N and f2 ≈

(
0.573

0.866

)
852 ≈ 564 N

We close this section with the Triangle Inequality. Figure 20 shows the vector sum
v + w for three different vectors w of the same length. Notice that the length ‖v + w‖
varies, depending on the angle between v and w. So in general, ‖v + w‖ is not equal to the
sum ‖v‖ + ‖w‖. What we can say is that ‖v + w‖ is at most equal to the sum ‖v‖ + ‖w‖.
This corresponds to the fact that the length of one side of a triangle is at most the sum of
the lengths of the other two sides. A formal proof may be given using the dot product (see
Exercise 42 in Section 11.6).

zxy34
放置图像
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THEOREM 2 Triangle Inequality For any two vectors v and w,

‖v + w‖ ≤ ‖v‖ + ‖w‖

Equality holds only if v = 0 or w = 0, or if w = λv, where λ ≥ 0.

v + w

v + wv + w

w

ww

vv v
FIGURE 20 The length of v + w depends on
the angle between v and w.

11.5 SUMMARY

• A vector v = −→
PQ is determined by a basepoint P (the “tail”) and a terminal point Q

(the “head”).
• Components of v = −→

PQ where P = (a1, b1) and Q = (a2, b2):

v = 〈a, b〉
with a = a2 − a1, b = b2 − b1.
• Length or magnitude: ‖v‖ = √

a2 + b2.
• The length ‖v‖ is the distance from P to Q.
• The position vector of P0 = (a, b) is the vector v = 〈a, b〉 pointing from the origin O

to P0.
• Vectors v and w are equivalent if they are translates of each other: They have the same
magnitude and direction, but possibly different basepoints. Two vectors are equivalent if
and only if they have the same components.
• We assume all vectors are based at the origin unless otherwise indicated.
• The zero vector is the vector 0 = 〈0, 0〉 of length 0.
• Vector addition is defined geometrically by the Parallelogram Law. In components,

〈a1, b1〉 + 〈a2, b2〉 = 〈a1 + a2, b1 + b2〉
• Scalar multiplication: λv is the vector of length |λ| ‖v‖ in the same direction as v if
λ > 0, and in the opposite direction if λ < 0. In components,

λ 〈a, b〉 = 〈λa, λb〉
• Nonzero vectors v and w are parallel if w = λv for some scalar λ.
• Unit vector making an angle θ with the positive x-axis: e = 〈cos θ, sin θ〉.
• Unit vector in the direction of v �= 0: ev = 1

‖v‖v.

• If v = 〈a, b〉 makes an angle θ with the positive x-axis, then

a = ‖v‖ cos θ, b = ‖v‖ sin θ, ev = 〈cos θ, sin θ〉
• Standard basis vectors: i = 〈1, 0〉 and j = 〈0, 1〉.
• Every vector v = 〈a, b〉 is a linear combination v = ai + bj.
• Triangle Inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖.
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11.5 EXERCISES

Preliminary Questions
1. Answer true or false. Every nonzero vector is:

(a) Equivalent to a vector based at the origin.
(b) Equivalent to a unit vector based at the origin.
(c) Parallel to a vector based at the origin.
(d) Parallel to a unit vector based at the origin.

2. What is the length of −3a if ‖a‖ = 5?

3. Suppose that v has components 〈3, 1〉. How, if at all, do the com-
ponents change if you translate v horizontally two units to the left?

4. What are the components of the zero vector based at P = (3, 5)?

5. True or false?

(a) The vectors v and −2v are parallel.

(b) The vectors v and −2v point in the same direction.

6. Explain the commutativity of vector addition in terms of the Par-
allelogram Law.

Exercises
1. Sketch the vectors v1, v2, v3, v4 with tail P and head Q, and com-

pute their lengths. Are any two of these vectors equivalent?

v1 v2 v3 v4

P (2, 4) (−1, 3) (−1, 3) (4, 1)

Q (4, 4) (1, 3) (2, 4) (6, 3)

2. Sketch the vector b = 〈3, 4〉 based at P = (−2, −1).

3. What is the terminal point of the vector a = 〈1, 3〉 based at P =
(2, 2)? Sketch a and the vector a0 based at the origin and equivalent
to a.

4. Let v = −→
PQ, where P = (1, 1) and Q = (2, 2). What is the head

of the vector v′ equivalent to v based at (2, 4)? What is the head of the
vector v0 equivalent to v based at the origin? Sketch v, v0, and v′.

In Exercises 5–8, find the components of
−→
PQ.

5. P = (3, 2), Q = (2, 7) 6. P = (1, −4), Q = (3, 5)

7. P = (3, 5), Q = (1, −4) 8. P = (0, 2), Q = (5, 0)

In Exercises 9–14, calculate.

9. 〈2, 1〉 + 〈3, 4〉 10. 〈−4, 6〉 − 〈3,−2〉
11. 5 〈6, 2〉 12. 4(〈1, 1〉 + 〈3, 2〉)
13.

〈
− 1

2 , 5
3

〉
+

〈
3, 10

3

〉
14. 〈ln 2, e〉 + 〈ln 3, π〉

15. Which of the vectors (A)–(C) in Figure 21 is equivalent to v − w?

(A) (B) (C)

w

v

FIGURE 21

16. Sketch v + w and v − w for the vectors in Figure 22.

w
v

FIGURE 22

17. Sketch 2v, −w, v + w, and 2v − w for the vectors in Figure 23.

2 4 61 3 5

1

2

3

4

5

x

y

v = 〈2, 3〉 

w = 〈4, 1〉

FIGURE 23

18. Sketch v = 〈1, 3〉, w = 〈2, −2〉, v + w, v − w.

19. Sketch v = 〈0, 2〉, w = 〈−2, 4〉, 3v + w, 2v − 2w.

20. Sketch v = 〈−2, 1〉, w = 〈2, 2〉, v + 2w, v − 2w.

21. Sketch the vector v such that v + v1 + v2 = 0 for v1 and v2 in
Figure 24(A).

22. Sketch the vector sum v = v1 + v2 + v3 + v4 in Figure 24(B).

1−3

1

3

x

y

v1

v2

(A)

x

y

v3

v1

v4 v2

(B)

FIGURE 24

23. Let v = −→
PQ, where P = (−2, 5), Q = (1, −2). Which of the fol-

lowing vectors with the given tails and heads are equivalent to v?

(a) (−3, 3), (0, 4) (b) (0, 0), (3, −7)

(c) (−1, 2), (2, −5) (d) (4, −5), (1, 4)



S E C T I O N 11.5 Vectors in the Plane 651

24. Which of the following vectors are parallel to v = 〈6, 9〉 and which
point in the same direction?

(a) 〈12, 18〉 (b) 〈3, 2〉 (c) 〈2, 3〉
(d) 〈−6, −9〉 (e) 〈−24, −27〉 (f) 〈−24, −36〉

In Exercises 25–28, sketch the vectors
−→
AB and

−→
PQ, and determine

whether they are equivalent.

25. A = (1, 1), B = (3, 7), P = (4, −1), Q = (6, 5)

26. A = (1, 4), B = (−6, 3), P = (1, 4), Q = (6, 3)

27. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, −2)

28. A = (5, 8), B = (1, 8), P = (1, 8), Q = (−3, 8)

In Exercises 29–32, are
−→
AB and

−→
PQ parallel? And if so, do they point

in the same direction?

29. A = (1, 1), B = (3, 4), P = (1, 1), Q = (7, 10)

30. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, 2)

31. A = (2, 2), B = (−6, 3), P = (9, 5), Q = (17, 4)

32. A = (5, 8), B = (2, 2), P = (2, 2), Q = (−3, 8)

In Exercises 33–36, let R = (−2, 7). Calculate the following.

33. The length of
−→
OR

34. The components of u = −→
PR, where P = (1, 2)

35. The point P such that
−→
PR has components 〈−2, 7〉

36. The point Q such that
−→
RQ has components 〈8, −3〉

In Exercises 37–42, find the given vector.

37. Unit vector ev where v = 〈3, 4〉

38. Unit vector ew where w = 〈24, 7〉

39. Vector of length 4 in the direction of u = 〈−1, −1〉

40. Unit vector in the direction opposite to v = 〈−2, 4〉

41. Unit vector e making an angle of 4π
7 with the x-axis

42. Vector v of length 2 making an angle of 30◦ with the x-axis

43. Find all scalars λ such that λ 〈2, 3〉 has length 1.

44. Find a vector v satisfying 3v + 〈5, 20〉 = 〈11, 17〉.

45. What are the coordinates of the point P in the parallelogram in
Figure 25(A)?

46. What are the coordinates a and b in the parallelogram in Figure
25(B)?

x

y

x

y

(2, 2)

(A)

P

(5, 4)

(7, 8)

(2, 3)

(−3, 2)
(a, 1)

(−1, b)

(B)

FIGURE 25

47. Let v = −→
AB and w = −→

AC, where A, B, C are three distinct points
in the plane. Match (a)–(d) with (i)–(iv). (Hint: Draw a picture.)

(a) −w (b) −v (c) w − v (d) v − w

(i)
−→
CB (ii)

−→
CA (iii)

−→
BC (iv)

−→
BA

48. Find the components and length of the following vectors:

(a) 4i + 3j (b) 2i − 3j (c) i + j (d) i − 3j

In Exercises 49–52, calculate the linear combination.

49. 3j + (9i + 4j) 50. − 3
2 i + 5

( 1
2 j − 1

2 i
)

51. (3i + j) − 6j + 2(j − 4i) 52. 3(3i − 4j) + 5(i + 4j)

53. For each of the position vectors u with endpoints A, B, and C in
Figure 26, indicate with a diagram the multiples rv and sw such that

u = rv + sw. A sample is shown for u = −−→
OQ.

y

x

C

A

Q

B

w

v

sw

rv

FIGURE 26

54. Sketch the parallelogram spanned by v = 〈1, 4〉 and w = 〈5, 2〉.
Add the vector u = 〈2, 3〉 to the sketch and express u as a linear com-
bination of v and w.

In Exercises 55 and 56, express u as a linear combination u = rv + sw.
Then sketch u, v, w, and the parallelogram formed by rv and sw.

55. u = 〈3, −1〉; v = 〈2, 1〉, w = 〈1, 3〉
56. u = 〈6, −2〉; v = 〈1, 1〉, w = 〈1, −1〉
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57. Calculate the magnitude of the force on cables 1 and 2 in Figure 27.

65° 25°

Cable 1
Cable 2

50 kg

FIGURE 27

58. Determine the magnitude of the forces F1 and F2 in Figure 28,
assuming that there is no net force on the object.

45° 30°

20 kgF2

F1

FIGURE 28

59. A plane flying due east at 200 km/h encounters a 40-km/h wind
blowing in the north-east direction. The resultant velocity of the plane
is the vector sum v = v1 + v2, where v1 is the velocity vector of the
plane and v2 is the velocity vector of the wind (Figure 29). The angle
between v1 and v2 is π

4 . Determine the resultant speed of the plane
(the length of the vector v).

40 km/h

200 km/h

v2

v1

v

FIGURE 29

Further Insights and Challenges
In Exercises 60–62, refer to Figure 30, which shows a robotic arm
consisting of two segments of lengths L1 and L2.

60. Find the components of the vector r = −→
OP in terms of θ1 and θ2.

61. Let L1 = 5 and L2 = 3. Find r for θ1 = π
3 , θ2 = π

4 .

62. Let L1 = 5 and L2 = 3. Show that the set of points reachable by
the robotic arm with θ1 = θ2 is an ellipse.

x

y

PL1

L2

rθ1

θ1
θ2

FIGURE 30

63. Use vectors to prove that the diagonals AC and BD of a parallel-
ogram bisect each other (Figure 31). Hint: Observe that the midpoint
of BD is the terminal point of w + 1

2 (v − w).

(v + w)

(v − w)

v

w

A
B

D
C

1
2

1
2

FIGURE 31

64. Use vectors to prove that the segments joining the midpoints of
opposite sides of a quadrilateral bisect each other (Figure 32). Hint:
Show that the midpoints of these segments are the terminal points of

1

4
(2u + v + z) and

1

4
(2v + w + u)

65. Prove that two vectors v = 〈a, b〉 and w = 〈c, d〉 are perpendicular
if and only if

ac + bd = 0

z

v

w

u

FIGURE 32
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11.6 Dot Product and the Angle between Two Vectors
The dot product is one of the most important vector operations. It plays a role in nearly
all aspects of multivariable calculus.

DEFINITION Dot Product The dot product v · w of two vectors

v = 〈a1, b1〉 , w = 〈a2, b2〉
is the scalar defined by

v · w = a1a2 + b1b2

In words, to compute the dot product, multiply the corresponding components andImportant concepts in mathematics often
have multiple names or notations either for
historical reasons or because they arise in
more than one context. The dot product is
also called the “scalar product” or “inner
product” and in many texts, v · w is
denoted (v, w) or 〈v, w〉.

add. For example,

〈2, 3〉 · 〈−4, 2〉 = 2(−4) + 3(2) = −8 + 6 = −2

We will see in a moment that the dot product is closely related to the angle between
v and w. Before getting to this, we describe some elementary properties of dot products.

First, the dot product is commutative: v · w = w · v, because the components can beThe dot product appears in a very wide
range of applications. To rank how closely a
Web document matches a search input at
Google,

“We take the dot product of the vector of
count-weights with the vector of type-
weights to compute an IR score for the
document.”

From “The Anatomy of a Large-Scale
Hypertextual Web Search Engine” by
Google founders Sergey Brin and Lawrence
Page.

multiplied in either order. Second, the dot product of a vector with itself is the square of
the length: If v = 〈a, b〉, then

v · v = a · a + b · b = a2 + b2 = ‖v‖2

The dot product also satisfies a Distributive Law and a scalar property as summarized in
the next theorem (see Exercises 38 and 39).

THEOREM 1 Properties of the Dot Product

(i) 0 · v = v · 0 = 0

(ii) Commutativity: v · w = w · v
(iii) Pulling out scalars: (λv) · w = v · (λw) = λ(v · w)

(iv) Distributive Law: u · (v + w) = u · v + u · w

(v + w) · u = v · u + w · u

(v) Relation with length: v · v = ‖v‖2

EXAMPLE 1 Verify the Distributive Law u · (v + w) = u · v + u · w for

u = 〈4, 3〉 , v = 〈1, 2〉 , w = 〈3, −2〉
Solution We compute both sides and check that they are equal:

u · (v + w) = 〈4, 3〉 · ( 〈1, 2〉 + 〈3, −2〉 )
= 〈4, 3〉 · 〈4, 0〉 = 4(4) + 3(0) = 16

u · v + u · w = 〈4, 3〉 · 〈1, 2〉 + 〈4, 3〉 · 〈3, −2〉
= (

4(1) + 3(2)
) + (

4(3) + 3(−2)
)

= 10 + 6 = 16
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As mentioned above, the dot product v · w is related to the angle θ between v and w.

2π − θ

w

v
π

FIGURE 1 By convention, the angle θ

between two vectors is chosen so that
0 ≤ θ ≤ π .

This angle θ is not uniquely defined because, as we see in Figure 1, both θ and 2π − θ

can serve as an angle between v and w. Furthermore, any multiple of 2π may be added
to θ . All of these angles have the same cosine, so it does not matter which angle we use
in the next theorem. However, we shall adopt the following convention:

The angle between two vectors is chosen to satisfy 0 ≤ θ ≤ π .

THEOREM 2 Dot Product and the Angle Let θ be the angle between two nonzero
vectors v and w. Then

v · w = ‖v‖ ‖w‖ cos θ or cos θ = v · w
‖v‖ ‖w‖ 1

Proof According to the Law of Cosines, the three sides of a triangle satisfy (Figure 2)

a

b

c

v

v − w

wθ

θ

FIGURE 2

c2 = a2 + b2 − 2ab cos θ

If two sides of the triangle are v and w, then the third side is v − w, as in the figure, and
the Law of Cosines gives

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2 cos θ‖v‖ ‖w‖ 2

Now, by property (v) of Theorem 1 and the Distributive Law,

‖v − w‖2 = (v − w) · (v − w) = v · v − 2v · w + w · w

= ‖v‖2 + ‖w‖2 − 2v · w 3

Comparing Eq. (2) and Eq. (3), we obtain −2 cos θ‖v‖ ‖w‖ = −2v · w, and Eq. (1) fol-
lows.

By definition of the arccosine, the angle θ = cos−1 x is the angle in the interval [0, π ]
satisfying cos θ = x. Thus, for nonzero vectors v and w, we have

θ = cos−1
(

v · w
‖v‖ ‖w‖

)

EXAMPLE 2 Find the angle between v = 〈3, 4〉 and w = 〈1, 3〉.
Solution Compute cos θ using the dot product

‖v‖ =
√

32 + 42 = √
25 = 5, ‖w‖ =

√
12 + 32 = √

10

cos θ = v · w
‖v‖‖w‖ = 〈3, 4〉 · 〈1, 3〉

5 · √
10

= 3 · 1 + 4 · 3

5
√

10
= 15

5
√

10
= 3√

10

The angle itself is θ = cos−1
( 3√

10

) ≈ 0.322 rad (Figure 3).

w = 〈1, 3〉

v = 〈3, 4〉

θ

y

x

FIGURE 3

Two nonzero vectors v and w are called perpendicular or orthogonal if the angle
between them is π

2 . In this case we write v ⊥ w.

The terms “orthogonal” and
“perpendicular” are synonymous and are
used interchangeably, although we usually
use “orthogonal” when dealing with
vectors.
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We can use the dot product to test whether v and w are orthogonal. Because an angle
between 0 and π satisfies cos θ = 0 if and only if θ = π

2 , we see that

v · w = ‖v‖ ‖w‖ cos θ = 0 ⇔ θ = π

2

and thus

v ⊥ w if and only if v · w = 0

The standard basis vectors are mutually orthogonal and have length 1 (Figure 4). In

y

x

j

i

FIGURE 4 The standard basis vectors are
mutually orthogonal and have length 1.

terms of dot products, because i = 〈1, 0〉 and j = 〈0, 1〉,
i · j = 0, i · i = j · j = 1

EXAMPLE 3 Testing for Orthogonality Determine whether v = 〈2, 6〉 is orthogonal
to u = 〈2, −1〉 or w = 〈−3, 1〉.
Solution We test for orthogonality by computing the dot products (Figure 5):

v · u = 〈2, 6〉 · 〈2, −1〉 = 2(2) + 6(−1) = −2 (not orthogonal)

v · w = 〈2, 6〉 · 〈−3, 1〉 = 2(−3) + 6(1) = 0 (orthogonal)

EXAMPLE 4 Testing for Obtuseness Determine whether the angles between the vec-

u

y

x

v

w

FIGURE 5 Vectors v, w, and u for
Example 3.

tor v = 〈3, 1〉 and the vectors u = 〈−2, 2〉 and w = 〈2, −1〉 are obtuse.

Solution By definition, the angle θ between v and u is obtuse if π
2 < θ ≤ π , and this is

the case if cos θ < 0. Since v · u = ‖v‖ ‖u‖ cos θ and the lengths ‖v‖ and ‖u‖ are positive,
we see that cos θ is negative if and only if v · u is negative. Thus,

The angle θ between v and u is obtuse if v · u < 0.

We have

v · u = 〈3, 1〉 · 〈−2, 2〉 = −6 + 2 = −4 < 0 (angle is obtuse)

v · w = 〈3, 1〉 · 〈2, −1〉 = 6 − 1 = 5 > 0 (angle is acute)

EXAMPLE 5 Using the Distributive Law Calculate the dot product v · w, where v =
4i − 3j and w = i + 2j.

Solution Use the Distributive Law and the orthogonality of i and j:

v · w = (4i − 3j) · (i + 2j)

= 4i · (i + 2j) − 3j · (i + 2j)

= 4i · i − 3j · (2j) = 4 − 6 = −2

Another important use of the dot product is in finding the projection u|| of a vector u
along a nonzero vector v. By definition, u|| is the vector obtained by dropping a perpen-
dicular from u to the line through v as in Figures 6 and 7. In the next theorem, recall that
ev = v/‖v‖ is the unit vector in the direction of v.

THEOREM 3 Projection Assume v �= 0. The projection of u along v is the vector

u|| = (u · ev)ev or u|| =
(u · v

v · v

)
v 4

The scalar u · ev is called the component of u along v.
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Proof Referring to Figures 6 and 7, we see by trigonometry that u|| has length

ev

v
u

u||θ

FIGURE 6 The projection u|| of u along v
has length ‖u‖ cos θ .

ev

v

u

u||

θ

FIGURE 7 When θ is obtuse, u|| and ev
point in opposite directions.

‖u‖| cos θ |. If θ is acute, then u|| is a positive multiple of ev and thus u|| = (‖u‖ cos θ)ev
since cos θ > 0. Similarly, if θ is obtuse, then u|| is a negative multiple of ev and
u|| = (‖u‖ cos θ)ev since cos θ < 0. The first formula for u|| now follows because
u · ev = ‖u‖‖ev‖ cos θ = ‖u‖ cos θ .

The second equality in Eq. (4) follows from the computation:

u|| = (u · ev)ev =
(

u · v
‖v‖

)
v

‖v‖

=
(

u · v
‖v‖2

)
v =

(u · v
v · v

)
v

EXAMPLE 6 Find the projection of u = 〈5, 1〉 along v = 〈4, 4〉.
Solution It is convenient to use the second formula in Eq. (4):

u · v = 〈5, 1〉 · 〈4, 4〉 = 20 + 4 = 24, v · v = 42 + 42 = 32

u|| =
(u · v

v · v

)
v =

(
24

32

)
〈4, 4〉 = 〈3, 3〉

We show now that if v �= 0, then every vector u can be written as the sum of the
projection u|| and a vector u⊥ that is orthogonal to v (see Figure 8). In fact, if we set

u⊥ = u − u||

then we have

ev

v
u

u⊥

u||θ

FIGURE 8 Decomposition of u as a sum
u = u|| + u⊥ of vectors parallel and
orthogonal to v.

u = u|| + u⊥ 5

Eq. (5) is called the decomposition of u with respect to v. We must verify, however, that
u⊥ is orthogonal to v. We do this by showing that the dot product is zero:

u⊥ · v = (u − u||) · v = (u −
(u · v

v · v

)
v) · v = u · v −

(u · v
v · v

)
(v · v) = 0

EXAMPLE 7 Find the decomposition of u = 〈5, 1〉 with respect to v = 〈4, 4〉.
Solution In Example 6 we showed that u|| = 〈3, 3〉. The orthogonal vector is

u⊥ = u − u|| = 〈5, 1〉 − 〈3, 3〉 = 〈2, −2〉
The decomposition of u with respect to v is

u = 〈5, 1〉 = u|| + u⊥ = 〈3, 3〉︸ ︷︷ ︸
Projection along v

+ 〈2, −2〉︸ ︷︷ ︸
Orthogonal to v

The decomposition into parallel and orthogonal vectors is useful in many applications.

EXAMPLE 8 What is the minimum force you must apply to pull a 20-kg wagon up a
frictionless ramp inclined at an angle θ = 15◦?

Solution Let Fg be the force on the wagon due to gravity. It has magnitude 20g newtons
with g = 9.8. Referring to Figure 9, we decompose Fg as a sum

θ

Fg
F⊥⊥

F||

θ

90° − θ

90° − θ

FIGURE 9 The angle between Fg and F|| is
90◦ − θ . Fg = F|| + F⊥
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where F|| is the projection along the ramp and F⊥ is the “normal force” orthogonal to the
ramp. The normal force F⊥ is canceled by the ramp pushing back against the wagon in
the normal direction, and thus (because there is no friction), you need only pull against
F||.

Notice that the angle between Fg and the ramp is the complementary angle 90◦ − θ .
Since F|| is parallel to the ramp, the angle between Fg and F|| is also 90◦ − θ , or 75◦, and

‖F||‖ = ‖Fg‖ cos(75◦) ≈ 20(9.8)(0.26) ≈ 51 N

Since gravity pulls the wagon down the ramp with a 51-newton force, it takes a minimum
force of 51 newtons to pull the wagon up the ramp.

GRAPHICAL INSIGHT It seems that we are using the term “component” in two ways. We
say that a vector u = 〈a, b〉 has components a and b. On the other hand, u · e is called
the component of u along the unit vector e.

In fact, these two notions of component are not different. The components a and b

are the dot products of u with the standard unit vectors:

u · i = 〈a, b〉 · 〈1, 0〉 = a

u · j = 〈a, b〉 · 〈0, 1〉 = b

and we have the decomposition [Figure 10(A)]

u = ai + bj

But any two orthogonal unit vectors e and f give rise to a rotated coordinate system,
and we see in Figure 10(B) that

u = (u · e)e + (u · f)f

In other words, u · e and u · f really are the components when we express u relative to
the rotated system.

x

y

x

y

u = 〈a, b〉 u = 〈a, b〉
bj

fj
e

(u · f )f (u · e)e

aii

(A) (B)

FIGURE 10

11.6 SUMMARY

• The dot product of v = 〈a1, b1〉 and w = 〈a2, b2〉 is

v · w = a1a2 + b1b2

• Basic Properties:

– Commutativity: v · w = w · v
– Pulling out scalars: (λv) · w = v · (λw) = λ(v · w)
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– Distributive Law: u · (v + w) = u · v + u · w

(v + w) · u = v · u + w · u

– v · v = ‖v‖2

– v · w = ‖v‖ ‖w‖ cos θ where θ is the angle between v and w.

• By convention, the angle θ is chosen to satisfy 0 ≤ θ ≤ π .
• Test for orthogonality: v ⊥ w if and only if v · w = 0.
• The angle between v and w is acute if v · w > 0 and obtuse if v · w < 0.
• Assume v �= 0. Every vector u has a decomposition u = u|| + u⊥, where u|| is parallel

ev

v
u

u⊥

u||θ

FIGURE 11

to v, and u⊥ is orthogonal to v (see Figure 11). The vector u|| is called the projection of
u along v.
• Let ev = v

‖v‖ . Then

u|| = (u · ev)ev =
(u · v

v · v

)
v, u⊥ = u − u||

• The coefficient u · ev is called the component of u along v:

Component of u along v = u · ev = ‖u‖ cos θ

11.6 EXERCISES

Preliminary Questions
1. Is the dot product of two vectors a scalar or a vector?

2. What can you say about the angle between a and b if a · b < 0?

3. Which property of dot products allows us to conclude that if v is
orthogonal to both u and w, then v is orthogonal to u + w?

4. Which is the projection of v along v: (a) v or (b) ev?

5. Let u|| be the projection of u along v. Which of the following is
the projection u along the vector 2v and which is the projection of 2u
along v?

(a) 1
2 u|| (b) u|| (c) 2u||

6. Which of the following is equal to cos θ , where θ is the angle
between u and v?

(a) u · v (b) u · ev (c) eu · ev

Exercises
In Exercises 1–4, compute the dot product.

1. 〈3, 1〉 · 〈4, −7〉 2.
〈 1
6 , 1

2

〉 · 〈
3, 1

2

〉
3. i · j 4. j · j

In Exercises 5 and 6, determine whether the two vectors are orthogonal
and, if not, whether the angle between them is acute or obtuse.

5.
〈 12

5 , − 4
5

〉
,

〈 1
2 , − 7

4

〉
6. 〈12, 6〉, 〈2, −4〉

In Exercises 7 and 8, find the angle between the vectors. Use a calcu-
lator if necessary.

7.
〈
2,

√
2
〉
,

〈
1 + √

2, 1 − √
2
〉

8.
〈
5,

√
3
〉
,

〈√
3, 2

〉

In Exercises 9–12, simplify the expression.

9. (v − w) · v + v · w

10. (v + w) · (v + w) − 2v · w

11. (v + w) · v − (v + w) · w 12. (v + w) · v − (v − w) · w

In Exercises 13–16, use the properties of the dot product to evaluate
the expression, assuming that u · v = 2, ‖u‖ = 1, and ‖v‖ = 3.

13. u · (4v) 14. (u + v) · v

15. 2u · (3u − v) 16. (u + v) · (u − v)
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17. Find the angle between v and w if v · w = −‖v‖ ‖w‖.

18. Find the angle between v and w if v · w = 1
2‖v‖ ‖w‖.

19. Assume that ‖v‖ = 3, ‖w‖ = 5 and that the angle between v and
w is θ = π

3 .

(a) Use the relation ‖v + w‖2 = (v + w) · (v + w) to show that
‖v + w‖2 = 32 + 52 + 2v · w.

(b) Find ‖v + w‖.

20. Assume that ‖v‖ = 2, ‖w‖ = 3, and the angle between v and w is
120◦. Determine:

(a) v · w (b) ‖2v + w‖ (c) ‖2v − 3w‖

21. Show that if e and f are unit vectors such that ‖e + f‖ = 3
2 , then

‖e − f‖ =
√

7
2 . Hint: Show that e · f = 1

8 .

22. Find ‖2e − 3f‖ assuming that e and f are unit vectors such that
‖e + f‖ = √

3/2.

23. Find the angle θ in the triangle in Figure 12.

x

y

(0, 10)

(10, 8)

(3, 2)

θ

FIGURE 12

24. Find all three angles in the triangle in Figure 13.

x

y
(2, 7)

(6, 3)

(0, 0)

FIGURE 13

In Exercises 25 and 26, find the projection of u along v.

25. u = 〈2, 5〉, v = 〈1, 1〉 26. u = 〈2, −3〉, v = 〈1, 2〉

27. Find the length of OP in Figure 14.

28. Find ‖u⊥‖ in Figure 14.

x

y

u = 〈3, 5〉

v = 〈8, 2〉
u⊥

P
O

FIGURE 14

In Exercises 29 and 30, find the decomposition a = a|| + a⊥ with re-
spect to b.

29. a = 〈1, 0〉, b = 〈1, 1〉
30. a = 〈2, −3〉, b = 〈5, 0〉
31. Let eθ = 〈cos θ, sin θ〉. Show that eθ · eψ = cos(θ − ψ) for any
two angles θ and ψ .

32. Let v and w be vectors in the plane.

(a) UseTheorem 2 to explain why the dot product v · w does not change
if both v and w are rotated by the same angle θ .

(b) Sketch the vectors e1 = 〈1, 0〉 and e2 =
〈√

2
2 ,

√
2

2

〉
, and determine

the vectors e′
1, e′

2 obtained by rotating e1, e2 through an angle π
4 . Verify

that e1 · e2 = e′
1 · e′

2.

33. Let v and w be nonzero vectors and set u = ev + ew. Use
the dot product to show that the angle between u and v is equal to
the angle between u and w. Explain this result geometrically with a
diagram.

34. Let v, w, and a be nonzero vectors such that v · a = w · a.
Is it true that v = w? Either prove this or give a counterexample.

35. Calculate the force (in newtons) required to push a 40-kg wagon
up a 10◦ incline (Figure 15).

10°

40 kg

FIGURE 15

36. A force F is applied to each of two ropes (of negligible weight)
attached to opposite ends of a 40-kg wagon and making an angle of
35◦ with the horizontal (Figure 16). What is the maximum magnitude
of F (in newtons) that can be applied without lifting the wagon off the
ground?

40 kg

FF

35° 35°

FIGURE 16
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37. A light beam travels along the ray determined by a unit vector L,
strikes a flat surface at point P , and is reflected along the ray determined
by a unit vector R, where θ1 = θ2 (Figure 17). Show that if N is the
unit vector orthogonal to the surface, then

R = 2(L · N)N − L

38. Verify the Distributive Law:

u · (v + w) = u · v + u · w

39. Verify that (λv) · w = λ(v · w) for any scalar λ.

R

N

L

Incoming light Reflected light

P

θ1 θ2

FIGURE 17

Further Insights and Challenges
40. Prove the Law of Cosines, c2 = a2 + b2 − 2ab cos θ , by referring
to Figure 18. Hint: Consider the right triangle �PQR.

Q
P

R

a
a sin θ

b

c

b − a cos θ

θ

FIGURE 18

41. In this exercise, we prove the Cauchy–Schwarz inequality: If v and
w are any two vectors, then

|v · w| ≤ ‖v‖ ‖w‖ 6

(a) Let f (x) = ‖xv + w‖2 for x a scalar. Show that f (x) = ax2 +
bx + c, where a = ‖v‖2, b = 2v · w, and c = ‖w‖2.
(b) Conclude that b2 − 4ac ≤ 0. Hint: Observe that f (x) ≥ 0 for all x.

42. Use (6) to prove the Triangle Inequality

‖v + w‖ ≤ ‖v‖ + ‖w‖
Hint: First use the Triangle Inequality for numbers to prove

|(v + w) · (v + w)| ≤ |(v + w) · v| + |(v + w) · w|

43. This exercise gives another proof of the relation between the
dot product and the angle θ between two vectors v = 〈a1, b1〉 and
w = 〈a2, b2〉 in the plane. Observe that v = ‖v‖ 〈cos θ1, sin θ1〉 and
w = ‖w‖ 〈cos θ2, sin θ2〉, with θ1 and θ2 as in Figure 19. Then use the
addition formula for the cosine to show that

v · w = ‖v‖ ‖w‖ cos θ

θ = θ2 − θ1

w w

v v

x

y

x

y

x

y
a2

b2

b1

a1

θ2 θ1

θ

FIGURE 19

44. Let v = 〈x, y〉 and

vθ = 〈x cos θ + y sin θ, −x sin θ + y cos θ〉

Prove that the angle between v and vθ is θ .

11.7 Calculus of Vector-Valued Functions
In this section, we revisit curves in the plane, using the language of vectors to deal with
them. Consider a particle moving in the plane whose coordinates at time t are

(
x(t), y(t)

)
.

The particle’s path can be represented by the vector-valued function

r(t) = (
x(t), y(t)

) = x(t)i + y(t)j

We now extend differentiation and integration to vector-valued functions. This is straight-
forward because the techniques of single-variable calculus carry over with little change.
What is new and important, however, is the geometric interpretation of the derivative as
a tangent vector. We describe this later in the section.

The first step is to define limits of vector-valued functions.
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DEFINITION Limit of a Vector-Valued Function A vector-valued function r(t) ap-
proaches the limit u (a vector) as t approaches t0 if lim

t→t0
‖r(t) − u‖ = 0. In this case,

we write

lim
t→t0

r(t) = u

We can visualize the limit of a vector-valued function as a vector r(t) “moving”
toward the limit vector u (Figure 1). According to the next theorem, vector limits may be

r(t)
y

x

u

FIGURE 1 The vector-valued function r(t)
approaches u as t → t0.

computed componentwise.

THEOREM 1 Vector-Valued Limits Are Computed Componentwise A vector-valued
function r(t) = 〈x(t), y(t)〉 approaches a limit as t → t0 if and only if each component
approaches a limit, and in this case,

lim
t→t0

r(t) =
〈

lim
t→t0

x(t), lim
t→t0

y(t)

〉
1

Proof Let u = 〈a, b〉 and consider the square of the lengthThe Limit Laws of scalar functions remain
valid in the vector-valued case. They are
verified by applying the Limit Laws to the
components.

‖r(t) − u‖2 = (x(t) − a)2 + (y(t) − b)2 2

The term on the left approaches zero if and only if each term on the right approaches
zero (because these terms are nonnegative). It follows that ‖r(t) − u‖ approaches zero if
and only if |x(t) − a| and |y(t) − b| tend to zero. Therefore, r(t) approaches a limit u as
t → t0 if and only if x(t) and y(t) converge to the components a and b.

EXAMPLE 1 Calculate lim
t→3

r(t), where r(t) = 〈
t2, 1 − t

〉
.

Solution By Theorem 1,

lim
t→3

r(t) = lim
t→3

〈
t2, 1 − t

〉 =
〈
lim
t→3

t2, lim
t→3

(1 − t)

〉
= 〈9, −2〉

Continuity of vector-valued functions is defined in the same way as in the scalar case.
A vector-valued function r(t) = 〈x(t), y(t)〉 is continuous at t0 if

lim
t→t0

r(t) = r(t0)

By Theorem 1, r(t) is continuous at t0 if and only if the components x(t), y(t) are
continuous at t0.

We define the derivative of r(t) as the limit of the difference quotient:

r′(t) = d

dt
r(t) = lim

h→0

r(t + h) − r(t)
h

3

In Leibniz notation, the derivative is written dr/dt .
We say that r(t) is differentiable at t if the limit in Eq. (3) exists. Notice that the

components of the difference quotient are difference quotients:

lim
h→0

r(t + h) − r(t)
h

= lim
h→0

〈
x(t + h) − x(t)

h
,
y(t + h) − y(t)

h

〉
and by Theorem 1, r(t) is differentiable if and only if the components are differentiable.
In this case, r′(t) is equal to the vector of derivatives 〈x′(t), y′(t)〉.
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THEOREM 2 Vector-Valued Derivatives Are Computed Componentwise A vector-
valued function r(t) = 〈x(t), y(t)〉 is differentiable if and only if each component is
differentiable. In this case,

r′(t) = d

dt
r(t) = 〈

x′(t), y′(t)
〉

Here are some vector-valued derivatives, computed componentwise:

By Theorems 1 and 2, vector-valued limits
and derivatives are computed
“componentwise,” so they are not more
difficult to compute than ordinary limits
and derivatives.

d

dt

〈
t2, t3〉 = 〈

2t, 3t2〉
,

d

dt

〈
cos t, −1

〉 = 〈− sin t, 0
〉

Higher-order derivatives are defined by repeated differentiation:

r′′(t) = d

dt
r′(t), r′′′(t) = d

dt
r′′(t), . . .

EXAMPLE 2 Calculate r′′(3), where r(t) = 〈ln t, t〉.
Solution We perform the differentiation componentwise:

r′(t) = d

dt

〈
ln t, t

〉 = 〈
t−1, 1

〉
r′′(t) = d

dt

〈
t−1, 1

〉 = 〈−t−2, 0
〉

Therefore, r′′(3) = 〈− 1
9 , 0

〉
.

The differentiation rules of single-variable calculus carry over to the vector setting.

Differentiation Rules Assume that r(t), r1(t), and r2(t) are differentiable. Then

• Sum Rule: (r1(t) + r2(t))
′ = r′

1(t) + r′
2(t)

• Constant Multiple Rule: For any constant c, (c r(t))′ = c r′(t).
• Product Rule: For any differentiable scalar-valued function f (t),

d

dt

(
f (t)r(t)

) = f (t)r′(t) + f ′(t)r(t)

• Chain Rule: For any differentiable scalar-valued function g(t),

d

dt
r(g(t)) = g′(t)r′(g(t))

Proof Each rule is proved by applying the differentiation rules to the components. For
example, to prove the Product Rule, we write

f (t)r(t) = f (t) 〈x(t), y(t)〉 = 〈f (t)x(t), f (t)y(t)〉
Now apply the Product Rule to each component:

d

dt
f (t)r(t) =

〈
d

dt
f (t)x(t),

d

dt
f (t)y(t)

〉
= 〈

f ′(t)x(t) + f (t)x′(t), f ′(t)y(t) + f (t)y′(t)
〉

= 〈
f ′(t)x(t), f ′(t)y(t)

〉 + 〈
f (t)x′(t), f (t)y′(t)

〉
= f ′(t) 〈x(t), y(t)〉 + f (t)

〈
x′(t), y′(t)

〉 = f ′(t)r(t) + f (t)r′(t)

The remaining proofs are left as exercises (Exercises 40–41).
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EXAMPLE 3 Let r(t) = 〈
t2, 5t

〉
and f (t) = e3t . Calculate:

(a)
d

dt
f (t)r(t) (b)

d

dt
r(f (t))

Solution We have r′(t) = 〈2t, 5〉 and f ′(t) = 3e3t .

(a) By the Product Rule,

d

dt
f (t)r(t) = f (t)r′(t) + f ′(t)r(t) = e3t

〈
2t, 5

〉 + 3e3t
〈
t2, 5t

〉
= 〈

(3t2 + 2t)e3t , (15t + 5)e3t
〉

(b) By the Chain Rule,

d

dt
r(f (t)) = f ′(t)r′(f (t)) = 3e3tr′(e3t ) = 3e3t

〈
2e3t , 5

〉 = 〈
6e6t , 15e3t

〉
There is another Product Rule for vector-valued functions. In addition to the rule for

the product of a scalar function f (t) and a vector-valued function r(t) stated above, there
is a Product Rule for the dot product.

THEOREM 3 Product Rule for Dot Product Assume that r1(t) and r2(t) are differen-
tiable. Then

d

dt

(
r1(t) · r2(t)

) = r1(t) · r′
2(t) + r′

1(t) · r2(t) 4

Proof We verify Eq. (4) for vector-valued functions in the plane. If r1(t) = 〈x1(t), y1(t)〉
and r2(t) = 〈x2(t), y2(t)〉, then

d

dt

(
r1(t) · r2(t)

) = d

dt

(
x1(t)x2(t) + y1(t)y2(t)

)
= x1(t)x

′
2(t) + x′

1(t)x2(t) + y1(t)y
′
2(t) + y′

1(t)y2(t)

= (
x1(t)x

′
2(t) + y1(t)y

′
2(t)

) + (
x′

1(t)x2(t) + y′
1(t)y2(t)

)
= r1(t) · r′

2(t) + r′
1(t) · r2(t)

Throughout this chapter, all vector-valued functions are assumed differentiable, un-
less otherwise stated.

The Derivative as a Tangent Vector

The derivative vector r′(t0) has an important geometric property: It points in the direction
tangent to the path traced by r(t) at t = t0.

To understand why, consider the difference quotient, where �r = r(t0 + h) − r(t0)
and �t = h with h �= 0:

�r
�t

= r(t0 + h) − r(t0)
h

5

The vector �r points from the head of r(t0) to the head of r(t0 + h) as in Figure 2(A).
The difference quotient �r/�t is a scalar multiple of �r and therefore points in the same
direction [Figure 2(B)].
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r(t0 + h) − r(t0)

r(t0 + h)

r(t0)

y

x

r(t0 + h) − r(t0)
h

r(t0 + h)
r(t0)

y

x

(A) (B)
FIGURE 2 The difference quotient points in
the direction of �r = r(t0 + h) − r(t0).

O

r'(t0)

O

(A)

r(t0)

r(t0 + h) − r(t0)
h

r(t0 + h)

(B)

h tending to zero limit as h     0

(C)

O

FIGURE 3 The difference quotient converges to a vector r′(t0), tangent to the curve.

As h = �t tends to zero, �r also tends to zero but the quotient �r/�t approaches
a vector r′(t0), which, if nonzero, points in the direction tangent to the curve. Figure 3
illustrates the limiting process. We refer to r′(t0) as the tangent vector or the velocity
vector at r(t0).

The tangent vector r′(t0) (if it is nonzero) is a direction vector for the tangent line toAlthough it has been our convention to
regard all vectors as based at the origin,
the tangent vector r′(t) is an exception; we
visualize it as a vector based at the
terminal point of r(t). This makes sense
because r′(t) then appears as a vector
tangent to the curve (Figure 3).

the curve. Therefore, the tangent line has vector parametrization:

Tangent line at r(t0): L(t) = r(t0) + t r′(t0) 6

EXAMPLE 4 Plotting Tangent Vectors Plot r(t) = 〈cos t, sin t〉 together with its tan-
gent vectors at t = π

4 and 3π
2 . Find a parametrization of the tangent line at t = π

4 .

Solution The derivative is r′(t) = 〈− sin t, cos t〉, and thus the tangent vectors at t = π
4

y

x

(0, −1)

(−1, 0)

(0, 1)

(1, 0)

t = π

4

t = 3π

2

FIGURE 4

and 3π
2 are

r′ (π

4

)
=

〈
−

√
2

2
,

√
2

2

〉
, r′

(
3π

2

)
= 〈1, 0〉

Figure 4 shows a plot of r(t) with r′(π
4

)
based at r

(
π
4

)
and r′( 3π

2

)
based at r

( 3π
2

)
.

At t = π
4 , r

(
π
4

) =
〈√

2
2 ,

√
2

2

〉
and thus the tangent line is parametrized by

L(t) = r
(π

4

)
+ t r′ (π

4

)
=

〈√
2

2
,

√
2

2

〉
+ t

〈
−

√
2

2
,

√
2

2

〉

There are some important differences between vector- and scalar-valued derivatives.
The tangent line to a plane curve y = f (x) is horizontal at x0 if f ′(x0) = 0. But in a vector
parametrization, the tangent vector r′(t0) = 〈

x′(t0), y′(t0)
〉

is horizontal and nonzero if
y′(t0) = 0 but x′(t0) �= 0.
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EXAMPLE 5 Horizontal Tangent Vectors on the Cycloid The function

r(t) = 〈t − sin t, 1 − cos t〉
traces a cycloid. Find the points where:

(a) r′(t) is horizontal and nonzero. (b) r′(t) is the zero vector.

Solution The tangent vector is r′(t) = 〈1 − cos t, sin t〉. The y-component of r′(t) is zero
if sin t = 0—that is, if t = 0, π, 2π, . . . . We have

r(0) = 〈0, 0〉 , r′(0) = 〈1 − cos 0, sin 0〉 = 〈0, 0〉 (zero vector)

r(π) = 〈π, 2〉 , r′(π) = 〈1 − cos π, sin π〉 = 〈2, 0〉 (horizontal)

By periodicity, we conclude that r′(t) is nonzero and horizontal for t = π, 3π, 5π, . . .

and r′(t) = 0 for t = 0, 2π, 4π, . . . (Figure 5).

r'(π) horizontal
r'(2π) = 0

2π 3π 4ππ

1
2

x

y

FIGURE 5 Points on the cycloid

r(t) = 〈t − sin t, 1 − cos t〉
where the tangent vector is horizontal.

CONCEPTUAL INSIGHT The cycloid in Figure 5 has sharp points called cusps at points
where x = 0, 2π, 4π, . . . . If we represent the cycloid as the graph of a function y =
f (x), then f ′(x) does not exist at these points. By contrast, the vector derivative r′(t) =
〈1 − cos t, sin t〉 exists for all t , but r′(t) = 0 at the cusps. In general, r′(t) is a direction
vector for the tangent line whenever it exists, but we get no information about the tangent
line (which may or may not exist) at points where r′(t) = 0.

The next example establishes an important property of vector-valued functions.

EXAMPLE 6 Orthogonality of r and r′ When r Has Constant Length Prove that if r(t)
has constant length, then r(t) is orthogonal to r′(t).
Solution By the Product Rule for Dot Products,

d

dt
‖r(t)‖2 = d

dt

(
r(t) · r(t)

) = r(t) · r′(t) + r′(t) · r(t) = 2r(t) · r′(t)

This derivative is zero because ‖r(t)‖ is constant. Therefore r(t) · r′(t) = 0, and r(t) is
orthogonal to r′(t) [or r′(t) = 0].

r(t)

r ´(t)
y

x

FIGURE 6

GRAPHICAL INSIGHT The result of Example 6 has a geometric explanation. A vector
parametrization r(t) consisting of vectors of constant length R traces a curve on the
circle of radius R with center at the origin (Figure 6). Thus r′(t) is tangent to this circle.
But any line that is tangent to a circle at a point P is orthogonal to the radial vector
through P , and thus r(t) is orthogonal to r′(t).

Vector-Valued Integration
The integral of a vector-valued function can be defined in terms of Riemann sums as
in Chapter 5. We will define it more simply via componentwise integration (the two
definitions are equivalent). In other words,∫ b

a

r(t) dt =
〈 ∫ b

a

x(t) dt,

∫ b

a

y(t) dt

〉
The integral exists if each of the components x(t), y(t) is integrable. For example,∫ π

0
〈1, t〉 dt =

〈 ∫ π

0
1 dt,

∫ π

0
t dt

〉
=

〈
π,

1

2
π2

〉
Vector-valued integrals obey the same linearity rules as scalar-valued integrals.
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An antiderivative of r(t) is a vector-valued function R(t) such that R′(t) = r(t). In
the single-variable case, two functions f1(x) and f2(x) with the same derivative differ
by a constant. Similarly, two vector-valued functions with the same derivative differ by a
constant vector (i.e., a vector that does not depend on t). This is proved by applying the
scalar result to each component of r(t).

THEOREM 4 If R1(t) and R2(t) are differentiable and R′
1(t) = R′

2(t), then

R1(t) = R2(t) + c

for some constant vector c.

The general antiderivative of r(t) is written∫
r(t) dt = R(t) + c

where c = 〈c1, c2〉 is an arbitrary constant vector. For example,∫
〈1, t〉 dt =

〈
t,

1

2
t2

〉
+ c =

〈
t + c1,

1

2
t2 + c2

〉

Fundamental Theorem of Calculus for Vector-Valued Functions If r(t) is continuous
on [a, b], and R(t) is an antiderivative of r(t), then∫ b

a

r(t) dt = R(b) − R(a)

EXAMPLE 7 Finding Position via Vector-Valued Differential Equations The path of a
particle satisfies

dr
dt

=
〈
1 − 6 sin 3t,

1

5
t

〉

Find the particle’s location at t = 4 if r(0) = 〈4, 1〉.
y

x

3

1

0 2 94 6

(4, 1)
t = 0

(7.69, 2.6)
t = 4

FIGURE 7 Particle path

r(t) = 〈
t + 2 cos 3t + 2, 1

10 t2 + 1
〉

Solution The general solution is obtained by integration:

r(t) =
∫ 〈

1 − 6 sin 3t,
1

5
t

〉
dt =

〈
t + 2 cos 3t,

1

10
t2

〉
+ c

The initial condition r(0) = 〈4, 1〉 gives us

r(0) = 〈2, 0〉 + c = 〈4, 1〉
Therefore, c = 〈2, 1〉 and (Figure 7)

r(t) =
〈
t + 2 cos 3t,

1

10
t2

〉
+ 〈2, 1〉 =

〈
t + 2 cos 3t + 2,

1

10
t2 + 1

〉

The particle’s position at t = 4 is

r(4) =
〈
4 + 2 cos 12 + 2,

1

10
(42) + 1

〉
≈ 〈7.69, 2.6〉
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11.7 SUMMARY

• Limits, differentiation, and integration of vector-valued functions are performed com-
ponentwise.
• Differentation rules:

– Sum Rule: (r1(t) + r2(t))
′ = r′

1(t) + r′
2(t)

– Constant Multiple Rule: (c r(t))′ = c r′(t)

– Chain Rule:
d

dt
r(g(t)) = g′(t)r′(g(t))

• Product Rules:

Scalar times vector:
d

dt

(
f (t)r(t)

) = f (t)r′(t) + f ′(t)r(t)

Dot product:
d

dt

(
r1(t) · r2(t)

) = r1(t) · r′
2(t) + r′

1(t) · r2(t)

• The derivative r′(t0) is called the tangent vector or velocity vector.
• If r′(t0) is nonzero, then it points in the direction tangent to the curve at r(t0). The
tangent line has vector parametrization

L(t) = r(t0) + tr′(t0)

• If R′
1(t) = R′

2(t), then R1(t) = R2(t) + c for some constant vector c.
• The Fundamental Theorem for vector-valued functions: If r(t) is continuous and R(t)

is an antiderivative of r(t), then∫ b

a

r(t) dt = R(b) − R(a)

11.7 EXERCISES

Preliminary Questions
1. State two forms of the Product Rule for vector-valued functions.

In Questions 2–5, indicate whether the statement is true or false, and
if it is false, provide a correct statement.

2. The derivative of a vector-valued function is defined as the limit
of the difference quotient, just as in the scalar-valued case.

3. There are two Chain Rules for vector-valued functions: one for the
composite of two vector-valued functions and one for the composite of
a vector-valued and a scalar-valued function.

4. The terms “velocity vector” and “tangent vector” for a path r(t)
mean one and the same thing.

5. The derivative of a vector-valued function is the slope of the tan-
gent line, just as in the scalar case.

6. State whether the following derivatives of vector-valued functions
r1(t) and r2(t) are scalars or vectors:

(a)
d

dt
r1(t) (b)

d

dt

(
r1(t) · r2(t)

)

Exercises
In Exercises 1–6, evaluate the limit.

1. lim
t→3

〈
t2, 4t

〉
2. lim

t→π
sin 2t i + cos tj

3. lim
t→0

e2t i + ln(t + 1)j 4. lim
t→0

〈
1

t + 1
,
et − 1

t

〉

5. Evaluate lim
h→0

r(t + h) − r(t)
h

for r(t) =
〈
t−1, sin t

〉
.

6. Evaluate lim
t→0

r(t)
t

for r(t) = 〈sin t, 1 − cos t〉.

In Exercises 7–12, compute the derivative.

7. r(t) = 〈
t, t2〉

8. r(t) = 〈
7 − t, 4

√
t
〉

9. r(s) = 〈
e3s , e−s

〉
10. b(t) =

〈
e3t−4, e6−t

〉
11. c(t) = t−1i 12. a(θ) = (cos 3θ)i + (sin2 θ)j
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13. Calculate r′(t) and r′′(t) for r(t) = 〈
t, t2〉

.

14. Sketch the curve r(t) = 〈
1 − t2, t

〉
for −1 ≤ t ≤ 1. Compute the

tangent vector at t = 1 and add it to the sketch.

15. Sketch the curve r1(t) = 〈
t, t2〉

together with its tangent vector at

t = 1. Then do the same for r2(t) = 〈
t3, t6〉

.

16. Sketch the cycloid r(t) = 〈
t − sin t, 1 − cos t

〉
together with its

tangent vectors at t = π
3 and 3π

4 .

In Exercises 17 and 18, evaluate
d

dt
r(g(t)) using the Chain Rule.

17. r(t) = 〈
t2, 1 − t

〉
, g(t) = et

18. r(t) = 〈
t2, t3〉

, g(t) = sin t

In Exercises 19 and 20, find a parametrization of the tangent line at the
point indicated.

19. r(t) = 〈
t2, t4〉

, t = −2

20. r(t) = 〈
cos 2t, sin 3t

〉
, t = π

4

In Exercises 21–28, evaluate the integrals.

21.
∫ 3

−1

〈
8t2 − t, 6t3 + t

〉
dt 22.

∫ 1

0

〈
1

1 + s2
,

s

1 + s2

〉
ds

23.
∫ 2

−2

(
u3i + u5j

)
du

24.
∫ 1

0

(
te−t2

i + t ln(t2 + 1)j
)

dt

25.
∫ 1

0
〈2t, 4t〉 dt 26.

∫ 1

1/2

〈
1

u2
,

1

u4

〉
du

27.
∫ 4

1

(
t−1i + 4

√
t j

)
dt 28.

∫ t

0

(
3si + 6s2j

)
ds

In Exercises 29–32, find both the general solution of the differential
equation and the solution with the given initial condition.

29.
dr
dt

= 〈1 − 2t, 4t〉, r(0) = 〈3, 1〉

30. r′(t) = 〈sin 3t, sin 3t〉, r
(
π
2

) = 〈2, 4〉
31. r′′(t) = 〈0, 2〉, r(3) = 〈1, 1〉, r′(3) = 〈0, 0〉
32. r′′(t) = 〈

et , sin t
〉
, r(0) = 〈1, 0〉, r′(0) = 〈0, 2〉

33. Find the location at t = 3 of a particle whose path (Figure 8) sat-
isfies

dr
dt

=
〈
2t − 1

(t + 1)2
, 2t − 4

〉
, r(0) = 〈3, 8〉

y

x
252015105

10

5

(3, 8)
t = 0

t = 3

FIGURE 8 Particle path.

34. Find the location and velocity at t = 4 of a particle whose path
satisfies

dr
dt

=
〈
2t−1/2, 6

〉
, r(1) = 〈4, 9〉

35. Find all solutions to r′(t) = v with initial condition r(1) = w,
where v and w are constant vectors in R2.

36. Let u be a constant vector in R2. Find the solution of the equation
r′(t) = (sin t)u satisfying r′(0) = 0.

37. Find all solutions to r′(t) = 2r(t) where r(t) is a vector-valued
function.

38. Show that w(t) = 〈sin(3t + 4), sin(3t − 2)〉 satisfies the differen-
tial equation w′′(t) = −9w(t).

Further Insights and Challenges
39. Let r(t) = 〈x(t), y(t)〉 trace a plane curve C. Assume that x′(t0) �=
0. Show that the slope of the tangent vector r′(t0) is equal to the slope
dy/dx of the curve at r(t0).

40. Verify the Sum and Product Rules for derivatives of vector-valued
functions.

41. Verify the Chain Rule for vector-valued functions.

42. Verify the linearity properties∫
cr(t) dt = c

∫
r(t) dt (c any constant)

∫ (
r1(t) + r2(t)

)
dt =

∫
r1(t) dt +

∫
r2(t) dt

43. Prove the Substitution Rule (where g(t) is a differentiable scalar
function):

∫ b

a
r(g(t))g′(t) dt =

∫ g−1(b)

g−1(a)
r(u) du

44. Prove that if ‖r(t)‖ ≤ K for t ∈ [a, b], then

∥∥∥∥∥
∫ b

a
r(t) dt

∥∥∥∥∥ ≤ K(b − a)
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CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?

(a) c(t) = (t2, t + 3) (b) c(t) = (t2, t − 3)

(c) c(t) = (t2, 3 − t) (d) c(t) = (t − 3, t2)

2. Find parametric equations for the line through P = (2, 5) perpen-
dicular to the line y = 4x − 3.

3. Find parametric equations for the circle of radius 2 with center
(1, 1). Use the equations to find the points of intersection of the circle
with the x- and y-axes.

4. Find a parametrization c(t) of the line y = 5 − 2x such that
c(0) = (2, 1).

5. Find a parametrization c(θ) of the unit circle such that c(0) =
(−1, 0).

6. Find a path c(t) that traces the parabolic arc y = x2 from (0, 0) to
(3, 9) for 0 ≤ t ≤ 1.

7. Find a path c(t) that traces the line y = 2x + 1 from (1, 3) to (3, 7)

for 0 ≤ t ≤ 1.

8. Sketch the graph c(t) = (1 + cos t, sin 2t) for 0 ≤ t ≤ 2π and
draw arrows specifying the direction of motion.

In Exercises 9–12, express the parametric curve in the form y = f (x).

9. c(t) = (4t − 3, 10 − t) 10. c(t) = (t3 + 1, t2 − 4)

11. c(t) =
(

3 − 2

t
, t3 + 1

t

)
12. x = tan t , y = sec t

In Exercises 13–16, calculate dy/dx at the point indicated.

13. c(t) = (t3 + t, t2 − 1), t = 3

14. c(θ) = (tan2 θ, cos θ), θ = π
4

15. c(t) = (et − 1, sin t), t = 20

16. c(t) = (ln t, 3t2 − t), P = (0, 2)

17. Find the point on the cycloid c(t) = (t − sin t, 1 − cos t)

where the tangent line has slope 1
2 .

18. Find the points on (t + sin t, t − 2 sin t) where the tangent is ver-
tical or horizontal.

19. Find the equation of the Bézier curve with control points

P0 = (−1, −1), P1 = (−1, 1), P2 = (1, 1), P3(1, −1)

20. Find the speed at t = π
4 of a particle whose position at time t

seconds is c(t) = (sin 4t, cos 3t).

21. Find the speed (as a function of t) of a particle whose position
at time t seconds is c(t) = (sin t + t, cos t + t). What is the particle’s
maximal speed?

22. Find the length of (3et − 3, 4et + 7) for 0 ≤ t ≤ 1.

In Exercises 23 and 24, let c(t) = (e−t cos t, e−t sin t).

23. Show that c(t) for 0 ≤ t < ∞ has finite length and calculate its
value.

24. Find the first positive value of t0 such that the tangent line to c(t0)

is vertical, and calculate the speed at t = t0.

25. Plot c(t) = (sin 2t, 2 cos t) for 0 ≤ t ≤ π . Express the
length of the curve as a definite integral, and approximate it using a
computer algebra system.

26. Convert the points (x, y) = (1, −3), (3, −1) from rectangular to
polar coordinates.

27. Convert the points (r, θ) = (
1, π

6

)
,

(
3, 5π

4

)
from polar to rectan-

gular coordinates.

28. Write (x + y)2 = xy + 6 as an equation in polar coordinates.

29. Write r = 2 cos θ

cos θ − sin θ
as an equation in rectangular coordinates.

30. Show that r = 4

7 cos θ − sin θ
is the polar equation of a line.

31. Convert the equation

9(x2 + y2) = (x2 + y2 − 2y)2

to polar coordinates, and plot it with a graphing utility.

32. Calculate the area of the circle r = 3 sin θ bounded by the rays
θ = π

3 and θ = 2π
3 .

33. Calculate the area of one petal of r = sin 4θ (see Figure 1).

34. The equation r = sin(nθ), where n ≥ 2 is even, is a “rose” of 2n

petals (Figure 1). Compute the total area of the flower, and show that
it does not depend on n.

y

x

n = 2 (4 petals)

y

x

n = 4 (8 petals)

y

x

n = 6 (12 petals)

FIGURE 1 Plot of r = sin(nθ).

35. Calculate the total area enclosed by the curve r2 = cos θesin θ (Fig-
ure 2).



670 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND VECTOR FUNCTIONS

y

x

1

1−1

FIGURE 2 Graph of r2 = cos θesin θ .

36. Find the shaded area in Figure 3.

y

x

1

−1

21−2 −1

r = 1 + cos 2θ

FIGURE 3

37. Find the area enclosed by the cardioid r = a(1 + cos θ), where
a > 0.

38. Calculate the length of the curve with polar equation r = θ in Fig-
ure 4.

y
r = θ

x

π

2

π

FIGURE 4

In Exercises 39–44, let v = 〈−2, 5〉 and w = 〈3, −2〉.

39. Calculate 5w − 3v and 5v − 3w.

40. Sketch v, w, and 2v − 3w.

41. Find the unit vector in the direction of v.

42. Find the length of v + w.

43. Express i as a linear combination rv + sw.

44. Find a scalar α such that ‖v + αw‖ = 6.

45. If P = (1, 4) and Q = (−3, 5), what are the components of
−→
PQ?

What is the length of
−→
PQ?

46. Let A = (2, −1), B = (1, 4), and P = (2, 3). Find the point Q

such that
−→
PQ is equivalent to

−→
AB. Sketch

−→
PQ and

−→
AB.

47. Find the vector with length 3 making an angle of 7π
4 with the

positive x-axis.

48. Calculate 3 (i − 2j) − 6 (i + 6j).

49. Find the value of β for which w = 〈−2, β〉 is parallel to v =
〈4, −3〉.
50. Let r1(t) = v1 + tw1 and r2(t) = v2 + tw2 be parametrizations
of lines L1 and L2. For each statement (a)–(e), provide a proof if the
statement is true and a counterexample if it is false.

(a) If L1 = L2, then v1 = v2 and w1 = w2.

(b) If L1 = L2 and v1 = v2, then w1 = w2.

(c) If L1 = L2 and w1 = w2, then v1 = v2.

(d) If L1 is parallel to L2, then w1 = w2.

(e) If L1 is parallel to L2, then w1 = λw2 for some scalar λ.

51. Sketch the vector sum v = v1 − v2 + v3 for the vectors in Fig-
ure 5(A).

(A)

x

y

v1

v2

v3

(B)

x

y

v1

v2

v3

FIGURE 5

52. Sketch the sums v1 + v2 + v3, v1 + 2v2, and v2 − v3 for the vec-
tors in Figure 5(B).

53. Use vectors to prove that the line connecting the midpoints of two
sides of a triangle is parallel to the third side.

54. Calculate the magnitude of the forces on the two ropes in Figure 6.

Rope 1 Rope 2

A B

P

10 kg

30° 45°

FIGURE 6

55. A 50-kg wagon is pulled to the right by a force F1 making an angle
of 30◦ with the ground. At the same time the wagon is pulled to the left
by a horizontal force F2.

(a) Find the magnitude of F1 in terms of the magnitude of F2 if the
wagon does not move.

(b) What is the maximal magnitude of F1 that can be applied to the
wagon without lifting it?

56. Find the angle between v and w if ‖v + w‖ = ‖v‖ = ‖w‖.

57. Find ‖e − 4f‖, assuming that e and f are unit vectors such that
‖e + f‖ = √

3.



Chapter Review Exercises 671

58. Find the area of the parallelogram spanned by vectors v and w such
that ‖v‖ = ‖w‖ = 2 and v · w = 1.

In Exercises 59–64, calculate the derivative indicated.

59. r′(t), r(t) = 〈
1 − t, t−2〉

60. r′′′(t), r(t) = 〈
t3, 4t2〉

61. r′(0), r(t) = 〈
e2t , e−4t2 〉

62. r′′(−3), r(t) = 〈
t−2, (t + 1)−1〉

63.
d

dt
et

〈
1, t

〉
64.

d

dθ
r(cos θ), r(s) = 〈

s, 2s
〉

In Exercises 65 and 66, calculate the derivative at t = 3, assuming that

r1(3) = 〈1, 1〉 , r2(3) = 〈1, 1〉
r′

1(3) = 〈0, 0〉 , r′
2(3) = 〈0, 2〉

65.
d

dt
(6r1(t) − 4 · r2(t)) 66.

d

dt

(
etr2(t)

)
67. Calculate

∫ 3

0

〈
4t + 3, t2〉

dt .

68. Calculate
∫ π

0

〈
sin θ, θ

〉
dθ .

69. A particle located at (1, 1) at time t = 0 follows a path whose
velocity vector is v(t) = 〈

1, t
〉
. Find the particle’s location at t = 2.

70. Find the vector-valued function r(t) = 〈
x(t), y(t)

〉
in R2 satisfying

r′(t) = −r(t) with initial conditions r(0) = 〈1, 2〉.

71. Calculate r(t) assuming that

r′′(t) =
〈
4 − 16t, 12t2 − t

〉
, r′(0) = 〈1, 0〉 , r(0) = 〈0, 1〉

72. Solve r′′(t) =
〈
t2 − 1, t + 1

〉
subject to the initial conditions

r(0) = 〈1, 0〉 and r′(0) = 〈−1, 1〉.

73. A projectile fired at an angle of 60◦ lands 400 m away. What was
its initial speed?

74. A force F = 〈12t + 4, 8 − 24t〉 (in newtons) acts on a 2-kg mass.
Find the position of the mass at t = 2 s if it is located at (4, 6) at t = 0
and has initial velocity 〈2, 3〉 in m/s.

75. Find the unit tangent vector to r(t) = 〈
sin t, t

〉
at t = π .



CHAPTER 11 PARAMETRIC
EQUATIONS, POLAR
COORDINATES, AND
VECTOR FUNCTIONS
PREPARING FOR THE
AP EXAM

Multiple Choice Questions

Use scratch paper as necessary to solve each problem. Pick the
best answer from the choices provided. All questions cover BC
topics.

1. Acurve is given by the parametric equations x(t) = t2 − 4t

and y(t) = t2 + 2t − 3. The line tangent to the curve at the
point P is horizontal if P =
(A) (−3, 0)

(B) (−3, −4)

(C) (5, −4)

(D) (−2, −1)

(E) (−6, 0)

2. If a curve is given by x(t) = t3 − 4t2 + 4t + 3 and y(t) =
t + 3, then an equation of the line tangent to the curve at
the point (3, 5) is

(A) y = 5
3x

(B) y = 5

(C) y = x + 2

(D) x = 3

(E) Not possible; there is no tangent line at (3, 5).

3. C A curve is given by x(t) = t2 + 3, y(t) = cos t . The
length of the curve from the point (3, 1) to the point (7, cos 2)

is given by

(A)
∫ 7

3

√
1 + cos2t dt

(B)
∫ 7

3

√
1 + sin2t dt

(C)
∫ 2

0

√
(t2 + 3)

2 + cos2t dt

(D)
∫ 2

0

√
4t2 + sin2t dt

(E)
∫ 2

0

√
1 + sin2t dt

4. Which of the following are parametrizations of the parabola
y = x2?

I x(t) = t2, y(t) = t4 for −∞ < t < ∞.

II x(t) = tan t , y(t) = tan2t for −π
2 < t < π

2 .

III x(t) = 3
√

t , y(t) = 3
√

t2 for −∞ < t < ∞.

(A) I only

(B) III only

(C) I and III only

(D) II and III only

(E) I, II, and III

AP11-1
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5. C Consider the polar curve r = 2 sin(3θ). The length of
the loop of this curve that is in the first quadrant is given by

(A)
∫ π/3

0

√
4 sin2(3θ) + 36 cos2(3θ) dθ

(B)
∫ π/2

0

√
4 sin2(3θ) + 36 cos2(3θ) dθ

(C)
∫ π/3

0

√
2 sin2(3θ) + 6 cos2(3θ) dθ

(D)
∫ π/2

0

√
2 sin2(3θ) + 6 cos2(3θ) dθ

(E)
∫ π/2

0

√
4 sin2(3θ) − 36 cos2(3θ) dθ

6. The curve r = sin θ , 0 < θ < 2π , has a vertical tangent line
when

(A) θ = π
2 and 3π

2 only

(B) θ = π
4 , 3π

4 , 5π
4 , and 7π

4 only

(C) θ = π
4 and 5π

4 only

(D) θ = π
2 , π , and 3π

2 only

(E) θ = π
2 and π only

7. Which of the following is a parametrization of the ellipse
9x2 + 4y2 = 36?

I
x2

4
+ y2

9
= 1

II x(t) = 2 cos t, y(t) = 3 sin t

III x(t) = 2 cos(t), y(t) = 3 sin(−t)

(A) I only

(B) II only

(C) I and II only

(D) II and III only

(E) I, II, and III

8. C If 〈6, 2〉 is the tangent vector to the vector curve r(t) at
the point r(7) = 〈4, 5〉, then an equation of the line tangent
to the curve is given by

(A) y − 5 = 7(x − 4)

(B) y = 5x

4
(C) y − 5 = 3(x − 4)

(D) y − 5 = 1
3 (x − 4)

(E) y − 5 = 1
7 (x − 4)

9. C A vector valued function r(t) has as its velocity func-
tion V (t) = 〈

sin t, 6e2t
〉
. If r(0) = 〈4, 7〉, then r(t) =

(A)
〈
cos t, 12e2t

〉
(B)

〈
4 cos t, 7e2t

〉
(C)

〈
3 + cos t, 3e2t + 4

〉
(D)

〈
5 − cos t, 7e2t

〉
(E)

〈
5 − cos t, 3e2t + 4

〉
10. C Which of the following integrals represents the area

inside the polar curve r = 2 cos θ?

(A)
1

2

∫ 2π

0
4 cos2 θ dθ

(B)
∫ 2π

0
4 cos2 θ dθ

(C)
∫ π/2

0
4 cos2 θ dθ

(D)
1

2

∫ 2π

0
4 sin2θ dθ

(E)
∫ 2π

0
4 sin2 θ dθ

11. C A particle travels in the xy-plane with x(t) = t3 +
3t2 − 9t and y(t) = 2t3 + 9t2. The particle is at rest when
t =
(A) t = 0 only

(B) t = −3 only

(C) t = 0 and −3 only

(D) t = −3 and 1 only

(E) t = −3, 0, and 1 only

12. If a particle’s position is given by the vector function
r(t) = 〈sin(2t), cos(t)〉 for the open interval 0 < t < 2π ,
then its velocity vector is pointing straight down for

(A) t = π
2 and 3π

2 only

(B) t = π
4 and 3π

4 only

(C) t = 5π
4 and 7π

4 only

(D) t = π
4 , 3π

4 , 5π
4 , and 7π

4 only

(E) no values of t
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13. If a curve is given by x(t) = t3 − 48t and y(t) = t2 − 2t ,
then the time interval(s) for which the slope of the line tan-
gent to the curve is positive are

(A) t > 0

(B) t > 1

(C) t < −4 and t > 1

(D) t < −4 and t > 4

(E) −4 < t < 1 and t > 4

14. A vector function is given by r(t) = 〈t2 − 4t, t2 + 6t〉. Its
velocity vector is parallel to the x-axis when

(A) t = −3 only

(B) t = 0 and −6 only

(C) t = 0 and 4 only

(D) t = 2 only

(E) t = −3 and 2 only

15. The slope of the polar curve r = 1 − cos θ at the point cor-
responding to θ = π

2 is

(A) −1

(B) − 1
2

(C) 0

(D) 1
2

(E) 1

16. The area enclosed by the polar graph r = sin θ is

(A) π
8

(B) 1
2

(C) π
4

(D) 1

(E) π

17. C Find the area inside the large loop of r = 1 + 2 cos θ ,
and outside the small loop.

(A) 0.543

(B) 8.338

(C) 8.881

(D) 9.424

(E) 18.306

18. C Find the area outside the curve r = 3 cos θ and inside
R = 1 + cos θ .

(A) 0.204

(B) 0.393

(C) 0.596

(D) 0.785

(E) 1.570

19. If a particle has position given by r(t) = 〈sin(2t), e3t 〉, then
its speed when t = 0 is

(A) 1

(B) 3
2

(C) 9
4

(D)
√

13

(E) 5

20. A particle has velocity given by V (t) = 〈6 sin(2t), sec2t〉
and is at the point (1, 1) when t = 0. The position of the
particle when t = π

4 is

(A) (4, 2)

(B) (0, 0)

(C) (−2, 1)

(D) (1, 2)

(E) (0, 1)

Free Response Questions

Show all of your work and clearly label any functions, graphs,
tables, or other objects that you use. On the AP, your work will be
scored on the correctness and completeness of your methods, as
well as your actual answer. You will usually not be given credit
for answers that don’t include supporting work. All questions
cover BC topics.

1. A particle is moving in the plane; at time t , its velocity vec-
tor is given by v(t) = 〈

2t + 5, 4e2t
〉
and at time t = 0, the

particle is at the point (−6, 2).

(a) If a(t) is the acceleration vector, what is a(3)?
(b) What is the speed of the particle when t = 0?
(c) Find an equation of the line tangent to the path of the

particle at the point (−6, 2).
(d) Find all times t for which the particle is in the first

quadrant. Justify your answer.

2. Consider the polar curve given by r = 1 + cos θ .

(a) What integral gives the area of the region enclosed by
the curve above the x-axis?

(b) Find an equation for the line tangent to the curve at the
point where the curve meets the positive y-axis.

(c) Find the rectangular coordinates of the point(s) that
minimize x.
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3. Two particles are traveling in the plane. Particle F is at the
point 〈3, 4〉 at time t = −1, and its velocity vector is always
2 times its position vector. Particle G is at the point 〈9, 12〉
at time t = 0, and its velocity vector is always −3 times its
position vector. In this problem t takes on all real values.
(a) Find the vector functions F(t) and G(t).
(b) Find all times, if any, when the particles have the same

position.
(c) Show that the points in the plane visited by F and the

points visited by G are the same by giving a formula
for these points in rectangular coordinates.

(d) How far does G travel for t ≥ 0?

4. Consider the spiral in the xy-plane given by the polar curve

r = 1

2θ + 1
for θ ≥ 0.

(a) Is the line tangent to the spiral when θ = π a vertical
line? Explain.

(b) Find the area enclosed by the curve below the y-axis.

(c) Show that the spiral has infinite length.

Answers to odd-numbered questions can be found in the back of
the book.



The famous triple peaks Eiger, Monch, and

Jungfrau in the Swiss alps. The steepness at a

point in a mountain range is measured by the

gradient, a concept defined in this chapter.

12 DIFFERENTIATION
IN SEVERAL VARIABLES

I n this chapter we extend the concepts and techniques of differential calculus to functions
of several variables. As we will see, a function f that depends on two or more variables

has not just one derivative but rather a set of partial derivatives, one for each variable.
The partial derivatives are the components of the gradient vector, which provides valuable
insight into the function’s behavior. In the last two sections, we apply the tools we have
developed to optimization in several variables.

12.1 Functions of Two or More Variables
A familiar example of a function of two variables is the area A of a rectangle, equal to the
product xy of the base x and height y. We write

A(x, y) = xy

or A = f (x, y), where f (x, y) = xy. An example in three variables is the distance from
a point P = (x, y, z) to the origin:

g(x, y, z) =
√

x2 + y2 + z2

An important but less familiar example is the density of seawater, denoted ρ, which
is a function ρ(S, T ) of salinity S and temperature T (Figure 1). Although there is no sim-

FIGURE 1 The global climate is influenced
by the ocean “conveyer belt,” a system of
deep currents driven by variations in
seawater density.

ple formula for ρ(S, T ), scientists determine function values experimentally (Figure 2).
According to Table 1, if S = 32 (in parts per thousand) and T = 10◦C, then

ρ(32, 10) = 1.0246 kg/m3

FIGURE 2 A Conductivity-Temperature-
Depth (CDT) instrument is used to
measure seawater variables such as
density, temperature, pressure, and salinity.

TABLE 1 Seawater Density ρ (kg /m3) as
a Function of Temperature and Salinity.

Salinity (ppt)

◦C 32 32.5 33

5 1.0253 1.0257 1.0261
10 1.0246 1.0250 1.0254
15 1.0237 1.0240 1.0244
20 1.0224 1.0229 1.0232

A function of n variables is a function f (x1, . . . , xn) that assigns a real number to
each n-tuple (x1, . . . , xn) in a domain in Rn. Sometimes we write f (P ) for the value of f

at a point P = (x1, . . . , xn). When f is defined by a formula, we usually take as domain
the set of all n-tuples for which f (x1, . . . , xn) is defined. The range of f is the set of all
values f (x1, . . . , xn) for (x1, . . . , xn) in the domain. Since we focus on functions of two
or three variables, we shall often use the variables x, y, and z (rather than x1, x2, x3).

672
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EXAMPLE 1 Sketch the domains of

(a) f (x, y) = √
9 − x2 − y (b) g(x, y, z) = x

√
y + ln(z − 1)

What are the ranges of these functions?

Solution

(a) f (x, y) = √
9 − x2 − y is defined only when 9 − x2 − y ≥ 0, or y ≤ 9 − x2. Thus

the domain consists of all points (x, y) lying below the parabola y = 9 − x2 [Figure 3(A)]:

D = {(x, y) : y ≤ 9 − x2}
To determine the range, note that f is a nonnegative function and that f (0, y) = √

9 − y.
Since 9 − y can be any positive number, f (0, y) takes on all nonnegative values. Therefore
the range of f is the infinite interval [0, ∞).
(b) g(x, y, z) = x

√
y + ln(z − 1) is defined only when both

√
y and ln(z − 1) are de-

fined. We must require that y ≥ 0 and z > 1, so the domain is {(x, y, z) : y ≥ 0, z > 1}
[Figure 3(B)]. The range of g is the entire real line R. Indeed, for the particular choices
y = 1 and z = 2, we have g(x, 1, 2) = x

√
1 + ln 1 = x, and since x is arbitrary, we see

that g takes on all values.

3

9

(A) The domain of f (x, y) =    9 − x2 − y
       is the set of all points lying below
       the parabola y = 9 − x2.

(B) Domain of g(x, y, z) = x   y + ln(z − 1)
      is the set of points with y ≥ 0 and z > 1.
      The domain continues out to infinity in 
      the directions indicated by the arrows.

yx

z

x

y

1

FIGURE 3

Graphing Functions of Two Variables
In single-variable calculus, we use graphs to visualize the important features of a function.
Graphs play a similar role for functions of two variables. The graph of f (x, y) consists
of all points (a, b, f (a, b)) in R3 for (a, b) in the domain D of f . Assuming that f is
continuous (as defined in the next section), the graph is a surface whose height above
or below the xy-plane at (a, b) is the function value f (a, b) [Figure 4]. We often write
z = f (x, y) to stress that the z-coordinate of a point on the graph is a function of x and y.

EXAMPLE 2 Sketch the graph of f (x, y) = 2x2 + 5y2.

Solution The graph is a paraboloid (Figure 5). We sketch the graph using the fact that
the horizontal cross section (called the horizontal “trace” below) at height z is the ellipse
2x2 + 5y2 = z.
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z

y

y

(A)  Graph of  y = f (x) (B)  Graph of  z = f (x, y)

(a, f (a))

x
a

x

(a, b)

(a, b,  f (a, b))

FIGURE 4

x

y

z

FIGURE 5 Graph of f (x, y) = 2x2 + 5y2

Plotting more complicated graphs by hand can be difficult. Fortunately, computer
algebra systems eliminate the labor and greatly enhance our ability to explore functions
graphically. Graphs can be rotated and viewed from different perspectives (Figure 6).

xy

y

z zz

x

y

x

FIGURE 6 Different views of z = e−x2−y2 − e−(x−1)2−(y−1)2

Traces and Level Curves
One way of analyzing the graph of a function f (x, y) is to freeze the x-coordinate by
setting x = a and examine the resulting curve z = f (a, y). Similarly, we may set y = b

and consider the curve z = f (x, b). Curves of this type are called vertical traces. They
are obtained by intersecting the graph with planes parallel to a vertical coordinate plane
(Figure 7):

• Vertical trace in the plane x = a: Intersection of the graph with the vertical plane
x = a, consisting of all points (a, y, f (a, y)).

• Vertical trace in the plane y = b: Intersection of the graph with the vertical plane
y = b, consisting of all points (x, b, f (x, b)).

EXAMPLE 3 Describe the vertical traces of f (x, y) = x sin y.

Solution When we freeze the x-coordinate by setting x = a, we obtain the trace curve
z = a sin y (see Figure 8). This is a sine curve located in the plane x = a. When we set
y = b, we obtain a line z = (sin b)y of slope sin b, located in the plane y = b.
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FIGURE 7

y
x

z

y
x

z

(A) The traces in the planes x = a 
       are the curves z = a (sin y).

(B) The traces in the planes y = b
       are the lines z = (sin b)y.

z = x sin y z = x sin y

FIGURE 8 Vertical traces of
f (x, y) = x sin y.

EXAMPLE 4 Identifying Features of a Graph Match the graphs in Figure 9 with the
following functions:

(i) f (x, y) = x − y2 (ii) g(x, y) = x2 − y

Solution Let’s compare vertical traces. The vertical trace of f (x, y) = x − y2 in the
plane x = a is a downward parabola z = a − y2. This matches (B). On the other hand,

(A) (B)

Upward parabolas 
y = b, z = x2 − b

Decreasing in 
positive y-direction

Increasing in 
positive x-direction

y

y

x

x

z

Downward parabolas 
x = a, z = a − y2

z

FIGURE 9



676 C H A P T E R 12 DIFFERENTIATION IN SEVERAL VARIABLES

the vertical trace of g(x, y) in the plane y = b is an upward parabola z = x2 − b. This
matches (A).

Notice also that f (x, y) = x − y2 is an increasing function of x (that is, f (x, y)

increases as x increases) as in (B), whereas g(x, y) = x2 − y is a decreasing function of
y as in (A).

Level Curves and Contour Maps
In addition to vertical traces, the graph of f (x, y) has horizontal traces. These traces and

c

y

x

z
Horizontal trace

at z = c

Level curve f (x, y) = c

z = f (x, y)

z = c

FIGURE 10 The level curve consists of all
points (x, y) where the function takes on
the value c.

their associated level curves are especially important in analyzing the behavior of the
function (Figure 10):

• Horizontal trace at height c: Intersection of the graph with the horizontal plane
z = c, consisting of the points (x, y, f (x, y)) such that f (x, y) = c.

• Level curve: The curve f (x, y) = c in the xy-plane.

Thus the level curve consists of all points (x, y) in the plane where the function takes the
value c. Each level curve is the projection onto the xy-plane of the horizontal trace on the
graph that lies above it.

A contour map is a plot in the xy-plane that shows the level curves f (x, y) = c

for equally spaced values of c. The interval m between the values is called the contour
interval. When you move from one level curve to next, the value of f (x, y) (and hence

On contour maps level curves are often
referred to as contour lines.

the height of the graph) changes by ±m.
Figure 11 compares the graph of a function f (x, y) in (A) and its horizontal traces in

(B) with the contour map in (C). The contour map in (C) has contour interval m = 100.
It is important to understand how the contour map indicates the steepness of the graph.

If the level curves are close together, then a small move from one level curve to the next
in the xy-plane leads to a large change in height. In other words, the level curves are close
together if the graph is steep (Figure 11). Similarly, the graph is flatter when the level
curves are farther apart.

z

x

z = f (x, y)

(A) (C) Contour map(B) Horizontal traces

Level curves 
close together

y

x

100

300

300

–100

0
y

z
Steep part
of graph

Flatter part
of graph

Level curves
farther apart

100

0

100

–300300
500500

300

FIGURE 11

EXAMPLE 5 Elliptic Paraboloid Sketch the contour map of f (x, y) = x2 + 3y2 and
comment on the spacing of the contour curves.

Solution The level curves have equation f (x, y) = c, or

x2 + 3y2 = c
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• For c > 0, the level curve is an ellipse.
• For c = 0, the level curve is just the point (0, 0) because x2 + 3y2 = 0 only for

(x, y) = (0, 0).
• The level curve is empty if c < 0 because f (x, y) is never negative.

The graph of f (x, y) is an elliptic paraboloid (Figure 12). As we move away from the
origin, f (x, y) increases more rapidly. The graph gets steeper, and the level curves get
closer together.

EXAMPLE 6 Hyperbolic Paraboloid Sketch the contour map of g(x, y) = x2 − 3y2.

The hyperbolic paraboloid in Figure 13 is
often called a “saddle” or “saddle-shaped
surface.”

Solution The level curves have equation g(x, y) = c, or

x2 − 3y2 = c

• For c �= 0, the level curve is the hyperbola x2 − 3y2 = c.
• For c = 0, the level curve consists of the two lines x = ±√

3y because the equation
g(x, y) = 0 factors as follows:

x2 − 3y2 = 0 = (x − √
3y)(x + √

3y) = 0

The graph of g(x, y) is a hyperbolic paraboloid (Figure 13). When you stand at the origin,
g(x, y) increases as you move along the x-axis in either direction and decreases as you
move along the y-axis in either direction. Furthermore, the graph gets steeper as you move
out from the origin, so the level curves get closer together.

c = 0

y

x

y

x

z

50

10
30

FIGURE 12 f (x, y) = x2 + 3y2. Contour
interval m = 10.

y

y

z

c = −30

c = 30

x

g (x, y)
decreasing

g (x, y)
decreasing

g (x, y)
increasing

g (x, y)
increasing

x

FIGURE 13 g(x, y) = x2 − 3y2. Contour
interval m = 10.
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EXAMPLE 7 Contour Map of a Linear Function Sketch the graph of f (x, y) = 12 −

y

c = 12

(Interval m = 4)

c = 8

c = 4

x

y

x

c = 0
c = 4

c = −4

c = 8
c = 12
c = 16
c = 20

c = 0

c = −4

c = 16

c = 20

4

6

z

12

6

4

FIGURE 14 Graph and contour
map of f (x, y) = 12 − 2x − 3y.

2x − 3y and the associated contour map with contour interval m = 4.

Solution To plot the graph, which is a plane, we find the intercepts with the axes (Fig-
ure 14). The graph intercepts the z-axis at z = f (0, 0) = 12. To find the x-intercept, we
set y = z = 0 to obtain 12 − 2x − 3(0) = 0, or x = 6. Similarly, solving 12 − 3y = 0
gives y-intercept y = 4. The graph is the plane determined by the three intercepts.

In general, the level curves of a linear function f (x, y) = qx + ry + s are the lines
with equation qx + ry + s = c. Therefore, the contour map of a linear function consists of
equally spaced parallel lines. In our case, the level curves are the lines 12 − 2x − 3y = c,
or 2x + 3y = 12 − c (Figure 14).

How can we measure steepness quantitatively? Let’s imagine the surface z = f (x, y)

as a mountain range. In fact, contour maps (also called topographical maps) are used
extensively to describe terrain (Figure 15). We place the xy-plane at sea level, so that
f (a, b) is the height (also called altitude or elevation) of the mountain above sea level at
the point (a, b) in the plane.

FIGURE 15 Mount Whitney Range in
California, with contour map.

Figure 16 shows two points P and Q in the xy-plane, together with the points P̃ and
Q̃ on the graph that lie above them. We define the average rate of change:

Average rate of change from P to Q = � altitude

� horizontal

where

� altitude = change in the height from P̃ and Q̃

� horizontal = distance from P to Q

EXAMPLE 8 Calculate the average rate of change of f (x, y) from P to Q for the
function whose graph is shown in Figure 16.

Solution The segment PQ spans three level curves and the contour interval is 0.8 km,
so the change in altitude from P̃ to Q̃ is 3(0.8) = 2.4 km. From the horizontal scale of
the contour map, we see that the horizontal distance PQ is 2 km, so

Average rate of change from P to Q = � altitude

� horizontal
= 2.4

2
= 1.2

On average, your altitude gain is 1.2 times your horizontal distance traveled as you climb
from P̃ to Q̃.
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Contour interval: 0.8 km

Horizontal scale: 2 km

Δ altitude

Δ horizontal

Q
~

P

Q

P
~

FIGURE 16
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FIGURE 17

CONCEPTUAL INSIGHT We will discuss the idea that rates of change depend on direction
when we come to directional derivatives in Section 12.5. In single-variable calculus,
we measure the rate of change by the derivative f ′(a). In the multivariable case, there
is no single rate of change because the change in f (x, y) depends on the direction: The
rate is zero along a level curve (because f (x, y) is constant along level curves), and the
rate is nonzero in directions pointing from one level curve to the next (Figure 17).

EXAMPLE 9 Average Rate of Change Depends on Direction Compute the average rate
of change from A to the points B, C, and D in Figure 17.

Solution The contour interval in Figure 17 is m = 50 m. Segments AB and AC both
span two level curves, so the change in altitude is 100 m in both cases. The horizontal
scale shows that AB corresponds to a horizontal change of 200 m, and AC corresponds
to a horizontal change of 400 m. On the other hand, there is no change in altitude from A

to D. Therefore:

Average rate of change from A to B = � altitude

� horizontal
= 100

200
= 0.5

Average rate of change from A to C = � altitude

� horizontal
= 100

400
= 0.25

Average rate of change from A to D = � altitude

� horizontal
= 0

We see here explicitly that the average rate varies according to the direction.

When we walk up a mountain, the incline at each moment depends on the path we
choose. If we walk “around” the mountain, our altitude does not change at all. On the other
hand, at each point there is a steepest direction in which the altitude increases most rapidly.
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On a contour map, the steepest direction is approximately the direction that takes us to
the closest point on the next highest level curve [Figure 18(A)]. We say “approximately”
because the terrain may vary between level curves. A path of steepest ascent is a path thatA path of steepest descent is the same as a

path of steepest ascent but in the opposite
direction. Water flowing down a mountain
follows a path of steepest descent.

begins at a point P and, everywhere along the way, points in the steepest direction. We can
approximate the path of steepest ascent by drawing a sequence of segments that move as
directly as possible from one level curve to the next. Figure 18(B) shows two paths from
P to Q. The solid path is a path of steepest ascent, but the dashed path is not, because it
does not move from one level curve to the next along the shortest possible segment.

40
30

20

10

40
30

20

10

(A) Vectors pointing approximately
       in the direction of steepest ascent

(B)

Q

Approximate path
of steepest ascent
starting at P

P Not a path of
steepest ascent

FIGURE 18

More Than Two Variables
It is not possible to draw the graph of a function of more than two variables. The graph
of a function f (x, y, z) would consist of the set of points (x, y, z, f (x, y, z)) in four-
dimensional space R4. However, it is possible to draw the level surfaces of a function
of three variables f (x, y, z). These are the surfaces with equation f (x, y, z) = c. For
example, the level surfaces of

f (x, y, z) = x2 + y2 + z2

are the spheres with equation x2 + y2 + z2 = c (Figure 19). For functions of four or more

x2 + y2 + z2 = 9

x2 + y2 + z2 = 1

z

x2 + y2 + z2 = 4

x

y

FIGURE 19 The level surfaces of
f (x, y, z) = x2 + y2 + z2 are spheres.

variables, we can no longer visualize the graph or the level surfaces. We must rely on
intuition developed through the study of functions of two and three variables.

EXAMPLE 10 Describe the level surfaces of g(x, y, z) = x2 + y2 − z2.

Solution The level surface for c = 0 is the cone x2 + y2 − z2 = 0. For c �= 0, the level
surfaces are the hyperboloids x2 + y2 − z2 = c. The hyperboloid has one sheet if c > 0
and two sheets if c < 0 (Figure 20).

12.1 SUMMARY

• The domain D of a function f (x1, . . . , xn) of n variables is the set of n-tuples
(a1, . . . , an) in Rn for which f (a1, . . . , an) is defined. The range of f is the set of
values taken by f .
• The graph of a continuous real-valued function f (x, y) is the surface in R3 consisting
of the points (a, b, f (a, b)) for (a, b) in the domain D of f .
• A vertical trace is a curve obtained by intersecting the graph with a vertical plane x = a

or y = b.
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z

x

y

g(x, y, z) = 0 g(x, y, z) = c  (c < 0)g(x, y, z) = c  (c > 0)

z

x

y

z

x

y

z

x

y

FIGURE 20 Level surfaces of g(x, y, z) = x2 + y2 − z2.

• A level curve is a curve in the xy-plane defined by an equation f (x, y) = c. The level
curve f (x, y) = c is the projection onto the xy-plane of the horizontal trace curve, ob-
tained by intersecting the graph with the horizontal plane z = c.
• A contour map shows the level curves f (x, y) = c for equally spaced values of c. The
spacing m is called the contour interval.
• When reading a contour map, keep in mind:

– Your altitude does not change when you hike along a level curve.
– Your altitude increases or decreases by m (the contour interval) when you hike from

one level curve to the next.

• The spacing of the level curves indicates steepness: They are closer together where the
graph is steeper.

• The average rate of change from P to Q is the ratio
�altitude

�horizontal
.

• A direction of steepest ascent at a point P is a direction along which f (x, y) increases
most rapidly. The steepest direction is obtained (approximately) by drawing the segment
from P to the nearest point on the next level curve.

12.1 EXERCISES

Preliminary Questions
1. What is the difference between a horizontal trace and a level curve?

How are they related?

2. Describe the trace of f (x, y) = x2 − sin(x3y) in the xz-plane.

3. Is it possible for two different level curves of a function to intersect?
Explain.

4. Describe the contour map of f (x, y) = x with contour interval 1.

5. How will the contour maps of

f (x, y) = x and g(x, y) = 2x

with contour interval 1 look different?

Exercises
In Exercises 1–4, evaluate the function at the specified points.

1. f (x, y) = x + yx3, (2, 2), (−1, 4)

2. g(x, y) = y

x2 + y2
, (1, 3), (3, −2)

3. h(x, y, z) = xyz−2, (3, 8, 2), (3, −2, −6)
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4. Q(y, z) = y2 + y sin z, (y, z) = (
2, π

2

)
,
( − 2, π

6

)
In Exercises 5–12, sketch the domain of the function.

5. f (x, y) = 12x − 5y 6. f (x, y) =
√

81 − x2

7. f (x, y) = ln(4x2 − y) 8. h(x, t) = 1

x + t

9. g(y, z) = 1

z + y2
10. f (x, y) = sin

y

x

11. F(I, R) = √
IR 12. f (x, y) = cos−1(x + y)

In Exercises 13–16, describe the domain and range of the function.

13. f (x, y, z) = xz + ey 14. f (x, y, z) = x
√

y + zez/x

15. P(r, s, t) =
√

16 − r2s2t2 16. g(r, s) = cos−1(rs)

17. Match graphs (A) and (B) in Figure 21 with the functions

(i) f (x, y) = −x + y2 (ii) g(x, y) = x + y2

(A) (B)

y

x

z

y

x

z

FIGURE 21

18. Match each of graphs (A) and (B) in Figure 22 with one of the
following functions:

(i) f (x, y) = (cos x)(cos y)

(ii) g(x, y) = cos(x2 + y2)

(A)

y

x

z z

(B)

y

x

FIGURE 22

19. Match the functions (a)–(f) with their graphs (A)–(F) in Figure 23.

(a) f (x, y) = |x| + |y|

(b) f (x, y) = cos(x − y)

(c) f (x, y) = −1

1 + 9x2 + y2

(d) f (x, y) = cos(y2)e−0.1(x2+y2)

(e) f (x, y) = −1

1 + 9x2 + 9y2

(f) f (x, y) = cos(x2 + y2)e−0.1(x2+y2)

(A) (B)

y

x

(C) (D)

y

x

z

y

(E) (F)

x

x

y

x

z

z z

y

z z

FIGURE 23

20. Match the functions (a)–(d) with their contour maps (A)–(D) in
Figure 24.

(a) f (x, y) = 3x + 4y

(b) g(x, y) = x3 − y

(c) h(x, y) = 4x − 3y

(d) k(x, y) = x2 − y
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5

10

0

−5

−10

0

(A)

−10 −5 105

5

10

0

−5

−10

0

(B)

−10 −5 105

5

10

0

−5

−10

0

(C)

−10 −5 105

5

10

0

−5

−10

0

(D)

−10 −5 105

FIGURE 24

In Exercises 21–26, sketch the graph and describe the vertical and
horizontal traces.

21. f (x, y) = 12 − 3x − 4y 22. f (x, y) =
√

4 − x2 − y2

23. f (x, y) = x2 + 4y2 24. f (x, y) = y2

25. f (x, y) = sin(x − y) 26. f (x, y) = 1

x2 + y2 + 1

27. Sketch contour maps of f (x, y) = x + y with contour intervals
m = 1 and 2.

28. Sketch the contour map of f (x, y) = x2 + y2 with level curves
c = 0, 4, 8, 12, 16.

In Exercises 29–36, draw a contour map of f (x, y) with an appropriate
contour interval, showing at least six level curves.

29. f (x, y) = x2 − y 30. f (x, y) = y

x2

31. f (x, y) = y

x
32. f (x, y) = xy

33. f (x, y) = x2 + 4y2 34. f (x, y) = x + 2y − 1

35. f (x, y) = x2 36. f (x, y) = 3x2 − y2

37. Find the linear function whose contour map (with contour
interval m = 6) is shown in Figure 25. What is the linear function if
m = 3 (and the curve labeled c = 6 is relabeled c = 3)?

c = 0

c = 6

63−6 −3
−1

−2

2

1

x

y

FIGURE 25 Contour map with contour interval m = 6

38. Use the contour map in Figure 26 to calculate the average rate of
change:

(a) From A to B. (b) From A to C.

c = 0

c = −3

62 4−6 −4 −2

6

4

2

x

AB

y

C

FIGURE 26

39. Referring to Figure 27, answer the following questions:

(a) At which of (A)–(C) is pressure increasing in the northern direc-
tion?

(b) At which of (A)–(C) is temperature increasing in the easterly di-
rection?

(c) In which direction at (B) is temperature increasing most rapidly?

10001004

1006

1012

1024

1024

1024
1020

1020

1008

1032 1032

1020
1028

1028

1016

1016
1012

1004

1012
1016

1016

1016

1008

1016

A

B

C

FIGURE 27 Atmospheric Pressure (in millibars) over the continental
U.S. on March 26, 2009
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In Exercises 40–43, ρ(S, T ) is seawater density (kg/m3) as a function
of salinity S (ppt) and temperature T (◦C). Refer to the contour map in
Figure 28.

32.031.5 32.5 33.0

B

A

33.5 34.0 34.5

Te
m

pe
ra

tu
re

 T
 °

C

25

20

15

10

5

0

Salinity (ppt)

1.0230

1.0235

1.0240

1.0245

1.0250

1.0255

1.0260

1.0265

1.0270

C

FIGURE 28 Contour map of seawater density ρ(S, T ) (kg/m3).

40. Calculate the average rate of change of ρ with respect to T from
B to A.

41. Calculate the average rate of change of ρ with respect to S from B

to C.

42. At a fixed level of salinity, is seawater density an increasing or a
decreasing function of temperature?

43. Does water density appear to be more sensitive to a change in
temperature at point A or point B?

In Exercises 44–47, refer to Figure 29.

44. Find the change in elevation from A and B.

45. Estimate the average rate of change from A and B and from A

to C.

46. Estimate the average rate of change from A to points i, ii, and iii.

47. Sketch the path of steepest ascent beginning at D.

i

B

iii

D

C

A

ii 400

500

0 1 2 km
Contour interval = 20 m

540

FIGURE 29

Further Insights and Challenges
48. The function f (x, t) = t−1/2e−x2/t , whose graph is
shown in Figure 30, models the temperature along a metal bar after
an intense burst of heat is applied at its center point.

(a) Sketch the vertical traces at times t = 1, 2, 3. What do these traces
tell us about the way heat diffuses through the bar?

(b) Sketch the vertical traces x = c for c = ±0.2, ±0.4. Describe how
temperature varies in time at points near the center.

49. Let

f (x, y) = x√
x2 + y2

for (x, y) �= (0, 0)

Write f as a function f (r, θ) in polar coordinates, and use this to find
the level curves of f .

x

Time t

Metal bar

Temperature T

4

3

2

1
0.40.20−0.2−0.4

FIGURE 30 Graph of f (x, t) = t−1/2e−x2/t beginning shortly after
t = 0.

12.2 Limits and Continuity in Several Variables
This section develops limits and continuity in the multivariable setting. We focus on
functions of two variables, but similar definitions and results apply to functions of three
or more variables.

Recall that a number x is close to a if the distance |x − a| is small. In the plane, one
point (x, y) is close to another point P = (a, b) if the distance between them is small.
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To express this precisely, we define the open disk of radius r and center P = (a, b)

(Figure 1):

x

y

Open disk D (P, r)

D*(P, r) excludes P

r

P
(x, y)

FIGURE 1 The open disk D(P, r) consists
of points (x, y) at distance < r from P . It
does not include the boundary circle.

D(P, r) = {(x, y) ∈ R2 : (x − a)2 + (y − b)2 < r2}
The open punctured disk D∗(P, r) is the disk D(P, r) with its center point P removed.
Thus D∗(P, r) consists of all points whose distance to P is less than r , other than P itself.

Now assume that f (x, y) is defined near P but not necessarily at P itself. In other
words, f (x, y) is defined for all (x, y) in some punctured disk D∗(P, r) with r > 0. We
say that f (x, y) approaches the limit L as (x, y) approaches P = (a, b) if |f (x, y) − L|
becomes arbitrarily small for (x, y) in a sufficiently small punctured disk centered at P

[Figure 2(C)]. In this case, we write

lim
(x,y)→P

f (x, y) = lim
(x,y)→(a,b)

f (x, y) = L

Here is the formal definition.

DEFINITION Limit Assume that f (x, y) is defined near P = (a, b). Then

lim
(x,y)→P

f (x, y) = L

if, for any ε > 0, there exists δ > 0 such that

|f (x, y) − L| < ε for all (x, y) ∈ D∗(P, δ)

This is similar to the limit definition in one variable, but there is an important differ-
ence. In a one-variable limit, we require that f (x) tend to L as x approaches a from the
left or right [Figure 2(A)]. In a multivariable limit, f (x, y) must tend to L no matter how
(x, y) approaches P [Figure 2(B)].

| f (x, y) − L | <    for
all (x, y) inside the disk

(C)In two variables, (x, y) can approach
P = (a, b) along any direction or path.

(B)

a

In one variable, we can approach
a from only two possible directions.

(A)

(a, b)
(x, y)

f (x, y)

L
L +   �

L

y

x

x y

z

Open disk of
radiusP = (a, b)

z = f(x, y)

y = f(x)

x y

z

L +   �

L −   �

�

L −   �

FIGURE 2

EXAMPLE 1 Show that (a) lim
(x,y)→(a,b)

x = a and (b) lim
(x,y)→(a,b)

y = b.

Solution Let P = (a, b). To verify (a), let f (x, y) = x and L = a. We must show that
for any ε > 0, we can find δ > 0 such that

|f (x, y) − L| = |x − a| < ε for all (x, y) ∈ D∗(P, δ) 1
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In fact, we can choose δ = ε, for if (x, y) ∈ D∗(P, ε), then

(x − a)2 + (y − b)2 < ε2 ⇒ (x − a)2 < ε2 ⇒ |x − a| < ε

In other words, for any ε > 0,

a

b

D*(P,   )

P = (a, b)

f (x, y) = y

y

x

b +   �

b −   �

b

z

FIGURE 3 We have |f (x, y) − b| < ε if
|y − b| < δ for δ = ε. Therefore,

lim
(x,y)→(a,b)

y = b

|x − a| < ε for all (x, y) ∈ D∗(P, ε)

This proves (a). The limit (b) is similar (see Figure 3).

The following theorem lists the basic laws for limits. We omit the proofs, which are
similar to the proofs of the single-variable Limit Laws.

THEOREM 1 Limit Laws Assume that lim
(x,y)→P

f (x, y) and lim
(x,y)→P

g(x, y) exist.

Then:

(i) Sum Law:

lim
(x,y)→P

(f (x, y) + g(x, y)) = lim
(x,y)→P

f (x, y) + lim
(x,y)→P

g(x, y)

(ii) Constant Multiple Law: For any number k,

lim
(x,y)→P

kf (x, y) = k lim
(x,y)→P

f (x, y)

(iii) Product Law:

lim
(x,y)→P

f (x, y) g(x, y) =
(

lim
(x,y)→P

f (x, y)

)(
lim

(x,y)→P
g(x, y)

)
(iv) Quotient Law: If lim

(x,y)→P
g(x, y) �= 0, then

lim
(x,y)→P

f (x, y)

g(x, y)
=

lim
(x,y)→P

f (x, y)

lim
(x,y)→P

g(x, y)

As in the single-variable case, we say that f is continuous at P = (a, b) if f (x, y)

approaches the function value f (a, b) as (x, y) → (a, b).

DEFINITION Continuity A function f (x, y) is continuous at P = (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b)

We say that f is continuous if it is continuous at each point (a, b) in its domain.

The Limit Laws tell us that all sums, multiples, and products of continuous functions
are continuous. When we apply them to f (x, y) = x and g(x, y) = y, which are contin-
uous by Example 1, we find that the power functions f (x, y) = xmyn are continuous for
all whole numbers m, n and that all polynomials are continuous. Furthermore, a rational
function h(x, y)/g(x, y), where h and g are polynomials, is continuous at all points (a, b)

where g(a, b) �= 0. As in the single-variable case, we can evaluate limits of continuous
functions using substitution.
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EXAMPLE 2 Evaluating Limits by Substitution Show that

x

y

z

FIGURE 4 Top view of the graph

f (x, y) = 3x + y

x2 + y2 + 1
.

f (x, y) = 3x + y

x2 + y2 + 1

is continuous (Figure 4). Then evaluate lim
(x,y)→(1,2)

f (x, y).

Solution The function f (x, y) is continuous at all points (a, b) because it is a rational
function whose denominator Q(x, y) = x2 + y2 + 1 is never zero. Therefore, we can
evaluate the limit by substitution:

lim
(x,y)→(1,2)

3x + y

x2 + y2 + 1
= 3(1) + 2

12 + 22 + 1
= 5

6

If f (x, y) is a product f (x, y) = h(x)g(y), where h(x) and g(y) are continuous,
then the limit is a product of limits by the Product Law:

lim
(x,y)→(a,b)

f (x, y) = lim
(x,y)→(a,b)

h(x)g(y) =
(

lim
x→a

h(x)
)(

lim
y→b

g(y)

)

EXAMPLE 3 Product Functions Evaluate lim
(x,y)→(3,0)

x3 sin y

y
.

Solution The limit is equal to a product of limits:

lim
(x,y)→(3,0)

x3 sin y

y
=

(
lim
x→3

x3
)(

lim
y→0

sin y

y

)
= (33)(1) = 27

Composition is another important way to build functions. If f (x, y) is a function
of two variables and G(u) a function of one variable, then the composite G ◦ f is the
function G(f (x, y)). According to the next theorem, a composite of continuous functions
is again continuous.

THEOREM 2 A Composite of Continuous Functions Is Continuous If f (x, y) is con-
tinuous at (a, b) and G(u) is continuous at c = f (a, b), then the composite function
G(f (x, y)) is continuous at (a, b).

EXAMPLE 4 Write H(x, y) = e−x2+2y as a composite function and evaluate

lim
(x,y)→(1,2)

H(x, y)

Solution We have H(x, y) = G ◦ f , where G(u) = eu and f (x, y) = −x2 + 2y. Both
f and G are continuous, so H is also continuous and

lim
(x,y)→(1,2)

H(x, y) = lim
(x,y)→(1,2)

e−x2+2y = e−(1)2+2(2) = e3

We know that if a limit lim
(x,y)→(a,b)

f (x, y) exists and equals L, then f (x, y) tends to

L as (x, y) approaches (a, b) along any path. In the next example, we prove that a limit
does not exist by showing that f (x, y) approaches different limits along lines through the
origin.
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EXAMPLE 5 Showing a Limit Does Not Exist Examine lim
(x,y)→(0,0)

x2

x2 + y2
numeri-

cally. Then prove that the limit does not exist.

Solution If the limit existed, we would expect the values of f (x, y) in Table 1 to get closer
to a limiting value L as (x, y) gets close to (0, 0). But the table suggests that f (x, y) takes
on all values between 0 and 1, no matter how close (x, y) gets to (0, 0). For example,

f (0.1, 0) = 1, f (0.1, 0.1) = 0.5, f (0, 0.1) = 0

Thus, f (x, y) does not seem to approach any fixed value L as (x, y) → (0, 0).
Now let’s prove that the limit does not exist by showing that f (x, y) approaches

different limits along the x- and y-axes (Figure 5):

Limit along x-axis: lim
x→0

f (x, 0) = lim
x→0

x2

x2 + 02
= lim

x→0
1 = 1

Limit along y-axis: lim
y→0

f (0, y) = lim
y→0

02

02 + y2
= lim

y→0
0 = 0

These two limits are different and hence lim
(x,y)→(0,0)

f (x, y) does not exist.

TABLE 1 Values of f (x, y) = x2

x2 + y2

y
x −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0.5 0.5 0.39 0.265 0.138 0.038 0 0.038 0.138 0.265 0.39 0.5

0.4 0.61 0.5 0.36 0.2 0.059 0 0.059 0.2 0.36 0.5 0.61

0.3 0.735 0.64 0.5 0.308 0.1 0 0.1 0.308 0.5 0.64 0.735

0.2 0.862 0.8 0.692 0.5 0.2 0 0.2 0.5 0.692 0.8 0.862

0.1 0.962 0.941 0.9 0.8 0.5 0 0.5 0.8 0.9 0.941 0.962

0 1 1 1 1 1 1 1 1 1 1

−0.1 0.962 0.941 0.9 0.8 0.5 0 0.5 0.8 0.9 0.941 0.962

−0.2 0.862 0.8 0.692 0.5 0.2 0 0.2 0.5 0.692 0.8 0.862

−0.3 0.735 0.640 0.5 0.308 0.1 0 0.1 0.308 0.5 0.640 0.735

−0.4 0.610 0.5 0.360 0.2 0.059 0 0.059 0.2 0.36 0.5 0.61

−0.5 0.5 0.39 0.265 0.138 0.038 0 0.038 0.138 0.265 0.390 0.5

GRAPHICAL INSIGHT The contour map in Figure 5 shows clearly that the function
f (x, y) = x2/(x2 + y2) does not approach a limit as (x, y) approaches (0, 0). For
nonzero c, the level curve f (x, y) = c is the line y = mx through the origin (with the
origin deleted) where c = (m2 + 1)−1:

f (x, mx) = x2

x2 + (mx)2
= 1

m2 + 1
(for x �= 0)

The level curve f (x, y) = 0 is the y-axis (with the origin deleted).As the slope m varies,
f takes on all values between 0 and 1 in every disk around the origin (0, 0), no matter
how small, so f cannot approach a limit.

As we know, there is no single method for computing limits that always works. The

x

z

c = 1 c = 0
0.9 0.7 0.5 0.3 0.1

x

y

y

FIGURE 5 Graph of f (x, y) = x2

x2 + y2
.

next example illustrates two different approaches to evaluating a limit in a case where
substitution cannot be used.
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EXAMPLE 6 Two Methods for Verifying a Limit Calculate lim
(x,y)→(0,0)

f (x, y) where

x

y

z

FIGURE 6 Graph of f (x, y) = xy2

x2 + y2
.

f (x, y) is defined for (x, y) �= (0, 0) by (Figure 6)

f (x, y) = xy2

x2 + y2

Solution

First Method For (x, y) �= (0, 0), we have

0 ≤
∣∣∣∣ y2

x2 + y2

∣∣∣∣ ≤ 1

because the numerator is not greater than the denominator. Multiply by |x|:

0 ≤
∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ |x|

and use the Squeeze Theorem (which is valid for limits in several variables):

0 ≤ lim
(x,y)→(0,0)

∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ lim
(x,y)→(0,0)

|x|

Because lim
(x,y)→(0,0)

|x| = 0, we conclude that lim
(x,y)→(0,0)

f (x, y) = 0 as desired.

Second Method Use polar coordinates:

x = r cos θ, y = r sin θ

Then x2 + y2 = r2 and for r �= 0,

0 ≤
∣∣∣∣ xy2

x2 + y2

∣∣∣∣ =
∣∣∣∣ (r cos θ)(r sin θ)2

r2

∣∣∣∣ = r|cos θ sin2 θ | ≤ r

As (x, y) approaches (0, 0), the variable r also approaches 0, so again, the desired con-
clusion follows from the Squeeze Theorem:

0 ≤ lim
(x,y)→(0,0)

∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ lim
r→0

r = 0

12.2 SUMMARY

• The open disk of radius r centered at P = (a, b) is defined by

D(P, r) = {(x, y) ∈ R2 : (x − a)2 + (y − b)2 < r2}
The punctured disk D∗(P, r) is D(P, r) with P removed.
• Suppose that f (x, y) is defined near P = (a, b). Then

lim
(x,y)→(a,b)

f (x, y) = L

if, for any ε > 0, there exists δ > 0 such that

|f (x, y) − L| < ε for all (x, y) ∈ D∗(P, δ)
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• The limit of a product f (x, y) = h(x)g(y) is a product of limits:

lim
(x,y)→(a,b)

f (x, y) =
(

lim
x→a

h(x)
)(

lim
y→b

g(y)

)
• A function f (x, y) is continuous at P = (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b)

12.2 EXERCISES

Preliminary Questions
1. What is the difference between D(P, r) and D∗(P, r)?

2. Suppose that f (x, y) is continuous at (2, 3) and that
f (2, y) = y3 for y �= 3. What is the value f (2, 3)?

3. Suppose that Q(x, y) is a function such that 1/Q(x, y) is contin-
uous for all (x, y). Which of the following statements are true?

(a) Q(x, y) is continuous for all (x, y).

(b) Q(x, y) is continuous for (x, y) �= (0, 0).

(c) Q(x, y) �= 0 for all (x, y).

4. Suppose that f (x, 0) = 3 for all x �= 0 and f (0, y) = 5 for all
y �= 0. What can you conclude about lim

(x,y)→(0,0)
f (x, y)?

Exercises
In Exercises 1–8, evaluate the limit using continuity

1. lim
(x,y)→(1,2)

(x2 + y) 2. lim
(x,y)→( 4

9 , 2
9 )

x

y

3. lim
(x,y)→(2,−1)

(xy − 3x2y3) 4. lim
(x,y)→(−2,1)

2x2

4x + y

5. lim
(x,y)→( π

4 ,0)
tan x cos y 6. lim

(x,y)→(2,3)
tan−1(x2 − y)

7. lim
(x,y)→(1,1)

ex2 − e−y2

x + y
8. lim

(x,y)→(1,0)
ln(x − y)

In Exercises 9–12, assume that

lim
(x,y)→(2,5)

f (x, y) = 3, lim
(x,y)→(2,5)

g(x, y) = 7

9. lim
(x,y)→(2,5)

(
g(x, y) − 2f (x, y)

)

10. lim
(x,y)→(2,5)

f (x, y)2g(x, y) 11. lim
(x,y)→(2,5)

ef (x,y)2−g(x,y)

12. lim
(x,y)→(2,5)

f (x, y)

f (x, y) + g(x, y)

13. Does lim
(x,y)→(0,0)

y2

x2 + y2
exist? Explain.

14. Let f (x, y) = xy/(x2 + y2). Show that f (x, y) approaches zero
along the x- and y-axes. Then prove that lim

(x,y)→(0,0)
f (x, y) does not

exist by showing that the limit along the line y = x is nonzero.

15. Prove that

lim
(x,y)→(0,0)

x

x2 + y2

does not exist by considering the limit along the x-axis.

16. Let f (x, y) = x3/(x2 + y2) and g(x, y) = x2/(x2 + y2). Using
polar coordinates, prove that

lim
(x,y)→(0,0)

f (x, y) = 0

and that lim
(x,y)→(0,0)

g(x, y) does not exist. Hint: Show that g(x, y) =
cos2 θ and observe that cos θ can take on any value between −1 and 1
as (x, y) → (0, 0).

17. Use the Squeeze Theorem to evaluate

lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)

18. Evaluate lim
(x,y)→(0,0)

tan x sin

(
1

|x| + |y|
)

.

In Exercises 19–32, evaluate the limit or determine that it does not
exist.

19. lim
(z,w)→(−2,1)

z4 cos(πw)

ez+w
20. lim

(z,w)→(−1,2)
(z2w − 9z)

21. lim
(x,y)→(4,2)

y − 2√
x2 − 4

22. lim
(x,y)→(0,0)

x2 + y2

1 + y2

23. lim
(x,y)→(3,4)

1√
x2 + y2

24. lim
(x,y)→(0,0)

xy√
x2 + y2
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25. lim
(x,y)→(1,−3)

ex−y ln(x − y) 26. lim
(x,y)→(0,0)

|x|
|x| + |y|

27. lim
(x,y)→(−3,−2)

(x2y3 + 4xy) 28. lim
(x,y)→(2,1)

ex2−y2

29. lim
(x,y)→(0,0)

tan(x2 + y2) tan−1
(

1

x2 + y2

)

30. lim
(x,y)→(0,0)

(x + y + 2)e−1/(x2+y2)

31. lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1 − 1

32. lim
(x,y)→(1,1)

x2 + y2 − 2

|x − 1| + |y − 1|
Hint: Rewrite the limit in terms of u = x − 1 and v = y − 1.

33. Let f (x, y) = x3 + y3

x2 + y2
.

(a) Show that

|x3| ≤ |x|(x2 + y2), |y3| ≤ |y|(x2 + y2)

(b) Show that |f (x, y)| ≤ |x| + |y|.

(c) Use the Squeeze Theorem to prove that lim
(x,y)→(0,0)

f (x, y) = 0.

34. Let a, b ≥ 0. Show that lim
(x,y)→(0,0)

xayb

x2 + y2
= 0 if a + b > 2 and

that the limit does not exist if a + b ≤ 2.

35. Figure 7 shows the contour maps of two functions. Explain
why the limit lim

(x,y)→P
f (x, y) does not exist. Does lim

(x,y)→Q
g(x, y)

appear to exist in (B)? If so, what is its limit?

12

6

0

18

24

30

(A) Contour map of f (x, y) (B) Contour map of g(x, y)

P

3−3

−1 1

5−5

Q

FIGURE 7

Further Insights and Challenges
36. Evaluate lim

(x,y)→(0,2)
(1 + x)y/x .

37. Is the following function continuous?

f (x, y) =
{

x2 + y2 if x2 + y2 < 1

1 if x2 + y2 ≥ 1

38. The function f (x, y) = sin(xy)/xy is defined for
xy �= 0.

(a) Is it possible to extend the domain of f (x, y) to all of R2 so that
the result is a continuous function?

(b) Use a computer algebra system to plot f (x, y). Does the result
support your conclusion in (a)?

39. Prove that the function

f (x, y) =
⎧⎨
⎩

(2x − 1)(sin y)

xy
if xy �= 0

ln 2 if xy = 0

is continuous at (0, 0).

40. Prove that if f (x) is continuous at x = a and g(y) is continuous
at y = b, then F(x, y) = f (x)g(y) is continuous at (a, b).

41. The function f (x, y) = x2y/(x4 + y2) provides an inter-
esting example where the limit as (x, y) → (0, 0) does not exist, even
though the limit along every line y = mx exists and is zero (Figure 8).

(a) Show that the limit along any line y = mx exists and is equal to 0.

(b) Calculate f (x, y) at the points (10−1, 10−2), (10−5, 10−10),
(10−20, 10−40). Do not use a calculator.

(c) Show that lim
(x,y)→(0,0)

f (x, y) does not exist. Hint: Compute the

limit along the parabola y = x2.

x

y

z

x

y

FIGURE 8 Graph of f (x, y) = x2y

x4 + y2
.
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12.3 Partial Derivatives
We have stressed that a function f of two or more variables does not have a unique rate
of change because each variable may affect f in different ways. For example, the current
I in a circuit is a function of both voltage V and resistance R given by Ohm’s Law:

I (V, R) = V

R

The current I is increasing as a function of V but decreasing as a function of R.
The partial derivatives are the rates of change with respect to each variable separately.

A function f (x, y) of two variables has two partial derivatives, denoted fx and fy , defined
by the following limits (if they exist):

fx(a, b) = lim
h→0

f (a + h, b) − f (a, b)

h
, fy(a, b) = lim

k→0

f (a, b + k) − f (a, b)

k

Thus, fx is the derivative of f (x, b) as a function of x alone, and fy is the derivative at
f (a, y) as a function of y alone. The Leibniz notation for partial derivatives is

The partial derivative symbol ∂ is a
rounded “d.” The symbols ∂f/∂x and
∂f/∂y are read as follows: “dee-eff dee-ex”
and “dee-eff dee-why.”

∂f

∂x
= fx,

∂f

∂y
= fy

∂f

∂x

∣∣∣∣
(a,b)

= fx(a, b),
∂f

∂y

∣∣∣∣
(a,b)

= fy(a, b)

If z = f (x, y), then we also write ∂z/∂x and ∂z/∂y.
Partial derivatives are computed just like ordinary derivatives in one variable with this

difference: To compute fx , treat y as a constant, and to compute fy , treat x as a constant.

EXAMPLE 1 Compute the partial derivatives of f (x, y) = x2y5.

Solution

∂f

∂x
= ∂

∂x

(
x2y5) = y5 ∂

∂x

(
x2)︸ ︷︷ ︸

Treat y5 as a constant

= y5(2x) = 2xy5

∂f

∂y
= ∂

∂y

(
x2y5) = x2 ∂

∂x

(
y5)

︸ ︷︷ ︸
Treat x2 as a constant

= x2(5y4) = 5x2y4

GRAPHICAL INSIGHT The partial derivatives at P = (a, b) are the slopes of the tangent
lines to the vertical trace curves through the point (a, b, f (a, b)) in Figure 1(A). To
compute fx(a, b), we set y = b and differentiate in the x-direction. This gives us the
slope of the tangent line to the trace curve in the plane y = b [Figure 1(B)]. Similarly,
fy(a, b) is the slope of the trace curve in the vertical plane x = a [Figure 1(C)].

The differentiation rules from calculus of one variable (the Product, Quotient, and
Chain Rules) are valid for partial derivatives.
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(A)

(a, b)
x

z

P = (a, b, f (a, b))

a a
b

(B)

x
yy

z

(C)

x
y

z

P
P

The trace curve
(x, b, f (x, b))

The trace curve
(a, y, f (a, y))

Slope fx (a, b)

Slope fy (a, b)

Plane y = b Plane x = a

b

FIGURE 1 The partial derivatives are the slopes of the vertical trace curves.

EXAMPLE 2 Calculate gx(1, 3) and gy(1, 3), where g(x, y) = y2

(1 + x2)3
.

y

g (x, y) = y2

(1 + x2)3

P = (1, 3,    )9
8

x

z

FIGURE 2 The slopes of the tangent lines to
the trace curves are gx(1, 3) and gy(1, 3).

Solution To calculate gx , treat y (and therefore y2) as a constant:

gx(x, y) = ∂

∂x

y2

(1 + x2)3
= y2 ∂

∂x
(1 + x2)−3 = −6xy2

(1 + x2)4

gx(1, 3) = −6(1)32

(1 + 12)4
= −27

8

To calculate gy , treat x (and therefore 1 + x2) as a constant:

CAUTION It is not necessary to use the
Quotient Rule to compute the partial
derivative in Eq. (1). The denominator does
not depend on y, so we treat it as a
constant when differentiating with respect
to y.

gy(x, y) = ∂

∂y

y2

(1 + x2)3
= 1

(1 + x2)3

∂

∂y
y2 = 2y

(1 + x2)3
1

gy(1, 3) = 2(3)

(1 + 12)3
= 3

4

These partial derivatives are the slopes of the trace curves through the point
(
1, 3, 9

8

)
shown in Figure 2.

We use the Chain Rule to compute partial derivatives of a composite function
f (x, y) = F(g(x, y)), where F(u) is a function of one variable and u = g(x, y):

∂f

∂x
= dF

du

∂u

∂x
,

∂f

∂y
= dF

du

∂u

∂y

EXAMPLE 3 Chain Rule for Partial Derivatives Compute
∂

∂x
sin(x2y5).

Solution Write sin(x2y5) = F(u), where F(u) = sin u and u = x2y5. Then we have
dF

du
= cos u and the Chain Rule give us

∂

∂x
sin(x2y5) = dF

du

∂u

∂x
= cos(x2y5)

∂

∂x
x2y5︸ ︷︷ ︸

Chain Rule

= 2xy5 cos(x2y5)

Partial derivatives are defined for functions of any number of variables. We compute
the partial derivative with respect to any one of the variables by holding the remaining
variables constant.
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EXAMPLE 4 More Than Two Variables Calculate fz(0, 0, 1, 1), where

f (x, y, z, w) = exz+y

z2 + w

Solution Use the Quotient Rule, treating x, y, and w as constants:In Example 4, the calculation

∂

∂z
exz+y = xexz+y

follows from the Chain Rule, just like

d

dz
eaz+b = aeaz+b

fz(x, y, z, w) = ∂

∂z

(
exz+y

z2 + w

)
= (z2 + w) ∂

∂z
exz+y − exz+y ∂

∂z
(z2 + w)

(z2 + w)2

= (z2 + w)xexz+y − 2zexz+y

(z2 + w)2
= (z2x + wx − 2z)exz+y

(z2 + w)2

fz(0, 0, 1, 1) = −2e0

(12 + 1)2
= −1

2

Because the partial derivative fx(a, b) is the derivative f (x, b), viewed as a function
of x alone, we can estimate the change �f when x changes from a to a + �x as in the
single-variable case. Similarly, we can estimate the change when y changes by �y. For
small �x and �y (just how small depends on f and the accuracy required):

f (a + �x, b) − f (a, b) ≈ fx(a, b)�x

f (a, b + �y) − f (a, b) ≈ fy(a, b)�y

This applies to functions f in any number of variables. For example, �f ≈ fw�w if one
of the variables w changes by �w and all other variables remain fixed.

EXAMPLE 5 Testing Microchips A ball grid array (BGA) is a microchip joined to a

Chip

Circuit board

Solder ball
of radius R

L

FIGURE 3 A BGA package. Temperature
variations strain the BGA and may cause it
to fail because the chip and board expand
at different rates.

circuit board by small solder balls of radius R mm separated by a distance L mm (Figure 3).
Manufacturers test the reliability of BGAs by subjecting them to repeated cycles in which
the temperature is varied from 0◦C to 100◦C over a 40-min period. According to one
model, the average number N of cycles before the chip fails is

N =
(

2200R

Ld

)1.9

where d is the difference between the coefficients of expansion of the chip and the board.
Estimate the change �N when R = 0.12, d = 10, and L is increased from 0.4 to 0.42.

Solution We use the approximation

�N ≈ ∂N

∂L
�L

with �L = 0.42 − 0.4 = 0.02. Since R and d are constant, the partial derivative is

∂N

∂L
= ∂

∂L

(
2200R

Ld

)1.9

=
(

2200R

d

)1.9
∂

∂L
L−1.9 = −1.9

(
2200R

d

)1.9

L−2.9
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Now evaluate at L = 0.4, R = 0.12, and d = 10:

∂N

∂L

∣∣∣∣
(L,R,d)=(0.4,0.12,10)

= −1.9

(
2200(0.12)

10

)1.9

(0.4)−2.9 ≈ −13,609

The decrease in the average number of cycles before a chip fails is

�N ≈ ∂N

∂L
�L = −13,609(0.02) ≈ −272 cycles

In the next example, we estimate a partial derivative numerically. Since fx and fy

are limits of difference quotients, we have the following approximations when h and k

are “small”:

fx(a, b) ≈ �f

�x
= f (a + h, b) − f (a, b)

h

fy(a, b) ≈ �f

�y
= f (a, b + k) − f (a, b)

k

A similar approximation is valid in any number of variables.

EXAMPLE 6 Estimating Partial Derivatives Using Contour Maps Seawater density ρ

32.5 33.0

B

33.5 34.0 34.5

Te
m

pe
ra

tu
re

 T
 (

°C
)

25

20

15

10

5

0

Salinity S (ppt)

A
C

1.0265
1.0260

1.0250
1.02451.02401.0235

1.0230

FIGURE 4 Contour map of seawater density
as a function of temperature and salinity.

(kg/m3) depends on salinity S (ppt) and the temperature T (◦C). Use Figure 4 to estimate
∂ρ/∂T and ∂ρ/∂S at A.

Solution Point A has coordinates (S, T ) = (33, 15) and lies on the level curve ρ =
1.0245. We estimate ∂ρ/∂T at A in two steps.

For greater accuracy, we can estimate
fx(a, b) by taking the average of the
difference quotients for �x and −�x. A
similar remark applies to fy(a, b).

Step 1. Move vertically from A.
Since T varies in the vertical direction, we move up vertically from point A to point B

on the next higher level curve, where ρ = 1.0240. Point B has coordinates (S, T ) =
(33, 17). Note that in moving from A to B, we have kept S constant because both points
have salinity S = 33.

Step 2. Compute the difference quotient.

�ρ = 1.0240 − 1.0245 = −0.0005 kg/m3

�T = 17 − 15 = 2◦C

This gives us the approximation

∂ρ

∂T

∣∣∣∣
A

≈ �ρ

�T
= −0.0005

2
= −0.00025 kg-m−3/◦C

We estimate ∂ρ/∂S in a similar way, by moving to the right horizontally to point C with
coordinates (S, T ) ≈ (33.7, 15), where ρ = 1.0250:

∂ρ

∂S

∣∣∣∣
A

≈ �ρ

�S
= 1.0250 − 1.0245

33.7 − 33
= 0.0005

0.7
≈ 0.0007 kg-m−3/ppt
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Higher-Order Partial Derivatives
The higher-order partial derivatives are the derivatives of derivatives. The second-order
partial derivatives of f are the partial derivatives of fx and fy . We write fxx for the
x-derivative of fx and fyy for the y-derivative of fy :

fxx = ∂

∂x

(
∂f

∂x

)
, fyy = ∂

∂y

(
∂f

∂y

)

We also have the mixed partials:

fxy = ∂

∂y

(
∂f

∂x

)
, fyx = ∂

∂x

(
∂f

∂y

)

The process can be continued. For example, fxyx is the x-derivative of fxy , and fxyy is
the y-derivative of fxy (perform the differentiation in the order of the subscripts from left
to right). The Leibniz notation for higher-order partial derivatives is

fxx = ∂2f

∂x2
, fxy = ∂2f

∂y∂x
, fyx = ∂2f

∂x∂y
, fyy = ∂2f

∂y2

Higher partial derivatives are defined for functions of three or more variables in a similar
manner.

EXAMPLE 7 Calculate the second-order partials of f (x, y) = x3 + y2ex .

Solution First, we compute the first-order partial derivatives:

fx(x, y) = ∂

∂x
(x3 + y2ex) = 3x2 + y2ex, fy(x, y) = ∂

∂y
(x3 + y2ex) = 2yex

Then we can compute the second-order derivatives:

fxx(x, y) = ∂

∂x
fx = ∂

∂x
(3x2 + y2ex) fyy(x, y) = ∂

∂y
fy = ∂

∂y
2yex

= 6x + y2ex, = 2ex

fxy(x, y) = ∂fx

∂y
= ∂

∂y
(3x2 + y2ex) fyx(x, y) = ∂fy

∂x
= ∂

∂x
2yex

= 2yex, = 2yex

EXAMPLE 8 Calculate fxyy for f (x, y) = x3 + y2ex .Remember how the subscripts are used in
partial derivatives. The notation fxyy means
“first differentiate with respect to x and
then differentiate twice with respect to y.” Solution By the previous example, fxy = 2yex . Therefore,

fxyy = ∂

∂y
fxy = ∂

∂y
2yex = 2ex
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Observe in Example 7 that fxy and fyx are both equal to 2yex . It is a pleasant
circumstance that the equality fxy = fyx holds in general, provided that the mixed partials
are continuous. SeeAppendix D for a proof of the following theorem named for the French
mathematician Alexis Clairaut (Figure 5).

THEOREM 1 Clairaut’s Theorem: Equality of Mixed Partials If fxy and fyx are both
continuous functions on a disk D, then fxy(a, b) = fyx(a, b) for all (a, b) ∈ D. In
other words,

∂2f

∂x ∂y
= ∂2f

∂y ∂x

EXAMPLE 9 Check that
∂2W

∂U∂T
= ∂2W

∂T ∂U
for W = eU/T .

The hypothesis of Clairaut’s Theorem, that
fxy and fyx are continuous, is almost
always satisfied in practice, but see
Exercise 84 for an example where the
mixed partials are not equal.

Solution We compute both derivatives and observe that they are equal:

FIGURE 5 Alexis Clairaut (1713–1765) was
a brilliant French mathematician who
presented his first paper to the Paris
Academy of Sciences at the age of 13. In
1752, Clairaut won a prize for an essay on
lunar motion that Euler praised (surely an
exaggeration) as “the most important and
profound discovery that has ever been
made in mathematics.”

∂W

∂T
= eU/T ∂

∂T

(
U

T

)
= −UT −2eU/T ,

∂W

∂U
= eU/T ∂

∂U

(
U

T

)
= T −1eU/T

∂

∂U

∂W

∂T
= −T −2eU/T − UT −3eU/T ,

∂

∂T

∂W

∂U
= −T −2eU/T − UT −3eU/T

Although Clairaut’s Theorem is stated for fxy and fyx , it implies more generally
that partial differentiation may be carried out in any order, provided that the derivatives
in question are continuous (see Exercise 75). For example, we can compute fxyxy by
differentiating f twice with respect to x and twice with respect to y, in any order. Thus,

fxyxy = fxxyy = fyyxx = fyxyx = fxyyx = fyxxy

EXAMPLE 10 Choosing the Order Wisely Calculate the partial derivative gzzwx ,

where g(x, y, z, w) = x3w2z2 + sin

(
xy

z2

)
.

Solution Let’s take advantage of the fact that the derivatives may be calculated in any
order. If we differentiate with respect to w first, the second term disappears because it
does not depend on w:

gw = ∂

∂w

(
x3w2z2 + sin

(
xy

z2

))
= 2x3wz2

Next, differentiate twice with respect to z and once with respect to x:

gwz = ∂

∂z
2x3wz2 = 4x3wz

gwzz = ∂

∂z
4x3wz = 4x3w

gwzzx = ∂

∂x
4x3w = 12x2w

We conclude that gzzwx = gwzzx = 12x2w.
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A partial differential equation (PDE) is a differential equation involving functions
of several variables and their partial derivatives. The heat equation in the next example
is a PDE that models temperature as heat spreads through an object. There are infinitely
many solutions, but the particular function in the example describes temperature at times
t > 0 along a metal rod when the center point is given a burst of heat at t = 0 (Figure 6).

Time t

Temperature T

xMetal bar

FIGURE 6 The plot of

u(x, t) = 1

2
√

πt
e−(x2/4t)

illustrates the diffusion of a burst of heat
over time.

EXAMPLE 11 The Heat Equation Show that u(x, t) = 1

2
√

πt
e−(x2/4t), defined for

t > 0, satisfies the heat equation

∂u

∂t
= ∂2u

∂x2
2

Solution First, compute
∂2u

∂x2
:

∂u

∂x
= ∂

∂x

1

2
√

π
t−1/2e−(x2/4t) = − 1

4
√

π
xt−3/2e−(x2/4t)

∂2u

∂x2
= ∂

∂x

(
− 1

4
√

π
xt−3/2e−(x2/4t)

)
= − 1

4
√

π
t−3/2e−(x2/4t) + 1

8
√

π
x2t−5/2e−(x2/4t)

Then compute ∂u/∂t and observe that it equals ∂2u/∂x2 as required:

∂u

∂t
= ∂

∂t

(
1

2
√

π
t−1/2e−(x2/4t)

)
= − 1

4
√

π
t−3/2e−(x2/4t) + 1

8
√

π
x2t−5/2e−(x2/4t)

12.3 SUMMARY

• The partial derivatives of f (x, y) are defined as the limits

fx(a, b) = ∂f

∂x

∣∣∣∣
(a,b)

= lim
h→0

f (a + h, b) − f (a, b)

h

fy(a, b) = ∂f

∂y

∣∣∣∣
(a,b)

= lim
k→0

f (a, b + k) − f (a, b)

k

• Compute fx by holding y constant, and compute fy by holding x constant.
• fx(a, b) is the slope at x = a of the tangent line to the trace curve z = f (x, b). Similarly,
fy(a, b) is the slope at y = b of the tangent line to the trace curve z = f (a, y).
• For small changes �x and �y,

f (a + �x, b) − f (a, b) ≈ fx(a, b)�x

f (a, b + �y) − f (a, b) ≈ fy(a, b)�y
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More generally, if f is a function of n variables and w is one of the variables, then
�f ≈ fw�w if w changes by �w and all other variables remain fixed.
• The second-order partial derivatives are

∂2

∂x2
f = fxx,

∂2

∂y ∂x
f = fxy,

∂2

∂x ∂y
f = fyx,

∂2

∂y2
f = fyy

• Clairaut’s Theorem states that mixed partials are equal—that is, fxy = fyx provided
that fxy and fyx are continuous.
• More generally, higher-order partial derivatives may be computed in any order. For
example, fxyyz = fyxzy if f is a function of x, y, z whose fourth-order partial derivatives
are continuous.

Joseph Fourier
(1768–1830)

Adolf Fick
(1829–1901)

HISTORICAL
PERSPECTIVE

The general heat equation, of which Eq. (2)
is a special case, was first introduced in 1807
by French mathematician Jean Baptiste Joseph
Fourier. As a young man, Fourier was unsure
whether to enter the priesthood or pursue math-
ematics, but he must have been very ambitious.
He wrote in a letter, “Yesterday was my 21st
birthday, at that age Newton and Pascal had al-
ready acquired many claims to immortality.” In
his twenties, Fourier got involved in the French
Revolution and was imprisoned briefly in 1794
over an incident involving different factions. In
1798, he was summoned, along with more than
150 other scientists, to join Napoleon on his un-
successful campaign in Egypt.

Fourier’s true impact, however, lay in his
mathematical contributions. The heat equation
is applied throughout the physical sciences and
engineering, from the study of heat flow through
the earth’s oceans and atmosphere to the use of
heat probes to destroy tumors and treat heart dis-
ease.

Fourier also introduced a striking new
technique—known as the Fourier transform—
for solving his equation, based on the idea that
a periodic function can be expressed as a (pos-

sibly infinite) sum of sines and cosines. Leading
mathematicians of the day, including Lagrange
and Laplace, initially raised objections because
this technique was not easy to justify rigorously.
Nevertheless, the Fourier transform turned out to
be one of the most important mathematical dis-
coveries of the nineteenth century. AWeb search
on the term “Fourier transform” reveals its vast
range of modern applications.

In 1855, the German physiologist Adolf
Fick showed that the heat equation describes not
only heat conduction but also a wide range of
diffusion processes, such as osmosis, ion trans-
port at the cellular level, and the motion of pol-
lutants through air or water. The heat equation
thus became a basic tool in chemistry, molecular
biology, and environmental science, where it is
often called Fick’s Second Law.

12.3 EXERCISES

Preliminary Questions
1. Patricia derived the following incorrect formula by misapplying

the Product Rule:

∂

∂x
(x2y2) = x2(2y) + y2(2x)

What was her mistake and what is the correct calculation?

2. Explain why it is not necessary to use the Quotient Rule to com-

pute
∂

∂x

(
x + y

y + 1

)
. Should the Quotient Rule be used to compute

∂

∂y

(
x + y

y + 1

)
?
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3. Which of the following partial derivatives should be evaluated
without using the Quotient Rule?

(a)
∂

∂x

xy

y2 + 1
(b)

∂

∂y

xy

y2 + 1
(c)

∂

∂x

y2

y2 + 1

4. What is fx , where f (x, y, z) = (sin yz)ez3−z−1√y?

5. Assuming the hypotheses of Clairaut’s Theorem are satisfied,
which of the following partial derivatives are equal to fxxy?

(a) fxyx (b) fyyx (c) fxyy (d) fyxx

Exercises
1. Use the limit definition of the partial derivative to verify the for-

mulas

∂

∂x
xy2 = y2,

∂

∂y
xy2 = 2xy

2. Use the Product Rule to compute
∂

∂y
(x2 + y)(x + y4).

3. Use the Quotient Rule to compute
∂

∂y

y

x + y
.

4. Use the Chain Rule to compute
∂

∂u
ln(u2 + uv).

5. Calculate fz(2, 3, 1), where f (x, y, z) = xyz.

6. Explain the relation between the following two formulas
(c is a constant).

d

dx
sin(cx) = c cos(cx),

∂

∂x
sin(xy) = y cos(xy)

7. The plane y = 1 intersects the surface z = x4 + 6xy − y4 in a cer-
tain curve. Find the slope of the tangent line to this curve at the point
P = (1, 1, 6).

8. Determine whether the partial derivatives ∂f/∂x and ∂f/∂y are
positive or negative at the point P on the graph in Figure 7.

z

x

y
P

FIGURE 7

In Exercises 9–12, refer to Figure 8.

9. Estimate fx and fy at point A.

10. Is fx positive or negative at B?

11. Starting at point B, in which compass direction (N, NE, SW, etc.)
does f increase most rapidly?

12. At which of A, B, or C is fy smallest?

x

y

−10

−10

−20

A

B

C

50
70

3050

420−2−4

4

2

0

−2

−4

70

30

−30

10

10

0

FIGURE 8 Contour map of f (x, y).

In Exercises 13–40, compute the first-order partial derivatives.

13. z = x2 + y2 14. z = x4y3

15. z = x4y + xy−2 16. V = πr2h

17. z = x

y
18. z = x

x − y

19. z =
√

9 − x2 − y2 20. z = x√
x2 + y2

21. z = (sin x)(sin y) 22. z = sin(u2v)

23. z = tan
x

y
24. S = tan−1(wz)

25. z = ln(x2 + y2) 26. A = sin(4θ − 9t)

27. W = er+s 28. Q = reθ

29. z = exy 30. R = e−v2/k

31. z = e−x2−y2
32. P = e

√
y2+z2

33. U = e−rt

r
34. z = yx

35. z = sinh(x2y) 36. z = cosh(t − cos x)

37. w = xy2z3 38. w = x

y + z



S E C T I O N 12.3 Partial Derivatives 701

39. Q = L

M
e−Lt/M 40. w = x

(x2 + y2 + z2)3/2

In Exercises 41–44, compute the given partial derivatives.

41. f (x, y) = 3x2y + 4x3y2 − 7xy5, fx(1, 2)

42. f (x, y) = sin(x2 − y), fy(0, π)

43. g(u, v) = u ln(u + v), gu(1, 2)

44. h(x, z) = exz−x2z3
, hz(3, 0)

Exercises 45 and 46 refer to Example 5.

45. Calculate N for L = 0.4, R = 0.12, and d = 10, and use the linear
approximation to estimate �N if d is increased from 10 to 10.4.

46. Estimate �N if (L, R, d) = (0.5, 0.15, 8) and R is increased from
0.15 to 0.17.

47. The heat index I is a measure of how hot it feels when the relative
humidity is H (as a percentage) and the actual air temperature is T (in
degrees Fahrenheit). An approximate formula for the heat index that is
valid for (T , H) near (90, 40) is

I (T , H) = 45.33 + 0.6845T + 5.758H − 0.00365T 2

− 0.1565HT + 0.001HT 2

(a) Calculate I at (T , H) = (95, 50).

(b) Which partial derivative tells us the increase in I per degree in-
crease in T when (T , H) = (95, 50). Calculate this partial derivative.

48. The wind-chill temperature W measures how cold people feel
(based on the rate of heat loss from exposed skin) when the outside
temperature is T ◦C (with T ≤ 10) and wind velocity is v m/s (with
v ≥ 2):

W = 13.1267 + 0.6215T − 13.947v0.16 + 0.486T v0.16

Calculate ∂W/∂v at (T , v) = (−10, 15) and use this value to estimate
�W if �v = 2.

49. The volume of a right-circular cone of radius r and height h is
V = π

3 r2h. Suppose that r = h = 12 cm. What leads to a greater in-
crease in V , a 1-cm increase in r or a 1-cm increase in h? Argue using
partial derivatives.

50. Use the linear approximation to estimate the percentage change in
volume of a right-circular cone of radius r = 40 cm if the height is
increased from 40 to 41 cm.

51. Calculate ∂W/∂E and ∂W/∂T , where W = e−E/kT , where k is
a constant.

52. Calculate ∂P/∂T and ∂P/∂V , where pressure P , volume V , and
temperature T are related by the ideal gas law, PV = nRT (R and n

are constants).

53. Use the contour map of f (x, y) in Figure 9 to explain the
following statements.

(a) fy is larger at P than at Q, and fx is smaller (more negative) at P

than at Q.

(b) fx(x, y) is decreasing as a function of y; that is, for any fixed value
x = a, fx(a, y) is decreasing in y.

x

y

Q

P

20 16

14

10

8
6

4

FIGURE 9 Contour interval 2.

54. Estimate the partial derivatives at P of the function whose contour
map is shown in Figure 10.

x

y

P

21
18

12
15

9
6
3

4 6 820

4

2

FIGURE 10

55. Over most of the earth, a magnetic compass does not point to true
(geographic) north; instead, it points at some angle east or west of true
north. The angle D between magnetic north and true north is called
the magnetic declination. Use Figure 11 to determine which of the
following statements is true.

(a)
∂D

∂y

∣∣∣∣
A

>
∂D

∂y

∣∣∣∣
B

(b)
∂D

∂x

∣∣∣∣
C

> 0 (c)
∂D

∂y

∣∣∣∣
C

> 0

Note that the horizontal axis increases from right to left because of the
way longitude is measured.

x

y

50°N

40°N

30°N

120°W 110°W 100°W 90°W 80°W 70°W

Magnetic Declination for the U.S. 2004

B

1015

−5

−
5 0

10
5 0

C
A

FIGURE 11 Contour interval 1◦.
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56. Refer to Table 1.

(a) Estimate ∂ρ/∂T and ∂ρ/∂S at the points (S, T ) = (34, 2) and
(35, 10) by computing the average of left-hand and right-hand differ-
ence quotients.

(b) For fixed salinity S = 33, is ρ concave up or concave down
as a function of T ? Hint: Determine whether the quotients �ρ/�T are
increasing or decreasing. What can you conclude about the sign of
∂2ρ/∂T 2?

TABLE 1 Seawater Density ρ as a Function of Temperature T and
Salinity S

T
S 30 31 32 33 34 35 36

12 22.75 23.51 24.27 25.07 25.82 26.6 27.36

10 23.07 23.85 24.62 25.42 26.17 26.99 27.73

8 23.36 24.15 24.93 25.73 26.5 27.28 29.09

6 23.62 24.44 25.22 26 26.77 27.55 28.35

4 23.85 24.62 25.42 26.23 27 27.8 28.61

2 24 24.78 25.61 26.38 27.18 28.01 28.78

0 24.11 24.92 25.72 26.5 27.34 28.12 28.91

In Exercises 57–62, compute the derivatives indicated.

57. f (x, y) = 3x2y − 6xy4,
∂2f

∂x2
and

∂2f

∂y2

58. g(x, y) = xy

x − y
,

∂2g

∂x ∂y

59. h(u, v) = u

u + 4v
, hvv(u, v)

60. h(x, y) = ln(x3 + y3), hxy(x, y)

61. f (x, y) = x ln(y2), fyy(2, 3)

62. g(x, y) = xe−xy , gxy(−3, 2)

63. Compute fxyxzy for

f (x, y, z) =
y sin(xz) sin(x + z) + (x + z2) tan y + x tan

(
z + z−1

y − y−1

)

Hint: Use a well-chosen order of differentiation on each term.

64. Let

f (x, y, u, v) = x2 + eyv

3y2 + ln(2 + u2)

What is the fastest way to show that fuvxyvu(x, y, u, v) = 0 for all
(x, y, u, v)?

In Exercises 65–72, compute the derivative indicated.

65. f (u, v) = cos(u + v2), fuuv

66. g(x, y, z) = x4y5z6, gxxyz

67. F(r, s, t) = r(s2 + t2), Frst

68. u(x, t) = t−1/2e−(x2/4t), uxx

69. F(θ, u, v) = sinh(uv + θ2), Fuuθ

70. R(u, v, w) = u

v + w
, Ruvw

71. g(x, y, z) =
√

x2 + y2 + z2, gxyz

72. u(x, t) = sech2(x − t), uxxx

73. Find a function such that
∂f

∂x
= 2xy and

∂f

∂y
= x2.

74. Prove that there does not exist any function f (x, y) such

that
∂f

∂x
= xy and

∂f

∂y
= x2. Hint: Show that f cannot satisfy Clairaut’s

Theorem.

75. Assume that fxy and fyx are continuous and that fyxx exists. Show
that fxyx also exists and that fyxx = fxyx .

76. Show that u(x, t) = sin(nx) e−n2t satisfies the heat equation for
any constant n:

∂u

∂t
= ∂2u

∂x2
3

77. Find all values of A and B such that f (x, t) = eAx+Bt satisfies
Eq. (3).

78. The function

f (x, t) = 1

2
√

πt
e−x2/4t

describes the temperature profile along a metal rod at time t > 0 when
a burst of heat is applied at the origin (see Example 11). A small bug
sitting on the rod at distance x from the origin feels the temperature
rise and fall as heat diffuses through the bar. Show that the bug feels
the maximum temperature at time t = 1

2x2.

In Exercises 79–82, the Laplace operator � is defined by
�f = fxx + fyy . A function u(x, y) satisfying the Laplace equation
�u = 0 is called harmonic.

79. Show that the following functions are harmonic:

(a) u(x, y) = x (b) u(x, y) = ex cos y

(c) u(x, y) = tan−1 y

x
(d) u(x, y) = ln(x2 + y2)

80. Find all harmonic polynomials u(x, y) of degree three, that is,
u(x, y) = ax3 + bx2y + cxy2 + dy3.

81. Show that if u(x, y) is harmonic, then the partial derivatives ∂u/∂x

and ∂u/∂y are harmonic.

82. Find all constants a, b such that u(x, y) = cos(ax)eby is har-
monic.

83. Show that u(x, t) = sech2(x − t) satisfies the Korteweg–deVries
equation (which arises in the study of water waves):

4ut + uxxx + 12uux = 0
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Further Insights and Challenges
84. Assumptions Matter This exercise shows that the hypotheses of
Clairaut’s Theorem are needed. Let

f (x, y) = xy
x2 − y2

x2 + y2

for (x, y) �= (0, 0) and f (0, 0) = 0.
(a) Verify for (x, y) �= (0, 0):

fx(x, y) = y(x4 + 4x2y2 − y4)

(x2 + y2)2

fy(x, y) = x(x4 − 4x2y2 − y4)

(x2 + y2)2

(b) Use the limit definition of the partial derivative to show that
fx(0, 0) = fy(0, 0) = 0 and that fyx(0, 0) and fxy(0, 0) both exist
but are not equal.

(c) Show that for (x, y) �= (0, 0):

fxy(x, y) = fyx(x, y) = x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

Show that fxy is not continuous at (0, 0). Hint: Show that
lim
h→0

fxy(h, 0) �= lim
h→0

fxy(0, h).

(d) Explain why the result of part (b) does not contradict Clairaut’s
Theorem.

12.4 Differentiability and Tangent Planes
In this section, we generalize two basic concepts from single-variable calculus: differen-

z = f (x, y)

x
y

z

P

Tangent plane at P

FIGURE 1 Tangent plane to the graph of
z = f (x, y).

tiability and the tangent line. The tangent line becomes the tangent plane for functions of
two variables (Figure 1).

Intuitively, we would like to say that a continuous function f (x, y) is differentiable
if it is locally linear—that is, if its graph looks flatter and flatter as we zoom in on
a point P = (a, b, f (a, b)) and eventually becomes indistinguishable from the tangent
plane (Figure 2).

P PP

FIGURE 2 The graph looks flatter and flatter as we zoom in on a point P .

We can show that if the tangent plane at P = (a, b, f (a, b)) exists, then its equation
must be z = L(x, y), where L(x, y) is the linearization at (a, b), defined by

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

Why must this be the tangent plane? Because it is the unique plane containing the tangent
lines to the two vertical trace curves through P [Figure 3(A)]. Indeed, when we set y = b

in z = L(x, y), the term fy(a, b)(y − b) drops out and we are left with the equation of
the tangent line to the vertical trace z = f (x, b) at P :

z = L(x, b) = f (a, b) + fx(a, b)(x − a)

Similarly, z = L(a, y) is the tangent line to the vertical trace z = f (a, y) at P .
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x
y

z

(a, b, 0) (a, b, 0)

(x, y, 0)
d

P = (a, b, f (a, b))

z = L(x, y)

z = f (x, y)

P

(A) (B)

z = L(x, y)

|e(x, y)|  = | f (x, y) − L(x, y)|

z = f (x, y)

FIGURE 3

Before we can say that the tangent plane exists, however, we must impose a condition
on f (x, y) guaranteeing that the graph looks flat as we zoom in on P . Set

e(x, y) = f (x, y) − L(x, y)

As we see in Figure 3(B), |e(x, y)| is the vertical distance between the graph of f (x, y)

and the plane z = L(x, y). This distance tends to zero as (x, y) approaches (a, b) because
f (x, y) is continuous. To be locally linear, we require that the distance tend to zero faster
than the distance from (x, y) to (a, b). We express this by the requirement

REMINDER

L(x, y) = f (a, b) + fx(a, b)(x − a)

+ fy(a, b)(y − b)

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= 0

DEFINITION Differentiability Assume that f (x, y) is defined in a disk D containing
(a, b) and that fx(a, b) and fy(a, b) exist.

• f (x, y) is differentiable at (a, b) if it is locally linear—that is, if

f (x, y) = L(x, y) + e(x, y) 1

where e(x, y) satisfies

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= 0

• In this case, the tangent plane to the graph at (a, b, f (a, b)) is the plane with
equation z = L(x, y). Explicitly,

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) 2

If f (x, y) is differentiable at all points in a domain D, we say that f (x, y) is differ-
entiable on D.

It is cumbersome to check the local linearity condition directly (see Exercise 41),
but fortunately, this is rarely necessary. The following theorem provides a criterion for
differentiability that is easy to apply. It assures us that most functions arising in practice
are differentiable on their domains. See Appendix D for a proof.

The definition of differentiability extends to
functions of n-variables, and Theorem 1
holds in this setting: If all of the partial
derivatives of f (x1, . . . , xn) exist and are
continuous on an open domain D, then
f (x1, . . . , xn) is differentiable on D.

THEOREM 1 Criterion for Differentiability If fx(x, y) and fy(x, y) exist and are
continuous on an open disk D, then f (x, y) is differentiable on D.
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EXAMPLE 1 Show that f (x, y) = 5x + 4y2 is differentiable (Figure 4). Find thez

z = −4 + 5x + 8y

x
y

(2, 1, 0)

P

FIGURE 4 Graph of f (x, y) = 5x + 4y2

and the tangent plane at P = (2, 1, 14).

equation of the tangent plane at (a, b) = (2, 1).

Solution The partial derivatives exist and are continuous functions:

f (x, y) = 5x + 4y2, fx(x, y) = 5, fy(x, y) = 8y

Therefore, f (x, y) is differentiable for all (x, y) by Theorem 1. To find the tangent plane,
we evaluate the partial derivatives at (2, 1):

f (2, 1) = 14, fx(2, 1) = 5, fy(2, 1) = 8

The linearization at (2, 1) is

L(x, y) = 14 + 5(x − 2) + 8(y − 1)︸ ︷︷ ︸
f (a,b)+fx(a,b)(x−a)+fy(a,b)(y−b)

= −4 + 5x + 8y

The tangent plane through P = (2, 1, 14) has equation z = −4 + 5x + 8y.

Assumptions Matter Local linearity plays a key role, and although most reasonable

Local linearity is used in the next section to
prove the Chain Rule for Paths, upon which
the fundamental properties of the gradient
are based.

functions are locally linear, the mere existence of the partial derivatives does not guarantee
local linearity. This is in contrast to the one-variable case, where f (x) is automatically
locally linear at x = a if f ′(a) exists (Exercise 44).

The function g(x, y) in Figure 5(A) shows what can go wrong. The graph contains
the x- and y-axes—in other words, g(x, y) = 0 if x or y is zero—and therefore, the partial
derivatives gx(0, 0) and gy(0, 0) are both zero. The tangent plane at the origin (0, 0), if
it existed, would have to be the xy-plane. However, Figure 5(B) shows that the graph
also contains lines through the origin that do not lie in the xy-plane (in fact, the graph
is composed entirely of lines through the origin). As we zoom in on the origin, these
lines remain at an angle to the xy-plane, and the surface does not get any flatter. Thus
g(x, y) cannot be locally linear at (0, 0), and the tangent plane does not exist. In particular,
g(x, y) cannot satisfy the assumptions of Theorem 1, so the partial derivatives gx(x, y)

and gy(x, y) cannot be continuous at the origin (see Exercise 45 for details).

y

x

z

The horizontal trace at z = 0
consists of the x and y axes.

(A) But the graph also contains
non-horizontal lines through
the origin.

(B) So the graph does not
appear any flatter as we
zoom in on the origin.

(C)
FIGURE 5 Graphs of

g(x, y) = 2xy(x + y)

x2 + y2
.
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EXAMPLE 2 Where is h(x, y) = √
x2 + y2 differentiable?

Solution The partial derivatives exist and are continuous for all (x, y) �= (0, 0):

h (x, y) is not
differentiable
at the origin

y

x

z

h (x, y) = �x2 + y2 

FIGURE 6 The function

h(x, y) =
√

x2 + y2 is differentiable
except at the origin.

hx(x, y) = x√
x2 + y2

, hy(x, y) = y√
x2 + y2

However, the partial derivatives do not exist at (0, 0). Indeed, hx(0, 0) does not exist
because h(x, 0) = √

x2 = |x| is not differentiable at x = 0. Similarly, hy(0, 0) does not
exist. By Theorem 1, h(x, y) is differentiable except at (0, 0) (Figure 6).

EXAMPLE 3 Find a tangent plane of the graph of f (x, y) = xy3 + x2 at (2, −2).

x

y

z

P = (2, −2, −12)

FIGURE 7 Tangent plane to the surface
f (x, y) = xy3 + x2 passing through
P = (2, −2, −12).

Solution The partial derivatives are continuous, so f (x, y) is differentiable:

fx(x, y) = y3 + 2x, fx(2, −2) = −4

fy(x, y) = 3xy2, fy(2, −2) = 24

Since f (2, −2) = −12, the tangent plane through (2, −2, −12) has equation

z = −12 − 4(x − 2) + 24(y + 2)

This can be rewritten as z = 44 − 4x + 24y (Figure 7).

Linear Approximation and Differentials
By definition, if f (x, y) is differentiable at (a, b), then it is locally linear and the linear
approximation is

f (x, y) ≈ L(x, y) for (x, y) near (a, b)

where

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

We shall rewrite this in several useful ways. First, set x = a + h and y = b + k. Then

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k 3

We can also write the linear approximation in terms of the change in f :

�f = f (x, y) − f (a, b), �x = x − a, �y = y − b

�f ≈ fx(a, b)�x + fy(a, b)�y 4

Finally, the linear approximation is often expressed in terms of differentials:

df = fx(x, y) dx + fy(x, y) dy = ∂f

∂x
dx + ∂f

∂y
dy

As shown in Figure 8, df represents the change in height of the tangent plane for given

z

z = L(x, y)

z = f (x, y)

dx = Δxdy = Δy

Δ f

df

FIGURE 8 The quantity df is the change in
height of the tangent plane.

changes dx and dy in x and y (when we work with differentials, we call them dx and
dy instead of �x and �y), whereas �f is the change in the function itself. The linear
approximation tells us that the two changes are approximately equal:

�f ≈ df
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These approximations apply in any number of variables. In three variables,

f (a + h, b + k, c + 	) ≈ f (a, b, c) + fx(a, b, c)h + fy(a, b, c)k + fz(a, b, c)	

or in terms of differentials, �f ≈ df , where

df = fx(x, y, z) dx + fy(x, y, z) dy + fz(x, y, z) dz

EXAMPLE 4 Use the linear approximation to estimate

(3.99)3(1.01)4(1.98)−1

Then use a calculator to find the percentage error.REMINDER The percentage error is
equal to ∣∣∣ error

actual value

∣∣∣ × 100%

Solution Think of (3.99)3(1.01)4(1.98)−1 as a value of f (x, y, z) = x3y4z−1:

f (3.99, 1.01, 1.98) = (3.99)3(1.01)4(1.98)−1

Then it makes sense to use the linear approximation at (4, 1, 2):

f (x, y, z) = x3y4z−1, f (4, 1, 2) = (43)(14)(2−1) = 32

fx(x, y, z) = 3x2y4z−1, fx(4, 1, 2) = 24

fy(x, y, z) = 4x3y3z−1, fy(4, 1, 2) = 128

fz(x, y, z) = −x3y4z−2, fz(4, 1, 2) = −16

The linear approximation in three variables stated above, with a = 4, b = 1, c = 2, gives
us

(4 + h)3(1 + k)4(2 + 	)−1︸ ︷︷ ︸
f (4+h,1+k,2+	)

≈ 32 + 24h + 128k − 16	

For h = −0.01, k = 0.01, and 	 = −0.02, we obtain the desired estimate

(3.99)3(1.01)4(1.98)−1 ≈ 32 + 24(−0.01) + 128(0.01) − 16(−0.02) = 33.36

The calculator value is (3.99)3(1.01)4(1.98)−1 ≈ 33.384, so the error in our estimate is
less than 0.025. The percentage error is

Percentage error ≈ |33.384 − 33.36|
33.384

× 100 ≈ 0.075%

EXAMPLE 5 Body Mass Index A person’s BMI is I = W/H 2, where W is the body
weight (in kilograms) and H is the body height (in meters). Estimate the change in a
child’s BMI if (W, H) changes from (40, 1.45) to (41.5, 1.47).BMI is one factor used to assess the risk of

certain diseases such as diabetes and high
blood pressure. The range
18.5 ≤ I ≤ 24.9 is considered normal for
adults over 20 years of age.

Solution

Step 1. Compute the differential at (W, H) = (40, 1.45).

∂I

∂W
= ∂

∂W

(
W

H 2

)
= 1

H 2
,

∂I

∂H
= ∂

∂H

(
W

H 2

)
= −2W

H 3

At (W, H) = (40, 1.45), we have

∂I

∂W

∣∣∣∣
(40,1.45)

= 1

1.452
≈ 0.48,

∂I

∂H

∣∣∣∣
(40,1.45)

= −2(40)

1.453
≈ −26.24

Therefore, the differential at (40, 1.45) is

dI ≈ 0.48 dW − 26.24 dH
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Step 2. Estimate the change.
We have shown that the differential dI at (40, 1.45) is 0.48 dW − 26.24 dH . If (W, H)

changes from (40, 1.45) to (41.5, 1.47), then

dW = 41.5 − 40 = 1.5, dH = 1.47 − 1.45 = 0.02

Therefore,

�I ≈ dI = 0.48 dW − 26.24 dH = 0.48(1.5) − 26.24(0.02) ≈ 0.2

We find that BMI increases by approximately 0.2.

12.4 SUMMARY

• The linearization in two and three variables:

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

L(x, y, z) = f (a, b, c) + fx(a, b, c)(x − a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c)

• f (x, y) is differentiable at (a, b) if fx(a, b) and fy(a, b) exist and

f (x, y) = L(x, y) + e(x, y)

where e(x, y) is a function such that

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= 0

• Result used in practice: If fx(x, y) and fy(x, y) exist and are continuous in a disk D

containing (a, b), then f (x, y) is differentiable at (a, b).
• Equation of the tangent plane to z = f (x, y) at (a, b):

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

• Equivalent forms of the linear approximation:

f (x, y) ≈ f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

�f ≈ fx(a, b) �x + fy(a, b) �y

• In differential form, �f ≈ df , where

df = fx(x, y) dx + fy(x, y) dy = ∂f

∂x
dx + ∂f

∂y
dy

df = fx(x, y, z) dx + fy(x, y, z) dy + fz(x, y, z) dz = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz

12.4 EXERCISES

Preliminary Questions
1. How is the linearization of f (x, y) at (a, b) defined?

2. Define local linearity for functions of two variables.

In Exercises 3–5, assume that

f (2, 3) = 8, fx(2, 3) = 5, fy(2, 3) = 7
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3. Which of (a)–(b) is the linearization of f at (2, 3)?
(a) L(x, y) = 8 + 5x + 7y

(b) L(x, y) = 8 + 5(x − 2) + 7(y − 3)

4. Estimate f (2, 3.1).

5. Estimate �f at (2, 3) if �x = −0.3 and �y = 0.2.

6. Which theorem allows us to conclude that f (x, y) = x3y8 is dif-
ferentiable?

Exercises
1. Use Eq. (2) to find an equation of the tangent plane to the graph of

f (x, y) = 2x2 − 4xy2 at (−1, 2).

2. Find the equation of the tangent plane in Figure 9. The point of
tangency is (a, b) = (1, 0.8, 0.34).

z

y

(a, b)
x

FIGURE 9 Graph of f (x, y) = 0.2x4 + y6 − xy.

In Exercises 3–10, find an equation of the tangent plane at the given
point.

3. f (x, y) = x2y + xy3, (2, 1)

4. f (x, y) = x√
y

, (4, 4)

5. f (x, y) = x2 + y−2, (4, 1)

6. G(u, w) = sin(uw),
(
π
6 , 1

)
7. F(r, s) = r2s−1/2 + s−3, (2, 1)

8. g(x, y) = ex/y , (2, 1)

9. f (x, y) = sech(x − y), (ln 4, ln 2)

10. f (x, y) = ln(4x2 − y2), (1, 1)

11. Find the points on the graph of z = 3x2 − 4y2 at which the vector
n = 〈3, 2, 2〉 is normal to the tangent plane.

12. Find the points on the graph of z = xy3 + 8y−1 where the tangent
plane is parallel to 2x + 7y + 2z = 0.

13. Find the linearization L(x, y) of f (x, y) = x2y3 at (a, b) =
(2, 1). Use it to estimate f (2.01, 1.02) and f (1.97, 1.01) and compare
with values obtained using a calculator.

14. Write the linear approximation to f (x, y) = x(1 + y)−1 at
(a, b) = (8, 1) in the form

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

Use it to estimate 7.98
2.02 and compare with the value obtained using a

calculator.

15. Let f (x, y) = x3y−4. Use Eq. (4) to estimate the change

�f = f (2.03, 0.9) − f (2, 1)

16. Use the linear approximation to f (x, y) = √
x/y at (9, 4) to esti-

mate
√

9.1/3.9.

17. Use the linear approximation of f (x, y) = ex2+y at (0, 0) to esti-
mate f (0.01, −0.02). Compare with the value obtained using a calcu-
lator.

18. Let f (x, y) = x2/(y2 + 1). Use the linear approximation at an
appropriate point (a, b) to estimate f (4.01, 0.98).

19. Find the linearization of f (x, y, z) = z
√

x + y at (8, 4, 5).

20. Find the linearization to f (x, y, z) = xy/z at the point (2, 1, 2).
Use it to estimate f (2.05, 0.9, 2.01) and compare with the value ob-
tained from a calculator.

21. Estimate f (2.1, 3.8) assuming that

f (2, 4) = 5, fx(2, 4) = 0.3, fy(2, 4) = −0.2

22. Estimate f (1.02, 0.01, −0.03) assuming that

f (1, 0, 0) = −3, fx(1, 0, 0) = −2,

fy(1, 0, 0) = 4, fz(1, 0, 0) = 2

In Exercises 23–28, use the linear approximation to estimate the value.
Compare with the value given by a calculator.

23. (2.01)3(1.02)2 24.
4.1

7.9

25.
√

3.012 + 3.992 26.
0.982

2.013 + 1

27.
√

(1.9)(2.02)(4.05) 28.
8.01√

(1.99)(2.01)

29. Find an equation of the tangent plane to z = f (x, y) at P =
(1, 2, 10) assuming that

f (1, 2) = 10, f (1.1, 2.01) = 10.3, f (1.04, 2.1) = 9.7

30. Suppose that the plane tangent to z = f (x, y) at (−2, 3, 4) has
equation 4x + 2y + z = 2. Estimate f (−2.1, 3.1).

In Exercises 31–34, let I = W/H2 denote the BMI described in Ex-
ample 5.

31. A boy has weight W = 34 kg and height H = 1.3 m. Use the lin-
ear approximation to estimate the change in I if (W, H) changes to
(36, 1.32).
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32. Suppose that (W, H) = (34, 1.3). Use the linear approximation to
estimate the increase in H required to keep I constant if W increases
to 35.

33. (a) Show that �I ≈ 0 if �H/�W ≈ H/2W .
(b) Suppose that (W, H) = (25, 1.1). What increase in H will leave
I (approximately) constant if W is increased by 1 kg?

34. Estimate the change in height that will decrease I by 1 if (W, H) =
(25, 1.1), assuming that W remains constant.

35. A cylinder of radius r and height h has volume V = πr2h.

(a) Use the linear approximation to show that

�V

V
≈ 2�r

r
+ �h

h

(b) Estimate the percentage increase in V if r and h are each increased
by 2%.
(c) The volume of a certain cylinder V is determined by measuring r

and h. Which will lead to a greater error in V : a 1% error in r or a 1%
error in h?

36. Use the linear approximation to show that if I = xayb, then

�I

I
≈ a

�x

x
+ b

�y

y

37. The monthly payment for a home loan is given by a function
f (P, r, N), where P is the principal (initial size of the loan), r the
interest rate, and N is the length of the loan in months. Interest rates
are expressed as a decimal: A 6% interest rate is denoted by r = 0.06.
If P = $100,000, r = 0.06, and N = 240 (a 20-year loan), then the
monthly payment is f (100,000, 0.06, 240) = 716.43. Furthermore, at
these values, we have

∂f

∂P
= 0.0071,

∂f

∂r
= 5769,

∂f

∂N
= −1.5467

Estimate:

(a) The change in monthly payment per $1000 increase in loan prin-
cipal.

(b) The change in monthly payment if the interest rate increases to
r = 6.5% and r = 7%.

(c) The change in monthly payment if the length of the loan increases
to 24 years.

38. Automobile traffic passes a point P on a road of width w ft at
an average rate of R vehicles per second. Although the arrival of au-
tomobiles is irregular, traffic engineers have found that the average
waiting time T until there is a gap in traffic of at least t seconds is
approximately T = teRt seconds. A pedestrian walking at a speed of
3.5 ft/s (5.1 mph) requires t = w/3.5 s to cross the road. Therefore,
the average time the pedestrian will have to wait before crossing is
f (w, R) = (w/3.5)ewR/3.5 s.

(a) What is the pedestrian’s average waiting time if w = 25 ft and
R = 0.2 vehicle per second?

(b) Use the linear approximation to estimate the increase in waiting
time if w is increased to 27 ft.

(c) Estimate the waiting time if the width is increased to 27 ft and R

decreases to 0.18.

(d) What is the rate of increase in waiting time per 1-ft increase in
width when w = 30 ft and R = 0.3 vehicle per second?

39. The volume V of a right-circular cylinder is computed using the
values 3.5 m for diameter and 6.2 m for height. Use the linear approxi-
mation to estimate the maximum error in V if each of these values has
a possible error of at most 5%. Recall that V = 1

3πr2h.

Further Insights and Challenges
40. Show that if f (x, y) is differentiable at (a, b), then the function of
one variable f (x, b) is differentiable at x = a. Use this to prove that
f (x, y) =

√
x2 + y2 is not differentiable at (0, 0).

41. This exercise shows directly (without using Theorem 1) that the
function f (x, y) = 5x + 4y2 from Example 1 is locally linear at
(a, b) = (2, 1).
(a) Show that f (x, y) = L(x, y) + e(x, y) with e(x, y) = 4(y − 1)2.
(b) Show that

0 ≤ e(x, y)√
(x − 2)2 + (y − 1)2

≤ 4|y − 1|

(c) Verify that f (x, y) is locally linear.

42. Show directly, as in Exercise 41, that f (x, y) = xy2 is differen-
tiable at (0, 2).

43. Differentiability Implies Continuity Use the definition of dif-
ferentiability to prove that if f is differentiable at (a, b), then f is
continuous at (a, b).

44. Let f (x) be a function of one variable defined near x = a. Given
a number M , set

L(x) = f (a) + M(x − a), e(x) = f (x) − L(x)

Thus f (x) = L(x) + e(x). We say that f is locally linear at x = a if

M can be chosen so that lim
x→a

e(x)

|x − a| = 0.

(a) Show that if f (x) is differentiable at x = a, then f (x) is locally
linear with M = f ′(a).

(b) Show conversely that if f is locally linear at x = a, then f (x) is
differentiable and M = f ′(a).

45. Assumptions Matter Define g(x, y) = 2xy(x + y)/(x2 + y2)

for (x, y) �= 0 and g(0, 0) = 0. In this exercise, we show that g(x, y)

is continuous at (0, 0) and that gx(0, 0) and gy(0, 0) exist, but g(x, y)

is not differentiable at (0, 0).

(a) Show using polar coordinates that g(x, y) is continuous at (0, 0).

(b) Use the limit definitions to show that gx(0, 0) and gy(0, 0) exist
and that both are equal to zero.

(c) Show that the linearization of g(x, y) at (0, 0) is L(x, y) = 0.

(d) Show that if g(x, y) were locally linear at (0, 0), we would have

lim
h→0

g(h, h)

h
= 0. Then observe that this is not the case because

g(h, h) = 2h. This shows that g(x, y) is not locally linear at (0, 0)

and, hence, not differentiable at (0, 0).
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12.5 The Gradient and Directional Derivatives
We have seen that the rate of change of a function f of several variables depends on a
choice of direction. Since directions are indicated by vectors, it is natural to use vectors
to describe the derivative of f in a specified direction.

To do this, we introduce the gradient ∇fP , which is the vector whose components
are the partial derivatives of f at P .

The gradient of a function of n variables is
the vector

∇f =
〈

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉
DEFINITION The Gradient The gradient of a function f (x, y) at a point P = (a, b)

is the vector

∇fP = 〈
fx(a, b), fy(a, b)

〉
In three variables, if P = (a, b, c),

∇fP = 〈
fx(a, b, c), fy(a, b, c), fz(a, b, c)

〉

We also write ∇f(a,b) or ∇f (a, b) for the gradient. Sometimes, we omit reference to the
point P and write

The symbol ∇, called “del,” is an
upside-down Greek delta. It was
popularized by the Scottish physicist P. G.
Tait (1831–1901), who called the symbol
“nabla,” because of its resemblance to an
ancient Assyrian harp. The great physicist
James Clerk Maxwell was reluctant to adopt
this term and would refer to the gradient
simply as the “slope.” He wrote jokingly to
his friend Tait in 1871, “Still harping on
that nabla?”

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
or ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

The gradient ∇f “assigns” a vector ∇fP to each point in the domain of f , as in Figure 1.

EXAMPLE 1 Drawing Gradient Vectors Let f (x, y) = x2 + y2. Calculate the gradi-
ent ∇f , draw several gradient vectors, and compute ∇fP at P = (1, 1).

Solution The partial derivatives are fx(x, y) = 2x and fy(x, y) = 2y, so

x

y

∇f(1, 1) = 〈2, 2〉

∇f(1, −   ) = 〈2, −1〉

∇f(−   ,   ) = 〈−1, 1〉 (1, 1)

(1, −   )

1

(−   ,    )

1

1
2

1
2

1
2

1
2

1
2

1
2

FIGURE 1 Gradient vectors of
f (x, y) = x2 + y2 at several points
(vectors not drawn to scale).

∇f = 〈2x, 2y〉
The gradient attaches the vector 〈2x, 2y〉 to the point (x, y). As we see in Figure 1, these
vectors point away from the origin. At the particular point (1, 1),

∇fP = ∇f (1, 1) = 〈2, 2〉

EXAMPLE 2 Gradient in Three Variables Calculate ∇f(3,−2,4), where

f (x, y, z) = ze2x+3y

Solution The partial derivatives and the gradient are

∂f

∂x
= 2ze2x+3y,

∂f

∂y
= 3ze2x+3y,

∂f

∂z
= e2x+3y

∇f = 〈
2ze2x+3y, 3ze2x+3y, e2x+3y

〉
Therefore, ∇f(3,−2,4) = 〈

2 · 4e0, 3 · 4e0, e0〉 = 〈8, 12, 1〉.

The following theorem lists some useful properties of the gradient. The proofs are left as
exercises (see Exercises 62–64).
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THEOREM 1 Properties of the Gradient If f (x, y, z) and g(x, y, z) are differentiable
and c is a constant, then

(i) ∇(f + g) = ∇f + ∇g

(ii) ∇(cf ) = c∇f

(iii) Product Rule for Gradients: ∇(fg) = f ∇g + g∇f

(iv) Chain Rule for Gradients: If F(t) is a differentiable function of one variable,
then

∇(F (f (x, y, z))) = F ′(f (x, y, z))∇f 1

EXAMPLE 3 Using the Chain Rule for Gradients Find the gradient of

g(x, y, z) = (x2 + y2 + z2)8

Solution The function g is a composite g(x, y, z) = F(f (x, y, z)) with F(t) = t8 and
f (x, y, z) = x2 + y2 + z2 and apply Eq. (1):

∇g = ∇(
(x2 + y2 + z2)8) = 8(x2 + y2 + z2)7∇(x2 + y2 + z2)

= 8(x2 + y2 + z2)7 〈2x, 2y, 2z〉
= 16(x2 + y2 + z2)7 〈x, y, z〉

The Chain Rule for Paths
Our first application of the gradient is the Chain Rule for Paths. A path will be represented

y
x

z

c'(t)
Tangent vector

c(t) = (x(t), y(t), z(t))

FIGURE 2 Tangent vector c′(t) to a path
c(t) = (x(t), y(t), z(t)).

by a function c(t) = (x(t), y(t), z(t)). We think of c(t) as a moving point (Figure 2). By
definition, c′(t) is the vector of derivatives:

c(t) = (x(t), y(t), z(t)), c′(t) = 〈
x′(t), y′(t), z′(t)

〉

As we saw for paths in R2, c′(t) is the tangent or “velocity” vector that is tangent to the
path and points in the direction of motion.

The Chain Rule for Paths deals with composite functions of the type f (c(t)). What
is the idea behind a composite function of this type? As an example, suppose that T (x, y)

is the temperature at location (x, y) (Figure 3). Now imagine a biker—we’ll call her
Chloe—riding along a path c(t). We suppose that Chloe carries a thermometer with her

∇T(x, y)

c(t) c'(t)

x

y

FIGURE 3 Chloe’s temperature changes at
the rate ∇Tc(t) · c′(t).

and checks it as she rides. Her location at time t is c(t), so her temperature reading at time
t is the composite function

T (c(t)) = Chloe’s temperature at time t

The temperature reading varies as Chloe’s location changes, and the rate at which it
changes is the derivative

d

dt
T (c(t))

The Chain Rule for Paths tells us that this derivative is simply the dot product of the
temperature gradient ∇T evaluated at c(t) and Chloe’s velocity vector c′(t).
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THEOREM 2 Chain Rule for Paths If f and c(t) are differentiable, then

d

dt
f (c(t)) = ∇fc(t) · c′(t)

Explicitly, in the case of two variables, if c(t) = (x(t), y(t)), then

d

dt
f (c(t)) =

〈
∂f

∂x
,
∂f

∂y

〉
· 〈x′(t), y′(t)

〉 = ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt

CAUTION Do not confuse the Chain Rule for
Paths with the more elementary Chain Rule
for Gradients stated in Theorem 1 above.

Proof By definition,

d

dt
f (c(t)) = lim

h→0

f (x(t + h), y(t + h)) − f (x(t), y(t))

h

To calculate this derivative, set

�f = f (x(t + h), y(t + h)) − f (x(t), y(t))

�x = x(t + h) − x(t), �y = y(t + h) − y(t)

The proof is based on the local linearity of f . As in Section 12.4, we write

�f = fx(x(t), y(t))�x + fy(x(t), y(t))�y + e(x(t + h), y(t + h))

Now set h = �t and divide by �t :

�f

�t
= fx(x(t), y(t))

�x

�t
+ fy(x(t), y(t))

�y

�t
+ e(x(t + �t), y(t + �t))

�t

Suppose for a moment that the last term tends to zero as �t → 0. Then we obtain the
desired result:

d

dt
f (c(t)) = lim

�t→0

�f

�t

= fx(x(t), y(t)) lim
�t→0

�x

�t
+ fy(x(t), y(t)) lim

�t→0

�y

�t

= fx(x(t), y(t))
dx

dt
+ fy(x(t), y(t))

dy

dt

= ∇fc(t) · c′(t)

We verify that the last term tends to zero as follows:

lim
�t→0

e(x(t + �t), y(t + �t))

�t
= lim

�t→0

e(x(t + �t), y(t + �t))√
(�x)2 + (�y)2

(√
(�x)2 + (�y)2

�t

)

=
(

lim
�t→0

e(x(t + �t), y(t + �t))√
(�x)2 + (�y)2

)
︸ ︷︷ ︸

Zero

lim
�t→0

⎛
⎝

√(
�x

�t

)2

+
(

�y

�t

)2
⎞
⎠ = 0

The first limit is zero because a differentiable function is locally linear (Section 12.4). The
second limit is equal to

√
x′(t)2 + y′(t)2, so the product is zero.
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EXAMPLE 4 The temperature at location (x, y) is T (x, y) = 20 + 10e−0.3(x2+y2)◦C.
A bug carries a tiny thermometer along the path

c(t) = (cos(t − 2), sin 2t)

(t in seconds) as in Figure 4. How fast is the temperature changing at t = 0.6 s?∇T

x

y

1

1

c'(0.6)
P = c(0.6)

FIGURE 4 Gradient vectors ∇T and the
path c(t) = (cos(t − 2), sin 2t).

Solution At t = 0.6 s, the bug is at location

c(0.6) = (cos(−1.4), sin 0.6) ≈ (0.170, 0.932)

By the Chain Rule for Paths, the rate of change of temperature is the dot product

dT

dt

∣∣∣∣
t=0.6

= ∇Tc(0.6) · c′(0.6)

We compute the vectors

∇T =
〈
−6xe−0.3(x2+y2), −6ye−0.3(x2+y2)

〉
c′(t) = 〈− sin(t − 2), 2 cos 2t〉

and evaluate at c(0.6) = (0.170, 0.932) using a calculator:

∇Tc(0.6) ≈ 〈−0.779, −4.272〉
c′(0.6) ≈ 〈0.985, 0.725〉

Therefore, the rate of change is

dT

dt

∣∣∣∣
t=0.6

∇Tc(0.6) · c′(t) ≈ 〈−0.779, −4.272〉 · 〈0.985, 0.725〉 ≈ −3.87◦C/s

In the next example, we apply the Chain Rule for Paths to a function of three
variables. In general, if f (x1, . . . , xn) is a differentiable function of n variables and
c(t) = (x1(t), . . . , xn(t)) is a differentiable path, then

d

dt
f (c(t)) = ∇f · c′(t) = ∂f

∂x1

dx1

dt
+ ∂f

∂x2

dx2

dt
+ · · · + ∂f

∂xn

dxn

dt

EXAMPLE 5 Calculate
d

dt
f (c(t))

∣∣∣∣
t=π/2

, where

f (x, y, z) = xy + z2 and c(t) = (cos t, sin t, t)

Solution We have c
(

π
2

) = (
cos π

2 , sin π
2 , π

2

) = (
0, 1, π

2

)
. Compute the gradient:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈y, x, 2z〉 , ∇fc(π/2) = ∇f

(
0, 1,

π

2

)
= 〈1, 0, π〉

Then compute the tangent vector:

c′(t) = 〈− sin t, cos t, 1〉 , c′ (π

2

)
=

〈
− sin

π

2
, cos

π

2
, 1

〉
= 〈−1, 0, 1〉

By the Chain Rule,

d

dt
f (c(t))

∣∣∣∣
t=π/2

= ∇fc(π/2) · c′ (π

2

)
= 〈1, 0, π〉 · 〈−1, 0, 1〉 = π − 1
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Directional Derivatives
We come now to one of the most important applications of the Chain Rule for Paths.

Contour map of f (x, y)

u = 〈h, k〉

x

y

c(t) = (a + th, b + tk)

(a, b)

FIGURE 5 The directional derivative
Duf (a, b) is the rate of change of f along
the linear path through P with direction
vector u.

Consider a line through a point P = (a, b) in the direction of a unit vector u = 〈h, k〉 (see
Figure 5):

c(t) = (a + th, b + tk)

The derivative of f (c(t)) at t = 0 is called the directional derivative of f with respect
to u at P, and is denoted Duf (P ) or Duf (a, b):

Duf (a, b) = d

dt
f (c(t))

∣∣∣∣
t=0

= lim
t→0

f (a + th, b + tk) − f (a, b)

t

Directional derivatives of functions of three or more variables are defined in a similar way.

DEFINITION Directional Derivative The directional derivative in the direction of a
unit vector u = 〈h, k〉 is the limit (assuming it exists)

Duf (P ) = Duf (a, b) = lim
t→0

f (a + th, b + tk) − f (a, b)

t

Note that the partial derivatives are the directional derivatives with respect to the
standard unit vectors i = 〈1, 0〉 and j = 〈0, 1〉. For example,

Dif (a, b) = lim
t→0

f (a + t (1), b + t (0)) − f (a, b)

t
= lim

t→0

f (a + t, b) − f (a, b)

t

= fx(a, b)

Thus we have

fx(a, b) = Dif (a, b), fy(a, b) = Djf (a, b)

CONCEPTUAL INSIGHT The directional derivative Duf (P ) is the rate of change of f

per unit change in the horizontal direction of u at P (Figure 6). This is the slope of
the tangent line at Q to the trace curve obtained when we intersect the graph with the
vertical plane through P in the direction u.

yu

x

P = (a, b, 0)

z

Q = (a, b, f (a, b))

FIGURE 6 Duf (a, b) is the slope of the
tangent line to the trace curve through Q in
the vertical plane through P in the
direction u.
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To evaluate directional derivatives, it is convenient to define Dvf (a, b) even when
v = 〈h, k〉 is not a unit vector:

Dvf (a, b) = d

dt
f (c(t))

∣∣∣∣
t=0

= lim
t→0

f (a + th, b + tk) − f (a, b)

t

We call Dvf the derivative with respect to v.
If we set c(t) = (a + th, b + tk), then Dvf (a, b) is the derivative at t = 0 of the

composite function f (c(t)), where c(t) = (a + th, b + tk), and we can evaluate it using
the Chain Rule for Paths. We have c′(t) = 〈h, k〉 = v, so

Dvf (a, b) = ∇f(a,b) · c′(0) = ∇f(a,b) · v

This yields the basic formula:

Dvf (a, b) = ∇f(a,b) · v 2

Similarly, in three variables, Dvf (a, b, c) = ∇f(a,b,c) · v.
For any scalar λ, Dλvf (P ) = ∇fP · (λv) = λ∇fP · v. Therefore,

Dλvf (P ) = λDvf (P ) 3

If v �= 0, then u = 1

‖v‖v is a unit vector in the direction of v. Applying Eq. (3) with

λ = 1/‖u‖ gives us a formula for the directional derivative Duf (P ) in terms of Dvf (P ).

THEOREM 3 Computing the Directional Derivative If v �= 0, then u = v/‖v‖ is the
unit vector in the direction of v, and the directional derivative is given by

Duf (P ) = 1

‖v‖∇fP · v 4

EXAMPLE 6 Let f (x, y) = xey , P = (2, −1), and v = 〈2, 3〉.
(a) Calculate Dvf (P ).

(b) Then calculate the directional derivative in the direction of v.

Solution (a) First compute the gradient at P = (2, −1):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈

ey, xey
〉 ⇒ ∇fP = ∇f(2,−1) =

〈
e−1, 2e−1

〉
Then use Eq. (2):

Dvf (P ) = ∇fP · v =
〈
e−1, 2e−1

〉
· 〈2, 3〉 = 8e−1 ≈ 2.94

(b) The directional derivative is Duf (P ), where u = v/‖v‖. By Eq. 4,

Duf (P ) = 1

‖v‖Dvf (P ) = 8e−1

√
22 + 32

= 8e−1

√
13

≈ 0.82

EXAMPLE 7 Find the rate of change of pressure at the point Q = (1, 2, 1) in the
direction of v = 〈0, 1, 1〉, assuming that the pressure (in millibars) is given by

f (x, y, z) = 1000 + 0.01(yz2 + x2z − xy2) (x, y, z in kilometers)
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Solution First compute the gradient at Q = (1, 2, 1):

∇f = 0.01
〈
2xz − y2, z2 − 2xy, 2yz + x2

〉
∇fQ = ∇f(1,2,1) = 〈−0.02, −0.03, 0.05〉

Then use Eq. (2) to compute the derivative with respect to v:

Dvf (Q) = ∇fQ · v = 〈−0.02, −0.03, 0.05〉 · 〈0, 1, 1〉 = 0.01(−3 + 5) = 0.02

The rate of change per kilometer is the directional derivative. The unit vector in the
direction of v is u = v/‖v‖. Since ‖v‖ = √

2, Eq. (4) yields

Duf (Q) = 1

‖v‖Dvf (Q) = 0.02√
2

≈ 0.014 mb/km

Properties of the Gradient
We are now in a position to draw some interesting and important conclusions about the
gradient. First, suppose that ∇fP �= 0 and let u be a unit vector (Figure 7). By the propertiesREMINDER For any vectors u and v,

v · u = ‖v‖‖u‖ cos θ

where θ is the angle between v and u. If u
is a unit vector, then

v · u = ‖v‖ cos θ

of the dot product,

Duf (P ) = ∇fP · u = ‖∇fP ‖ cos θ 5

where θ is the angle between ∇fP and u. In other words, the rate of change in a given
direction varies with the cosine of the angle θ between the gradient and the direction.

Because the cosine takes values between −1 and 1, we have

−‖∇fP ‖ ≤ Duf (P ) ≤ ‖∇fP ‖
Since cos 0 = 1, the maximum value of Duf (P ) occurs for θ = 0—that is, when u points
in the direction of ∇fP . In other words the gradient vector points in the direction of

∇fP

Unit vectorP

u

FIGURE 7 Duf (P ) = ‖∇fP ‖ cos θ .

the maximum rate of increase, and this maximum rate is ‖∇fP ‖. Similarly, f decreases
most rapidly in the opposite direction, −∇fP , because cos θ = −1 for θ = π . The rate of
maximum decrease is −‖∇fP ‖. The directional derivative is zero in directions orthogonal
to the gradient because cos π

2 = 0.
In the earlier scenario where the biker Chloe rides along a path (Figure 8), the tem-

perature T changes at a rate that depends on the cosine of the angle θ between ∇T and
the direction of motion.

x

y

Maximum temperature increase
in the gradient direction.

Temperature rate of change is zero
in direction orthogonal to ∇T(x, y).

In this direction, temperature changes
at the rate ||∇T || cos   . 

∇T(x, y)

FIGURE 8
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Another key property is that gradient vectors are normal to level curves (Figure 9).REMINDER

• The words “normal” and “orthogonal”
both mean “perpendicular.”

• We say that a vector is normal to a
curve at a point P if it is normal to the
tangent line to the curve at P .

To prove this, suppose that P lies on the level curve f (x, y) = k. We parametrize this
level curve by a path c(t) such that c(0) = P and c′(0) �= 0 (this is possible whenever
∇fP �= 0). Then f (c(t)) = k for all t , so by the Chain Rule,

∇fP · c′(0) = d

dt
f (c(t))

∣∣∣∣
t=0

= d

dt
k = 0

This proves that ∇fP is orthogonal to c′(0), and since c′(0) is tangent to the level curve, wey

∇fP 

P

40

80

120

c'(0)

x

FIGURE 9 Contour map of f (x, y). The
gradient at P is orthogonal to the level
curve through P .

conclude that ∇fP is normal to the level curve (Figure 9). For functions of three variables,
a similar argument shows that ∇fP is normal to the level surface f (x, y, z) = k through P .

THEOREM 4 Interpretation of the Gradient Assume that ∇fP �= 0. Let u be a unit
vector making an angle θ with ∇fP . Then

Duf (P ) = ‖∇fP ‖ cos θ 6

• ∇fP points in the direction of maximum rate of increase of f at P .
• −∇fP points in the direction of maximum rate of decrease at P .
• ∇fP is normal to the level curve (or surface) of f at P .

GRAPHICAL INSIGHT At each point P , there is a unique direction in which f (x, y)

increases most rapidly (per unit distance). Theorem 4 tells us that this chosen direction is
perpendicular to the level curves and that it is specified by the gradient vector (Figure 10).
For most functions, however, the direction of maximum rate of increase varies from point
to point.

EXAMPLE 8 Let f (x, y) = x4y−2 and P = (2, 1). Find the unit vector that points

x

y

∇fP 

P

Level curve of f (x, y)

FIGURE 10 The gradient points in the
direction of maximum increase.

in the direction of maximum rate of increase at P .

Solution The gradient points in the direction of maximum rate of increase, so we evaluate
the gradient at P :

∇f =
〈
4x3y−2, −2x4y−3

〉
, ∇f(2,1) = 〈32, −32〉

The unit vector in this direction is

u = 〈32, −32〉
‖〈32, −32〉‖ = 〈32, −32〉

32
√

2
=

〈√
2

2
, −

√
2

2

〉

EXAMPLE 9 The altitude of a mountain at (x, y) is

x

y

∇fP 

u

310 2

3

2

1

0

−2

−1

−2 −1

2400 2500 2600 2700

P

FIGURE 11 Contour map of the function
f (x, y) in Example 9.

f (x, y) = 2500 + 100(x + y2)e−0.3y2

where x, y are in units of 100 m.

(a) Find the directional derivative of f at P = (−1, −1) in the direction of unit vector u
making an angle of θ = π

4 with the gradient (Figure 11).
(b) What is the interpretation of this derivative?

Solution First compute ‖∇fP ‖:

fx(x, y) = 100e−0.3y2
, fy(x, y) = 100y(2 − 0.6x − 0.6y2)e−0.3y2

fx(−1, −1) = 100e−0.3 ≈ 74, fy(−1, −1) = −200e−0.3 ≈ −148
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Hence, ∇fP ≈ 〈74, −148〉 and

‖∇fP ‖ ≈
√

742 + (−148)2 ≈ 165.5

Apply Eq. (6) with θ = π/4:

Duf (P ) = ‖∇fP ‖ cos θ ≈ 165.5

(√
2

2

)
≈ 117

Recall that x and y are measured in units of 100 meters. Therefore, the interpretation is:
If you stand on the mountain at the point lying above (−1, −1) and begin climbing so
that your horizontal displacement is in the direction of u, then your altitude increases at a
rate of 117 meters per 100 meters of horizontal displacement, or 1.17 meters per meter of
horizontal displacement.

The symbol ψ (pronounced “p-sigh” or
“p-see”) is the lowercase Greek letter psi.

CONCEPTUAL INSIGHT The directional derivative is related to the angle of inclination
ψ in Figure 12. Think of the graph of z = f (x, y) as a mountain lying over the xy-plane.
Let Q be the point on the mountain lying above a point P = (a, b) in the xy-plane. If
you start moving up the mountain so that your horizontal displacement is in the direction
of u, then you will actually be moving up the mountain at an angle of inclination ψ

defined by

tan ψ = Duf (P ) 7

The steepest direction up the mountain is the direction for which the horizontal dis-
placement is in the direction of ∇fP .

u

u

z = f (x, y)

z

y

x

Q

Du f (P)

P

FIGURE 12

EXAMPLE 10 Angle of Inclination You are standing on the side of a mountain in the
shape z = f (x, y), at a point Q = (a, b, f (a, b)), where ∇f(a,b) = 〈0.4, 0.02〉. Find the
angle of inclination in a direction making an angle of θ = π

3 with the gradient.

Solution The gradient has length ‖∇f(a,b)‖ =
√

(0.4)2 + (0.02)2 ≈ 0.4. If u is a unit
vector making an angle of θ = π

3 with ∇f(a,b), then

Duf (a, b) = ‖∇f(a,b)‖ cos
π

3
≈ (0.4)(0.5) = 0.2

The angle of inclination at Q in the direction of u satisfies tan ψ = 0.2. It follows that
ψ ≈ tan−1 0.2 ≈ 0.197 rad or approximately 11.3◦.
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Another use of the gradient is in finding normal vectors on a surface with equation
F(x, y, z) = k, where k is a constant. Let P = (a, b, c) and assume that ∇FP �= 0. Then
∇FP is normal to the level surface F(x, y, z) = k by Theorem 4. The tangent plane at P

has equation

∇FP · 〈x − a, y − b, z − c〉 = 0

Expanding the dot product, we obtain

Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

EXAMPLE 11 Normal Vector and Tangent Plane Find an equation of the tangent plane
to the surface 4x2 + 9y2 − z2 = 16 at P = (2, 1, 3).

Solution Let F(x, y, z) = 4x2 + 9y2 − z2. Then

∇F = 〈8x, 18y, −2z〉 , ∇FP = ∇F(2,1,3) = 〈16, 18, −6〉
The vector 〈16, 18, −6〉 is normal to the surface F(x, y, z) = 16 (Figure 13), so the tan-

P = (2, 1, 3)
�FP

FIGURE 13 The gradient vector ∇FP is
normal to the surface at P .

gent plane at P has equation

16(x − 2) + 18(y − 1) − 6(z − 3) = 0 or 16x + 18y − 6z = 32

12.5 SUMMARY

• The gradient of a function f is the vector of partial derivatives:

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
or ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
• Chain Rule for Paths:

d

dt
f (c(t)) = ∇fc(t) · c′(t)

• Derivative of f with respect to v = 〈h, k〉:

Dvf (a, b) = lim
t→0

f (a + th, b + tk) − f (a, b)

t

This definition extends to three or more variables.
• Formula for the derivative with respect to v: Dvf (a, b) = ∇f(a,b) · v.
• For u a unit vector, Duf is called the directional derivative.

– If u = v
‖v‖ , then Duf (a, b) = 1

‖v‖Dvf (a, b).

– Duf (a, b) = ‖∇f(a,b)‖ cos θ , where θ is the angle between ∇f(a,b) and u.

• Basic geometric properties of the gradient (assume ∇fP �= 0):

– ∇fP points in the direction of maximum rate of increase. The maximum rate of
increase is ‖∇fP ‖.

– −∇fP points in the direction of maximum rate of decrease. The maximum rate of
decrease is −‖∇fP ‖.

– ∇fP is orthogonal to the level curve (or surface) through P .

• Equation of the tangent plane to the level surface F(x, y, z) = k at P = (a, b, c):

∇FP · 〈x − a, y − b, z − c〉 = 0

Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0
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12.5 EXERCISES

Preliminary Questions
1. Which of the following is a possible value of the gradient ∇f of a

function f (x, y) of two variables?

(a) 5 (b) 〈3, 4〉 (c) 〈3, 4, 5〉
2. True or false? A differentiable function increases at the rate ‖∇fP ‖

in the direction of ∇fP .

3. Describe the two main geometric properties of the gradient ∇f .

4. You are standing at a point where the temperature gradient vector
is pointing in the northeast (NE) direction. In which direction(s) should
you walk to avoid a change in temperature?

(a) NE (b) NW (c) SE (d) SW

5. What is the rate of change of f (x, y) at (0, 0) in the direction
making an angle of 45◦ with the x-axis if ∇f (0, 0) = 〈2, 4〉?

Exercises
1. Let f (x, y) = xy2 and c(t) = ( 1

2 t2, t3).

(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to evaluate

d

dt
f (c(t)) at t = 1 and

t = −1.

2. Let f (x, y) = exy and c(t) = (t3, 1 + t).

(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to calculate

d

dt
f (c(t)).

(c) Write out the composite f (c(t)) as a function of t and differentiate.
Check that the result agrees with part (b).

3. Figure 14 shows the level curves of a function f (x, y) and a path
c(t), traversed in the direction indicated. State whether the derivative
d

dt
f (c(t)) is positive, negative, or zero at points A–D.

y

x

−4

0

4

8

−4 840

A 10

0

−10

−20

20
30

B

C
D

0

FIGURE 14

4. Let f (x, y) = x2 + y2 and c(t) = (cos t, sin t).

(a) Find
d

dt
f (c(t)) without making any calculations. Explain.

(b) Verify your answer to (a) using the Chain Rule.

In Exercises 5–8, calculate the gradient.

5. f (x, y) = cos(x2 + y) 6. g(x, y) = x

x2 + y2

7. h(x, y, z) = xyz−3 8. r(x, y, z, w) = xzeyw

In Exercises 9–20, use the Chain Rule to calculate
d

dt
f (c(t)).

9. f (x, y) = 3x − 7y, c(t) = (cos t, sin t), t = 0

10. f (x, y) = 3x − 7y, c(t) = (t2, t3), t = 2

11. f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = 0

12. f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = π
2

13. f (x, y) = sin(xy), c(t) = (e2t , e3t ), t = 0

14. f (x, y) = cos(y − x), c(t) = (et , e2t ), t = ln 3

15. f (x, y) = x − xy, c(t) = (t2, t2 − 4t), t = 4

16. f (x, y) = xey , c(t) = (t2, t2 − 4t), t = 0

17. f (x, y) = ln x + ln y, c(t) = (cos t, t2), t = π
4

18. g(x, y, z) = xyez, c(t) = (t2, t3, t − 1), t = 1

19. g(x, y, z) = xyz−1, c(t) = (et , t, t2), t = 1

20. g(x, y, z, w) = x + 2y + 3z + 5w, c(t) = (t2, t3, t, t−2),
t = 1

In Exercises 21–30, calculate the directional derivative in the direction
of v at the given point. Remember to normalize the direction vector or
use Eq. (4).

21. f (x, y) = x2 + y3, v = 〈4, 3〉, P = (1, 2)

22. f (x, y) = x2y3, v = i + j, P = (−2, 1)

23. f (x, y) = x2y3, v = i + j, P = ( 1
6 , 3

)
24. f (x, y) = sin(x − y), v = 〈1, 1〉, P = (

π
2 , π

6

)
25. f (x, y) = tan−1(xy), v = 〈1, 1〉, P = (3, 4)

26. f (x, y) = exy−y2
, v = 〈12, −5〉, P = (2, 2)

27. f (x, y) = ln(x2 + y2), v = 3i − 2j, P = (1, 0)

28. g(x, y, z) = z2 − xy2, v = 〈−1, 2, 2〉, P = (2, 1, 3)

29. g(x, y, z) = xe−yz, v = 〈1, 1, 1〉, P = (1, 2, 0)

30. g(x, y, z) = x ln(y + z), v = 2i − j + k, P = (2, e, e)
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31. Find the directional derivative of f (x, y) = x2 + 4y2 at
P = (3, 2) in the direction pointing to the origin.

32. Find the directional derivative of f (x, y, z) = xy + z3 at
P = (3, −2, −1) in the direction pointing to the origin.

33. A bug located at (3, 9, 4) begins walking in a straight line toward
(5, 7, 3). At what rate is the bug’s temperature changing if the temper-
ature is T (x, y, z) = xey−z? Units are in meters and degrees Celsius.

34. The temperature at location (x, y) is T (x, y) = 20 + 0.1(x2 − xy)

(degrees Celsius). Beginning at (200, 0) at time t = 0 (seconds), a bug
travels along a circle of radius 200 cm centered at the origin, at a speed
of 3 cm/s. How fast is the temperature changing at time t = π/3?

35. Suppose that ∇fP = 〈2, −4, 4〉. Is f increasing or decreasing at
P in the direction v = 〈2, 1, 3〉?

36. Let f (x, y) = xex2−y and P = (1, 1).

(a) Calculate ‖∇fP ‖.

(b) Find the rate of change of f in the direction ∇fP .

(c) Find the rate of change of f in the direction of a vector making an
angle of 45◦ with ∇fP .

37. Let f (x, y, z) = sin(xy + z) and P = (0, −1, π). Calculate
Duf (P ), where u is a unit vector making an angle θ = 30◦ with ∇fP .

38. Let T (x, y) be the temperature at location (x, y). Assume that
∇T = 〈y − 4, x + 2y〉. Let c(t) = (t2, t) be a path in the plane. Find
the values of t such that

d

dt
T (c(t)) = 0

39. Find a vector normal to the surface x2 + y2 − z2 = 6 at
P = (3, 1, 2).

40. Find a vector normal to the surface 3z3 + x2y − y2x = 1 at
P = (1, −1, 1).

41. Find the two points on the ellipsoid

x2

4
+ y2

9
+ z2 = 1

where the tangent plane is normal to v = 〈1, 1, −2〉.
In Exercises 42–45, find an equation of the tangent plane to the surface
at the given point.

42. x2 + 3y2 + 4z2 = 20, P = (2, 2, 1)

43. xz + 2x2y + y2z3 = 11, P = (2, 1, 1)

44. x2 + z2ey−x = 13, P =
(

2, 3,
3√
e

)

45. ln[1 + 4x2 + 9y4] − 0.1z2 = 0, P = (3, 1, 6.1876)

46. Verify what is clear from Figure 15: Every tangent plane to the
cone x2 + y2 − z2 = 0 passes through the origin.

y

x

z

FIGURE 15 Graph of x2 + y2 − z2 = 0.

47. Use a computer algebra system to produce a contour plot

of f (x, y) = x2 − 3xy + y − y2 together with its gradient vector field
on the domain [−4, 4] × [−4, 4].
48. Find a function f (x, y, z) such that ∇f is the constant vector
〈1, 3, 1〉.
49. Find a function f (x, y, z) such that ∇f = 〈2x, 1, 2〉.
50. Find a function f (x, y, z) such that ∇f = 〈

x, y2, z3〉.
51. Find a function f (x, y, z) such that ∇f = 〈z, 2y, x〉.
52. Find a function f (x, y) such that ∇f = 〈y, x〉.
53. Show that there does not exist a function f (x, y) such that ∇f =〈
y2, x

〉
. Hint: Use Clairaut’s Theorem fxy = fyx .

54. Let �f = f (a + h, b + k) − f (a, b) be the change in f at P =
(a, b). Set �v = 〈h, k〉. Show that the linear approximation can be
written

�f ≈ ∇fP · �v 8

55. Use Eq. (8) to estimate

�f = f (3.53, 8.98) − f (3.5, 9)

assuming that ∇f(3.5,9) = 〈2, −1〉.
56. Find a unit vector n that is normal to the surface z2 − 2x4 − y4 =
16 at P = (2, 2, 8) that points in the direction of the xy-plane (in other
words, if you travel in the direction of n, you will eventually cross the
xy-plane).

57. Suppose, in the previous exercise, that a particle located at the point
P = (2, 2, 8) travels toward the xy-plane in the direction normal to the
surface.

(a) Through which point Q on the xy-plane will the particle pass?

(b) Suppose the axes are calibrated in centimeters. Determine the path
c(t) of the particle if it travels at a constant speed of 8 cm/s. How long
will it take the particle to reach Q?

58. Let f (x, y) = tan−1 x

y
and u =

〈√
2

2
,

√
2

2

〉
.

(a) Calculate the gradient of f .

(b) Calculate Duf (1, 1) and Duf (
√

3, 1).

(c) Show that the lines y = mx for m �= 0 are level curves for f .
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(d) Verify that ∇fP is orthogonal to the level curve through P for
P = (x, y) �= (0, 0).

59. Suppose that the intersection of two surfaces F(x, y, z) =
0 and G(x, y, z) = 0 is a curve C, and let P be a point on C. Explain
why the vector v = ∇FP × ∇GP is a direction vector for the tangent
line to C at P .

60. Let C be the curve of intersection of the spheres x2 + y2 + z2 = 3
and (x − 2)2 + (y − 2)2 + z2 = 3. Use the result of Exercise 59 to find
parametric equations of the tangent line to C at P = (1, 1, 1).

61. Let C be the curve obtained by intersecting the two surfaces
x3 + 2xy + yz = 7 and 3x2 − yz = 1. Find the parametric equations
of the tangent line to C at P = (1, 2, 1).

62. Verify the linearity relations for gradients:

(a) ∇(f + g) = ∇f + ∇g

(b) ∇(cf ) = c∇f

63. Prove the Chain Rule for Gradients (Theorem 1).

64. Prove the Product Rule for Gradients (Theorem 1).

Further Insights and Challenges
65. Let u be a unit vector. Show that the directional derivative Duf is
equal to the component of ∇f along u.

66. Let f (x, y) = (xy)1/3.

(a) Use the limit definition to show that fx(0, 0) = fy(0, 0) = 0.

(b) Use the limit definition to show that the directional derivative
Duf (0, 0) does not exist for any unit vector u other than i and j.
(c) Is f differentiable at (0, 0)?

67. Use the definition of differentiability to show that if f (x, y) is
differentiable at (0, 0) and

f (0, 0) = fx(0, 0) = fy(0, 0) = 0

then

lim
(x,y)→(0,0)

f (x, y)√
x2 + y2

= 0 9

68. This exercise shows that there exists a function that is not differ-
entiable at (0, 0) even though all directional derivatives at (0, 0) exist.
Define f (x, y) = x2y/(x2 + y2) for (x, y) �= 0 and f (0, 0) = 0.

(a) Use the limit definition to show that Dvf (0, 0) exists for all vectors
v. Show that fx(0, 0) = fy(0, 0) = 0.

(b) Prove that f is not differentiable at (0, 0) by showing that Eq. (9)
does not hold.

69. Prove that iff (x, y) is differentiable and∇f(x,y) = 0 for all (x, y),
then f is constant.

70. Prove the following Quotient Rule, where f, g are differentiable:

∇
(

f

g

)
= g∇f − f ∇g

g2

In Exercises 71–73, a path c(t) = (x(t), y(t)) follows the gradient of a
function f (x, y) if the tangent vector c′(t) points in the direction of ∇f

for all t . In other words, c′(t) = k(t)∇fc(t) for some positive function
k(t). Note that in this case, c(t) crosses each level curve of f (x, y) at
a right angle.

71. Show that if the path c(t) = (x(t), y(t)) follows the gradient of
f (x, y), then

y′(t)
x′(t) = fy

fx

72. Find a path of the form c(t) = (t, g(t)) passing through (1, 2) that
follows the gradient of f (x, y) = 2x2 + 8y2 (Figure 16). Hint: Use
Separation of Variables.

x

y

1

1

2

FIGURE 16 The path c(t) is orthogonal to the level curves of
f (x, y) = 2x2 + 8y2.

73. Find the curve y = g(x) passing through (0, 1) that
crosses each level curve of f (x, y) = y sin x at a right angle. If you
have a computer algebra system, graph y = g(x) together with the level
curves of f .

12.6 The Chain Rule
The Chain Rule for Paths that we derived in the previous section can be extended to general
composite functions. Suppose, for example, that x, y, z are differentiable functions of s

and t—say x = x(s, t), y = y(s, t), and z = z(s, t). The composite

f (x(s, t), y(s, t), z(s, t)) 1

is then a function of s and t . We refer to s and t as the independent variables.
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EXAMPLE 1 Find the composite function where f (x, y, z) = xy + z and x = s2,
y = st , z = t2.

Solution The composite function is

f (x(s, t), y(s, t), z(s, t)) = xy + z = (s2)(st) + t2 = s3t + t2

The Chain Rule expresses the derivatives of f with respect to the independent vari-
ables. For example, the partial derivatives of f (x(s, t), y(s, t), z(s, t)) are

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
2

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
3

To prove these formulas, we observe that ∂f/∂s, when evaluated at a point (s0, t0),
is equal to the derivative with respect to the path

c(s) = (x(s, t0), y(s, t0), z(s, t0))

In other words, we fix t = t0 and take the derivative with respect to s:

∂f

∂s
(s0, t0) = d

ds
f (c(s))

∣∣∣∣
s=s0

The tangent vector is

c′(s) =
〈
∂x

∂s
(s, t0),

∂y

∂s
(s, t0),

∂z

∂s
(s, t0)

〉
Therefore, by the Chain Rule for Paths,

∂f

∂s

∣∣∣∣
(s0,t0)

= d

ds
f (c(s))

∣∣∣∣
s=s0

= ∇f · c′(s0) = ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s

The derivatives on the right are evaluated at (s0, t0). This proves Eq. (2).Asimilar argument
proves Eq. (3), as well as the general case of a function f (x1, . . . , xn), where the variables
xi depend on independent variables t1, . . . , tm.

THEOREM 1 General Version of Chain Rule Let f (x1, . . . , xn) be a differentiable
function of n variables. Suppose that each of the variables x1, . . . , xn is a differentiable
function of m independent variables t1, . . . , tm. Then, for k = 1, . . . , m,

∂f

∂tk
= ∂f

∂x1

∂x1

∂tk
+ ∂f

∂x2

∂x2

∂tk
+ · · · + ∂f

∂xn

∂xn

∂tk
4

As an aid to remembering the Chain Rule, we will refer to

∂f

∂x1
, . . . ,

∂f

∂xn

as the primary derivatives. They are the components of the gradient ∇f . By Eq. (4), theThe term “primary derivative” is not
standard. We use it in this section only, to
clarify the structure of the Chain Rule.

derivative of f with respect to the independent variable tk is equal to a sum of n terms:

j th term:
∂f

∂xj

∂xj

∂tk
for j = 1, 2, . . . , n
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Note that we can write Eq. (4) as a dot product:

∂f

∂tk
=

〈
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉
·
〈
∂x1

∂tk
,
∂x2

∂tk
, . . . ,

∂xn

∂tk

〉
5

EXAMPLE 2 Using the Chain Rule Let f (x, y, z) = xy + z. Calculate ∂f/∂s, where

x = s2, y = st, z = t2

Solution

Step 1. Compute the primary derivatives.

∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= 1

Step 2. Apply the Chain Rule.

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
= y

∂

∂s
(s2) + x

∂

∂s
(st) + ∂

∂s
(t2)

= (y)(2s) + (x)(t) + 0

= 2sy + xt

This expresses the derivative in terms of both sets of variables. If desired, we can
substitute x = s2 and y = st to write the derivative in terms of s and t :

∂f

∂s
= 2ys + xt = 2(st)s + (s2)t = 3s2t

To check this result, recall that in Example 1, we computed the composite function:

f (x(s, t), y(s, t), z(s, t)) = f (s2, st, t2) = s3t + t2

From this we see directly that ∂f/∂s = 3s2t , confirming our result.

EXAMPLE 3 Evaluating the Derivative Let f (x, y) = exy . Evaluate ∂f/∂t at
(s, t, u) = (2, 3, −1), where x = st , y = s − ut2.

Solution We can use either Eq. (4) or Eq. (5). We’ll use the dot product form in Eq. (5).
We have

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈

yexy, xexy
〉
,

〈
∂x

∂t
,
∂y

∂t

〉
= 〈s, −2ut〉

and the Chain Rule gives us

∂f

∂t
= ∇f ·

〈
∂x

∂t
,
∂y

∂t

〉
= 〈

yexy, xexy
〉 · 〈s, −2ut〉

= yexy(s) + xexy(−2ut)

= (ys − 2xut)exy

To finish the problem, we do not have to rewrite ∂f/∂t in terms of s, t, u. For (s, t, u) =
(2, 3, −1), we have

x = st = 2(3) = 6, y = s − ut2 = 2 − (−1)(32) = 11

With (s, t, u) = (2, 3, −1) and (x, y) = (6, 11), we have

∂f

∂t

∣∣∣∣
(2,3,−1)

= (ys − 2xut)exy

∣∣∣∣
(2,3,−1)

=
(

(11)(2) − 2(6)(−1)(3)

)
e6(11) = 58e66
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EXAMPLE 4 Polar Coordinates Let f (x, y) be a function of two variables, and let
(r, θ) be polar coordinates.

(a) Express ∂f/∂θ in terms of ∂f/∂x and ∂f/∂y.

(b) Evaluate ∂f/∂θ at (x, y) = (1, 1) for f (x, y) = x2y.

Solution

(a) Since x = r cos θ and y = r sin θ ,

∂x

∂θ
= −r sin θ,

∂y

∂θ
= r cos θ

By the Chain Rule,

∂f

∂θ
= ∂f

∂x

∂x

∂θ
+ ∂f

∂y

∂y

∂θ
= −r sin θ

∂f

∂x
+ r cos θ

∂f

∂y

Since x = r cos θ and y = r sin θ , we can write ∂f/∂θ in terms of x and y alone:If you have studied quantum mechanics,
you may recognize the right-hand side of
Eq. (6) as the angular momentum operator
(with respect to the z-axis).

∂f

∂θ
= x

∂f

∂y
− y

∂f

∂x
6

(b) Apply Eq. (6) to f (x, y) = x2y:

∂f

∂θ
= x

∂

∂y
(x2y) − y

∂

∂x
(x2y) = x3 − 2xy2

∂f

∂θ

∣∣∣∣
(x,y)=(1,1)

= 13 − 2(1)(12) = −1

Implicit Differentiation
In single-variable calculus, we used implicit differentiation to compute dy/dx when y

is defined implicitly as a function of x through an equation f (x, y) = 0. This method
also works for functions of several variables. Suppose that z is defined implicitly by an
equation

F(x, y, z) = 0

Thus z = z(x, y) is a function of x and y. We may not be able to solve explicitly for
z(x, y), but we can treat F(x, y, z) as a composite function with x and y as independent
variables, and use the Chain Rule to differentiate with respect to x:

∂F

∂x

∂x

∂x
+ ∂F

∂y

∂y

∂x
+ ∂F

∂z

∂z

∂x
= 0

We have ∂x/∂x = 1, and also ∂y/∂x = 0 since y does not depend on x. Thus

∂F

∂x
+ ∂F

∂z

∂z

∂x
= Fx + Fz

∂z

∂x
= 0

If Fz �= 0, we may solve for ∂z/∂x (we compute ∂z/∂y similarly):

∂z

∂x
= −Fx

Fz

,
∂z

∂y
= −Fy

Fz

7
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EXAMPLE 5 Calculate ∂z/∂x and ∂z/∂y at P = (1, 1, 1), where

x

y

z

P = (1, 1, 1)

FIGURE 1 The surface
x2 + y2 − 2z2 + 12x − 8z − 4 = 0.
A small patch of the surface around P can
be represented as the graph of a function of
x and y.

F(x, y, z) = x2 + y2 − 2z2 + 12x − 8z − 4 = 0

What is the graphical interpretation of these partial derivatives?

Solution We have

Fx = 2x + 12, Fy = 2y, Fz = −4z − 8

and hence,

∂z

∂x
= −Fx

Fz

= 2x + 12

4z + 8
,

∂z

∂y
= −Fy

Fz

= 2y

4z + 8

The derivatives at P = (1, 1, 1) are

∂z

∂x

∣∣∣∣
(1,1,1)

= 2(1) + 12

4(1) + 8
= 14

12
= 7

6
,

∂z

∂y

∣∣∣∣
(1,1,1)

= 2(1)

4(1) + 8
= 2

12
= 1

6

Figure 1 shows the surface F(x, y, z) = 0. The surface as a whole is not the graph of a
function because it fails the Vertical Line Test. However, a small patch near P may be
represented as a graph of a function z = f (x, y), and the partial derivatives ∂z/∂x and
∂z/∂y are equal to fx and fy . Implicit differentiation has enabled us to compute these
partial derivatives without finding f (x, y) explicitly.

Assumptions Matter Implicit differentiation is based on the assumption that we can
solve the equation F(x, y, z) = 0 for z in the form z = f (x, y). Otherwise, the partial
derivatives ∂z/∂x and ∂z/∂y would have no meaning. The Implicit Function Theorem
of advanced calculus guarantees that this can be done (at least near a point P ) if F has
continuous partial derivatives and Fz(P ) �= 0. Why is this condition necessary? Recall
that the gradient vector ∇FP = 〈

Fx(P ), Fy(P ), Fz(P )
〉

is normal to the surface at P ,
so Fz(P ) = 0 means that the tangent plane at P is vertical. To see what can go wrong,
consider the cylinder (shown in Figure 2):1

z

y

x

FIGURE 2 Graph of the cylinder
x2 + y2 − 1 = 0.

F(x, y, z) = x2 + y2 − 1 = 0

In this extreme case, Fz = 0. The z-coordinate on the cylinder does not depend on x or
y, so it is impossible to represent the cylinder as a graph z = f (x, y) and the derivatives
∂z/∂x and ∂z/∂y do not exist.

12.6 SUMMARY

• If f (x, y, z) is a function of x, y, z, and if x, y, z depend on two other variables, say s

and t , then

f (x, y, z) = f (x(s, t), y(s, t), z(s, t))

is a composite function of s and t . We refer to s and t as the independent variables.
• The Chain Rule expresses the partial derivatives with respect to the independent vari-
ables s and t in terms of the primary derivatives:

∂f

∂x
,

∂f

∂y
,

∂f

∂z

Namely,

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
,

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
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• In general, if f (x1, . . . , xn) is a function of n variables and if x1, . . . , xn depend on the
independent variables t1, . . . , tm, then

∂f

∂tk
= ∂f

∂x1

∂x1

∂tk
+ ∂f

∂x2

∂x2

∂tk
+ · · · + ∂f

∂xn

∂xn

∂tk

• The Chain Rule can be expressed as a dot product:

∂f

∂tk
=

〈
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉
︸ ︷︷ ︸

∇f

·
〈
∂x1

∂tk
,
∂x2

∂tk
, . . . ,

∂xn

∂tk

〉

• Implicit differentiation is used to find the partial derivatives ∂z/∂x and ∂z/∂y when z

is defined implicitly by an equation F(x, y, z) = 0:

∂z

∂x
= −Fx

Fz

,
∂z

∂y
= −Fy

Fz

12.6 EXERCISES

Preliminary Questions
1. Let f (x, y) = xy, where x = uv and y = u + v.

(a) What are the primary derivatives of f ?
(b) What are the independent variables?

In Questions 2 and 3, suppose that f (u, v) = uev , where u = rs and
v = r + s.

2. The composite function f (u, v) is equal to:

(a) rser+s (b) res (c) rsers

3. What is the value of f (u, v) at (r, s) = (1, 1)?

4. According to the Chain Rule, ∂f/∂r is equal to (choose the correct
answer):

(a)
∂f

∂x

∂x

∂r
+ ∂f

∂x

∂x

∂s

(b)
∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r

(c)
∂f

∂r

∂r

∂x
+ ∂f

∂s

∂s

∂x

5. Suppose that x, y, z are functions of the independent variables
u, v, w. Which of the following terms appear in the Chain Rule ex-
pression for ∂f/∂w?

(a)
∂f

∂v

∂x

∂v
(b)

∂f

∂w

∂w

∂x
(c)

∂f

∂z

∂z

∂w

6. With notation as in the previous question, does ∂x/∂v appear in
the Chain Rule expression for ∂f/∂u?

Exercises
1. Let f (x, y, z) = x2y3 + z4 and x = s2, y = st2, and z = s2t .

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
.

(b) Calculate
∂x

∂s
,
∂y

∂s
,
∂z

∂s
.

(c) Compute
∂f

∂s
using the Chain Rule:

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s

Express the answer in terms of the independent variables s, t .

2. Let f (x, y) = x cos(y) and x = u2 + v2 and y = u − v.

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
.

(b) Use the Chain Rule to calculate ∂f/∂v. Leave the answer in terms
of both the dependent and the independent variables.

(c) Determine (x, y) for (u, v) = (2, 1) and evaluate ∂f/∂v at (u, v) =
(2, 1).

In Exercises 3–10, use the Chain Rule to calculate the partial deriva-
tives. Express the answer in terms of the independent variables.

3.
∂f

∂s
,
∂f

∂r
; f (x, y, z) = xy + z2, x = s2, y = 2rs, z = r2

4.
∂f

∂r
,
∂f

∂t
; f (x, y, z) = xy + z2, x = r + s − 2t , y = 3rt , z = s2

5.
∂g

∂u
,
∂g

∂v
; g(x, y) = cos(x − y), x = 3u − 5v, y = −7u + 15v

6.
∂R

∂u
,
∂R

∂v
; R(x, y) = (3x + 4y)5, x = u2, y = uv
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7.
∂F

∂y
; F(u, v) = eu+v , u = x2, v = xy

8.
∂f

∂u
; f (x, y) = x2 + y2, x = eu+v , y = u + v

9.
∂h

∂t2
; h(x, y) = x

y
, x = t1t2, y = t2

1 t2

10.
∂f

∂θ
; f (x, y, z) = xy − z2, x = r cos θ , y = cos2 θ , z = r

In Exercises 11–16, use the Chain Rule to evaluate the partial derivative
at the point specified.

11. ∂f/∂u and ∂f/∂v at (u, v) = (−1, −1), where f (x, y, z) = x3 +
yz2, x = u2 + v, y = u + v2, z = uv.

12. ∂f/∂s at (r, s) = (1, 0), where f (x, y) = ln(xy), x = 3r + 2s,

y = 5r + 3s.

13. ∂g/∂θ at (r, θ) = (
2
√

2, π
4

)
, where g(x, y) = 1/(x + y2),

x = r sin θ , y = r cos θ .

14. ∂g/∂s at s = 4, where g(x, y) = x2 − y2, x = s2 + 1, y = 1 −
2s.

15. ∂g/∂u at (u, v) = (0, 1), where g(x, y) = x2 − y2, x = eu cos v,
y = eu sin v.

16.
∂h

∂q
at (q, r) = (3, 2), where h(u, v) = uev , u = q3, v = qr2.

17. Jessica and Matthew are running toward the point P along the
straight paths that make a fixed angle of θ (Figure 3). Suppose that
Matthew runs with velocity va m/s and Jessica with velocity vb m/s.
Let f (x, y) be the distance from Matthew to Jessica when Matthew is
x meters from P and Jessica is y meters from P .

(a) Show that f (x, y) =
√

x2 + y2 − 2xy cos θ .

(b) Assume that θ = π/3. Use the Chain Rule to determine the rate
at which the distance between Matthew and Jessica is changing when
x = 30, y = 20, va = 4 m/s, and vb = 3 m/s.

A

B

x

va
vb

y

P

θ

FIGURE 3

18. The Law of Cosines states that c2 = a2 + b2 − 2ab cos θ , where
a, b, c are the sides of a triangle and θ is the angle opposite the side of
length c.

(a) Compute ∂θ/∂a, ∂θ/∂b, and ∂θ/∂c using implicit differentiation.

(b) Suppose that a = 10, b = 16, c = 22. Estimate the change in θ if
a and b are increased by 1 and c is increased by 2.

19. Let u = u(x, y), and let (r, θ) be polar coordinates. Verify the re-
lation

‖∇u‖2 = u2
r + 1

r2
u2
θ 8

Hint: Compute the right-hand side by expressing uθ and ur in terms of
ux and uy .

20. Let u(r, θ) = r2 cos2 θ . Use Eq. (8) to compute ‖∇u‖2. Then com-
pute ‖∇u‖2 directly by observing that u(x, y) = x2, and compare.

21. Let x = s + t and y = s − t . Show that for any differentiable func-
tion f (x, y), (

∂f

∂x

)2
−

(
∂f

∂y

)2
= ∂f

∂s

∂f

∂t

22. Express the derivatives

∂f

∂ρ
,
∂f

∂θ
,
∂f

∂φ
in terms of

∂f

∂x
,
∂f

∂y
,
∂f

∂z

where (ρ, θ, φ) are spherical coordinates.

23. Suppose that z is defined implicitly as a function of x and y by the
equation F(x, y, z) = xz2 + y2z + xy − 1 = 0.

(a) Calculate Fx, Fy, Fz.

(b) Use Eq. (7) to calculate
∂z

∂x
and

∂z

∂y
.

24. Calculate ∂z/∂x and ∂z/∂y at the points (3, 2, 1) and (3, 2, −1),
where z is defined implicitly by the equation z4 + z2x2 − y − 8 = 0.

In Exercises 25–30, calculate the partial derivative using implicit dif-
ferentiation.

25.
∂z

∂x
, x2y + y2z + xz2 = 10

26.
∂w

∂z
, x2w + w3 + wz2 + 3yz = 0

27.
∂z

∂y
, exy + sin(xz) + y = 0

28.
∂r

∂t
and

∂t

∂r
, r2 = te s/r

29.
∂w

∂y
,

1

w2 + x2
+ 1

w2 + y2
= 1 at (x, y, w) = (1, 1, 1)

30. ∂U/∂T and ∂T /∂U , (T U − V )2 ln(W − UV ) = 1 at

(T , U, V, W) = (1, 1, 2, 4)

31. Let r = 〈x, y, z〉 and er = r/‖r‖. Show that if a function
f (x, y, z) = F(r) depends only on the distance from the origin r =
‖r‖ =

√
x2 + y2 + z2, then

∇f = F ′(r)er 9

32. Let f (x, y, z) = e−x2−y2−z2 = e−r2
, with r as in Exercise 31.

Compute ∇f directly and using Eq. (9).
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33. Use Eq. (9) to compute ∇
(

1

r

)
.

34. Use Eq. (9) to compute ∇(ln r).

35. Figure 4 shows the graph of the equation

F(x, y, z) = x2 + y2 − z2 − 12x − 8z − 4 = 0

(a) Use the quadratic formula to solve for z as a function of x and y.
This gives two formulas, depending on the choice of sign.
(b) Which formula defines the portion of the surface satisfying
z ≥ −4? Which formula defines the portion satisfying z ≤ −4?
(c) Calculate ∂z/∂x using the formula z = f (x, y) (for both choices of
sign) and again via implicit differentiation. Verify that the two answers
agree.

z

z = −4

y

x

FIGURE 4 Graph of x2 + y2 − z2 − 12x − 8z − 4 = 0.

36. For all x > 0, there is a unique value y = r(x) that solves the
equation y3 + 4xy = 16.

(a) Show that dy/dx = −4y/(3y2 + 4x).

(b) Let g(x) = f (x, r(x)), where f (x, y) is a function satisfying

fx(1, 2) = 8, fy(1, 2) = 10

Use the Chain Rule to calculate g′(1). Note that r(1) = 2 because
(x, y) = (1, 2) satisfies y3 + 4xy = 16.

37. The pressure P , volume V , and temperature T of a van der Waals
gas with n molecules (n constant) are related by the equation(

P + an2

V 2

)
(V − nb) = nRT

where a, b, and R are constant. Calculate ∂P/∂T and ∂V/∂P .

38. When x, y, and z are related by an equation F(x, y, z) = 0, we
sometimes write (∂z/∂x)y in place of ∂z/∂x to indicate that in the dif-
ferentiation, z is treated as a function of x with y held constant (and
similarly for the other variables).

(a) Use Eq. (7) to prove the cyclic relation(
∂z

∂x

)
y

(
∂x

∂y

)
z

(
∂y

∂z

)
x

= −1 10

(b) Verify Eq. (10) for F(x, y, z) = x + y + z = 0.

(c) Verify the cyclic relation for the variables P, V, T in the ideal gas
law PV − nRT = 0 (n and R are constants).

39. Show that if f (x) is differentiable and c �= 0 is a constant, then
u(x, t) = f (x − ct) satisfies the so-called advection equation

∂u

∂t
+ c

∂u

∂x
= 0

Further Insights and Challenges
In Exercises 40–43, a function f (x, y, z) is called homogeneous of
degree n if f (λx, λy, λz) = λnf (x, y, z) for all λ ∈ R.

40. Show that the following functions are homogeneous and determine
their degree.

(a) f (x, y, z) = x2y + xyz (b) f (x, y, z) = 3x + 2y − 8z

(c) f (x, y, z) = ln

(
xy

z2

)
(d) f (x, y, z) = z4

41. Prove that if f (x, y, z) is homogeneous of degree n, then
fx(x, y, z) is homogeneous of degree n − 1. Hint: Either use the limit
definition or apply the Chain Rule to f (λx, λy, λz).

42. Prove that if f (x, y, z) is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf 11

Hint: Let F(t) = f (tx, ty, tz) and calculate F ′(1) using the Chain
Rule.

43. Verify Eq. (11) for the functions in Exercise 40.

44. Suppose that x = g(t, s), y = h(t, s). Show that ftt is equal to

fxx

(
∂x

∂t

)2
+ 2fxy

(
∂x

∂t

)(
∂y

∂t

)
+ fyy

(
∂y

∂t

)2

+ fx
∂2x

∂t2
+ fy

∂2y

∂t2
12

45. Let r =
√

x2
1 + · · · + x2

n and let g(r) be a function of r . Prove the
formulas

∂g

∂xi
= xi

r
gr ,

∂2g

∂x2
i

= x2
i

r2
grr + r2 − x2

i

r3
gr

46. Prove that if g(r) is a function of r as in Exercise 45, then

∂2g

∂x2
1

+ · · · + ∂2g

∂x2
n

= grr + n − 1

r
gr
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In Exercises 47–51, the Laplace operator is defined by
�f = fxx + fyy . A function f (x, y) satisfying the Laplace equa-
tion �f = 0 is called harmonic. A function f (x, y) is called radial if
f (x, y) = g(r), where r =

√
x2 + y2.

47. Use Eq. (12) to prove that in polar coordinates (r, θ),

�f = frr + 1

r2
fθθ + 1

r
fr 13

48. Use Eq. (13) to show that f (x, y) = ln r is harmonic.

49. Verify that f (x, y) = x and f (x, y) = y are harmonic using both
the rectangular and polar expressions for �f .

50. Verify that f (x, y) = tan−1 y
x is harmonic using both the rectan-

gular and polar expressions for �f .

51. Use the Product Rule to show that

frr + 1

r
fr = r−1 ∂

∂r

(
r
∂f

∂r

)

Use this formula to show that if f is a radial harmonic function, then
rfr = C for some constant C. Conclude that f (x, y) = C ln r + b for
some constant b.

12.7 Optimization in Several Variables
Recall that optimization is the process of finding the extreme values of a function. This
amounts to finding the highest and lowest points on the graph over a given domain. As
we saw in the one-variable case, it is important to distinguish between local and global
extreme values. A local extreme value is a value f (a, b) that is a maximum or minimum
in some small open disk around (a, b) (Figure 1).

x

yDisk D (P, r)

z

Local and
global
minimum

Local
maximum

Local and
global
maximum

FIGURE 1 f (x, y) has a local maximum
at P .

DEFINITION Local Extreme Values A function f (x, y) has a local extremum at
P = (a, b) if there exists an open disk D(P, r) such that:

• Local maximum: f (x, y) ≤ f (a, b) for all (x, y) ∈ D(P, r)
• Local minimum: f (x, y) ≥ f (a, b) for all (x, y) ∈ D(P, r)

Fermat’s Theorem states that if f (a) is a local extreme value, then a is a critical
point and thus the tangent line (if it exists) is horizontal at x = a. We can expect a similar
result for functions of two variables, but in this case, it is the tangent plane that must be
horizontal (Figure 2). The tangent plane to z = f (x, y) at P = (a, b) has equation

REMINDER The term “extremum” (the
plural is “extrema”) means a minimum or
maximum value.

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

Thus, the tangent plane is horizontal if fx(a, b) = fy(a, b) = 0—that is, if the equation
reduces to z = f (a, b). This leads to the following definition of a critical point, where we
take into account the possibility that one or both partial derivatives do not exist.

y

x

(A) (B)

x y

z
Local maximumLocal maximum

FIGURE 2 The tangent line or plane is
horizontal at a local extremum.
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DEFINITION Critical Point A point P = (a, b) in the domain of f (x, y) is called a
critical point if:

• fx(a, b) = 0 or fx(a, b) does not exist, and
• fy(a, b) = 0 or fy(a, b) does not exist.

As in the single-variable case, we have

• More generally, (a1, . . . , an) is a
critical point of f (x1, . . . , xn) if each
partial derivative satisfies

fxj
(a1, . . . , an) = 0

or does not exist.
• Theorem 1 holds in any number of

variables: Local extrema occur at
critical points.

THEOREM 1 Fermat’s Theorem If f (x, y) has a local minimum or maximum at
P = (a, b), then (a, b) is a critical point of f (x, y).

Proof If f (x, y) has a local minimum at P = (a, b), then f (x, y) ≥ f (a, b) for all (x, y)

near (a, b). In particular, there exists r > 0 such that f (x, b) ≥ f (a, b) if |x − a| < r .
In other words, g(x) = f (x, b) has a local minimum at x = a. By Fermat’s Theorem for
functions of one variable, either g′(a) = 0 or g′(a) does not exist. Since g′(a) = fx(a, b),
we conclude that either fx(a, b) = 0 or fx(a, b) does not exist. Similarly, fy(a, b) = 0
or fy(a, b) does not exist. Therefore, P = (a, b) is a critical point. The case of a local
maximum is similar.

Usually, we deal with functions whose partial derivatives exist. In this case, find-
ing the critical points amounts to solving the simultaneous equations fx(x, y) = 0 and
fy(x, y) = 0.

EXAMPLE 1 Show that f (x, y) = 11x2 − 2xy + 2y2 + 3y has one critical point.
Use Figure 3 to determine whether it corresponds to a local minimum or maximum.

x

z

y

FIGURE 3 Graph of
f (x, y) = 11x2 − 2xy + 2y2 + 3y.

Solution Set the partial derivatives equal to zero and solve:

fx(x, y) = 22x − 2y = 0

fy(x, y) = −2x + 4y + 3 = 0

By the first equation, y = 11x. Substituting y = 11x in the second equation gives

−2x + 4y + 3 = −2x + 4(11x) + 3 = 42x + 3 = 0

Thus x = − 1
14 and y = − 11

14 . There is just one critical point, P = ( − 1
14 , − 11

14

)
. Figure 3

shows that f (x, y) has a local minimum at P .

It is not always possible to find the solutions exactly, but we can use a computer to
find numerical approximations.

EXAMPLE 2 Numerical Example Use a computer algebra system to approx-
imate the critical points of

f (x, y) = x − y

2x2 + 8y2 + 3

Are they local minima or maxima? Refer to Figure 4.
x

z

y

FIGURE 4 Graph of

f (x, y) = x − y

2x2 + 8y2 + 3
.

Solution We use a CAS to compute the partial derivatives and solve

fx(x, y) = −2x2 + 8y2 + 4xy + 3

(2x2 + 8y2 + 3)2
= 0

fy(x, y) = −2x2 + 8y2 − 16xy − 3

(2x2 + 8y2 + 3)2
= 0
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To solve these equations, set the numerators equal to zero. Figure 4 suggests that f (x, y)

has a local max with x > 0 and a local min with x < 0. The following Mathematica
command searches for a solution near (1, 0):

FindRoot[{-2xˆ2+8yˆ2+4xy+3 == 0, -2xˆ2+8yˆ2-16xy-3 == 0},
{{x,1},{y,0}}]

The result is

{x -> 1.095, y -> -0.274}

Thus, (1.095, −0.274) is an approximate critical point where, by Figure 4, f takes on a
local maximum.Asecond search near (−1, 0)yields (−1.095, 0.274), which approximates
the critical point where f (x, y) takes on a local minimum.

We know that in one variable, a function f (x) may have a point of inflection rather
than a local extremum at a critical point.Asimilar phenomenon occurs in several variables.
Each of the functions in Figure 5 has a critical point at (0, 0). However, the function in
Figure 5(C) has a saddle point, which is neither a local minimum nor a local maximum.
If you stand at the saddle point and begin walking, some directions take you uphill and
other directions take you downhill.

(A) Local maximum (B) Local minimum (C) Saddle

x

y

z

x

y

z

x

y

z

FIGURE 5

As in the one-variable case, there is a Second Derivative Test for determining the type
of a critical point (a, b) of a function f (x, y) in two variables. This test relies on the sign
of the discriminant D = D(a, b), defined as follows:The discriminant is also referred to as the

“Hessian determinant.”

D = D(a, b) = fxx(a, b)fyy(a, b) − f 2
xy(a, b)

THEOREM 2 Second Derivative Test Let P = (a, b) be a critical point of f (x, y).
Assume that fxx, fyy, fxy are continuous near P . Then:

(i) If D > 0 and fxx(a, b) > 0, then f (a, b) is a local minimum.

(ii) If D > 0 and fxx(a, b) < 0, then f (a, b) is a local maximum.

(iii) If D < 0, then f has a saddle point at (a, b).

(iv) If D = 0, the test is inconclusive.

A proof of this theorem is discussed at the end of this section.

If D > 0, then fxx(a, b) and fyy(a, b)

must have the same sign, so the sign of
fyy(a, b) also determines whether f (a, b)

is a local minimum or a local maximum.
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EXAMPLE 3 Applying the Second Derivative Test Find the critical points of

f (x, y) = (x2 + y2)e−x

and analyze them using the Second Derivative Test.

Solution

Step 1. Find the critical points.
Set the partial derivatives equal to zero and solve:

fx(x, y) = −(x2 + y2)e−x + 2xe−x = (2x − x2 − y2)e−x = 0

fy(x, y) = 2ye−x = 0 ⇒ y = 0

Substituting y = 0 in the first equation then gives

(2x − x2 − y2)e−x = (2x − x2)e−x = 0 ⇒ x = 0, 2

The critical points are (0, 0) and (2, 0) [Figure 6].

x
y

Local
minimum

z

Saddle
point

FIGURE 6 Graph of
f (x, y) = (x2 + y2)e−x .

Step 2. Compute the second-order partials.

fxx(x, y) = ∂

∂x

(
(2x − x2 − y2)e−x

) = (2 − 4x + x2 + y2)e−x

fyy(x, y) = ∂

∂y
(2ye−x) = 2e−x

fxy(x, y) = fyx(x, y) = ∂

∂x
(2ye−x) = −2ye−x

Step 3. Apply the Second Derivative Test.

Critical Discriminant
Point fxx fyy fxy D = fxxfyy − f 2

xy Type

(0, 0) 2 2 0 2(2) − 02 = 4 Local minimum since
D > 0 and fxx > 0

(2, 0) −2e−2 2e−2 0 −2e−2(2e−2) − 02 = −4e−4 Saddle since
D < 0

GRAPHICAL INSIGHT We can also read off the type of critical point from the contour
map. Notice that the level curves in Figure 7 encircle the local minimum at P , with
f increasing in all directions emanating from P . By contrast, f has a saddle point at
Q: The neighborhood near Q is divided into four regions in which f (x, y) alternately
increases and decreases.

Saddle point

Local minimum

x

z

y

Saddle point

xy

Local minimum

P

Q

inc

inc

inc

inc

inc

dec

dec

inc

FIGURE 7 f (x, y) = x3 + y3 − 12xy.
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EXAMPLE 4 Analyze the critical points of f (x, y) = x3 + y3 − 12xy.

Solution Again, we set the partial derivatives equal to zero and solve:

fx(x, y) = 3x2 − 12y = 0 ⇒ y = 1

4
x2

fy(x, y) = 3y2 − 12x = 0

Substituting y = 1
4x2 in the second equation yields

3y2 − 12x = 3

(
1

4
x2

)2

− 12x = 3

16
x(x3 − 64) = 0 ⇒ x = 0, 4

Since y = 1
4x2, the critical points are (0, 0) and (4, 4).

We have

fxx(x, y) = 6x, fyy(x, y) = 6y, fxy(x, y) = −12

The Second Derivative Test confirms what we see in Figure 7: f has a local min at (4, 4)

and a saddle at (0, 0).

Critical Discriminant
Point fxx fyy fxy D = fxxfyy − f 2

xy Type

(0, 0) 0 0 −12 0(0) − 122 = −144 Saddle since
D < 0

(4, 4) 24 24 −12 24(24) − 122 = 432 Local minimum since
D > 0 and fxx > 0

x

z

z = h (x, y)

y

FIGURE 8 Graph of a “monkey saddle” with
equation h(x, y) = 3xy2 − x3.

GRAPHICAL INSIGHT A graph can take on a variety of different shapes at a saddle point.
The graph of h(x, y) in Figure 8 is called a “monkey saddle” (because a monkey can
sit on this saddle with room for his tail in the back).

Global Extrema
Often we are interested in finding the minimum or maximum value of a function f on a
given domain D. These are called global or absolute extreme values. However, global
extrema do not always exist. The function f (x, y) = x + y has a maximum value on the
unit square D1 in Figure 9 (the max is f (1, 1) = 2), but it has no maximum value on the
entire plane R2.

z

x

y

Maximum of f (x, y) = x + y
on D1 occurs at (1, 1)

f (x, y) = x + y

(1, 1)

D1

x

y

1

1

1
1D1

FIGURE 9

To state conditions that guarantee the existence of global extrema, we need a few
definitions. First, we say that a domain D is bounded if there is a number M > 0 such
that D is contained in a disk of radius M centered at the origin. In other words, no point
of D is more than a distance M from the origin [Figures 11(A) and 11(B)]. Next, a point
P is called:

• An interior point of D if D contains some open disk D(P, r) centered at P .
• A boundary point of D if every disk centered at P contains points in D and points

not in D.

Interior point

Boundary point

ba x

ba

FIGURE 10 Interior and boundary points of
an interval [a, b].

CONCEPTUAL INSIGHT To understand the concept of interior and boundary points, think
of the familiar case of an interval I = [a, b] in the real line R (Figure 10). Every point
x in the open interval (a, b) is an interior point of I (because there exists a small open
interval around x entirely contained in I ). The two endpoints a and b are boundary
points (because every open interval containing a or b also contains points not in I ).
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The interior of D is the set of all interior points, and the boundary of D is the set of
all boundary points. In Figure 11(C), the boundary is the curve surrounding the domain.
The interior consists of all points in the domain not lying on the boundary curve.

A domain D is called closed if D contains all its boundary points (like a closed
interval in R). A domain D is called open if every point of D is an interior point (like an
open interval in R). The domain in Figure 11(A) is closed because the domain includes
its boundary curve. In Figure 11(C), some boundary points are included and some are
excluded, so the domain is neither open nor closed.

(A) This domain is bounded
      and closed (contains all
      boundary points).

(B) An unbounded domain
      (contains points arbitrarily
      far from the origin).

A nonclosed domain
(contains some but not
all boundary points).

(C)

y

xx

y

x

y

Interior point
Boundary
point

Boundary point
not in D

FIGURE 11 Domains in R2.

In Section 4.2, we stated two basic results. First, a continuous function f (x) on a
closed, bounded interval [a, b] takes on both a minimum and a maximum value on [a, b].
Second, these extreme values occur either at critical points in the interior (a, b) or at the
endpoints. Analogous results are valid in several variables.

THEOREM 3 Existence and Location of Global Extrema Let f (x, y) be a continuous
function on a closed, bounded domain D in R2. Then:

(i) f (x, y) takes on both a minimum and a maximum value on D.

(ii) The extreme values occur either at critical points in the interior of D or at points
on the boundary of D.

EXAMPLE 5 Find the maximum value of f (x, y) = 2x + y − 3xy on the unit square
D = {(x, y) : 0 ≤ x, y ≤ 1}.

(1, 0, 0)

f (x, y) = 2x + y − 3xy

z

x

y

Edge x = 1

Edge y = 1

Edge y = 0

y

P D

(1, 0)

(0, 1)

Edge x = 0

(1, 1, 0)

x

(1, 1)

FIGURE 12

Solution By Theorem 3, the maximum occurs either at a critical point or on the boundary
of the square (Figure 12).

Step 1. Examine the critical points.
Set the partial derivatives equal to zero and solve:

fx(x, y) = 2 − 3y = 0 ⇒ y = 2

3
, fy(x, y) = 1 − 3x = 0 ⇒ x = 1

3

There is a unique critical point P = ( 1
3 , 2

3

)
and

f (P ) = f

(
1

3
,

2

3

)
= 2

(
1

3

)
+

(
2

3

)
− 3

(
1

3

)(
2

3

)
= 2

3

Step 2. Check the boundary.
We do this by checking each of the four edges of the square separately. The bottom
edge is described by y = 0, 0 ≤ x ≤ 1. On this edge, f (x, 0) = 2x, and the maximum
value occurs at x = 1, where f (1, 0) = 2. Proceeding in a similar fashion with the
other edges, we obtain
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Edge
Restriction of
f (x, y) to Edge

Maximum of
f (x, y) on Edge

Lower: y = 0, 0 ≤ x ≤ 1 f (x, 0) = 2x f (1, 0) = 2
Upper: y = 1, 0 ≤ x ≤ 1 f (x, 1) = 1 − x f (0, 1) = 1
Left: x = 0, 0 ≤ y ≤ 1 f (0, y) = y f (0, 1) = 1
Right: x = 1, 0 ≤ y ≤ 1 f (1, y) = 2 − 2y f (1, 0) = 2

Step 3. Compare.
The maximum of f on the boundary is f (1, 0) = 2. This is larger than the value
f (P ) = 2

3 at the critical point, so the maximum of f on the unit square is 2.

EXAMPLE 6 Box of Maximum Volume Find the maximum volume of a box inscribed
in the tetrahedron bounded by the coordinate planes and the plane 1

3x + y + z = 1.

Solution

Step 1. Find a function to be maximized.
Let P = (x, y, z) be the corner of the box lying on the front face of the tetrahedron
(Figure 13). Then the box has sides of lengths x, y, z and volume V = xyz. Using

A = (3, 0, 0)

C = (0, 0, 1)

z

x

y
x

z
y

P = (x, y, z)

zz B = (0, 1, 0)

D

FIGURE 13 The shaded triangle is the
domain of V (x, y).

1
3x + y + z = 1, or z = 1 − 1

3x − y, we express V in terms of x and y:

V (x, y) = xyz = xy

(
1 − 1

3
x − y

)
= xy − 1

3
x2y − xy2

Our problem is to maximize V , but which domain D should we choose? We let D be the
shaded triangle �OAB in the xy-plane in Figure 13. Then the corner point P = (x, y, z)

of each possible box lies above a point (x, y) in D. Because D is closed and bounded,
the maximum occurs at a critical point inside D or on the boundary of D.

Step 2. Examine the critical points.
First, set the partial derivatives equal to zero and solve:

∂V

∂x
= y − 2

3
xy − y2 = y

(
1 − 2

3
x − y

)
= 0

∂V

∂y
= x − 1

3
x2 − 2xy = x

(
1 − 1

3
x − 2y

)
= 0

If x = 0 or y = 0, then (x, y) lies on the boundary of D, so assume that x and y are
both nonzero. Then the first equation gives us

1 − 2

3
x − y = 0 ⇒ y = 1 − 2

3
x

The second equation yields

1 − 1

3
x − 2y = 1 − 1

3
x − 2

(
1 − 2

3
x

)
= 0 ⇒ x − 1 = 0 ⇒ x = 1

For x = 1, we have y = 1 − 2
3x = 1

3 . Therefore,
(
1, 1

3

)
is a critical point, and

V

(
1,

1

3

)
= (1)

1

3
− 1

3
(1)2 1

3
− (1)

(
1

3

)2

= 1

9

Step 3. Check the boundary.
We have V (x, y) = 0 for all points on the boundary of D (because the three edges
of the boundary are defined by x = 0, y = 0, and 1 − 1

3x − y = 0). Clearly, then, the
maximum occurs at the critical point, and the maximum volume is 1

9 .
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Proof of the Second Derivative Test The proof is based on “completing the square” for
quadratic forms. A quadratic form is a function

Q(h, k) = ah2 + 2bhk + ck2

where a, b, c are constants (not all zero). The discriminant of Q is the quantity

D = ac − b2

Some quadratic forms take on only positive values for (h, k) �= (0, 0), and others
take on both positive and negative values. According to the next theorem, the sign of the
discriminant determines which of these two possibilities occurs.To illustrate Theorem 4, consider

Q(h, k) = h2 + 2hk + 2k2

It has a positive discriminant

D = (1)(2) − 1 = 1

We can see directly that Q(h, k) takes on
only positive values for (h, k) �= (0, 0) by
writing Q(h, k) as

Q(h, k) = (h + k)2 + k2

THEOREM 4 With Q(h, k) and D as above:

(i) If D > 0 and a > 0, then Q(h, k) > 0 for (h, k) �= (0, 0).

(ii) If D > 0 and a < 0, then Q(h, k) < 0 for (h, k) �= (0, 0).

(iii) If D < 0, then Q(h, k) takes on both positive and negative values.

Proof Assume first that a �= 0 and rewrite Q(h, k) by “completing the square”:

Q(h, k) = ah2 + 2bhk + ck2 = a

(
h + b

a
k

)2

+
(

c − b2

a

)
k2

= a

(
h + b

a
k

)2

+ D

a
k2 1

If D > 0 and a > 0, then D/a > 0 and both terms in Eq. (1) are nonnegative. Furthermore,
if Q(h, k) = 0, then each term in Eq. (1) must equal zero. Thus k = 0 and h + b

a
k = 0,

and then, necessarily, h = 0. This shows that Q(h, k) > 0 if (h, k) �= 0, and (i) is proved.
Part (ii) follows similarly. To prove (iii), note that if a �= 0 and D < 0, then the coefficients
of the squared terms in Eq. (1) have opposite signs and Q(h, k) takes on both positive and
negative values. Finally, if a = 0 and D < 0, then Q(h, k) = 2bhk + ck2 with b �= 0. In
this case, Q(h, k) again takes on both positive and negative values.

Now assume that f (x, y) has a critical point at P = (a, b). We shall analyze f by
considering the restriction of f (x, y) to the line (Figure 14) through P = (a, b) in the
direction of a unit vector 〈h, k〉:

〈h, k〉
(a + th, a + tk)

(a, b) r

x

y

P

FIGURE 14 Line through P in the direction
of 〈h, k〉.

F(t) = f (a + th, b + tk)

Then F(0) = f (a, b). By the Chain Rule,

F ′(t) = fx(a + th, b + tk)h + fy(a + th, b + tk)k

Because P is a critical point, we have fx(a, b) = fy(a, b) = 0, and therefore,

F ′(0) = fx(a, b)h + fy(a, b)k = 0

Thus t = 0 is a critical point of F(t).
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Now apply the Chain Rule again:

F ′′(t) = d

dt

(
fx(a + th, b + tk)h + fy(a + th, b + tk)k

)
=

(
fxx(a + th, b + tk)h2 + fxy(a + th, b + tk)hk

)
+

(
fyx(a + th, b + tk)kh + fyy(a + th, b + tk)k2

)
= fxx(a + th, b + tk)h2 + 2fxy(a + th, b + tk)hk + fyy(a + th, b + tk)k2

2

We see that F ′′(t) is the value at (h, k) of a quadratic form whose discriminant is equal to
D(a + th, b + tk). Here, we set

D(r, s) = fxx(r, s)fyy(r, s) − fxy(r, s)
2

Note that the discriminant of f (x, y) at the critical point P = (a, b) is D = D(a, b).

Case 1: D(a, b) > 0 and fxx(a, b) > 0. We must prove that f (a, b) is a local minimum.
Consider a small disk of radius r around P (Figure 14). Because the second derivatives
are continuous near P , we can choose r > 0 so that for every unit vector 〈h, k〉,

D(a + th, b + tk) > 0 for |t | < r

fxx(a + th, b + tk) > 0 for |t | < r

Then F ′′(t) is positive for |t | < r by Theorem 4(i). This tells us that F(t) is concave
up, and hence F(0) < F(t) if 0 < |t | < |r| (see Exercise 64 in Section 4.4). Because
F(0) = f (a, b), we may conclude that f (a, b) is the minimum value of f along each
segment of radius r through (a, b). Therefore, f (a, b) is a local minimum value of f as
claimed. The case that D(a, b) > 0 and fxx(a, b) < 0 is similar.

Case 2: D(a, b) < 0. For t = 0, Eq. (2) yields

F ′′(0) = fxx(a, b)h2 + 2fxy(a, b)hk + fyy(a, b)k2

Since D(a, b) < 0, this quadratic form takes on both positive and negative values by
Theorem 4(iii). Choose 〈h, k〉 for which F ′′(0) > 0. By the Second Derivative Test in
one variable, F(0) is a local minimum of F(t), and hence, there is a value r > 0 such
that F(0) < F(t) for all 0 < |t | < r . But we can also choose 〈h, k〉 so that F ′′(0) < 0,
in which case F(0) > F(t) for 0 < |t | < r for some r > 0. Because F(0) = f (a, b), we
conclude that f (a, b) is a local min in some directions and a local max in other directions.
Therefore, f has a saddle point at P = (a, b).

12.7 SUMMARY

• We say that P = (a, b) is a critical point of f (x, y) if

– fx(a, b) = 0 or fx(a, b) does not exist, and
– fy(a, b) = 0 or fy(a, b) does not exist.

In n-variables, P = (a1, . . . , an) is a critical point of f (x1, . . . , xn) if each partial deriva-
tive fxj

(a1, . . . , an) either is zero or does not exist.
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• The local minimum or maximum values of f occur at critical points.
• The discriminant of f (x, y) at P = (a, b) is the quantity

D(a, b) = fxx(a, b)fyy(a, b) − f 2
xy(a, b)

• Second Derivative Test: If P = (a, b) is a critical point of f (x, y), then

D(a, b) > 0, fxx(a, b) > 0 ⇒ f (a, b) is a local minimum

D(a, b) > 0, fxx(a, b) < 0 ⇒ f (a, b) is a local maximum

D(a, b) < 0 ⇒ saddle point

D(a, b) = 0 ⇒ test inconclusive

• A point P is an interior point of a domain D if D contains some open disk D(P, r)

centered at P . A point P is a boundary point of D if every open disk D(P, r) contains
points in D and points not in D. The interior of D is the set of all interior points, and
the boundary is the set of all boundary points. A domain is closed if it contains all of its
boundary points and open if it is equal to its interior.
• Existence and location of global extrema: If f is continuous and D is closed and
bounded, then

– f takes on both a minimum and a maximum value on D.

– The extreme values occur either at critical points in the interior of D or at points on
the boundary of D.

To determine the extreme values, first find the critical points in the interior of D. Then
compare the values of f at the critical points with the minimum and maximum values of
f on the boundary.

12.7 EXERCISES

Preliminary Questions
1. The functions f (x, y) = x2 + y2 and g(x, y) = x2 − y2 both

have a critical point at (0, 0). How is the behavior of the two func-
tions at the critical point different?

2. Identify the points indicated in the contour maps as local minima,
local maxima, saddle points, or neither (Figure 15).

0

1

1

1

2

3

6

10
−1 −1 0

−1

−2

−3
−3

−6

−10

−3

3

3

000

FIGURE 15

3. Let f (x, y) be a continuous function on a domain D in R2. Deter-
mine which of the following statements are true:

(a) If D is closed and bounded, then f takes on a maximum value
on D.

(b) If D is neither closed nor bounded, then f does not take on a
maximum value of D.

(c) f (x, y) need not have a maximum value on the domain D defined
by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(d) A continuous function takes on neither a minimum nor a maximum
value on the open quadrant

{(x, y) : x > 0, y > 0}
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Exercises
1. Let P = (a, b) be a critical point of f (x, y) = x2 + y4 − 4xy.

(a) First use fx(x, y) = 0 to show that a = 2b. Then use fy(x, y) = 0
to show that P = (0, 0), (2

√
2,

√
2), or (−2

√
2, −√

2).

(b) Referring to Figure 16, determine the local minima and saddle
points of f (x, y) and find the absolute minimum value of f (x, y).

x

z

x

y

FIGURE 16

2. Find the critical points of the functions

f (x, y) = x2 + 2y2 − 4y + 6x, g(x, y) = x2 − 12xy + y

Use the Second Derivative Test to determine the local minimum, lo-
cal maximum, and saddle points. Match f (x, y) and g(x, y) with their
graphs in Figure 17.

z

x

z

y
y

x

(A) (B)

FIGURE 17

3. Find the critical points of

f (x, y) = 8y4 + x2 + xy − 3y2 − y3

Use the contour map in Figure 18 to determine their nature (local min-
imum, local maximum, or saddle point).

0.1 0

−0.3
−0.2
−0.1

0.2
0.3

10

1

0

−1

−1

y

x

−0.1

−0.2

FIGURE 18 Contour map of f (x, y) = 8y4 + x2 + xy − 3y2 − y3.

4. Use the contour map in Figure 19 to determine whether the critical
points A, B, C, D are local minima, local maxima, or saddle points.

11 0

0

2
3

−1

−1

−2
−3

2

0

−2

0 2−2

A

CD

B

y

x

FIGURE 19

5. Let f (x, y) = y2x − yx2 + xy.

(a) Show that the critical points (x, y) satisfy the equations

y(y − 2x + 1) = 0, x(2y − x + 1) = 0

(b) Show that f has three critical points.

(c) Use the second derivative to determine the nature of the critical
points.

6. Show that f (x, y) =
√

x2 + y2 has one critical point P and that
f is nondifferentiable at P . Does f take on a minimum, maximum, or
saddle point at P ?

In Exercises 7–23, find the critical points of the function. Then use the
Second Derivative Test to determine whether they are local minima,
local maxima, or saddle points (or state that the test fails).

7. f (x, y) = x2 + y2 − xy + x 8. f (x, y) = x3 − xy + y3

9. f (x, y) = x3 + 2xy − 2y2 − 10x

10. f (x, y) = x3y + 12x2 − 8y

11. f (x, y) = 4x − 3x3 − 2xy2

12. f (x, y) = x3 + y4 − 6x − 2y2
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13. f (x, y) = x4 + y4 − 4xy 14. f (x, y) = ex2−y2+4y

15. f (x, y) = xye−x2−y2
16. f (x, y) = ex − xey

17. f (x, y) = sin(x + y) − cos x 18. f (x, y) = x ln(x + y)

19. f (x, y) = ln x + 2 ln y − x − 4y

20. f (x, y) = (x + y) ln(x2 + y2)

21. f (x, y) = x − y2 − ln(x + y) 22. f (x, y) = (x − y)ex2−y2

23. f (x, y) = (x + 3y)ey−x2

24. Show that f (x, y) = x2 has infinitely many critical points (as a
function of two variables) and that the Second Derivative Test fails for
all of them. What is the minimum value of f ? Does f (x, y) have any
local maxima?

25. Prove that the function f (x, y) = 1
3x3 + 2

3y3/2 − xy satisfies
f (x, y) ≥ 0 for x ≥ 0 and y ≥ 0.

(a) First, verify that the set of critical points of f is the parabola y = x2

and that the Second Derivative Test fails for these points.
(b) Show that for fixed b, the function g(x) = f (x, b) is concave up
for x > 0 with a critical point at x = b1/2.
(c) Conclude that f (a, b) ≥ f (b1/2, b) = 0 for all a, b ≥ 0.

26. Let f (x, y) = (x2 + y2)e−x2−y2
.

(a) Where does f take on its minimum value? Do not use calculus to
answer this question.
(b) Verify that the set of critical points of f consists of the origin (0, 0)

and the unit circle x2 + y2 = 1.
(c) The Second Derivative Test fails for points on the unit circle (this
can be checked by some lengthy algebra). Prove, however, that f takes
on its maximum value on the unit circle by analyzing the function
g(t) = te−t for t > 0.

27. Use a computer algebra system to find a numerical ap-
proximation to the critical point of

f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2

Apply the Second Derivative Test to confirm that it corresponds to a
local minimum as in Figure 20.

x

y

z

FIGURE 20 Plot of f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2
.

28. Which of the following domains are closed and which are bounded?

(a) {(x, y) ∈ R2 : x2 + y2 ≤ 1}
(b) {(x, y) ∈ R2 : x2 + y2 < 1}
(c) {(x, y) ∈ R2 : x ≥ 0}
(d) {(x, y) ∈ R2 : x > 0, y > 0}
(e) {(x, y) ∈ R2 : 1 ≤ x ≤ 4, 5 ≤ y ≤ 10}
(f) {(x, y) ∈ R2 : x > 0, x2 + y2 ≤ 10}

In Exercises 29–32, determine the global extreme values of the
function on the given set without using calculus.

29. f (x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

30. f (x, y) = 2x − y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 3

31. f (x, y) = (x2 + y2 + 1)−1, 0 ≤ x ≤ 3, 0 ≤ y ≤ 5

32. f (x, y) = e−x2−y2
, x2 + y2 ≤ 1

33. Assumptions Matter Show that f (x, y) = xy does not have a
global minimum or a global maximum on the domain

D = {(x, y) : 0 < x < 1, 0 < y < 1}
Explain why this does not contradict Theorem 3.

34. Find a continuous function that does not have a global maximum
on the domain D = {(x, y) : x + y ≥ 0, x + y ≤ 1}. Explain why this
does not contradict Theorem 3.

35. Find the maximum of

f (x, y) = x + y − x2 − y2 − xy

on the square, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 (Figure 21).

(a) First, locate the critical point of f in the square, and evaluate f at
this point.

(b) On the bottom edge of the square, y = 0 and f (x, 0) = x − x2.
Find the extreme values of f on the bottom edge.

(c) Find the extreme values of f on the remaining edges.

(d) Find the largest among the values computed in (a), (b), and (c).

f (x, 2) = −2 − x − x2

Edge y = 2

Edge x = 2
f (2, y) = −2 − y − y2

Edge x = 0
f (0, y) = y − y2

Edge y = 0
f (x, 0) = x − x2

x
2

y

2

FIGURE 21 The function f (x, y) = x + y − x2 − y2 − xy on the
boundary segments of the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.
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36. Find the maximum of f (x, y) = y2 + xy − x2 on the square
0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

In Exercises 37–43, determine the global extreme values of the
function on the given domain.

37. f (x, y) = x3 − 2y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

38. f (x, y) = 5x − 3y, y ≥ x − 2, y ≥ −x − 2, y ≤ 3

39. f (x, y) = x2 + 2y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

40. f (x, y) = x3 + x2y + 2y2, x, y ≥ 0, x + y ≤ 1

41. f (x, y) = x3 + y3 − 3xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

42. f (x, y) = x2 + y2 − 2x − 4y, x ≥ 0, 0 ≤ y ≤ 3, y ≥ x

43. f (x, y) = (4y2 − x2)e−x2−y2
, x2 + y2 ≤ 2

44. Find the maximum volume of a box inscribed in the tetrahedron
bounded by the coordinate planes and the plane

x + 1

2
y + 1

3
z = 1

45. Find the maximum volume of the largest box of the type shown
in Figure 22, with one corner at the origin and the opposite corner at a
point P = (x, y, z) on the paraboloid

z = 1 − x2

4
− y2

9
with x, y, z ≥ 0

x

y

1

P

z

FIGURE 22

46. Find the point on the plane

z = x + y + 1

closest to the point P = (1, 0, 0). Hint: Minimize the square of the
distance.

47. Show that the sum of the squares of the distances from a point
P = (c, d) to n fixed points (a1, b1), . . . ,(an, bn) is minimized when c

is the average of thex-coordinatesai andd is the average of they-coord-
inates bi .

48. Show that the rectangular box (including the top and bottom) with
fixed volume V = 27 m3 and smallest possible surface area is a cube
(Figure 23).

z

y
x

FIGURE 23 Rectangular box with sides x, y, z.

49. Consider a rectangular box B that has a bottom and sides
but no top and has minimal surface area among all boxes with fixed
volume V .

(a) Do you think B is a cube as in the solution to Exercise 48? If not,
how would its shape differ from a cube?
(b) Find the dimensions of B and compare with your response to (a).

50. Given n data points (x1, y1), . . . , (xn, yn), the linear least-
squares fit is the linear function

f (x) = mx + b

that minimizes the sum of the squares (Figure 24):

E(m, b) =
n∑

j=1

(yj − f (xj ))2

Show that the minimum value of E occurs for m and b satisfying the
two equations

m

⎛
⎝ n∑

j=1

xj

⎞
⎠ + bn =

n∑
j=1

yj

m

n∑
j=1

x2
j + b

n∑
j=1

xj =
n∑

j=1

xj yj

x

(x1, y1)
(x2, y2)

(xn, yn)

(xj, yj)

y = mx + b

y

FIGURE 24 The linear least-squares fit minimizes the sum of the
squares of the vertical distances from the data points to the line.

51. The power (in microwatts) of a laser is measured as a function of
current (in milliamps). Find the linear least-squares fit (Exercise 50)
for the data points.

Current (mA) 1.0 1.1 1.2 1.3 1.4 1.5

Laser power (μW) 0.52 0.56 0.82 0.78 1.23 1.50
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52. Let A = (a, b) be a fixed point in the plane, and let fA(P ) be the
distance from A to the point P = (x, y). For P �= A, let eAP be the
unit vector pointing from A to P (Figure 25):

eAP =
−→
AP

‖−→AP ‖
Show that

∇fA(P ) = eAP

Note that we can derive this result without calculation: Because
∇fA(P ) points in the direction of maximal increase, it must point di-
rectly away from A at P , and because the distance fA(x, y) increases
at a rate of one as you move away from A along the line through A and
P , ∇fA(P ) must be a unit vector.

x

y

A = (a, b)

eAP

P = (x, y)
Distance  fA(x, y)

FIGURE 25 The distance from A to P increases most rapidly in the
direction eAP .

Further Insights and Challenges
53. In this exercise, we prove that for all x, y ≥ 0:

1

α
xα + 1

β
xβ ≥ xy

where α ≥ 1 and β ≥ 1 are numbers such that α−1 + β−1 = 1. To do
this, we prove that the function

f (x, y) = α−1xα + β−1yβ − xy

satisfies f (x, y) ≥ 0 for all x, y ≥ 0.

(a) Show that the set of critical points of f (x, y) is the curve y = xα−1

(Figure 26). Note that this curve can also be described as x = yβ−1.
What is the value of f (x, y) at points on this curve?
(b) Verify that the Second Derivative Test fails. Show, however, that for
fixed b > 0, the function g(x) = f (x, b) is concave up with a critical
point at x = bβ−1.
(c) Conclude that for all x > 0, f (x, b) ≥ f (bβ−1, b) = 0.

inc incb

x

y
y = xa − 1

(bb − 1, b )

Critical points of f (x, y)

FIGURE 26 The critical points of f (x, y) = α−1xα + β−1yβ − xy

form a curve y = xα−1.

54. The following problem was posed by Pierre de Fermat:
Given three points A = (a1, a2), B = (b1, b2), and C = (c1, c2) in

the plane, find the point P = (x, y) that minimizes the sum of the dis-
tances

f (x, y) = AP + BP + CP

Let e, f , g be the unit vectors pointing from P to the points A, B, C as
in Figure 27.

(a) Use Exercise 52 to show that the condition ∇f (P ) = 0 is equiva-
lent to

e + f + g = 0 3

(b) Show that f (x, y) is differentiable except at points A, B, C. Con-
clude that the minimum of f (x, y) occurs either at a point P satisfying
Eq. (3) or at one of the points A, B, or C.

(c) Prove that Eq. (3) holds if and only if P is the Fermat point, de-
fined as the point P for which the angles between the segments AP ,
BP , CP are all 120◦ (Figure 27).

(d) Show that the Fermat point does not exist if one of the angles in
�ABC is > 120◦. Where does the minimum occur in this case?

P

A

g

e f

C

B

A
C

B

140°

(A) P is the Fermat point
      (the angles between e,
      f, and g are all 120°).

(B) Fermat point does not exist.

FIGURE 27
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12.8 Lagrange Multipliers: Optimizing with a Constraint
Some optimization problems involve finding the extreme values of a function f (x, y)

1 2 3

1

2

P

Constraint
g(x, y) = 2x + 3y − 6 = 0

Point on the line
closest to the origin

y

x

FIGURE 1 Finding the minimum of

f (x, y) =
√

x2 + y2

on the line 2x + 3y = 6.

subject to a constraint g(x, y) = 0. Suppose that we want to find the point on the line
2x + 3y = 6 closest to the origin (Figure 1). The distance from (x, y) to the origin is
f (x, y) = √

x2 + y2, so our problem is

Minimize f (x, y) =
√

x2 + y2 subject to g(x, y) = 2x + 3y − 6 = 0

We are not seeking the minimum value of f (x, y) (which is 0), but rather the minimum
among all points (x, y) that lie on the line.

The method of Lagrange multipliers is a general procedure for solving optimization
problems with a constraint. Here is a description of the main idea.

GRAPHICAL INSIGHT Imagine standing at point Q in Figure 2(A). We want to increase
the value of f while remaining on the constraint curve. The gradient vector ∇fQ points
in the direction of maximum increase, but we cannot move in the gradient direction
because that would take us off the constraint curve. However, the gradient points to
the right, and so we can still increase f somewhat by moving to the right along the
constraint curve.

We keep moving to the right until we arrive at the point P , where ∇fP is orthogonal
to the constraint curve [Figure 2(B)]. Once at P , we cannot increase f further by moving
either to the right or to the left along the constraint curve. Thus f (P ) is a local maximum
subject to the constraint.

Now, the vector ∇gP is also orthogonal to the constraint curve, so ∇fP and ∇gP

must point in the same or opposite directions. In other words, ∇fP = λ∇gP for some
scalar λ (called a Lagrange multiplier). Graphically, this means that a local max subject
to the constraint occurs at points P where the level curves of f and g are tangent.

4
3
2
1

x

P
Q

y

4

Level curves of f(x, y)

Constraint curve g(x, y) = 0

3
2
1

∇fQ

x

y Tangent line at P

∇fP

∇gP

f increases as we move to the
right along the constraint curve.

(A) The local maximum of f on the constraint
curve occurs where ∇fP and ∇gP are parallel.   

(B)

P

FIGURE 2

THEOREM 1 Lagrange Multipliers Assume that f (x, y) and g(x, y) are differen-
tiable functions. If f (x, y) has a local minimum or a local maximum on the constraint
curve g(x, y) = 0 at P = (a, b), and if ∇gP �= 0, then there is a scalar λ such that

∇fP = λ∇gP 1
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Proof Let c(t) be a parametrization of the constraint curve g(x, y) = 0 near P , chosen
so that c(0) = P and c′(0) �= 0. Then f (c(0)) = f (P ), and by assumption, f (c(t)) has

In Theorem 1, the assumption ∇gP �= 0
guarantees (by the Implicit Function
Theorem of advanced calculus) that we can
parametrize the curve g(x, y) = 0 near P

by a path c such that c(0) = P and
c′(0) �= 0.

a local min or max at t = 0. Thus, t = 0 is a critical point of f (c(t)) and

d

dt
f (c(t))

∣∣∣∣
t=0

= ∇fP · c′(0)︸ ︷︷ ︸
Chain Rule

= 0

This shows that ∇fP is orthogonal to the tangent vector c′(0) to the curve g(x, y) = 0.
The gradient ∇gP is also orthogonal to c′(0) (because ∇gP is orthogonal to the level
curve g(x, y) = 0 at P ). We conclude that ∇fP and ∇gP are parallel, and hence ∇fP is
a multiple of ∇gP as claimed.

We refer to Eq. (1) as the Lagrange condition. When we write this condition in termsREMINDER Eq. (1) states that if a local
min or max of f (x, y) subject to a
constraint g(x, y) = 0 occurs at
P = (a, b), then

∇fP = λ∇gP

provided that ∇gP �= 0.

of components, we obtain the Lagrange equations:

fx(a, b) = λgx(a, b)

fy(a, b) = λgy(a, b)

Apoint P = (a, b) satisfying these equations is called a critical point for the optimization
problem with constraint and f (a, b) is called a critical value.

EXAMPLE 1 Find the extreme values of f (x, y) = 2x + 5y on the ellipse(x

4

)2 +
(y

3

)2 = 1

Solution

Step 1. Write out the Lagrange equations.
The constraint curve is g(x, y) = 0, where g(x, y) = (x/4)2 + (y/3)2 − 1. We have

∇f = 〈2, 5〉 , ∇g =
〈
x

8
,

2y

9

〉
The Lagrange equations ∇fP = λ∇gP are:

〈2, 5〉 = λ

〈
x

8
,

2y

9

〉
⇒ 2 = λx

8
, 5 = λ(2y)

9
2

Step 2. Solve for λ in terms of x and y.
Eq. (2) gives us two equations for λ:

λ = 16

x
, λ = 45

2y
3

To justify dividing by x and y, note that x and y must be nonzero, because x = 0 or
y = 0 would violate Eq. (2).

Step 3. Solve for x and y using the constraint.

The two expressions for λ must be equal, so we obtain
16

x
= 45

2y
or y = 45

32
x. Now

substitute this in the constraint equation and solve for x:

(x

4

)2 +
(

45
32x

3

)2

= 1

x2
(

1

16
+ 225

1024

)
= x2

(
289

1024

)
= 1
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Thus x = ±
√

1024
289 = ± 32

17 , and since y = 45x
32 , the critical points are P = ( 32

17 , 45
17

)
andLevel curve of

f (x, y) = 2x + 5y

3
�gP

�fP

�gQ

P

Q

Constraint curve
g(x, y) = 0

y

x
4�fQ

3

4

17

−17

0

FIGURE 3 The min and max occur where a
level curve of f is tangent to the constraint
curve

g(x, y) =
(x

4

)2 +
(y

3

)2 − 1 = 0

Q = ( − 32
17 , − 45

17

)
.

Step 4. Calculate the critical values.

f (P ) = f

(
32

17
,

45

17

)
= 2

(
32

17

)
+ 5

(
45

17

)
= 17

and f (Q) = −17. We conclude that the maximum of f (x, y) on the ellipse is 17 and
the minimum is −17 (Figure 3).

Assumptions Matter According to Theorem 3 in Section 12.7, a continuous function on
a closed, bounded domain takes on extreme values. This tells us that if the constraint curve
is bounded (as in the previous example, where the constraint curve is an ellipse), then
every continuous function f (x, y) takes on both a minimum and a maximum value subject
to the constraint. Be aware, however, that extreme values need not exist if the constraint
curve is not bounded. For example, the constraint x − y = 0 is an unbounded line. The
function f (x, y) = x has neither a minimum nor a maximum subject to x − y = 0 because
P = (a, a) satisfies the constraint, yet f (a, a) = a can be arbitrarily large or small.

EXAMPLE 2 Cobb–Douglas Production Function By investing x units of labor and y

FIGURE 4 Economist Paul Douglas,
working with mathematician Charles
Cobb, arrived at the production functions
P(x, y) = Cxayb by fitting data gathered
on the relationships between labor, capital,
and output in an industrial economy.
Douglas was a professor at the University
of Chicago and also served as U.S. senator
from Illinois from 1949 to 1967.

units of capital, a low-end watch manufacturer can produce P(x, y) = 50x0.4y0.6 watches.
(See Figure 4.) Find the maximum number of watches that can be produced on a budget
of $20,000 if labor costs $100 per unit and capital costs $200 per unit.

Solution The total cost of x units of labor and y units of capital is 100x + 200y. Our
task is to maximize the function P(x, y) = 50x0.4y0.6 subject to the following budget
constraint (Figure 5):

Increasing output

A

y (capital)

x (labor)

120

60 Budget
constraint

40 80 120

FIGURE 5 Contour plot of the
Cobb–Douglas production function
P(x, y) = 50x0.4y0.6. The level curves of
a production function are called isoquants.

g(x, y) = 100x + 200y − 20,000 = 0 4

Step 1. Write out the Lagrange equations.

Px(x, y) = λgx(x, y) : 20x−0.6y0.6 = 100λ

Py(x, y) = λgy(x, y) : 30x0.4y−0.4 = 200λ

Step 2. Solve for λ in terms of x and y.
These equations yield two expressions for λ that must be equal:

λ = 1

5

(y

x

)0.6 = 3

20

(y

x

)−0.4
5

Step 3. Solve for x and y using the constraint.
Multiply Eq. (5) by 5(y/x)0.4 to obtain y/x = 15/20, or y = 3

4x. Then substitute in
Eq. (4):

100x + 200y = 100x + 200

(
3

4
x

)
= 20,000 ⇒ 250x = 20,000

We obtain x = 20,000
250 = 80 and y = 3

4x = 60. The critical point is A = (80, 60).
Step 4. Calculate the critical values.

Since P(x, y) is increasing as a function of x and y, ∇P points to the northeast, and
it is clear that P(x, y) takes on a maximum value at A (Figure 5). The maximum is
P(80, 60) = 50(80)0.4(60)0.6 = 3365.87, or roughly 3365 watches, with a cost per
watch of 20,000

3365 or about $5.94.
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GRAPHICAL INSIGHT In an ordinary optimization problem without constraint, the global
maximum value is the height of the highest point on the surface z = f (x, y) (point Q

in Figure 6). When a constraint is given, we restrict our attention to the curve on the
surface lying above the constraint curve g(x, y) = 0 . The maximum value subject to
the constraint is the height of the highest point on this curve. Figure 6(B) shows the
optimization problem solved in Example 1.

(A) (B)

y

Global maximum

Constrained 
max occurs here g(x, y) = 0

P

z

x

y

x

P

z

Q

Maximum on the
constraint curve

z = f (x, y) f (x, y) = 2x + 5y

(   )2
 + (   )2

 = 1x
4

y
3

FIGURE 6

The method of Lagrange multipliers is valid in any number of variables. In the next
example, we consider a problem in three variables.

EXAMPLE 3 Lagrange Multipliers in Three Variables Find the point on the plane
x

2
+ y

4
+ z

4
= 1 closest to the origin in R3.

Solution Our task is to minimize the distance d = √
x2 + y2 + z2 subject to the con-

straint
x

2
+ y

4
+ z

4
= 1. But finding the minimum distance d is the same as finding the

minimum square of the distance d2, so our problem can be stated:

Minimize f (x, y, z) = x2 + y2 + z2 subject to g(x, y, z) = x

2
+ y

4
+ z

4
− 1 = 0

The Lagrange condition is

〈2x, 2y, 2z〉︸ ︷︷ ︸
∇f

= λ

〈
1

2
,

1

4
,

1

4

〉
︸ ︷︷ ︸

∇g

This yields

λ = 4x = 8y = 8z ⇒ z = y = x

2

Substituting in the constraint equation, we obtain

x

2
+ y

4
+ z

4
= 2z

2
+ z

4
+ z

4
= 3z

2
= 1 ⇒ z = 2

3

Thus, x = 2z = 4
3 and y = z = 2

3 . This critical point must correspond to the minimum
of f (because f has no maximum on the constraint plane). Hence, the point on the plane
closest to the origin is P = ( 4

3 , 2
3 , 2

3

)
(Figure 7).

(0, 4, 0)
(2, 0, 0)

(0, 0, 4)

z

x
y

P

FIGURE 7 Point P closest to the origin on
the plane.
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The method of Lagrange multipliers can be used when there is more than one con-
straint equation, but we must add another multiplier for each additional constraint. For
example, if the problem is to minimize f (x, y, z) subject to constraints g(x, y, z) = 0
and h(x, y, z) = 0, then the Lagrange condition is

∇f = λ∇g + μ∇h

EXAMPLE 4 Lagrange Multipliers with Multiple Constraints The intersection of the
plane x + 1

2y + 1
3z = 0 with the unit sphere x2 + y2 + z2 = 1 is a great circle (Figure 8).

Find the point on this great circle with the largest x coordinate.
The intersection of a sphere with a plane
through its center is called a great circle.

Solution Our task is to maximize the function f (x, y, z) = x subject to the two constraint

x2 + y2 + z2 = 1

x +     +     = 1y
2

z
3

y

x

z

Q

FIGURE 8 The plane intersects the sphere in
a great circle. Q is the point on this great
circle with the largest x-coordinate.

equations

g(x, y, z) = x + 1

2
y + 1

3
z = 0, h(x, y, z) = x2 + y2 + z2 − 1 = 0

The Lagrange condition is

∇f = λ∇g + μ∇h

〈1, 0, 0〉 = λ

〈
1,

1

2
,

1

3

〉
+ μ 〈2x, 2y, 2z〉

Note that μ cannot be zero. The Lagrange condition would become 〈1, 0, 0〉 = λ
〈
1, 1

2 , 1
3

〉
,

and this equation is not satisfed for any value of λ. Now, the Lagrange condition gives us
three equations:

λ + 2μx = 1,
1

2
λ + 2μy = 0,

1

3
λ + 2μz = 0

The last two equations yield λ = −4μy and λ = −6μz. Because μ �= 0,

−4μy = −6μz ⇒ y = 3

2
z

Now use this relation in the first constraint equation:

x + 1

2
y + 1

3
z = x + 1

2

(
3

2
z

)
+ 1

3
z = 0 ⇒ x = −13

12
z

Finally, we can substitute in the second constraint equation:

x2 + y2 + z2 − 1 =
(

−13

12
z

)2

+
(

3

2
z

)2

+ z2 − 1 = 0

to obtain 637
144z2 = 1 or z = ± 12

7
√

13
. Since x = − 13

12z and y = 3
2z, the critical points are

P =
(

−
√

13

7
,

18

7
√

13
,

12

7
√

13

)
, Q =

(√
13

7
, − 18

7
√

13
, − 12

7
√

13

)

The critical point with the largest x-coordinate (the maximum value of f (x, y, z)) is Q

with x-coordinate
√

13
7 ≈ 0.515.
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12.8 SUMMARY

• Method of Lagrange multipliers: The local extreme values of f (x, y) subject to a con-
straint g(x, y) = 0 occur at points P (called critical points) satisfying the Lagrange con-
dition ∇fP = λ∇gP . This condition is equivalent to the Lagrange equations

fx(x, y) = λgx(x, y), fy(x, y) = λgy(x, y)

• If the constraint curve g(x, y) = 0 is bounded [e.g., if g(x, y) = 0 is a circle or ellipse],
then global minimum and maximum values of f subject to the constraint exist.
• Lagrange condition for a function of three variables f (x, y, z) subject to two constraints
g(x, y, z) = 0 and h(x, y, z) = 0:

∇f = λ∇g + μ∇h

12.8 EXERCISES

Preliminary Questions
1. Suppose that the maximum of f (x, y) subject to the constraint

g(x, y) = 0 occurs at a point P = (a, b) such that ∇fP �= 0. Which of
the following statements is true?

(a) ∇fP is tangent to g(x, y) = 0 at P .
(b) ∇fP is orthogonal to g(x, y) = 0 at P .

2. Figure 9 shows a constraint g(x, y) = 0 and the level curves of a
function f . In each case, determine whether f has a local minimum, a
local maximum, or neither at the labeled point.

4
3
2
1

1
2

3
4

A B

g(x, y) = 0 g(x, y) = 0

∇f ∇f

FIGURE 9

3. On the contour map in Figure 10:

(a) Identify the points where ∇f = λ∇g for some scalar λ.

(b) Identify the minimum and maximum values of f (x, y) subject to
g(x, y) = 0.

x

26 −2

2 6

g (x, y) = 0

Contour plot of f (x, y)
(contour interval 2)

−2−6

−6

y

FIGURE 10 Contour map of f (x, y); contour interval 2.

Exercises
In this exercise set, use the method of Lagrange multipliers unless oth-
erwise stated.

1. Find the extreme values of the function f (x, y) = 2x + 4y subject
to the constraint g(x, y) = x2 + y2 − 5 = 0.

(a) Show that the Lagrange equation ∇f = λ∇g gives λx = 1 and
λy = 2.

(b) Show that these equations imply λ �= 0 and y = 2x.

(c) Use the constraint equation to determine the possible critical points
(x, y).

(d) Evaluate f (x, y) at the critical points and determine the minimum
and maximum values.

2. Find the extreme values of f (x, y) = x2 + 2y2 subject to the con-
straint g(x, y) = 4x − 6y = 25.

(a) Show that the Lagrange equations yield 2x = 4λ, 4y = −6λ.

(b) Show that if x = 0 or y = 0, then the Lagrange equations give
x = y = 0. Since (0, 0) does not satisfy the constraint, you may as-
sume that x and y are nonzero.

(c) Use the Lagrange equations to show that y = − 3
4x.
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(d) Substitute in the constraint equation to show that there is a unique
critical point P .

(e) Does P correspond to a minimum or maximum value of f ? Refer to
Figure 11 to justify your answer. Hint: Do the values of f (x, y) increase
or decrease as (x, y) moves away from P along the line g(x, y) = 0?

y

x

4

0

−4

80 4

6 12 24 36
g(x, y) = 0

−4

P

FIGURE 11 Level curves of f (x, y) = x2 + 2y2 and graph of the
constraint g(x, y) = 4x − 6y − 25 = 0.

3. Apply the method of Lagrange multipliers to the function
f (x, y) = (x2 + 1)y subject to the constraint x2 + y2 = 5. Hint: First
show that y �= 0; then treat the cases x = 0 and x �= 0 separately.

In Exercises 4–13, find the minimum and maximum values of the func-
tion subject to the given constraint.

4. f (x, y) = 2x + 3y, x2 + y2 = 4

5. f (x, y) = x2 + y2, 2x + 3y = 6

6. f (x, y) = 4x2 + 9y2, xy = 4

7. f (x, y) = xy, 4x2 + 9y2 = 32

8. f (x, y) = x2y + x + y, xy = 4

9. f (x, y) = x2 + y2, x4 + y4 = 1

10. f (x, y) = x2y4, x2 + 2y2 = 6

11. f (x, y, z) = 3x + 2y + 4z, x2 + 2y2 + 6z2 = 1

12. f (x, y, z) = x2 − y − z, x2 − y2 + z = 0

13. f (x, y, z) = xy + 3xz + 2yz, 5x + 9y + z = 10

14. Let

f (x, y) = x3 + xy + y3, g(x, y) = x3 − xy + y3

(a) Show that there is a unique point P = (a, b) on g(x, y) = 1 where
∇fP = λ∇gP for some scalar λ.

(b) Refer to Figure 12 to determine whether f (P ) is a local minimum
or a local maximum of f subject to the constraint.

(c) Does Figure 12 suggest that f (P ) is a global extremum subject to
the constraint?

y

x

P

2

0

−2

−3

−5

−1
0 1

3
5

0 2−2

FIGURE 12 Contour map of f (x, y) = x3 + xy + y3 and graph of the
constraint g(x, y) = x3 − xy + y3 = 1.

15. Find the point (a, b) on the graph of y = ex where the value ab is
as small as possible.

16. Find the rectangular box of maximum volume if the sum of the
lengths of the edges is 300 cm.

17. The surface area of a right-circular cone of radius r and height h

is S = πr
√

r2 + h2, and its volume is V = 1
3πr2h.

(a) Determine the ratio h/r for the cone with given surface area S and
maximum volume V .

(b) What is the ratio h/r for a cone with given volume V and minimum
surface area S?

(c) Does a cone with given volume V and maximum surface area exist?

18. In Example 1, we found the maximum of f (x, y) = 2x + 5y on the
ellipse (x/4)2 + (y/3)2 = 1. Solve this problem again without using
Lagrange multipliers. First, show that the ellipse is parametrized by x =
4 cos t , y = 3 sin t . Then find the maximum value of f (4 cos t, 3 sin t)

using single-variable calculus. Is one method easier than the other?

19. Find the point on the ellipse

x2 + 6y2 + 3xy = 40

with largest x-coordinate (Figure 13).

x

y

4

−4

84−8 −4

FIGURE 13 Graph of x2 + 6y2 + 3xy = 40

20. Find the maximum area of a rectangle inscribed in the ellipse (Fig-
ure 14):

x2

a2
+ y2

b2
= 1
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(−x, y) (x, y)

(x, −y)(−x, −y)

x

y

FIGURE 14 Rectangle inscribed in the ellipse
x2

a2
+ y2

b2
= 1.

21. Find the point (x0, y0) on the line 4x + 9y = 12 that is closest to
the origin.

22. Show that the point (x0, y0) closest to the origin on the line
ax + by = c has coordinates

x0 = ac

a2 + b2
, y0 = bc

a2 + b2

23. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on
the line x + y = 1, where a, b > 0 are constants.

24. Show that the maximum value of f (x, y) = x2y3 on the unit circle

is 6
25

√
3
5 .

25. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on
the unit circle, where a, b > 0 are constants.

26. Find the maximum value of f (x, y, z) = xaybzc for x, y, z ≥ 0
on the unit sphere, where a, b, c > 0 are constants.

27. Show that the minimum distance from the origin to a point on the
plane ax + by + cz = d is

|d|√
a2 + b2 + d2

28. Antonio has $5.00 to spend on a lunch consisting of hamburgers
($1.50 each) and French fries ($1.00 per order). Antonio’s satisfaction
from eating x1 hamburgers and x2 orders of French fries is measured
by a function U(x1, x2) = √

x1x2. How much of each type of food
should he purchase to maximize his satisfaction? (Assume that frac-
tional amounts of each food can be purchased.)

29. Let Q be the point on an ellipse closest to a given point
P outside the ellipse. It was known to the Greek mathematician Apol-
lonius (third century bce) that PQ is perpendicular to the tangent to
the ellipse at Q (Figure 15). Explain in words why this conclusion is a
consequence of the method of Lagrange multipliers. Hint: The circles
centered at P are level curves of the function to be minimized.

P

Q

FIGURE 15

30. In a contest, a runner starting at A must touch a point P

along a river and then run to B in the shortest time possible (Figure 16).
The runner should choose the point P that minimizes the total length
of the path.

(a) Define a function

f (x, y) = AP + PB, where P = (x, y)

Rephrase the runner’s problem as a constrained optimization problem,
assuming that the river is given by an equation g(x, y) = 0.

(b) Explain why the level curves of f (x, y) are ellipses.

(c) Use Lagrange multipliers to justify the following statement: The
ellipse through the point P minimizing the length of the path is tangent
to the river.

(d) Identify the point on the river in Figure 16 for which the length is
minimal.

River

x

y

A B

P

FIGURE 16

In Exercises 31 and 32, let V be the volume of a can of radius r and
height h, and let S be its surface area (including the top and bottom).

31. Find r and h that minimize S subject to the constraint V = 54π .

32. Show that for both of the following two problems, P =
(r, h) is a Lagrange critical point if h = 2r:

• Minimize surface area S for fixed volume V .
• Maximize volume V for fixed surface area S.

Then use the contour plots in Figure 17 to explain why S has a mini-
mum for fixed V but no maximum and, similarly, V has a maximum
for fixed S but no minimum.

Level curves of S

Critical point P = (r, h)

Increasing S

Increasing V

r

h

Level curve of V

FIGURE 17
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33. A plane with equation
x

a
+ y

b
+ z

c
= 1 (a, b, c > 0) together with

the positive coordinate planes forms a tetrahedron of volume V = 1
6abc

(Figure 18). Find the minimum value of V among all planes passing
through the point P = (1, 1, 1).

A = (a, 0, 0)

B = (0, b, 0)

C = (0, 0, c)

z

x

y

P

FIGURE 18

34. With the same set-up as in the previous problem, find the plane
that minimizes V if the plane is constrained to pass through a point
P = (α, β, γ ) with α, β, γ > 0.

35. Show that the Lagrange equations for f (x, y) = x + y subject to
the constraint g(x, y) = x + 2y = 0 have no solution. What can you
conclude about the minimum and maximum values of f subject to
g = 0? Show this directly.

36. Show that the Lagrange equations for f (x, y) = 2x + y

subject to the constraint g(x, y) = x2 − y2 = 1 have a solution but
that f has no min or max on the constraint curve. Does this contradict
Theorem 1?

37. Let L be the minimum length of a ladder that can reach over a
fence of height h to a wall located a distance b behind the wall.

(a) Use Lagrange multipliers to show that L = (h2/3 + b2/3)3/2 (Fig-
ure 19). Hint: Show that the problem amounts to minimizing f (x, y) =
(x + b)2 + (y + h)2 subject to y/b = h/x or xy = bh.

(b) Show that the value of L is also equal to the radius of the circle
with center (−b, −h) that is tangent to the graph of xy = bh.

Wall
Ladder

Fence

y

h

L
L

b x

x

xy = bh

(−b, −h)

y

FIGURE 19

38. Find the maximum value of f (x, y, z) = xy + xz + yz − xyz

subject to the constraint x + y + z = 1, for x ≥ 0, y ≥ 0, z ≥ 0.

39. Find the point lying on the intersection of the plane
x + 1

2y + 1
4z = 0 and the sphere x2 + y2 + z2 = 9 with the largest

z-coordinate.

40. Find the maximum of f (x, y, z) = x + y + z subject to the two
constraints x2 + y2 + z2 = 9 and 1

4x2 + 1
4y2 + 4z2 = 9.

41. The cylinder x2 + y2 = 1 intersects the plane x + z = 1 in an el-
lipse. Find the point on that ellipse that is farthest from the origin.

42. Find the minimum and maximum of f (x, y, z) = y + 2z subject
to two constraints, 2x + z = 4 and x2 + y2 = 1.

43. Find the minimum value of f (x, y, z) = x2 + y2 + z2 subject to
two constraints, x + 2y + z = 3 and x − y = 4.

Further Insights and Challenges
44. Suppose that both f (x, y) and the constraint function
g(x, y) are linear. Use contour maps to explain why f (x, y) does not
have a maximum subject to g(x, y) = 0 unless g = af + b for some
constants a, b.

45. Assumptions Matter Consider the problem of minimizing

f (x, y) = x subject to g(x, y) = (x − 1)3 − y2 = 0.

(a) Show, without using calculus, that the minimum occurs at P =
(1, 0).

(b) Show that the Lagrange condition ∇fP = λ∇gP is not satisfied
for any value of λ.

(c) Does this contradict Theorem 1?

46. Marginal Utility Goods 1 and 2 are available at dollar prices
of p1 per unit of good 1 and p2 per unit of good 2. A utility function
U(x1, x2) is a function representing the utility or benefit of consuming
xj units of good j . The marginal utility of the j th good is ∂U/∂xj ,
the rate of increase in utility per unit increase in the j th good. Prove
the following law of economics: Given a budget of L dollars, utility is
maximized at the consumption level (a, b) where the ratio of marginal

utility is equal to the ratio of prices:

Marginal utility of good 1

Marginal utility of good 2
= Ux1(a, b)

Ux2(a, b)
= p1

p2

47. Consider the utility function U(x1, x2) = x1x2 with budget con-
straint p1x1 + p2x2 = c.

(a) Show that the maximum of U(x1, x2) subject to the budget con-
straint is equal to c2/(4p1p2).

(b) Calculate the value of the Lagrange multiplier λ occurring in (a).

(c) Prove the following interpretation: λ is the rate of increase in utility
per unit increase in total budget c.

48. This exercise shows that the multiplier λ may be interpreted as a
rate of change in general. Assume that the maximum of f (x, y) subject
to g(x, y) = c occurs at a point P . Then P depends on the value of c,
so we may write P = (x(c), y(c)) and we have g(x(c), y(c)) = c.

(a) Show that

∇g(x(c), y(c)) · 〈x′(c), y′(c)
〉 = 1
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Hint: Differentiate the equation g(x(c), y(c)) = c with respect to c

using the Chain Rule.

(b) Use the Chain Rule and the Lagrange condition ∇fP = λ∇gP to
show that

d

dc
f (x(c), y(c)) = λ

(c) Conclude that λ is the rate of increase in f per unit increase in the
“budget level” c.

49. Let B > 0. Show that the maximum of

f (x1, . . . , xn) = x1x2 · · · xn

subject to the constraints x1 + · · · + xn = B and xj ≥ 0 for j =
1, . . . , n occurs for x1 = · · · = xn = B/n. Use this to conclude that

(a1a2 · · · an)1/n ≤ a1 + · · · + an

n

for all positive numbers a1, . . . , an.

50. Let B > 0. Show that the maximum of f (x1, . . . , xn) = x1 +
· · · + xn subject to x2

1 + · · · + x2
n = B2 is

√
nB. Conclude that

|a1| + · · · + |an| ≤ √
n(a2

1 + · · · + a2
n)1/2

for all numbers a1, . . . , an.

51. Given constants E, E1, E2, E3, consider the maximum of

S(x1, x2, x3) = x1 ln x1 + x2 ln x2 + x3 ln x3

subject to two constraints:

x1 + x2 + x3 = N, E1x1 + E2x2 + E3x3 = E

Show that there is a constant μ such that xi = A−1eμEi for i = 1, 2, 3,
where A = N−1(eμE1 + eμE2 + eμE3).

52. Boltzmann Distribution Generalize Exercise 51 to n variables:
Show that there is a constant μ such that the maximum of

S = x1 ln x1 + · · · + xn ln xn

subject to the constraints

x1 + · · · + xn = N, E1x1 + · · · + Enxn = E

occurs for xi = A−1eμEi , where

A = N−1(eμE1 + · · · + eμEn)

This result lies at the heart of statistical mechanics. It is used to deter-
mine the distribution of velocities of gas molecules at temperature T ;
xi is the number of molecules with kinetic energy Ei ; μ = −(kT )−1,
where k is Boltzmann’s constant. The quantity S is called the entropy.

CHAPTER REVIEW EXERCISES

1. Given f (x, y) =
√

x2 − y2

x + 3
:

(a) Sketch the domain of f .

(b) Calculate f (3, 1) and f (−5, −3).

(c) Find a point satisfying f (x, y) = 1.

2. Find the domain and range of:

(a) f (x, y, z) = √
x − y + √

y − z

(b) f (x, y) = ln(4x2 − y)

3. Sketch the graph f (x, y) = x2 − y + 1 and describe its vertical
and horizontal traces.

4. Use a graphing utility to draw the graph of the func-

tion cos(x2 + y2)e1−xy in the domains [−1, 1] × [−1, 1], [−2, 2] ×
[−2, 2], and [−3, 3] × [−3, 3], and explain its behavior.

5. Match the functions (a)–(d) with their graphs in Figure 5.

(a) f (x, y) = x2 + y

(b) f (x, y) = x2 + 4y2

(c) f (x, y) = sin(4xy)e−x2−y2

(d) f (x, y) = sin(4x)e−x2−y2

(A) (B)

z z

y

yx

x

(C) (D)

z

y

y

x

x

z

FIGURE 1
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6. Referring to the contour map in Figure 2:

(a) Estimate the average rate of change of elevation from A to B and
from A to D.

(b) Estimate the directional derivative at A in the direction of v.

(c) What are the signs of fx and fy at D?

(d) At which of the labeled points are both fx and fy negative?

0 1 2 km
Contour interval = 50 meters

B C

D

v

A

400

650
750

FIGURE 2

7. Describe the level curves of:

(a) f (x, y) = e4x−y (b) f (x, y) = ln(4x − y)

(c) f (x, y) = 3x2 − 4y2 (d) f (x, y) = x + y2

8. Match each function (a)–(c) with its contour graph (i)–(iii) in Fig-
ure 3:

(a) f (x, y) = xy

(b) f (x, y) = exy

(c) f (x, y) = sin(xy)

(i) (ii) (iii)

y

x

y

x

y

x

FIGURE 3

In Exercises 9–14, evaluate the limit or state that it does not exist.

9. lim
(x,y)→(1,−3)

(xy + y2) 10. lim
(x,y)→(1,−3)

ln(3x + y)

11. lim
(x,y)→(0,0)

xy + xy2

x2 + y2
12. lim

(x,y)→(0,0)

x3y2 + x2y3

x4 + y4

13. lim
(x,y)→(1,−3)

(2x + y)e−x+y

14. lim
(x,y)→(0,2)

(ex − 1)(ey − 1)

x

15. Let

f (x, y) =
⎧⎨
⎩

(xy)p

x4 + y4
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

Use polar coordinates to show that f (x, y) is continuous at all (x, y)

if p > 2 but is discontinuous at (0, 0) if p ≤ 2.

16. Calculate fx(1, 3) and fy(1, 3) for f (x, y) =
√

7x + y2.

In Exercises 17–20, compute fx and fy .

17. f (x, y) = 2x + y2 18. f (x, y) = 4xy3

19. f (x, y) = sin(xy)e−x−y 20. f (x, y) = ln(x2 + xy2)

21. Calculate fxxyz for f (x, y, z) = y sin(x + z).

22. Fix c > 0. Show that for any constants α, β, the function u(t, x) =
sin(αct + β) sin(αx) satisfies the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2

23. Find an equation of the tangent plane to the graph of f (x, y) =
xy2 − xy + 3x3y at P = (1, 3).

24. Suppose that f (4, 4) = 3 and fx(4, 4) = fy(4, 4) = −1. Use the
linear approximation to estimate f (4.1, 4) and f (3.88, 4.03).

25. Use a linear approximation of f (x, y, z) =
√

x2 + y2 + z to esti-

mate
√

7.12 + 4.92 + 69.5. Compare with a calculator value.

26. The plane z = 2x − y − 1 is tangent to the graph of z = f (x, y)

at P = (5, 3).

(a) Determine f (5, 3), fx(5, 3), and fy(5, 3).
(b) Approximate f (5.2, 2.9).

27. Figure 4 shows the contour map of a function f (x, y) together with
a path c(t) in the counterclockwise direction. The points c(1), c(2), and
c(3) are indicated on the path. Let g(t) = f (c(t)). Which of statements
(i)–(iv) are true? Explain.

(i) g′(1) > 0.
(ii) g(t) has a local minimum for some 1 ≤ t ≤ 2.

(iii) g′(2) = 0.
(iv) g′(3) = 0.

c(t)

c(3)

c(2)

4

4

2
0

0

0
2

−2

−2

−4

−6

−4

c(1)

FIGURE 4
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28. Jason earns S(h, c) = 20h
(
1 + c

100

)1.5 dollars per month at a used
car lot, where h is the number of hours worked and c is the number
of cars sold. He has already worked 160 hours and sold 69 cars. Right
now Jason wants to go home but wonders how much more he might
earn if he stays another 10 minutes with a customer who is considering
buying a car. Use the linear approximation to estimate how much extra
money Jason will earn if he sells his 70th car during these 10 minutes.

In Exercises 29–32, compute
d

dt
f (c(t)) at the given value of t .

29. f (x, y) = x + ey , c(t) = (3t − 1, t2) at t = 2

30. f (x, y, z) = xz − y2, c(t) = (t, t3, 1 − t) at t = −2

31. f (x, y) = xe3y − ye3x , c(t) = (et , ln t) at t = 1

32. f (x, y) = tan−1 y
x , c(t) = (cos t, sin t), t = π

3

In Exercises 33–36, compute the directional derivative at P in the di-
rection of v.

33. f (x, y) = x3y4, P = (3, −1), v = 2i + j

34. f (x, y, z) = zx − xy2, P = (1, 1, 1), v = 〈2, −1, 2〉

35. f (x, y) = ex2+y2
, P =

(√
2

2
,

√
2

2

)
, v = 〈3, −4〉

36. f (x, y, z) = sin(xy + z), P = (0, 0, 0), v = j + k

37. Find the unit vector e at P = (0, 0, 1) pointing in the direction

along which f (x, y, z) = xz + e−x2+y increases most rapidly.

38. Find an equation of the tangent plane at P = (0, 3, −1) to the sur-
face with equation

zex + ez+1 = xy + y − 3

39. Let n �= 0 be an integer and r an arbitrary constant. Show that
the tangent plane to the surface xn + yn + zn = r at P = (a, b, c) has
equation

an−1x + bn−1y + cn−1z = r

40. Let f (x, y) = (x − y)ex . Use the Chain Rule to calculate ∂f/∂u

and ∂f/∂v (in terms of u and v), where x = u − v and y = u + v.

41. Letf (x, y, z) = x2y + y2z. Use the Chain Rule to calculate ∂f/∂s

and ∂f/∂t (in terms of s and t), where

x = s + t, y = st, z = 2s − t

42. Let P have spherical coordinates (ρ, θ, φ) = (
2, π

4 , π
4

)
. Calculate

∂f
∂φ

∣∣∣
P

assuming that

fx(P ) = 4, fy(P ) = −3, fz(P ) = 8

Recall that x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ.

43. Let g(u, v) = f (u3 − v3, v3 − u3). Prove that

v2 ∂g

∂u
− u2 ∂g

∂v
= 0

44. Let f (x, y) = g(u), where u = x2 + y2 and g(u) is differentiable.
Prove that (

∂f

∂x

)2
+

(
∂f

∂y

)2
= 4u

(
dg

du

)2

45. Calculate ∂z/∂x, where xez + zey = x + y.

46. Let f (x, y) = x4 − 2x2 + y2 − 6y.

(a) Find the critical points of f and use the Second Derivative Test to
determine whether they are a local minima or a local maxima.

(b) Find the minimum value of f without calculus by completing the
square.

In Exercises 47–50, find the critical points of the function and analyze
them using the Second Derivative Test.

47. f (x, y) = x4 − 4xy + 2y2

48. f (x, y) = x3 + 2y3 − xy

49. f (x, y) = ex+y − xe2y

50. f (x, y) = sin(x + y) − 1

2
(x + y2)

51. Prove that f (x, y) = (x + 2y)exy has no critical points.

52. Find the global extrema of f (x, y) = x3 − xy − y2 + y on the
square [0, 1] × [0, 1].
53. Find the global extrema of f (x, y) = 2xy − x − y on the domain
{y ≤ 4, y ≥ x2}.
54. Find the maximum of f (x, y, z) = xyz subject to the constraint
g(x, y, z) = 2x + y + 4z = 1.

55. Use Lagrange multipliers to find the minimum and maximum val-
ues of f (x, y) = 3x − 2y on the circle x2 + y2 = 4.

56. Find the minimum value of f (x, y) = xy subject to the con-
straint 5x − y = 4 in two ways: using Lagrange multipliers and setting
y = 5x − 4 in f (x, y).

57. Find the minimum and maximum values of f (x, y) = x2y on the
ellipse 4x2 + 9y2 = 36.

58. Find the point in the first quadrant on the curve y = x + x−1 clos-
est to the origin.

59. Find the extreme values of f (x, y, z) = x + 2y + 3z subject to the
two constraints x + y + z = 1 and x2 + y2 + z2 = 1.

60. Find the minimum and maximum values of f (x, y, z) = x − z on
the intersection of the cylinders x2 + y2 = 1 and x2 + z2 = 1 (Fig-
ure 5).
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x

y

FIGURE 5

61. Use Lagrange multipliers to find the dimensions of a cylindrical
can with a bottom but no top, of fixed volume V with minimum surface
area.

62. Find the dimensions of the box of maximum volume with its sides
parallel to the coordinate planes that can be inscribed in the ellipsoid
(Figure 6) (x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

z

x

y

FIGURE 6

63. Given n nonzero numbers σ1, . . . , σn, show that the minimum
value of

f (x1, . . . , xn) = x2
1σ 2

1 + · · · + x2
nσ 2

n

subject to x1 + · · · + xn = 1 is c, where c =
⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠−1

.
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A THE LANGUAGE
OF MATHEMATICS

One of the challenges in learning calculus is growing accustomed to its precise language
and terminology, especially in the statements of theorems. In this section, we analyze a
few details of logic that are helpful, and indeed essential, in understanding and applying
theorems properly.

Many theorems in mathematics involve an implication. If A and B are statements,
then the implication A �⇒ B is the assertion that A implies B:

A �⇒ B : If A is true, then B is true.

Statement A is called the hypothesis (or premise) and statement B the conclusion of the
implication. Here is an example: If m and n are even integers, then m + n is an even
integer. This statement may be divided into a hypothesis and conclusion:

m and n are even integers︸ ︷︷ ︸
A

�⇒ m + n is an even integer︸ ︷︷ ︸
B

In everyday speech, implications are often used in a less precise way. An example is: If
you work hard, then you will succeed. Furthermore, some statements that do not initially
have the form A �⇒ B may be restated as implications. For example, the statement “Cats
are mammals” can be rephrased as follows:

Let X be an animal. X is a cat︸ ︷︷ ︸
A

�⇒ X is a mammal︸ ︷︷ ︸
B

When we say that an implication A �⇒ B is true, we do not claim that A or B is
necessarily true. Rather, we are making the conditional statement that if A happens to be
true, then B is also true. In the above, if X does not happen to be a cat, the implication
tells us nothing.

The negation of a statement A is the assertion that A is false and is denoted ¬A.

Statement A Negation ¬A

X lives in California. X does not live in California.

�ABC is a right triangle. �ABC is not a right triangle.

The negation of the negation is the original statement: ¬(¬A) = A. To say that X does
not not live in California is the same as saying that X lives in California.

EXAMPLE 1 State the negation of each statement.

(a) The door is open and the dog is barking.
(b) The door is open or the dog is barking (or both).

Solution

(a) The first statement is true if two conditions are satisfied (door open and dog barking),
and it is false if at least one of these conditions is not satisfied. So the negation is

Either the door is not open OR the dog is not barking (or both).

A1
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(b) The second statement is true if at least one of the conditions (door open or dog barking)
is satisfied, and it is false if neither condition is satisfied. So the negation is

The door is not open AND the dog is not barking.

Contrapositive and Converse
Two important operations are the formation of the contrapositive and the formation of the
converse of a statement. The contrapositive of A �⇒ B is the statement “If B is false,
then A is false”:Keep in mind that when we form the

contrapositive, we reverse the order of A

and B. The contrapositive of A �⇒ B is
NOT ¬A �⇒ ¬B.

The contrapositive of A �⇒ B is ¬B �⇒ ¬A.

Here are some examples:

Statement Contrapositive

If X is a cat,
then X is a mammal.

If X is not a mammal,
then X is not a cat.

If you work hard,
then you will succeed.

If you did not succeed,
then you did not work hard.

If m and n are both even,
then m + n is even.

If m + n is not even, then
m and n are not both even.

A key observation is this:

The contrapositive and the original implication are equivalent.

In other words, if an implication is true, then its contrapositive is automatically true, andThe fact that A �⇒ B is equivalent to its
contrapositive ¬B �⇒ ¬A is a general
rule of logic that does not depend on what
A and B happen to mean. This rule
belongs to the subject of “formal logic,”
which deals with logical relations between
statements without concern for the actual
content of these statements.

vice versa. In essence, an implication and its contrapositive are two ways of saying the
same thing. For example, the contrapositive “If X is not a mammal, then X is not a cat”
is a roundabout way of saying that cats are mammals.

The converse of A �⇒ B is the reverse implication B �⇒ A:

Implication: A �⇒ B Converse B �⇒ A

If A is true, then B is true. If B is true, then A is true.

The converse plays a very different role than the contrapositive because the converse is
NOT equivalent to the original implication. The converse may be true or false, even if the
original implication is true. Here are some examples:

True Statement Converse Converse True or False?

If X is a cat,
then X is a mammal.

If X is a mammal,
then X is a cat.

False

If m is even,
then m2 is even.

If m2 is even,
then m is even.

True
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EXAMPLE 2 An Example Where the Converse Is False Show that the converse of “If
m and n are even, then m + n is even” is false.

Solution The converse is “If m + n is even, then m and n are even.” To show that theA counterexample is an example that
satisfies the hypothesis but not the
conclusion of a statement. If a single
counterexample exists, then the statement
is false. However, we cannot prove that a
statement is true merely by giving an
example.

converse is false, we display a counterexample. Take m = 1 and n = 3 (or any other pair
of odd numbers). The sum is even (since 1 + 3 = 4) but neither 1 nor 3 is even. Therefore,
the converse is false.

EXAMPLE 3 An Example Where the Converse Is True State the contrapositive and
converse of the Pythagorean Theorem. Are either or both of these true?

Solution Consider a triangle with sides a, b, and c, and let θ be the angle opposite the
side of length c as in Figure 1. The Pythagorean Theorem states that if θ = 90◦, then

a

b
c

A

CB
θ

FIGURE 1

a2 + b2 = c2. Here are the contrapositive and converse:

Pythagorean Theorem θ = 90◦ �⇒ a2 + b2 = c2 True

Contrapositive a2 + b2 �= c2 �⇒ θ �= 90◦ Automatically
true

Converse a2 + b2 = c2 �⇒ θ = 90◦ True (but not
automatic)

The contrapositive is automatically true because it is just another way of stating the original
theorem. The converse is not automatically true since there could conceivably exist a
nonright triangle that satisfies a2 + b2 = c2. However, the converse of the Pythagorean
Theorem is, in fact, true. This follows from the Law of Cosines (see Exercise 38).

When both a statement A �⇒ B and its converse B �⇒ A are true, we write A ⇐⇒
B. In this case, A and B are equivalent. We often express this with the phrase

A ⇐⇒ B A is true if and only if B is true.

For example,

a2 + b2 = c2 if and only if θ = 90◦

It is morning if and only if the sun is rising.

We mention the following variations of terminology involving implications that you may
come across:

Statement Is Another Way of Saying

A is true if B is true. B �⇒ A

A is true only if B is true. A �⇒ B (A cannot be true
unless B is also true.)

For A to be true, it is necessary that B be true. A �⇒ B (A cannot be true
unless B is also true.)

For A to be true, it is sufficient that B be true. B �⇒ A

For A to be true, it is necessary and sufficient
that B be true.

B ⇐⇒ A



A4 A P P E N D I X A THE LANGUAGE OF MATHEMATICS

Analyzing a Theorem
To see how these rules of logic arise in calculus, consider the following result fromy

Maximum value

ba
x

FIGURE 2 A continuous function on a closed
interval I = [a, b] has a maximum value.

Section 4.2:

THEOREM 1 Existence of a Maximum on a Closed Interval If f (x) is a continuous
function on a closed (bounded) interval I = [a, b], then f (x) takes on a maximum
value on I (Figure 2).

To analyze this theorem, let’s write out the hypotheses and conclusion separately:

Hypotheses A: f (x) is continuous and I is closed.

Conclusion B: f (x) takes on a maximum value on I .

A first question to ask is: “Are the hypotheses necessary?” Is the conclusion still true if we
drop one or both assumptions? To show that both hypotheses are necessary, we provide
counterexamples:

• The continuity of f (x) is a necessary hypothesis. Figure 3(A) shows the graph
of a function on a closed interval [a, b] that is not continuous. This function has no
maximum value on [a, b], which shows that the conclusion may fail if the continuity
hypothesis is not satisfied.

• The hypothesis that I is closed is necessary. Figure 3(B) shows the graph of a
continuous function on an open interval (a, b). This function has no maximum
value, which shows that the conclusion may fail if the interval is not closed.

We see that both hypotheses in Theorem 1 are necessary. In stating this, we do not claim
that the conclusion always fails when one or both of the hypotheses are not satisfied. We
claim only that the conclusion may fail when the hypotheses are not satisfied. Next, let’s
analyze the contrapositive and converse:

• Contrapositive ¬B �⇒ ¬A (automatically true): If f (x) does not have a max-
imum value on I , then either f (x) is not continuous or I is not closed (or both).

• Converse B �⇒ A (in this case, false): If f (x) has a maximum value on I ,
then f (x) is continuous and I is closed. We prove this statement false with a
counterexample [Figure 3(C)].

The function is continuous
but the interval is open. The
function has no maximum value.

(B) This function is not continuous
and the interval is not closed,
but the function does have a
maximum value.

(C)The interval is closed
but the function is not
continuous. The function
has no maximum value.

(A)

y

a b
x

y

a b
x

y

a b
x

Maximum value

FIGURE 3
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As we know, the contrapositive is merely a way of restating the theorem, so it is automat-The technique of proof by contradiction is
also known by its Latin name reductio ad
absurdum or “reduction to the absurd.”
The ancient Greek mathematicians used
proof by contradiction as early as the fifth
century BC, and Euclid (325–265 BC)
employed it in his classic treatise on
geometry entitled The Elements. A famous
example is the proof that

√
2 is irrational in

Example 4. The philosopher Plato
(427–347 BC) wrote: “He is unworthy of
the name of man who is ignorant of the fact
that the diagonal of a square is
incommensurable with its side.”

ically true. The converse is not automatically true, and in fact, in this case it is false. The
function in Figure 3(C) provides a counterexample to the converse: f (x) has a maximum
value on I = (a, b), but f (x) is not continuous and I is not closed.

Mathematicians have devised various general strategies and methods for proving
theorems. The method of proof by induction is discussed inAppendix C.Another important
method is proof by contradiction, also called indirect proof. Suppose our goal is to prove
statement A. In a proof by contradiction, we start by assuming that A is false, and then show
that this leads to a contradiction. Therefore, A must be true (to avoid the contradiction).

EXAMPLE 4 Proof by Contradiction The number
√

2 is irrational (Figure 4).

1

1

2

FIGURE 4 The diagonal of the unit square
has length

√
2.

Solution Assume that the theorem is false, namely that
√

2 = p/q, where p and q are
whole numbers. We may assume that p/q is in lowest terms, and therefore, at most one
of p and q is even. Note that if the square m2 of a whole number is even, then m itself
must be even.

The relation
√

2 = p/q implies that 2 = p2/q2 or p2 = 2q2. This shows that p must
be even. But if p is even, then p = 2m for some whole number m, and p2 = 4m2. Because
p2 = 2q2, we obtain 4m2 = 2q2, or q2 = 2m2. This shows that q is also even. But we
chose p and q so that at most one of them is even. This contradiction shows that our
original assumption, that

√
2 = p/q, must be false. Therefore,

√
2 is irrational.

One of the most famous problems in
mathematics is known as “Fermat’s Last
Theorem.” It states that the equation

xn + yn = zn

has no solutions in positive integers if
n ≥ 3. In a marginal note written around
1630, Fermat claimed to have a proof, and
over the centuries, that assertion was
verified for many values of the exponent n.
However, only in 1994 did the British-
American mathematician Andrew Wiles,
working at Princeton University, find a
complete proof.

CONCEPTUAL INSIGHT The hallmark of mathematics is precision and rigor. A theorem
is established, not through observation or experimentation, but by a proof that consists
of a chain of reasoning with no gaps.

This approach to mathematics comes down to us from the ancient Greek mathe-
maticians, especially Euclid, and it remains the standard in contemporary research. In
recent decades, the computer has become a powerful tool for mathematical experimen-
tation and data analysis. Researchers may use experimental data to discover potential
new mathematical facts, but the title “theorem” is not bestowed until someone writes
down a proof.

This insistence on theorems and proofs distinguishes mathematics from the other
sciences. In the natural sciences, facts are established through experiment and are subject
to change or modification as more knowledge is acquired. In mathematics, theories are
also developed and expanded, but previous results are not invalidated. The Pythagorean
Theorem was discovered in antiquity and is a cornerstone of plane geometry. In the
nineteenth century, mathematicians began to study more general types of geometry (of
the type that eventually led to Einstein’s four-dimensional space-time geometry in the
Theory of Relativity). The Pythagorean Theorem does not hold in these more general
geometries, but its status in plane geometry is unchanged.

A. SUMMARY

• The implication A �⇒ B is the assertion “If A is true, then B is true.”
• The contrapositive of A �⇒ B is the implication ¬B �⇒ ¬A, which says “If B is
false, then A is false.” An implication and its contrapositive are equivalent (one is true if
and only if the other is true).
• The converse of A �⇒ B is B �⇒ A. An implication and its converse are not neces-
sarily equivalent. One may be true and the other false.
• A and B are equivalent if A �⇒ B and B �⇒ A are both true.
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• In a proof by contradiction (in which the goal is to prove statement A), we start by
assuming that A is false and show that this assumption leads to a contradiction.

A. EXERCISES

Preliminary Questions
1. Which is the contrapositive of A �⇒ B?

(a) B �⇒ A (b) ¬B �⇒ A

(c) ¬B �⇒ ¬A (d) ¬A �⇒ ¬B

2. Which of the choices in Question 1 is the converse of A �⇒ B?

3. Suppose that A �⇒ B is true. Which is then automatically true,
the converse or the contrapositive?

4. Restate as an implication: “A triangle is a polygon.”

Exercises
1. Which is the negation of the statement “The car and the shirt are

both blue”?

(a) Neither the car nor the shirt is blue.

(b) The car is not blue and/or the shirt is not blue.

2. Which is the contrapositive of the implication “If the car has gas,
then it will run”?

(a) If the car has no gas, then it will not run.

(b) If the car will not run, then it has no gas.

In Exercises 3–8, state the negation.

3. The time is 4 o’clock.

4. �ABC is an isosceles triangle.

5. m and n are odd integers.

6. Either m is odd or n is odd.

7. x is a real number and y is an integer.

8. f (x) is a linear function.

In Exercises 9–14, state the contrapositive and converse.

9. If m and n are odd integers, then mn is odd.

10. If today is Tuesday, then we are in Belgium.

11. If today is Tuesday, then we are not in Belgium.

12. If x > 4, then x2 > 16.

13. If m2 is divisible by 3, then m is divisible by 3.

14. If x2 = 2, then x is irrational.

In Exercise 15–18, give a counterexample to show that the converse of
the statement is false.

15. If m is odd, then 2m + 1 is also odd.

16. If �ABC is equilateral, then it is an isosceles triangle.

17. If m is divisible by 9 and 4, then m is divisible by 12.

18. If m is odd, then m3 − m is divisible by 3.

In Exercise 19–22, determine whether the converse of the statement is
false.

19. If x > 4 and y > 4, then x + y > 8.

20. If x > 4, then x2 > 16.

21. If |x| > 4, then x2 > 16.

22. If m and n are even, then mn is even.

In Exercises 23 and 24, state the contrapositive and converse (it is not
necessary to know what these statements mean).

23. If f (x) and g(x) are differentiable, then f (x)g(x) is differen-
tiable.

24. If the force field is radial and decreases as the inverse square of the
distance, then all closed orbits are ellipses.

In Exercises 25–28, the inverse of A �⇒ B is the implication ¬A �⇒
¬B.

25. Which of the following is the inverse of the implication “If she
jumped in the lake, then she got wet”?

(a) If she did not get wet, then she did not jump in the lake.

(b) If she did not jump in the lake, then she did not get wet.

Is the inverse true?

26. State the inverses of these implications:

(a) If X is a mouse, then X is a rodent.

(b) If you sleep late, you will miss class.

(c) If a star revolves around the sun, then it’s a planet.

27. Explain why the inverse is equivalent to the converse.

28. State the inverse of the Pythagorean Theorem. Is it true?

29. Theorem 1 in Section 2.4 states the following: “If f (x) and g(x) are
continuous functions, then f (x) + g(x) is continuous.” Does it follow
logically that if f (x) and g(x) are not continuous, then f (x) + g(x) is
not continuous?

30. Write out a proof by contradiction for this fact: There is no smallest
positive rational number. Base your proof on the fact that if r > 0, then
0 < r/2 < r .

31. Use proof by contradiction to prove that if x + y > 2, then x > 1
or y > 1 (or both).
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In Exercises 32–35, use proof by contradiction to show that the number
is irrational.

32.
√

1
2 33.

√
3 34. 3√2 35. 4√11

36. An isosceles triangle is a triangle with two equal sides. The fol-
lowing theorem holds: If � is a triangle with two equal angles, then �
is an isosceles triangle.
(a) What is the hypothesis?
(b) Show by providing a counterexample that the hypothesis is neces-
sary.

(c) What is the contrapositive?

(d) What is the converse? Is it true?

37. Consider the following theorem: Let f (x) be a quadratic polyno-
mial with a positive leading coefficient. Then f (x) has a minimum
value.

(a) What are the hypotheses?

(b) What is the contrapositive?

(c) What is the converse? Is it true?

Further Insights and Challenges
38. Let a, b, and c be the sides of a triangle and let θ be the angle op-
posite c. Use the Law of Cosines (Theorem 1 in Section 1.4) to prove
the converse of the Pythagorean Theorem.

39. Carry out the details of the following proof by contradiction that√
2 is irrational (This proof is due to R. Palais). If

√
2 is rational, then

n
√

2 is a whole number for some whole number n. Let n be the smallest
such whole number and let m = n

√
2 − n.

(a) Prove that m < n.
(b) Prove that m

√
2 is a whole number.

Explain why (a) and (b) imply that
√

2 is irrational.

40. Generalize the argument of Exercise 39 to prove that
√

A is irra-
tional if A is a whole number but not a perfect square. Hint: Choose n

as before and let m = n
√

A − n[√A], where [x] is the greatest integer
function.

41. Generalize further and show that for any whole number r , the rth
root r

√
A is irrational unless A is an rth power. Hint: Let x = r

√
A. Show

that if x is rational, then we may choose a smallest whole number n

such that nxj is a whole number for j = 1, . . . , r − 1. Then consider
m = nx − n[x] as before.

42. Given a finite list of prime numbers p1, . . . , pN , let
M = p1 · p2 · · · pN + 1. Show that M is not divisible by any of the
primes p1, . . . , pN . Use this and the fact that every number has a prime
factorization to prove that there exist infinitely many prime numbers.
This argument was advanced by Euclid in The Elements.



B PROPERTIES OF REAL
NUMBERS

In this appendix, we discuss the basic properties of real numbers. First, let us recall that a“The ingenious method of expressing every
possible number using a set of ten symbols
(each symbol having a place value and an
absolute value) emerged in India. The idea
seems so simple nowadays that its
significance and profound importance is no
longer appreciated. Its simplicity lies in the
way it facilitated calculation and placed
arithmetic foremost amongst useful
inventions. The importance of this
invention is more readily appreciated when
one considers that it was beyond the two
greatest men of Antiquity, Archimedes and
Apollonius.”

—Pierre-Simon Laplace,
one of the great French mathematicians

of the eighteenth century

real number is a number that may be represented by a finite or infinite decimal (also called
a decimal expansion). The set of all real numbers is denoted R and is often visualized as
the “number line” (Figure 1).

2 3−3 0 1−2 −1
R

FIGURE 1 The real number line.

Thus, a real number a is represented as

a = ±n.a1a2a3a4 . . . ,

where n is any whole number and each digit aj is a whole number between 0 and 9.
For example, 10π = 31.41592 . . . . Recall that a is rational if its expansion is finite or
repeating, and is irrational if its expansion is nonrepeating. Furthermore, the decimal
expansion is unique apart from the following exception: Every finite expansion is equal
to an expansion in which the digit 9 repeats. For example, 0.5 = 0.4999 · · · = 0.49̄.

We shall take for granted that the operations of addition and multiplication are defined
on R—that is, on the set of all decimals. Roughly speaking, addition and multiplication
of infinite decimals are defined in terms of finite decimals. For d ≥ 1, define the dth
truncation of a = n.a1a2a3a4 . . . to be the finite decimal a(d) = a.a1a2 . . . ad obtained
by truncating at the dth place. To form the sum a + b, assume that both a and b are
infinite (possibly ending with repeated nines). This eliminates any possible ambiguity in
the expansion. Then the nth digit of a + b is equal to the nth digit of a(d) + b(d) for
d sufficiently large (from a certain point onward, the nth digit of a(d) + b(d) no longer
changes, and this value is the nth digit of a + b). Multiplication is defined similarly.
Furthermore, the Commutative, Associative, and Distributive Laws hold (Table 1).

TABLE 1 Algebraic Laws

Commutative Laws: a + b = b + a, ab = ba

Associative Laws: (a + b) + c = a + (b + c), (ab)c = a(bc)

Distributive Law: a(b + c) = ab + ac

Every real number x has an additive inverse −x such that x + (−x) = 0, and every
nonzero real number x has a multiplicative inverse x−1 such that x(x−1) = 1. We do not
regard subtraction and division as separate algebraic operations because they are defined
in terms of inverses. By definition, the difference x − y is equal to x + (−y), and the
quotient x/y is equal to x(y−1) for y �= 0.

In addition to the algebraic operations, there is an order relation on R: For any two
real numbers a and b, precisely one of the following is true:

Either a = b, or a < b, or a > b

To distinguish between the conditions a ≤ b and a < b, we often refer to a < b as a strict
inequality. Similar conventions hold for > and ≥. The rules given in Table 2 allow us to
manipulate inequalities. The last order property says that an inequality reverses direction
when multiplied by a negative number c. For example,

−2 < 5 but (−3)(−2) > (−3)5

A8
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TABLE 2 Order Properties

If a < b and b < c, then a < c.
If a < b and c < d , then a + c < b + d.
If a < b and c > 0, then ac < bc.
If a < b and c < 0, then ac > bc.

The algebraic and order properties of real numbers are certainly familiar. We now
discuss the less familiar Least Upper Bound (LUB) Property of the real numbers. This
property is one way of expressing the so-called completeness of the real numbers. There
are other ways of formulating completeness (such as the so-called nested interval property
discussed in any book on analysis) that are equivalent to the LUB Property and serve the
same purpose. Completeness is used in calculus to construct rigorous proofs of basic
theorems about continuous functions, such as the Intermediate Value Theorem, (IVT)
or the existence of extreme values on a closed interval. The underlying idea is that the
real number line “has no holes.” We elaborate on this idea below. First, we introduce the
necessary definitions.

Suppose that S is a nonempty set of real numbers. A number M is called an upper
bound for S if

x ≤ M for all x ∈ S

If S has an upper bound, we say that S is bounded above. A least upper bound L is an
upper bound for S such that every other upper bound M satisfies M ≥ L. For example
(Figure 2),

2 3−3 0 1−2 −1
x

ML

FIGURE 2 M = 3 is an upper bound for the
set S = (−2, 1). The LUB is L = 1. • M = 3 is an upper bound for the open interval S = (−2, 1).

• L = 1 is the LUB for S = (−2, 1).

We now state the LUB Property of the real numbers.

THEOREM 1 Existence of a Least Upper Bound Let S be a nonempty set of real
numbers that is bounded above. Then S has an LUB.

In a similar fashion, we say that a number B is a lower bound for S if x ≥ B for all
x ∈ S. We say that S is bounded below if S has a lower bound. A greatest lower bound
(GLB) is a lower bound M such that every other lower bound B satisfies B ≤ M . The set
of real numbers also has the GLB Property: If S is a nonempty set of real numbers that
is bounded below, then S has a GLB. This may be deduced immediately from Theorem
1. For any nonempty set of real numbers S, let −S be the set of numbers of the form −x

for x ∈ S. Then −S has an upper bound if S has a lower bound. Consequently, −S has an
LUB L by Theorem 1, and −L is a GLB for S.

2 3−3 0 1−2 −1
x

2

FIGURE 3 The rational numbers have a
“hole” at the location

√
2.

CONCEPTUAL INSIGHT Theorem 1 may appear quite reasonable, but perhaps it is not
clear why it is useful. We suggested above that the LUB Property expresses the idea
that R is “complete” or “has no holes.” To illustrate this idea, let’s compare R to the
set of rational numbers, denoted Q. Intuitively, Q is not complete because the irrational
numbers are missing. For example, Q has a “hole” where the irrational number

√
2

should be located (Figure 3). This hole divides Q into two halves that are not connected
to each other (the half to the left and the half to the right of

√
2). Furthermore, the half

on the left is bounded above but no rational number is an LUB, and the half on the right
is bounded below but no rational number is a GLB. The LUB and GLB are both equal
to the irrational number

√
2, which exists in only R but not Q. So unlike R, the rational

numbers Q do not have the LUB property.
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EXAMPLE 1 Show that 2 has a square root by applying the LUB Property to the set

S = {x : x2 < 2}
Solution First, we note that S is bounded with the upper bound M = 2. Indeed, if x > 2,
then x satisfies x2 > 4, and hence x does not belong to S. By the LUB Property, S has
a least upper bound. Call it L. We claim that L = √

2, or, equivalently, that L2 = 2. We
prove this by showing that L2 ≥ 2 and L2 ≤ 2.

If L2 < 2, let b = L + h, where h > 0. Then

b2 = L2 + 2Lh + h2 = L2 + h(2L + h) 1

We can make the quantity h(2L + h) as small as desired by choosing h > 0 small enough.
In particular, we may choose a positive h so that h(2L + h) < 2 − L2. For this choice,
b2 < L2 + (2 − L2) = 2 by Eq. (1). Therefore, b ∈ S. But b > L since h > 0, and thus
L is not an upper bound for S, in contradiction to our hypothesis on L. We conclude that
L2 ≥ 2.

If L2 > 2, let b = L − h, where h > 0. Then

b2 = L2 − 2Lh + h2 = L2 − h(2L − h)

Now choose h positive but small enough so that 0 < h(2L − h) < L2 − 2. Then b2 >

L2 − (L2 − 2) = 2. But b < L, so b is a smaller lower bound for S. Indeed, if x ≥ b, then
x2 ≥ b2 > 2, and x does not belong to S. This contradicts our hypothesis that L is the
LUB. We conclude that L2 ≤ 2, and since we have already shown that L2 ≥ 2, we have
L2 = 2 as claimed.

We now prove three important theorems, the third of which is used in the proof of the
LUB Property below.

THEOREM 2 Bolzano–Weierstrass Theorem Let S be a bounded, infinite set of real
numbers. Then there exists a sequence of distinct elements {an} in S such that the limit
L = lim

n→∞ an exists.

Proof For simplicity of notation, we assume that S is contained in the unit interval [0, 1]
(a similar proof works in general). If k1, k2, . . . , kn is a sequence of n digits (that is, each
kj is a whole number and 0 ≤ kj ≤ 9), let

S(k1, k2, . . . , kn)

be the set of x ∈ S whose decimal expansion begins 0.k1k2 . . . kn. The set S is the union of
the subsets S(0), S(1), . . . , S(9), and since S is infinite, at least one of these subsets must
be infinite. Therefore, we may choose k1 so that S(k1) is infinite. In a similar fashion, at
least one of the set S(k1, 0), S(k2, 1), . . . , S(k1, 9) must be infinite, so we may choose k2
so that S(k1, k2) is infinite. Continuing in this way, we obtain an infinite sequence {kn}
such that S(k1, k2, . . . , kn) is infinite for all n. We may choose a sequence of elements
an ∈ S(k1, k2, . . . , kn) with the property that an differs from a1, . . . , an−1 for all n. Let L

be the infinite decimal 0.k1k2k3 . . . . Then lim
n→∞ an = L since |L − an| < 10−n for all n.

We use the Bolzano–Weierstrass Theorem to prove two important results about se-
quences {an}. Recall that an upper bound for {an} is a number M such that aj ≤ M for
all j . If an upper bound exists, {an} is said to be bounded from above. Lower bounds
are defined similarly and {an} is said to be bounded from below if a lower bound exists.
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A sequence is bounded if it is bounded from above and below. A subsequence of {an} is
a sequence of elements an1 , an2 , an3 , . . . , where n1 < n2 < n3 < · · · .

Now consider a bounded sequence {an}. If infinitely many of the an are distinct, the
Bolzano–Weierstrass Theorem implies that there exists a subsequence {an1 , an2 , . . . } such
that lim

n→∞ ank
exists. Otherwise, infinitely many of the an must coincide, and these terms

form a convergent subsequence. This proves the next result.

Section 10.1 THEOREM 3 Every bounded sequence has a convergent subsequence.

THEOREM 4 Bounded Monotonic Sequences Converge

• If {an} is increasing and an ≤ M for all n, then {an} converges and lim
n→∞ an ≤ M .

• If {an} is decreasing and an ≥ M for all n, then {an} converges and lim
n→∞ an ≥ M .

Proof Suppose that {an} is increasing and bounded above by M . Then {an} is automati-
cally bounded below by m = a1 since a1 ≤ a2 ≤ a3 · · · . Hence, {an} is bounded, and by
Theorem 3, we may choose a convergent subsequence an1 , an2 , . . . . Let

L = lim
k→∞ ank

Observe that an ≤ L for all n. For if not, then an > L for some n and then ank
≥ an > L

for all k such that nk ≥ n. But this contradicts that ank
→ L. Now, by definition, for any

ε > 0, there exists Nε > 0 such that

|ank
− L| < ε if nk > Nε

Choose m such that nm > Nε . If n ≥ nm, then anm ≤ an ≤ L, and therefore,

|an − L| ≤ |anm − L| < ε for all n ≥ nm

This proves that lim
n→∞ an = L as desired. It remains to prove that L ≤ M . If L > M , let

ε = (L − M)/2 and choose N so that

|an − L| < ε if k > N

Then an > L − ε = M + ε. This contradicts our assumption that M is an upper bound
for {an}. Therefore, L ≤ M as claimed.

Proof of Theorem 1 We now use Theorem 4 to prove the LUB Property (Theorem 1).
As above, if x is a real number, let x(d) be the truncation of x of length d. For example,

If x = 1.41569, then x(3) = 1.415

We say that x is a decimal of length d if x = x(d). Any two distinct decimals of length d

differ by at least 10−d . It follows that for any two real numbers A < B, there are at most
finitely many decimals of length d between A and B.

Now let S be a nonempty set of real numbers with an upper bound M . We shall prove
that S has an LUB. Let S(d) be the set of truncations of length d:

S(d) = {x(d) : x ∈ S}
We claim that S(d) has a maximum element. To verify this, choose any a ∈ S. If x ∈ S

and x(d) > a(d), then

a(d) ≤ x(d) ≤ M
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Thus, by the remark of the previous paragraph, there are at most finitely many values of
x(d) in S(d) larger than a(d). The largest of these is the maximum element in S(d).

For d = 1, 2, . . . , choose an element xd such that xd(d) is the maximum element in
S(d). By construction, {xd(d)} is an increasing sequence (since the largest dth truncation
cannot get smaller as d increases). Furthermore, xd(d) ≤ M for all d. We now apply
Theorem 4 to conclude that {xd(d)} converges to a limit L. We claim that L is the LUB of
S. Observe first that L is an upper bound for S. Indeed, if x ∈ S, then x(d) ≤ L for all d

and thus x ≤ L. To show that L is the LUB, suppose that M is an upper bound such that
M < L. Then xd ≤ M for all d and hence xd(d) ≤ M for all d. But then

L = lim
d→∞ xd(d) ≤ M

This is a contradiction since M < L. Therefore, L is the LUB of S.

As mentioned above, the LUB Property is used in calculus to establish certain basic
theorems about continuous functions. As an example, we prove the IVT. Another example
is the theorem on the existence of extrema on a closed interval (see Appendix D).

THEOREM 5 Intermediate Value Theorem If f (x) is continuous on a closed interval
[a, b] and f (a) �= f (b), then for every value M between f (a) and f (b), there exists
at least one value c ∈ (a, b) such that f (c) = M .

Proof Assume first that M = 0. Replacing f (x) by −f (x) if necessary, we may assume
that f (a) < 0 and f (b) > 0. Now let

S = {x ∈ [a, b] : f (x) < 0}
Then a ∈ S since f (a) < 0 and thus S is nonempty. Clearly, b is an upper bound for S.
Therefore, by the LUB Property, S has an LUB L. We claim that f (L) = 0. If not, set
r = f (L). Assume first that r > 0.

Since f (x) is continuous, there exists a number δ > 0 such that

|f (x) − f (L)| = |f (x) − r| <
1

2
r if |x − L| < δ

Equivalently,

1

2
r < f (x) <

3

2
r if |x − L| < δ

The number 1
2 r is positive, so we conclude that

f (x) > 0 if L − δ < x < L + δ

By definition of L, f (x) ≥ 0 for all x ∈ [a, b] such that x > L, and thus f (x) ≥ 0 for all
x ∈ [a, b] such that x > L − δ. Thus, L − δ is an upper bound for S. This is a contradiction
since L is the LUB of S, and it follows that r = f (L) cannot satisfy r > 0. Similarly, r

cannot satisfy r < 0. We conclude that f (L) = 0 as claimed.
Now, if M is nonzero, let g(x) = f (x) − M . Then 0 lies between g(a) and g(b),

and by what we have proved, there exists c ∈ (a, b) such that g(c) = 0. But then f (c) =
g(c) + M = M , as desired.



C INDUCTION AND THE
BINOMIAL THEOREM

The Principle of Induction is a method of proof that is widely used to prove that a given
statement P(n) is valid for all natural numbers n = 1, 2, 3, . . . . Here are two statements
of this kind:

• P(n): The sum of the first n odd numbers is equal to n2.

• P(n):
d

dx
xn = nxn−1.

The first statement claims that for all natural numbers n,

1 + 3 + · · · + (2n − 1)︸ ︷︷ ︸
Sum of first n odd numbers

= n2 1

We can check directly that P(n) is true for the first few values of n:

P(1) is the equality: 1 = 12 (true)

P(2) is the equality: 1 + 3 = 22 (true)

P(3) is the equality: 1 + 3 + 5 = 32 (true)

The Principle of Induction may be used to establish P(n) for all n.

The Principle of Induction applies if P(n) is
an assertion defined for n ≥ n0, where n0 is
a fixed integer. Assume that

(i) Initial step: P(n0) is true.

(ii) Induction step: If P(n) is true for n = k,
then P(n) is also true for n = k + 1.

Then P(n) is true for all n ≥ n0.

THEOREM 1 Principle of Induction Let P(n) be an assertion that depends on a
natural number n. Assume that

(i) Initial step: P(1) is true.

(ii) Induction step: If P(n) is true for n = k, then P(n) is also true for n = k + 1.

Then P(n) is true for all natural numbers n = 1, 2, 3, . . . .

EXAMPLE 1 Prove that 1 + 3 + · · · + (2n − 1) = n2 for all natural numbers n.

Solution As above, we let P(n) denote the equality

P(n) : 1 + 3 + · · · + (2n − 1) = n2

Step 1. Initial step: Show that P(1) is true.
We checked this above. P(1) is the equality 1 = 12.

Step 2. Induction step: Show that if P(n) is true for n = k, then P(n) is also true for
n = k + 1.
Assume that P(k) is true. Then

1 + 3 + · · · + (2k − 1) = k2

Add 2k + 1 to both sides:[
1 + 3 + · · · + (2k − 1)

] + (2k + 1) = k2 + 2k + 1 = (k + 1)2

1 + 3 + · · · + (2k + 1) = (k + 1)2

A13
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This is precisely the statement P(k + 1). Thus, P(k + 1) is true whenever P(k) is true.
By the Principle of Induction, P(k) is true for all k.

The intuition behind the Principle of Induction is the following. If P(n) were not
true for all n, then there would exist a smallest natural number k such that P(k) is false.
Furthermore, k > 1 since P(1) is true. Thus P(k − 1) is true [otherwise, P(k) would not
be the smallest “counterexample”]. On the other hand, if P(k − 1) is true, then P(k) is
also true by the induction step. This is a contradiction. So P(k) must be true for all k.

EXAMPLE 2 Use Induction and the Product Rule to prove that for all whole num-
bers n,

d

dx
xn = nxn−1

Solution Let P(n) be the formula
d

dx
xn = nxn−1.

Step 1. Initial step: Show that P(1) is true.
We use the limit definition to verify P(1):

d

dx
x = lim

h→0

(x + h) − x

h
= lim

h→0

h

h
= lim

h→0
1 = 1

Step 2. Induction step: Show that if P(n) is true for n = k, then P(n) is also true for
n = k + 1.

To carry out the induction step, assume that
d

dx
xk = kxk−1, where k ≥ 1. Then, by

the Product Rule,

d

dx
xk+1 = d

dx
(x · xk) = x

d

dx
xk + xk d

dx
x = x(kxk−1) + xk

= kxk + xk = (k + 1)xk

This shows that P(k + 1) is true.

By the Principle of Induction, P(n) is true for all n ≥ 1.

As another application of induction, we prove the Binomial Theorem, which describes
the expansion of the binomial (a + b)n. The first few expansions are familiar:

In Pascal’s Triangle, the nth row displays the
coefficients in the expansion of (a + b)n:

16
5
4
3
2
1
0

n

6 15 20 15 6 1
1 5 10 10 5 1

1 4 6 4 1
1 3 3 1

1 2 1
1 1

1

The triangle is constructed as follows: Each
entry is the sum of the two entries above it
in the previous line. For example, the entry
15 in line n = 6 is the sum 10 + 5 of the
entries above it in line n = 5. The recursion
relation guarantees that the entries in the
triangle are the binomial coefficients.

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

In general, we have an expansion

(a + b)n = an +
(

n

1

)
an−1b +

(
n

2

)
an−2b2 +

(
n

3

)
an−3b3

2

+ · · · +
(

n

n − 1

)
abn−1 + bn

where the coefficient of xn−kxk , denoted

(
n

k

)
, is called the binomial coefficient. Note

that the first term in Eq. (2) corresponds to k = 0 and the last term to k = n; thus,
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n

0

)
=

(
n

n

)
= 1. In summation notation,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

Pascal’s Triangle (described in the marginal note on page A14) can be used to compute
binomial coefficients if n and k are not too large. The Binomial Theorem provides the
following general formula:

(
n

k

)
= n!

k! (n − k)! = n(n − 1)(n − 2) · · · (n − k + 1)

k(k − 1)(k − 2) · · · 2 · 1
3

Before proving this formula, we prove a recursion relation for binomial coefficients. Note,
however, that Eq. (3) is certainly correct for k = 0 and k = n (recall that by convention,
0! = 1): (

n

0

)
= n!

(n − 0)! 0! = n!
n! = 1,

(
n

n

)
= n!

(n − n)! n! = n!
n! = 1

THEOREM 2 Recursion Relation for Binomial Coefficients(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
for 1 ≤ k ≤ n − 1

Proof We write (a + b)n as (a + b)(a + b)n−1 and expand in terms of binomial coeffi-
cients:

(a + b)n = (a + b)(a + b)n−1

n∑
k=0

(
n

k

)
an−kbk = (a + b)

n−1∑
k=0

(
n − 1

k

)
an−1−kbk

= a

n−1∑
k=0

(
n − 1

k

)
an−1−kbk + b

n−1∑
k=0

(
n − 1

k

)
an−1−kbk

=
n−1∑
k=0

(
n − 1

k

)
an−kbk +

n−1∑
k=0

(
n − 1

k

)
an−(k+1)bk+1

Replacing k by k − 1 in the second sum, we obtain

n∑
k=0

(
n

k

)
an−kbk =

n−1∑
k=0

(
n − 1

k

)
an−kbk +

n∑
k=1

(
n − 1

k − 1

)
an−kbk

On the right-hand side, the first term in the first sum is an and the last term in the second
sum is bn. Thus, we have

n∑
k=0

(
n

k

)
an−kbk = an +

(
n−1∑
k=1

((
n − 1

k

)
+

(
n − 1

k − 1

))
an−kbk

)
+ bn

The recursion relation follows because the coefficients of an−kbk on the two sides of the
equation must be equal.
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We now use induction to prove Eq. (3). Let P(n) be the claim(
n

k

)
= n!

k! (n − k)! for 0 ≤ k ≤ n

We have

(
1

0

)
=

(
1

1

)
= 1 since (a + b)1 = a + b, so P(1) is true. Furthermore,(

n

n

)
=

(
n

0

)
= 1 as observed above, since an and bn have coefficient 1 in the ex-

pansion of (a + b)n. For the inductive step, assume that P(n) is true. By the recursion
relation, for 1 ≤ k ≤ n, we have(

n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
= n!

k! (n − k)! + n!
(k − 1)! (n − k + 1)!

= n!
(

n + 1 − k

k! (n + 1 − k)! + k

k! (n + 1 − k)!
)

= n!
(

n + 1

k! (n + 1 − k)!
)

= (n + 1)!
k! (n + 1 − k)!

Thus, P(n + 1) is also true and the Binomial Theorem follows by induction.

EXAMPLE 3 Use the Binomial Theorem to expand (x + y)5 and (x + 2)3.

Solution The fifth row in Pascal’s Triangle yields

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

The third row in Pascal’s Triangle yields

(x + 2)3 = x3 + 3x2(2) + 3x(2)2 + 23 = x3 + 6x2 + 12x + 8

C. EXERCISES

In Exercises 1–4, use the Principle of Induction to prove the formula
for all natural numbers n.

1. 1 + 2 + 3 + · · · + n = n(n + 1)

2

2. 13 + 23 + 33 + · · · + n3 = n2(n + 1)2

4

3.
1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n + 1)
= n

n + 1

4. 1 + x + x2 + · · · + xn = 1 − xn+1

1 − x
for any x �= 1

5. Let P(n) be the statement 2n > n.

(a) Show that P(1) is true.

(b) Observe that if 2n > n, then 2n + 2n > 2n. Use this to show that
if P(n) is true for n = k, then P(n) is true for n = k + 1. Conclude
that P(n) is true for all n.

6. Use induction to prove that n! > 2n for n ≥ 4.

Let {Fn} be the Fibonacci sequence, defined by the recursion formula

Fn = Fn−1 + Fn−2, F1 = F2 = 1

The first few terms are 1, 1, 2, 3, 5, 8, 13, . . . . In Exercises 7–10, use
induction to prove the identity.

7. F1 + F2 + · · · + Fn = Fn+2 − 1

8. F 2
1 + F 2

2 + · · · + F 2
n = Fn+1Fn

9. Fn = Rn+ − Rn−√
5

, where R± = 1 ± √
5

2

10. Fn+1Fn−1 = F 2
n + (−1)n. Hint: For the induction step, show that

Fn+2Fn = Fn+1Fn + F 2
n

F 2
n+1 = Fn+1Fn + Fn+1Fn−1

11. Use induction to prove that f (n) = 8n − 1 is divisible by 7 for all
natural numbers n. Hint: For the induction step, show that

8k+1 − 1 = 7 · 8k + (8k − 1)

12. Use induction to prove that n3 − n is divisible by 3 for all natural
numbers n.



A P P E N D I X C INDUCTION AND THE BINOMIAL THEOREM A17

13. Use induction to prove that 52n − 4n is divisible by 7 for all natural
numbers n.

14. Use Pascal’s Triangle to write out the expansions of (a + b)6 and
(a − b)4.

15. Expand (x + x−1)4.

16. What is the coefficient of x9 in (x3 + x)5?

17. Let S(n) =
n∑

k=0

(
n

k

)
.

(a) Use Pascal’s Triangle to compute S(n) for n = 1, 2, 3, 4.

(b) Prove that S(n) = 2n for all n ≥ 1. Hint: Expand (a + b)n and
evaluate at a = b = 1.

18. Let T (n) =
n∑

k=0

(−1)k
(

n

k

)
.

(a) Use Pascal’s Triangle to compute T (n) for n = 1, 2, 3, 4.

(b) Prove that T (n) = 0 for all n ≥ 1. Hint: Expand (a + b)n and
evaluate at a = 1, b = −1.



D ADDITIONAL PROOFS

In this appendix, we provide proofs of several theorems that were stated or used in the
text.

Section 2.3 THEOREM 1 Basic Limit Laws Assume that lim
x→c

f (x) and lim
x→c

g(x) exist. Then:

(i) lim
x→c

(
f (x) + g(x)

) = lim
x→c

f (x) + lim
x→c

g(x)

(ii) For any number k, lim
x→c

kf (x) = k lim
x→c

f (x)

(iii) lim
x→c

f (x)g(x) =
(

lim
x→c

f (x)
) (

lim
x→c

g(x)
)

(iv) If lim
x→c

g(x) �= 0, then

lim
x→c

f (x)

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)

Proof Let L = lim
x→c

f (x) and M = lim
x→c

g(x). The Sum Law (i) was proved in Section 2.6.

Observe that (ii) is a special case of (iii), where g(x) = k is a constant function. Thus, it
will suffice to prove the Product Law (iii). We write

f (x)g(x) − LM = f (x)(g(x) − M) + M(f (x) − L)

and apply the Triangle Inequality to obtain

|f (x)g(x) − LM| ≤ |f (x)(g(x) − M)| + |M(f (x) − L)| 1

By the limit definition, we may choose δ > 0 so that

|f (x) − L| < 1 if 0 < |x − c| < δ

If follows that |f (x)| < |L| + 1 for 0 < |x − c| < δ. Now choose any number ε > 0.
Applying the limit definition again, we see that by choosing a smaller δ if necessary, we
may also ensure that if 0 < |x − c| < δ, then

|f (x) − L| ≤ ε

2(|M| + 1)
and |g(x) − M| ≤ ε

2(|L| + 1)

Using Eq. (1), we see that if 0 < |x − c| < δ, then

|f (x)g(x) − LM| ≤ |f (x)| |g(x) − M| + |M| |f (x) − L|
≤ (|L| + 1)

ε

2(|L| + 1)
+ |M| ε

2(|M| + 1)

≤ ε

2
+ ε

2
= ε

Since ε is arbitrary, this proves that lim
x→c

f (x)g(x) = LM . To prove the Quotient Law

(iv), it suffices to verify that if M �= 0, then

lim
x→c

1

g(x)
= 1

M
2

A18
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For if Eq. (2) holds, then we may apply the Product Law to f (x) and g(x)−1 to obtain the
Quotient Law:

lim
x→c

f (x)

g(x)
= lim

x→c
f (x)

1

g(x)
=

(
lim
x→c

f (x)
) (

lim
x→c

1

g(x)

)

= L

(
1

M

)
= L

M

We now verify Eq. (2). Since g(x) approaches M and M �= 0, we may choose δ > 0 so
that |g(x)| ≥ |M|/2 if 0 < |x − c| < δ. Now choose any number ε > 0. By choosing a
smaller δ if necessary, we may also ensure that

|M − g(x)| < ε|M|
( |M|

2

)
for 0 < |x − c| < δ

Then

∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =
∣∣∣∣M − g(x)

Mg(x)

∣∣∣∣ ≤
∣∣∣∣M − g(x)

M(M/2)

∣∣∣∣ ≤ ε|M|(|M|/2)

|M|(|M|/2)
= ε

Since ε is arbitrary, the limit in Eq. (2) is proved.

The following result was used in the text.

THEOREM 2 Limits Preserve Inequalities Let (a, b) be an open interval and let
c ∈ (a, b). Suppose that f (x) and g(x) are defined on (a, b), except possibly at c.
Assume that

f (x) ≤ g(x) for x ∈ (a, b), x �= c

and that the limits lim
x→c

f (x) and lim
x→c

g(x) exist. Then

lim
x→c

f (x) ≤ lim
x→c

g(x)

Proof Let L = lim
x→c

f (x) and M = lim
x→c

g(x). To show that L ≤ M , we use proof by

contradiction. If L > M , let ε = 1
2 (L − M). By the formal definition of limits, we may

choose δ > 0 so that the following two conditions are satisfied:

|M − g(x)| < ε if |x − c| < δ

|L − f (x)| < ε if |x − c| < δ

But then

f (x) > L − ε = M + ε > g(x)

This is a contradiction since f (x) ≤ g(x). We conclude that L ≤ M .
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THEOREM 3 Limit of a Composite Function Assume that the following limits exist:

L = lim
x→c

g(x) and M = lim
x→L

f (x)

Then lim
x→c

f (g(x)) = M .

Proof Let ε > 0 be given. By the limit definition, there exists δ1 > 0 such that

|f (x) − M| < ε if 0 < |x − L| < δ1 3

Similarly, there exists δ > 0 such that

|g(x) − L| < δ1 if 0 < |x − c| < δ 4

We replace x by g(x) in Eq. (3) and apply Eq. (4) to obtain

|f (g(x)) − M| < ε if 0 < |x − c| < δ

Since ε is arbitrary, this proves that lim
x→c

f (g(x)) = M .

THEOREM 4 Continuity of Composite Functions LetF(x) = f (g(x)) be a composite
function. If g is continuous at x = c and f is continuous at x = g(c), then F(x) is
continuous at x = c.

Proof By definition of continuity,

Section 2.4

lim
x→c

g(x) = g(c) and lim
x→g(c)

f (x) = f (g(c))

Therefore, we may apply Theorem 3 to obtain

lim
x→c

f (g(x)) = f (g(c))

This proves that f (g(x)) is continuous at x = c.

THEOREM 5 Squeeze Theorem Assume that for x �= c (in some open interval con-
taining c),

l(x) ≤ f (x) ≤ u(x) and lim
x→c

l(x) = lim
x→c

u(x) = L

Then lim
x→c

f (x) exists and

lim
x→c

f (x) = L

Proof Let ε > 0 be given. We may choose δ > 0 such that

Section 2.6

|l(x) − L| < ε and |u(x) − L| < ε if 0 < |x − c| < δ

In principle, a different δ may be required to obtain the two inequalities for l(x) and u(x),
but we may choose the smaller of the two deltas. Thus, if 0 < |x − c| < δ, we have

L − ε < l(x) < L + ε

and

L − ε < u(x) < L + ε
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Since f (x) lies between l(x) and u(x), it follows that

L − ε < l(x) ≤ f (x) ≤ u(x) < L + ε

and therefore |f (x) − L| < ε if 0 < |x − c| < δ. Since ε is arbitrary, this proves that
lim
x→c

f (x) = L as desired.

THEOREM 6 Derivative of the Inverse Assume that f (x) is differentiable and one-
to-one on an open interval (r, s) with inverse g(x). If b belongs to the domain of g(x)

and f ′(g(b)) �= 0, then g′(b) exists and

g′(b) = 1

f ′(g(b))

Proof The function f (x) is one-to-one and continuous (since it is differentiable). It fol-

Section 3.9

lows that f (x) is monotonic increasing or decreasing on (r, s). For if not, then f (x) would
have a local minimum or maximum at some point x = x0. But then f (x) would not be
one-to-one in a small interval around x0 by the IVT.

Suppose that f (x) is increasing (the decreasing case is similar). We shall prove that
g(x) is continuous at x = b. Let a = g(b), so that f (a) = b. Fix a small number ε > 0.
Since f (x) is an increasing function, it maps the open interval (a − ε, a + ε) to the open
interval (f (a − ε), f (a + ε)) containing f (a) = b. We may choose a number δ > 0 so
that (b − δ, b + δ) is contained in (f (a − ε), f (a + ε)). Then g(x) maps (b − δ, b + δ)

back into (a − ε, a + ε). It follows that

|g(y) − g(b)| < ε if 0 < |y − b| < δ

This proves that g is continuous at x = b.
To complete the proof, we must show that the following limit exists and is equal to

1/f ′(g(b)):

g′(a) = lim
y→b

g(y) − g(b)

y − b

By the inverse relationship, if y = f (x), then g(y) = x, and since g(y) is continuous, x

approaches a as y approaches b. Thus, since f (x) is differentiable and f ′(a) �= 0,

lim
y→b

g(y) − g(b)

y − b
= lim

x→a

x − a

f (x) − f (a)
= 1

f ′(a)
= 1

f ′(g(b))

THEOREM 7 Existence of Extrema on a Closed Interval If f (x) is a continuous
function on a closed (bounded) interval I = [a, b], then f (x) takes on a minimum and
a maximum value on I .

Proof We prove that f (x) takes on a maximum value in two steps (the case of a minimum
is similar).

Section 4.2

Step 1. Prove that f (x) is bounded from above.
We use proof by contradiction. If f (x) is not bounded from above, then there exist
points an ∈ [a, b] such that f (an) ≥ n for n = 1, 2, . . . . By Theorem 3 in Appen-
dix B, we may choose a subsequence of elements an1 , an2 , . . . that converges to a limit
in [a, b]—say, lim

k→∞ ank
= L. Since f (x) is continuous, there exists δ > 0 such that

|f (x) − f (L)| < 1 if x ∈ [a, b] and |x − L| < δ
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Therefore,

f (x) < f (L) + 1 if x ∈ [a, b] and x ∈ (L − δ, L + δ) 5

For k sufficiently large, ank
lies in (L − δ, L + δ) because lim

k→∞ ank
= L. By Eq. (5),

f (ank
) is bounded by f (L) + 1. However, f (ank

) = nk tends to infinity as k → ∞.
This is a contradiction. Hence, our assumption that f (x) is not bounded from above is
false.

Step 2. Prove that f (x) takes on a maximum value.
The range of f (x) on I = [a, b] is the set

S = {f (x) : x ∈ [a, b]}
By the previous step, S is bounded from above and therefore has a least upper bound
M by the LUB Property. Thus f (x) ≤ M for all x ∈ [a, b]. To complete the proof, we
show that f (c) = M for some c ∈ [a, b]. This will show that f (x) attains the maximum
value M on [a, b].

By definition, M − 1/n is not an upper bound for n ≥ 1, and therefore, we may
choose a point bn in [a, b] such that

M − 1

n
≤ f (bn) ≤ M

Again by Theorem 3 in Appendix B, there exists a subsequence of elements
{bn1 , bn2 , . . . } in {b1, b2, . . . } that converges to a limit—say,

lim
k→∞ bnk

= c

Let ε > 0. Since f (x) is continuous, we may choose k so large that the following two
conditions are satisfied: |f (c) − f (bnk

)| < ε/2 and nk > 2/ε. Then

|f (c) − M| ≤ |f (c) − f (bnk
)| + |f (bnk

) − M| ≤ ε

2
+ 1

nk

≤ ε

2
+ ε

2
= ε

Thus, |f (c) − M| is smaller than ε for all positive numbers ε. But this is not possible
unless |f (c) − M| = 0. Thus f (c) = M as desired.

THEOREM 8 Continuous Functions Are Integrable If f (x) is continuous on [a, b],
then f (x) is integrable over [a, b].

Proof We shall make the simplifying assumption that f (x) is differentiable and that

Section 5.2

its derivative f ′(x) is bounded. In other words, we assume that |f ′(x)| ≤ K for some
constant K . This assumption is used to show that f (x) cannot vary too much in a small
interval. More precisely, let us prove that if [a0, b0] is any closed interval contained in
[a, b] and if m and M are the minimum and maximum values of f (x) on [a0, b0], then

|M − m| ≤ K|b0 − a0| 6

Figure 1 illustrates the idea behind this inequality. Suppose that f (x1) = m and f (x2) =
M − m

Slope f ´(c)

y

M

m

b0a0 x2x1 c
x

FIGURE 1 Since M − m = f ′(c)(x2 − x1),
we conclude that M − m ≤ K(b0 − a0).

M , where x1 and x2 lie in [a0, b0]. If x1 �= x2, then by the Mean Value Theorem (MVT),
there is a point c between x1 and x2 such that

M − m

x2 − x1
= f (x2) − f (x1)

x2 − x1
= f ′(c)
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Since x1, x2 lie in [a0, b0], we have |x2 − x1| ≤ |b0 − a0|, and thus,

|M − m| = |f ′(c)| |x2 − x1| ≤ K|b0 − a0|

This proves Eq. (6).
We divide the rest of the proof into two steps. Consider a partition P :

P : x0 = a < x1 < · · · < xN−1 < xN = b

Let mi be the minimum value of f (x) on [xi−1, xi] and Mi the maximum on [xi−1, xi].
We define the lower and upper Riemann sums

L(f, P ) =
N∑

i=1

mi�xi, U(f, P ) =
N∑

i=1

Mi�xi

These are the particular Riemann sums in which the intermediate point in [xi−1, xi] is the
point where f (x) takes on its minimum or maximum on [xi−1, xi]. Figure 2 illustrates
the case N = 4.

Upper
rectangle

Lower
rectangle

Maximum value
on the intervaly

x

FIGURE 2 Lower and upper rectangles for a
partition of length N = 4.

Step 1. Prove that the lower and upper sums approach a limit.
We observe that

L(f, P1) ≤ U(f, P2) for any two partitions P1 and P2 7

Indeed, if a subinterval I1 of P1 overlaps with a subinterval I2 of P2, then the minimum
of f on I1 is less than or equal to the maximum of f on I2 (Figure 3). In particular,

y

x

FIGURE 3 The lower rectangles always lie
below the upper rectangles, even when the
partitions are different.

the lower sums are bounded above by U(f, P ) for all partitions P . Let L be the least
upper bound of the lower sums. Then for all partitions P ,

L(f, P ) ≤ L ≤ U(f, P ) 8

According to Eq. (6), |Mi − mi | ≤ K�xi for all i. Since ‖P ‖ is the largest of the
widths �xi , we see that |Mi − mi | ≤ K‖P ‖ and

|U(f, P ) − L(f, P )| ≤
N∑

i=1

|Mi − mi | �xi

≤ K‖P ‖
N∑

i=1

�xi = K‖P ‖ |b − a| 9

Let c = K |b − a|. Using Eq. (8) and Eq. (9), we obtain

|L − U(f, P )| ≤ |U(f, P ) − L(f, P )| ≤ c‖P ‖

We conclude that lim||P ||→0
|L − U(f, P )| = 0. Similarly,

|L − L(f, P )| ≤ c‖P ‖

and

lim||P ||→0
|L − L(f, P )| = 0
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Thus, we have

lim||P ||→0
U(f, P ) = lim||P ||→0

L(f, P ) = L

Step 2. Prove that
∫ b

a
f (x) dx exists and has value L.

Recall that for any choice C of intermediate points ci ∈ [xi−1, xi], we define the Rie-
mann sum

R(f, P, C) =
N∑

i=1

f (ci)�xi

We have

L(f, P ) ≤ R(f, P, C) ≤ U(f, P )

Indeed, since ci ∈ [xi−1, xi], we have mi ≤ f (ci) ≤ Mi for all i and

N∑
i=1

mi �xi ≤
N∑

i=1

f (ci) �xi ≤
N∑

i=1

Mi �xi

It follows that

|L − R(f, P, C)| ≤ |U(f, P ) − L(f, P )| ≤ c‖P ‖
This shows that R(f, P, C) converges to L as ‖P ‖ → 0.

THEOREM 9 If f (x) is continuous and {an} is a sequence such that the limit
lim

n→∞ an = L exists, then

lim
n→∞ f (an) = f (L)

Proof Choose any ε > 0. Since f (x) is continuous, there exists δ > 0 such that

Section 10.1

|f (x) − f (L)| < ε if 0 < |x − L| < δ

Since lim
n→∞ an = L, there exists N > 0 such that |an − L| < δ for n > N . Thus,

|f (an) − f (L)| < ε for n > N

It follows that lim
n→∞ f (an) = f (L).

Section 12.3 THEOREM 10 Clairaut’s Theorem If fxy and fyx are both continuous functions on
a disk D, then fxy(a, b) = fyx(a, b) for all (a, b) ∈ D.

Proof We prove that both fxy(a, b) and fyx(a, b) are equal to the limit

L = lim
h→0

f (a + h, b + h) − f (a + h, b) − f (a, b + h) + f (a, b)

h2

Let F(x) = f (x, b + h) − f (x, b). The numerator in the limit is equal to

F(a + h) − F(a)
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and F ′(x) = fx(x, b + h) − fx(x, b). By the MVT, there exists a1 between a and a + h

such that

F(a + h) − F(a) = hF ′(a1) = h(fx(a1, b + h) − fx(a1, b))

By the MVT applied to fx , there exists b1 between b and b + h such that

fx(a1, b + h) − fx(a1, b) = hfxy(a1, b1)

Thus,

F(a + h) − F(a) = h2fxy(a1, b1)

and

L = lim
h→0

h2fxy(a1, b1)

h2
= lim

h→0
fxy(a1, b1) = fxy(a, b)

The last equality follows from the continuity of fxy since (a1, b1) approaches (a, b) as
h → 0. To prove that L = fyx(a, b), repeat the argument using the function F(y) =
f (a + h, y) − f (a, y), with the roles of x and y reversed.

THEOREM 11 Criterion for Differentiability If fx(x, y) and fy(x, y) exist and are
continuous on an open disk D, then f (x, y) is differentiable on D.

Proof Let (a, b) ∈ D and set

Section 12.4

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

It is convenient to switch to the variables h and k, where x = a + h and y = b + k. Set

�f = f (a + h, b + k) − f (a, b)

Then

L(x, y) = f (a, b) + fx(a, b)h + fy(a, b)k

and we may define the function

e(h, k) = f (x, y) − L(x, y) = �f − (fx(a, b)h + fy(a, b)k)

To prove that f (x, y) is differentiable, we must show that

lim
(h,k)→(0,0)

e(h, k)√
h2 + k2

= 0

To do this, we write �f as a sum of two terms:

�f = (f (a + h, b + k) − f (a, b + k)) + (f (a, b + k) − f (a, b))

and apply the MVT to each term separately. We find that there exist a1 between a and
a + h, and b1 between b and b + k, such that

f (a + h, b + k) − f (a, b + k) = hfx(a1, b + k)

f (a, b + k) − f (a, b) = kfy(a, b1)
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Therefore,

e(h, k) = h(fx(a1, b + k) − fx(a, b)) + k(fy(a, b1) − fy(a, b))

and for (h, k) �= (0, 0),∣∣∣∣ e(h, k)√
h2 + k2

∣∣∣∣ =
∣∣∣∣h(fx(a1, b + k) − fx(a, b)) + k(fy(a, b1) − fy(a, b))√

h2 + k2

∣∣∣∣
≤

∣∣∣∣h(fx(a1, b + k) − fx(a, b))√
h2 + k2

∣∣∣∣ +
∣∣∣∣k(fy(a, b1) − fy(a, b))√

h2 + k2

∣∣∣∣
= |fx(a1, b + k) − fx(a, b)| + ∣∣fy(a, b1) − fy(a, b)

∣∣
In the second line, we use the Triangle Inequality (see Eq. (1) in Section 1.1), and we may

pass to the third line because
∣∣h/

√
h2 + k2

∣∣ and
∣∣k/

√
h2 + k2

∣∣ are both less than 1. Both
terms in the last line tend to zero as (h, k) → (0, 0) because fx and fy are assumed to be
continuous. This completes the proof that f (x, y) is differentiable.

zxy34
放置图像



ANSWERS TO ODD-
NUMBERED EXERCISES

Chapter 1
Section 1.1 Preliminary Questions

1. a = −3 and b = 1

2. The numbers a ≥ 0 satisfy |a| = a and | − a| = a. The numbers
a ≤ 0 satisfy |a| = −a.

3. a = −3 and b = 1 4. (9, −4)

5. (a) First quadrant. (b) Second quadrant.

(c) Fourth quadrant. (d) Third quadrant.

6. 3 7. (b) 8. Symmetry with respect to the origin

Section 1.1 Exercises
1. r = 12337

1250 3. |x| ≤ 2 5. |x − 2| < 2 7. |x − 3| ≤ 2
9. −8 < x < 8 11. −3 < x < 2 13. (−4, 4) 15. (2, 6)

17. [− 7
4 , 9

4 ] 19. (−∞, 2) ∪ (6, ∞) 21. (−∞, −√
3) ∪ (

√
3, ∞)

23. (a) (i) (b) (iii) (c) (v) (d) (vi) (e) (ii) (f) (iv)

25. −3 < x < 1

29. |a + b − 13| = |(a − 5) + (b − 8)| ≤ |a − 5| + |b − 8| <
1
2 + 1

2 = 1

31. (a) 11 (b) 1

33. r1 = 3
11 and r2 = 4

15

35. Let a = 1 and b = .9 (see the discussion before Example 1). The
decimal expansions of a and b do not agree, but |1 − .9| < 10−k for
all k.

37. (a) (x − 2)2 + (y − 4)2 = 9

(b) (x − 2)2 + (y − 4)2 = 26

39. D = {r, s, t, u}; R = {A, B, E}
41. D : all reals; R : all reals

43. D : all reals; R : all reals

45. D : all reals; R : {y : y ≥ 0}
47. D : {x : x �= 0}; R : {y : y > 0}
49. On the interval (−1, ∞)

51. On the interval (0, ∞)

53. Zeros: ±2; Increasing: x > 0; Decreasing: x < 0; Symmetry:
f (−x) = f (x), so y-axis symmetry.

2

−2

−4

4

y

x
−2 −1 1 2

55. Zeros: 0, ±2; Symmetry: f (−x) = −f (x), so origin symmetry.

5

−5
−10

10

y

x
−2 −1 1 2

57. This is an x-axis reflection of x3 translated up 2 units. There is
one zero at x = 3√2.

10

−10
−20

20

y

x
−2 −1 1 2

59. (B)

61. (a) Odd (b) Odd (c) Neither odd nor even (d) Even

65. D : [0, 4]; R : [0, 4]
67. y

x

1

2

3

4

1 2 3 4

f (2x)

y

x

1

2

3

4

2 4 6 8

f (x/2)

y

x

2

4

6

8

1 2 3 4

2f (x)

A27
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69.

−2−4
x

2 4

y

1

2

3

4

71. (a) D : [4, 8], R : [5, 9]. (b) D : [1, 5], R : [2, 6].
(c) D : [ 4

3 , 8
3 ], R : [2, 6]. (d) D : [4, 8], R : [6, 18].

73. (a) h(x) = sin(2x − 10) (b) h(x) = sin(2x − 5)

75.

x
−1

2

4

6

−2−3 1 2 3

y

f (2x)

x
−1

2

4

6

−2−3 1 2 3

y

f (x/2)

77.

x
−1

1

2

1 2 3

y

D : all reals; R : {y | y ≥ 1}; f (x) = |x − 1| + 1

79. Even:
(f + g)(−x) = f (−x) + g(−x)

even= f (x) + g(x) = (f + g)(x)

Odd: (f + g)(−x) = f (−x) + g(−x)
odd= −f (x) + −g(x) =

−(f + g)(x)

85. (a) There are many possibilities, one of which is

x
−1

1

2

54321

y

y = |x − 2|

(b) Let g(x) = f (x + a). Then
g(−x) = f (−x + a) = f (a − x) = f (a + x) = g(x)

Section 1.2 Preliminary Questions
1. −4 2. No.

3. Parallel to the y-axis when b = 0; parallel to the x-axis when
a = 0

4. �y = 9 5. −4 6. (x − 0)2 + 1

Section 1.2 Exercises
1. m = 3; y = 12; x = −4 3. m = − 4

9 ; y = 1
3 ; x = 3

4

5. m = 3 7. m = − 3
4 9. y = 3x + 8 11. y = 3x − 12

13. y = −2 15. y = 3x − 2 17. y = 5
3x − 1

3 19. y = 4
21. y = −2x + 9 23. 3x + 4y = 12

25. (a) c = − 1
4 (b) c = −2

(c) No value for c that will make this slope equal to 0 (d) c = 0

27. (a) 40.0248 cm (b) 64.9597 in
(c) L = 65(1 + α(T − 100))

29. b = 4

31. No, because the slopes between consecutive data points are not
equal.

33. (a) 1 or − 1
4 (b) 1 ± √

2

35. Minimum value is 0 37. Minimum value is −7
39. Maximum value is 137

16 41. Maximum value is 1
3

43.

−4 −3 −2 −1

2

4

6

8

10

y

x

45. A double root occurs when c = ±2. There are no real roots when
−2 < c < 2.

47. For all x ≥ 0, 0 ≤
(
x1/2 − x−1/2

)2 = x − 2 + 1
x .

51. 4 + 2
√

2 and 4 − 2
√

2

55. For x2, �y
�x = x2

2−x2
1

x2−x1
= x2 + x1.

59.
(x − α)(x − β) = x2 − αx − βx + αβ = x2 + (−α − β)x + αβ

Section 1.3 Preliminary Questions

1. One example is 3x2−2
7x3+x−1

2. |x| is not a polynomial; |x2 + 1| is a polynomial

3. The domain of f (g(x)) is the empty set.

4. Decreasing

5. One possibility is f (x) = ex − sin x

Section 1.3 Exercises
1. x ≥ 0 3. All reals 5. t �= −2 7. u �= ±2 9. x �= 0, 1

11. y > 0 13. Polynomial 15. Algebraic 17. Transcendental
19. Rational 21. Transcendental 23. Rational 25. Yes

27. f (g(x)) = √
x + 1; D: x ≥ −1, g(f (x)) = √

x + 1; D: x ≥ 0

29. f (g(x)) = 2x2
; D: R, g(f (x)) = (2x)2 = 22x ; D: R

31. f (g(x)) = cos(x3 + x2); D: R, g(f (θ)) = cos3 θ + cos2 θ ;
D: R

33. f (g(t)) = 1√
−t2

; D: Not valid for any t ,

g(f (t)) = −
(

1√
t

)2 = − 1
t ; D: t > 0

35.
P(t + 10) = 30 · 20.1(t+10) = 30 · 20.1t+1 = 2(30 · 20.1t ) = 2P(t);

g
(
t + 1

k

)
= a2k(t+1/k) = a2kt+1 = 2a2kt = 2g(t)
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37. f (x) = x2:
δf (x) = f (x + 1) − f (x) = (x + 1)2 − x2 = 2x + 1

f (x) = x: δf (x) = x + 1 − x = 1
f (x) = x3: δf (x) = (x + 1)3 − x3 = 3x2 + 3x + 1

39.

δ(f + g) = (f (x + 1) + g(x + 1)) − (f (x) − g(x))

= (f (x + 1) − f (x)) + (g(x + 1) − g(x)) = δf (x) + δg(x)

δ(cf ) = cf (x + 1) − cf (x) = c(f (x + 1) − f (x)) = cδf (x).

Section 1.4 Preliminary Questions
1. Two rotations that differ by a whole number of full revolutions

will have the same ending radius.

2. 9π
4 and 41π

4 3. − 5π
3 4. (a)

5. Let O denote the center of the unit circle, and let P be a point on
the unit circle such that the radius OP makes an angle θ with the
positive x-axis. Then, sin θ is the y-coordinate of the point P .

6. Let O denote the center of the unit circle, and let P be a point on
the unit circle such that the radius OP makes an angle θ with the
positive x-axis. The angle θ + 2π is obtained from the angle θ by
making one full revolution around the circle. The angle θ + 2π will
therefore have the radius OP as its terminal side.

Section 1.4 Exercises
1. 5π/4

3. (a) 180◦
π ≈ 57.3◦ (b) 60◦ (c) 75◦

π ≈ 23.87◦ (d) −135◦
5. s = rθ = 3.6; s = rφ = 8

7. θ (cos θ, sin θ)

π
2 (0, 1)

2π
3

(−1
2 ,

√
3

2

)
3π
4

(−√
2

2 ,

√
2

2

)
5π
6

(−√
3

2 , 1
2

)
π (−1, 0)

7π
6

(−√
3

2 , −1
2

)

θ (cos θ, sin θ)

5π
4

(−√
2

2 , −√
2

2

)
4π
3

(−1
2 , −√

3
2

)
3π
2 (0, −1)

5π
3

(
1
2 , −√

3
2

)
7π
4

(√
2

2 , −√
2

2

)
11π

6

(√
3

2 , −1
2

)
9. θ = π

3 , 5π
3 11. θ = 3π

4 , 7π
4 13. x = π

3 , 2π
3

15.
θ π

6
π
4

π
3

π
2

2π
3

3π
4

5π
6

tan θ 1√
3

1
√

3 und −√
3 −1 − 1√

3

sec θ 2√
3

√
2 2 und −2 −√

2 − 2√
3

17. cos θ = 1
sec θ = 1√

1+tan2 θ
= 1√

1+c2

19. sin θ = 12
13 and tan θ = 12

5

21. sin θ = 2
√

53
53 , sec θ =

√
53
7 and cot θ = 7

2
23. 23/25

25. cos θ = −
√

21
5 and tan θ = − 2

√
21

21

27. cos θ = − 4
5

29. Let’s start with the four points in Figure 23(A).

• The point in the first quadrant:

sin θ = 0.918, cos θ = 0.3965, and tan θ = 0.918

0.3965
= 2.3153.

• The point in the second quadrant:

sin θ = 0.3965, cos θ = −0.918, and

tan θ = 0.3965

−0.918
= −0.4319.

• The point in the third quadrant:

sin θ = −0.918, cos θ = −0.3965, and

tan θ = −0.918

−0.3965
= 2.3153.

• The point in the fourth quadrant:

sin θ = −0.3965, cos θ = 0.918, and

tan θ = −0.3965

0.918
= −0.4319.

Now consider the four points in Figure 23(B).

• The point in the first quadrant:

sin θ = 0.918, cos θ = 0.3965, and

tan θ = 0.918

0.3965
= 2.3153.

• The point in the second quadrant:

sin θ = 0.918, cos θ = −0.3965, and

tan θ = 0.918

0.3965
= −2.3153.

• The point in the third quadrant:

sin θ = −0.918, cos θ = −0.3965, and

tan θ = −0.918

−0.3965
= 2.3153.

• The point in the fourth quadrant:

sin θ = −0.918, cos θ = 0.3965, and

tan θ = −0.918

0.3965
= −2.3153.

31. cos ψ = 0.3, sin ψ = √
0.91, cot ψ = 0.3√

0.91
and

csc ψ = 1√
0.91

33. cos
(
π
3 + π

4

) =
√

2−√
6

4
35.

−2

−1

2

1

y

x
654321
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37.

−1

−0.5

1

0.5

y

x
654321

39. If |c| > 1, no points of intersection; if |c| = 1, one point of
intersection; if |c| < 1, two points of intersection.

41. θ = 0, 2π
5 , 4π

5 , π, 6π
5 , 8π

5

43. θ = π
6 , π

2 , 5π
6 , 7π

6 , 3π
2 , 11π

6

45. Starting from the double angle formula for cosine,
cos2 θ = 1

2 (1 + cos 2θ), solve for cos 2θ .

47. Substitute x = θ/2 into the double angle formula for sine,
sin2 x = 1

2 (1 − cos 2x), then take the square root of both sides.

49. cos(θ + π) = cos θ cos π − sin θ sin π = cos θ(−1) = − cos θ

51. tan(π − θ) = sin(π−θ)
cos(π−θ)

= − sin(−θ)
− cos(−θ)

= sin θ− cos θ = − tan θ.

53. sin 2x
1+cos 2x

= 2 sin x cos x
1+2 cos2 x−1

= 2 sin x cos x
2 cos2 x

= sin x
cos x = tan x

57. 16.928

Section 1.5 Preliminary Questions
1. (a), (b), (f) 2. No

3. Many different teenagers will have the same last name, so this
function will not be one-to-one.

4. This function is one-to-one, and
f −1(6:27) = Hamilton Township.

5. The graph of the inverse function is the reflection of the graph of
y = f (x) through the line y = x.

6. (b) and (c)

7. Any angle θ < 0 or θ > π will work.

Section 1.5 Exercises
1. f −1(x) = x+4

7 3. [−π/2, π/2]
5. • f (g(x)) =

(
(x − 3)1/3

)3 + 3 = x − 3 + 3 = x.

• g(f (x)) =
(
x3 + 3 − 3

)1/3 =
(
x3
)1/3 = x.

7. v−1(R) = 2GM
R2

9. f −1(x) = 4 − x.

1 2 3 4
x

2

1

3

4

y

f (x) = f −1(x) = 4 − x

11. f −1(x) = 1
7x

+ 3
7

4

2

−4

−2

−2−4 2 4
x

y

4

2

−4

−2

−2−4 2 4
x

y

y = f (x) y = f −1(x)

13. Domain {x : x ≥ 0}: f −1(x) =
√

1−x2

x ; domain {x : x ≤ 0}:
f −1(x) = −

√
1−x2

x

x
−1−2 1 2

1

0.5

1.5

y

y = f −1(x)

y = f (x)

15. f −1(x) = (x2 − 9)1/3

−2
−2

4

2

6

8

y

x
842 6

y = f −1(x)

y = f (x)

17. Figures (B) and (C)

19. (a)

−1 1

−20

−10

10

20

y

x

(b) (−∞, ∞). (c) f −1(3) = 1.

21. Domain x ≤ 1: f −1(x) = 1 − √
x + 1; domain x ≥ 1:

f −1(x) = 1 + √
x + 1

23. 0 25. π
4 27. π

3 29. π
3 31. π

2 33. −π
4 35. π

37. No inverse 39.
√

1−x2

x 41. 1√
x2−1

43.
√

5
3 45. 4

3

47.
√

3 49. 1
20

Section 1.6 Preliminary Questions
1. (a) Correct (b) Correct (c) Incorrect (d) Correct

2. logb2(b
4) = 2 3. For 0 < x < 1 4. ln(−3) is not defined

5. This phrase is a verbal description of the general property of
logarithms that states log(ab) = log a + log b.
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6. D: x > 0; R: real numbers 7. cosh x and sech x

8. sinh x and tanh x

9. Parity, identities and derivative formulas

Section 1.6 Exercises
1. (a) 1 (b) 29 (c) 1 (d) 81 (e) 16 (f) 0

3. x = 1 5. x = −1/2 7. x = −1/3 9. k = 9 11. 3 13. 0
15. 5

3 17. 1
3 19. 5

6 21. 1 23. 7 25. 29

27. (a) ln 1600 (b) ln(9x7/2)

29. t = 1
5 ln

(
100
7

)
31. x = −1 or x = 3 33. x = e

35.

x −3 0 5

sinh x = ex − e−x

2
−10.0179 0 74.203

cosh x = ex + e−x

2
10.0677 1 74.210

37. Let a = e2 and b = e3

39.

tanh(−x) = e−x − e−(−x)

e−x + e−(−x)
= e−x − ex

e−x + ex
= − ex − e−x

ex + e−x
= − tanh x

41. a = 8; 1000 earthquakes

47. (a) By Galileo’s law, w = 500 + 10 = 510 m/s. Using Einstein’s
law, w = c · tanh(1.7 × 10−6) ≈ 510 m/s.

(b) By Galileo’s law, u + v = 107 + 106 = 1.1 × 107 m/s. By
Einstein’s law, w ≈ c · tanh(0.036679) ≈ 1.09988 × 107 m/s.

49. Let y = logb x. Then x = by and loga x = loga by = y loga b.

Thus, y = loga x

loga b
.

51. 13 cosh x − 3 sinh x

Section 1.7 Preliminary Questions
1. No

2. (a) The screen will display nothing.

(b) The screen will display the portion of the parabola between the
points (0, 3) and (1, 4).

3. No

4. Experiment with the viewing window to zoom in on the lowest
point on the graph of the function. The y-coordinate of the lowest
point on the graph is the minimum value of the function.

Section 1.7 Exercises
1.

−10

−20

20

10

y

x
−4 −2−3 −1 1 2 3

x = −3, x = −1.5, x = 1, and x = 2

3. Two positive solutions 5. There are no solutions

7. Nothing. An appropriate viewing window: [50, 150] by
[1000, 2000]

9.

−2

2

y

x
−8 −4

4 8 12 16

11.

x

1

−1

1 2 3 4 5 6

y

x

1

−1

3.5 3.6 3.7 3.8 3.9 4

y

x

−0.2

0.4

0.2

3.76 3.83.78 3.82 3.84

y

13. The table and graphs below suggest that as n gets large, n1/n

approaches 1.

n n1/n

10 1.258925412
102 1.047128548
103 1.006931669
104 1.000921458
105 1.000115136
106 1.000013816

x

y

1

0 2 4 6 8 10
x

y

1

0 200 400 600 800 1000

15. The table and graphs below suggest that as n gets large, f (n)

tends toward ∞.

n
(

1 + 1
n

)n2

10 13780.61234
102 1.635828711 × 1043

103 1.195306603 × 10434

104 5.341783312 × 104342

105 1.702333054 × 1043429

106 1.839738749 × 10434294

x

y

10,000

0 2 4 6 8 10
x

y

1 × 1043

0 20 40 60 80 100
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17. The table and graphs below suggest that as x gets large, f (x)

approaches 1.

x
(
x tan 1

x

)x
10 1.033975759
102 1.003338973
103 1.000333389
104 1.000033334
105 1.000003333
106 1.000000333

x

y

1
1.1
1.2
1.3
1.4
1.5

5 10 15 20
x

20 40 60 80 100

y

1
1.1
1.2
1.3
1.4
1.5

19. y

x
−2 2

(A, B) = (1, 1)

4 6 8

1

−1

y

x
−2 2

(A, B) = (1, 2)

4 6 8

2

1

−2

−1

y

x
−2 2

(A, B) = (3, 4)

4 6 8

4

2

−4

−2

21. x ∈ (−2, 0) ∪ (3, ∞)

23.

f3(x) = 1

2

(
1

2
(x + 1) + x

1
2 (x + 1)

)
= x2 + 6x + 1

4(x + 1)

f4(x) = 1

2

⎛
⎝x2 + 6x + 1

4(x + 1)
+ x

x2+6x+1
4(x+1)

⎞
⎠ = x4 + 28x3 + 70x2 + 28x + 1

8(1 + x)(1 + 6x + x2)

and

f5(x) = 1 + 120x + 1820x2 + 8008x3 + 12870x4 + 8008x5 + 1820x6 + 120x7 + x8

16(1 + x)(1 + 6x + x2)(1 + 28x + 70x2 + 28x3 + x4)
.

It appears as if the fn are asymptotic to
√

x.

Chapter 1 Review
1. {x : |x − 7| < 3} 3. [−5, −1] ∪ [3, 7]
5. (x, 0) with x ≥ 0; (0, y) with y < 0

7.

x

y

1

2

3

4

5

1 2 3 4

f (x) + 2

−1−2
x

y

1

2

3

4

5

1 2 3 4

f (x + 2)

−1−2

9.

−1−4 −2−3
x

1 2 3 4

y

1

2

3

11. D : {x : x ≥ −1}; R : {y : y ≥ 0}
13. D : {x : x �= 3}; R : {y : y �= 0}
15. (a) Decreasing (b) Neither (c) Neither (d) Increasing

17. 2x − 3y = −14 19. 6x − y = 53

21. x + y = 5 23. Yes

25. Roots: x = −2, x = 0 and x = 2; decreasing: x < −1.4 and
0 < x < 1.4

10

20

y

x
−1 1

2 3−2−3

27. f (x) = 10x2 + 2x + 5; minimum value is 49
10

29.

x
−1 −0.5 10.5

y

0.2

0.4

0.6

0.8

1

31. y

x
−5 5 10

0.5

1

−0.5

−1

33.

x
−1−2−3−4 1 2 3 4

y

1

2

−1

−2
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35. Let g(x) = f ( 1
3x). Then

g(x − 3b) = f
(

1
3 (x − 3b)

)
= f

(
1
3x − b

)
. The graph of

y = | 1
3x − 4|:

y

x

1

2

3

4

0 5 10 15 20

37. f (t) = t4 and g(t) = 12t + 9 39. 4π

41. (a) a = b = π/2 (b) a = π

43. x = π/2, x = 7π/6, x = 3π/2 and x = 11π/6

45. There are no solutions

47. (a) No match. (b) No match. (c) (i) (d) (iii)

49. f −1(x) = 3
√

x2 + 8; D : {x : x ≥ 0}; R : {y : y ≥ 2}
51. For {t : t ≤ 3}, h−1(t) = 3 − √

t . For t ≥ 3, h−1(t) = 3 + √
t .

53. (a) (iii) (b) (iv) (c) (ii) (d) (i)

Chapter 2
Section 2.1 Preliminary Questions

1. The graph of position as a function of time

2. No. Instantaneous velocity is defined as the limit of average
velocity as time elapsed shrinks to zero.

3. The slope of the line tangent to the graph of position as a function
of time at t = t0

4. The slope of the secant line over the interval [x0, x1] approaches
the slope of the tangent line at x = x0.

5. The graph of atmospheric temperature as a function of altitude.
Possible units for this rate of change are ◦F/ft or ◦C/m.

Section 2.1 Exercises
1. (a) 11.025 m (b) 22.05 m/s

(c)

time interval [2, 2.01] [2, 2.005] [2, 2.001] [2, 2.00001]
average velocity 19.649 19.6245 19.6049 19.600049

The instantaneous velocity at t = 2 is 19.6 m/s.

3. 0.57735 m/(s · K)

5. 0.3 m/s

2

0.5 1 1.5 2 2.5 3

4
6
8

10

t

h

7. (a) Dollars/year (b) [0, 0.5]: 7.8461; [0, 1]: 8
(c) Approximately $8/yr
9. (a) Approximately 0.283 million Internet users per year.

(b) Decreases
(c) Approximately 0.225 million Internet users per year.
(d) Greater than
11. 12 13. −0.06 15. 1.00 17. 0.333
19. (a) [0, 0.1]: −144.721 cm/s; [3, 3.5]: 0 cm/s (b) 0 cm/s
21. (a) Seconds per meter; measures the sensitivity of the period of
the pendulum to a change in the length of the pendulum.
(b) B: average rate of change in T from L = 1 m to L = 3 m; A:
instantaneous rate of change of T at L = 3 m.
(c) 0.4330 s/m.
23. Sales decline more slowly as time increases.
25. • In graph (A), the particle is (c) slowing down.

• In graph (B), the particle is (b) speeding up and then slowing
down.

• In graph (C), the particle is (d) slowing down and then speeding
up.

• In graph (D), the particle is (a) speeding up.
27. (a) Percent /day; measures how quickly the population of flax
plants is becoming infected.
(b) [40, 52], [0, 12], [20, 32]
(c) The average rates of infection over the intervals [30, 40], [40, 50],
[30, 50] are .9, .5, .7 %/d, respectively.
(d) 0.55%/d

10 20 30 40 50 60

100

80

60

40

20

31. (B)
33. Interval [1, t]: average rate of change is t + 1; interval [2, t]:
average rate of change is t + 2
35. x2 + 2x + 4

Section 2.2 Preliminary Questions
1. 1 2. π 3. 20 4. Yes
5. limx→1− f (x) = ∞ and limx→1+ f (x) = 3
6. No 7. Yes

Section 2.2 Exercises
1. x 0.998 0.999 0.9995 0.99999

f (x) 1.498501 1.499250 1.499625 1.499993

x 1.00001 1.0005 1.001 1.002

f (x) 1.500008 1.500375 1.500750 1.501500

The limit as x → 1 is 3
2 .
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3. y 1.998 1.999 1.9999

f (y) 0.59984 0.59992 0.599992

y 2.0001 2.001 2.02

f (y) 0.600008 0.60008 0.601594

The limit as y → 2 is 3
5 .

5. 1.5 7. 21 9. |3x − 12| = 3|x − 4|
11. |(5x + 2) − 17| = |5x − 15| = 5|x − 3|
13. Suppose |x| < 1, so that
|x2 − 0| = |x + 0||x − 0| = |x||x| < |x|
15. If |x| < 1, |4x + 2| can be no bigger than 6, so
|4x2 + 2x + 5 − 5| = |4x2 + 2x| = |x||4x + 2| < 6|x|
17. 1

2 19. 5
3 21. 2 23. 0

25. As x → 4−, f (x) → −∞; similarly, as x → 4+, f (x) → ∞
27. −∞ 29. 0 31. 1

33. 2.718 (The exact answer is e.) 35. ∞
37.

2

1

1 2 3−1
x

y

(a) c − 1 (b) c

39. lim
x→0− f (x) = −1, lim

x→0+ f (x) = 1

41. lim
x→0− f (x) = ∞, lim

x→0+ f (x) = 1

6

43. lim
x→−2−

4x2 + 7

x3 + 8
= −∞, lim

x→−2+
4x2 + 7

x3 + 8
= ∞

45. lim
x→1±

x5 + x − 2

x2 + x − 2
= 2

47. • lim
x→2− f (x) = ∞ and lim

x→2+ f (x) = ∞.

• lim
x→4− f (x) = −∞ and lim

x→4+ f (x) = 10.

The vertical asymptotes are the vertical lines x = 2 and x = 4.

49.

2

4

6

1 2 3 4

y

x

51.

1

−1

2

3

1 2 3 4 5

y

x

53. • lim
x→1− f (x) = lim

x→1+ f (x) = 3

• lim
x→3− f (x) = −∞

• lim
x→3+ f (x) = 4

• lim
x→5− f (x) = 2

• lim
x→5+ f (x) = −3

• lim
x→6− f (x) = lim

x→6+ f (x) = ∞
55. 5

2

2.42

2.44

2.46

2.48

2.50

y

2.42

2.44

2.46

2.48

2.50

57. 0.693 (The exact answer is ln 2.)

0.6935

0.6940

0.6930

0.6925

0.6920

y

y = 2x − cos x
x

59. −12

x

−11.4

−11.6

−11.8

−12

y

61. For n even

63. (a) No (b) f ( 1
2n

) = 1 for all integers n.

(c) At x = 1, 1
3 , 1

5 , . . ., the value of f (x) is always −1.

65. lim
θ→0

sin nθ

θ
= n

67. 1
2 , 2, 3

2 , 2
3 ; lim

x→1

xn − 1

xm − 1
= n

m

69. (a)

y = 2x − 8
x − 3

5.555

5.565

5.545

5.535

5.525

y

x = 3

(b) L = 5.545.

Section 2.3 Preliminary Questions
1. Suppose limx→c f (x) and limx→c g(x) both exist. The Sum

Law states that

lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x).
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Provided limx→c g(x) �= 0, the Quotient Law states that

lim
x→c

f (x)

g(x)
= limx→c f (x)

limx→c g(x)
.

2. (b) 3. (a)

Section 2.3 Exercises
1. 9 3. 1

16 5. 1
2 7. 4.6 9. 1 11. 9 13. − 2

5 15. 10

17. 1
5 19. 1

5 21. 2
5 23. 64 27. 3 29. 1

16 31. No

33. f (x) = 1/x and g(x) = −1/x 35. Write g(t) = tg(t)
t

37. (b)

Section 2.4 Preliminary Questions
1. Continuity 2. f (3) = 1

2 3. No 4. No; Yes

5. (a) False. The correct statement is “f (x) is continuous at x = a

if the left- and right-hand limits of f (x) as x → a exist and equal
f (a).”

(b) True.

(c) False. The correct statement is “If the left- and right-hand limits
of f (x) as x → a are equal but not equal to f (a), then f has a
removable discontinuity at x = a."

(d) True.

(e) False. The correct statement is “If f (x) and g(x) are continuous
at x = a and g(a) �= 0, then f (x)/g(x) is continuous at x = a."

Section 2.4 Exercises
1. • The function f is discontinuous at x = 1; it is

right-continuous there.
• The function f is discontinuous at x = 3; it is neither

left-continuous nor right-continuous there.
• The function f is discontinuous at x = 5; it is left-continuous

there.
None of these discontinuities is removable.

3. x = 3; redefine g(3) = 4

5. The function f is discontinuous at x = 0, at which
lim

x→0− f (x) = ∞ and lim
x→0+ f (x) = 2. The function f is also

discontinuous at x = 2, at which lim
x→2− f (x) = 6 and

lim
x→2+ f (x) = 6. The discontinuity at x = 2 is removable. Assigning

f (2) = 6 makes f continuous at x = 2.

7. x and sin x are continuous, so is x + sin x by Continuity Law (i)

9. Since x and sin x are continuous, so are 3x and 4 sin x by
Continuity Law (ii). Thus 3x + 4 sin x is continuous by Continuity
Law (i).

11. Since x is continuous, so is x2 by Continuity Law (iii). Recall
that constant functions, such as 1, are continuous. Thus x2 + 1 is

continuous by Continuity Law (i). Finally,
1

x2 + 1
is continuous by

Continuity Law (iv) because x2 + 1 is never 0.

13. The function f (x) is a composite of two continuous functions:
cos x and x2, so f (x) is continuous by Theorem 5.

15. ex and cos 3x are continuous, so ex cos 3x is continuous by
Continuity Law (iii).

17. Discontinuous at x = 0, at which there is an infinite discontinuity.
The function is neither left- nor right-continuous at x = 0.

19. Discontinuous at x = 1, at which there is an infinite discontinuity.
The function is neither left- nor right-continuous at x = 1.

21. Discontinuous at even integers, at which there are jump
discontinuities. Function is right-continuous at the even integers but
not left-continuous.

23. Discontinuous at x = 1
2 , at which there is an infinite discontinuity.

The function is neither left- nor right-continuous at x = 1
2 .

25. Continuous for all x

27. Jump discontinuity at x = 2. Function is left-continuous at x = 2
but not right-continuous.

29. Discontinuous whenever t = (2n+1)π
4 , where n is an integer. At

every such value of t there is an infinite discontinuity. The function is
neither left- nor right-continuous at any of these points of
discontinuity.

31. Continuous everywhere

33. Discontinuous at x = 0, at which there is an infinite discontinuity.
The function is neither left- nor right-continuous at x = 0.

35. The domain is all real numbers. Both sin x and cos x are
continuous on this domain, so 2 sin x + 3 cos x is continuous by
Continuity Laws (i) and (ii).

37. Domain is x ≥ 0. Since
√

x and sin x are continuous, so is√
x sin x by Continuity Law (iii).

39. Domain is all real numbers. Both x2/3 and 2x are continuous on
this domain, so x2/32x is continuous by Continuity Law (iii).

41. Domain is x �= 0. Because the function x4/3 is continuous and
not equal to zero for x �= 0, x−4/3 is continuous for x �= 0 by
Continuity Law (iv).

43. Domain is all x �= ±(2n − 1)π/2 where n is a positive integer.
Because tan x is continuous on this domain, it follows from
Continuity Law (iii) that tan2 x is also continuous on this domain.

45. Domain of (x4 + 1)3/2 is all real numbers. Because x3/2 and the
polynomial x4 + 1 are both continuous, so is the composite function
(x4 + 1)3/2.

47. Domain is all x �= ±1. Because the functions cos x and x2 are
continuous on this domain, so is the composite function cos(x2).
Finally, because the polynomial x2 − 1 is continuous and not equal to

zero for x �= ±1, the function cos(x2)

x2−1
is continuous by Continuity

Law (iv).

49. f (x) is right-continuous at x = 1; f (x) is continuous at x = 2

51. The function f is continuous everywhere.

−1

1

−1

x

y

1 2 3
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53. The function f is neither left- nor right-continuous at x = 2.

x

y

5
4
3
2
1

−1−2 4 6

55. lim
x→4

x2−16
x−4 = lim

x→4
(x + 4) = 8 �= 10 = f (4)

57. c = 5
3 59. a = 2 and b = 1

61. (a) No (b) g(1) = −π
2

63.

54321

1

3

4

y

x

65.

54321

1

2

3

4

y

x

67. −6 69. 1
3 71. −1 73. 1

32 75. 27 77. 1000 79. π
2

81. No. Take f (x) = −x−1 and g(x) = x−1

83. f (x) = |g(x)| is a composition of the continuous functions g(x)

and |x|
85. No.

15,000

10,000

20,000

40,000

y

x
60,000

80,000
5000

87. f (x) = 3 and g(x) = [x]

Section 2.5 Preliminary Questions

1. x2−1√
x+3−2

2. (a) f (x) = x2−1
x−1 (b) f (x) = x2−1

x−1 (c) f (x) = 1
x

3. The “simplify and plug-in” strategy is based on simplifying a
function which is indeterminate to a continuous function. Once the
simplification has been made, the limit of the remaining continuous
function is obtained by evaluation.

Section 2.5 Exercises
1. lim

x→6
x2−36
x−6 = lim

x→6

(x−6)(x+6)
x−6 = lim

x→6
(x + 6) = 12

3. 0 5. 1
14 7. −1 9. 11

10 11. 2 13. 1 15. 2 17. 1
8

19. 7
17

21. Limit does not exist.

• As h → 0+,

√
h + 2 − 2

h
→ −∞.

• As h → 0−,

√
h + 2 − 2

h
→ ∞.

23. 2 25. 1
4 27. 1 29. 9 31.

√
2

2 33. 1
2

35. lim
x→4

f (x) ≈ 2.00; to two decimal places, this matches the value

of 2 obtained in Exercise 23.

2.001
2.000
1.999
1.998
1.997
1.996

3.6 3.8 4.0 4.2 4.4

y

x

37. 12 39. −1 41. 4
3 43. 1

4 45. 2a 47. −4 + 5a 49. 4a

51. 1
2
√

a
53. 3a2 55. c = −1 and c = 6 57. c = 3 59. +

Section 2.6 Preliminary Questions
1. limx→0 f (x) = 0; No
2. Assume that for x �= c (in some open interval containing c),

l(x) ≤ f (x) ≤ u(x)

and that lim
x→c

l(x) = lim
x→c

u(x) = L. Then lim
x→c

f (x) exists and

lim
x→c

f (x) = L.

3. (a)

Section 2.6 Exercises
1. For all x �= 1 on the open interval (0, 2) containing x = 1,


(x) ≤ f (x) ≤ u(x). Moreover,

lim
x→1


(x) = lim
x→1

u(x) = 2.

Therefore, by the Squeeze Theorem,

lim
x→1

f (x) = 2.

3. lim
x→7

f (x) = 6

5. (a) not sufficient information (b) limx→1 f (x) = 1
(c) limx→1 f (x) = 3

7. lim
x→0

x2 cos 1
x = 0 9. lim

x→1
(x − 1) sin π

x−1 = 0

11. lim
t→0

(2t − 1) cos 1
t = 0

13. lim
t→2

(t2 − 4) cos 1
t−2 = 0

15. lim
θ→ π

2

cos θ cos(tan θ) = 0

17. 1 19. 3 21. 1 23. 0 25. 2
√

2
π 27. (b) L = 14 29. 9

31. 1
5 33. 7

3 35. 1
25 37. 6 39. − 3

4 41. 1
2 43. 6

5 45. 0

47. 0 49. −1 53. − 9
2

55. lim
t→0+

√
1 − cos t

t
=

√
2

2
; lim
t→0−

√
1 − cos t

t
= −

√
2

2
59. (a)

x c − .01 c − .001 c + .001 c + .01

sin x − sin c

x − c
.999983 .99999983 .99999983 .999983

Here c = 0 and cos c = 1.
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x c − .01 c − .001 c + .001 c + .01

sin x − sin c

x − c
.868511 .866275 .865775 .863511

Here c = π
6 and cos c =

√
3

2 ≈ .866025.

x c − .01 c − .001 c + .001 c + .01

sin x − sin c

x − c
.504322 .500433 .499567 .495662

Here c = π
3 and cos c = 1

2 .

x c − .01 c − .001 c + .001 c + .01

sin x − sin c

x − c
.710631 .707460 .706753 .703559

Here c = π
4 and cos c =

√
2

2 ≈ 0.707107.

x c − .01 c − .001 c + .001 c + .01

sin x − sin c

x − c
.005000 .000500 −.000500 −.005000

Here c = π
2 and cos c = 0.

(b) lim
x→c

sin x − sin c

x − c
= cos c.

(c)

x c − .01 c − .001 c + .001 c + .01

sin x − sin c

x − c
−.411593 −.415692 −.416601 −.420686

Here c = 2 and cos c = cos 2 ≈ −.416147.

x c − .01 c − .001 c + .001 c + .01

sin x − sin c

x − c
.863511 .865775 .866275 .868511

Here c = −π
6 and cos c =

√
3

2 ≈ .866025.

Section 2.7 Preliminary Questions
1. (a) Correct (b) Not correct (c) Not correct (d) Correct
2. (a) limx→∞ x3 = ∞ (b) limx→−∞ x3 = −∞

(c) limx→−∞ x4 = ∞
3. y

x

4. Negative 5. Negative
6. As x → ∞, 1

x → 0, so

lim
x→∞ sin

1

x
= sin 0 = 0.

On the other hand, 1
x → ±∞ as x → 0, and as 1

x → ±∞, sin 1
x

oscillates infinitely often.

Section 2.7 Exercises
1. y = 1 and y = 2

3.

−4 −2
−5

−1

3

y

x

−9

−13

2

5. (a) From the table below, it appears that

lim
x→±∞

x3

x3 + x
= 1.

x ±50 ±100 ±500 ±1000

f (x) .999600 .999900 .999996 .999999

(b) From the graph below, it also appears that

lim
x→±∞

x3

x3 + x
= 1.

−5

0.2

0.4

0.6

0.8

1.0

y

x
5

(c) The horizontal asymptote of f (x) is y = 1.

7. 1 9. 0 11. 7
4 13. −∞ 15. ∞ 17. y = 1

4 19. y = 2
3

and y = − 2
3 21. y = 0 23. 0 25. 2 27. 1

16 29. 0

31. π
2 ; the graph of y = tan−1 x has a horizontal asymptote at y = π

2

33. (a) lim
s→∞ R(s) = lim

s→∞
As

K + s
= lim

s→∞
A

1 + K
s

= A.

(b) R(K) = AK

K + K
= AK

2K
= A

2
half of the limiting value.

(c) 3.75 mM

35. 0 37. ∞ 39. ln 3
2 41. −π

2

45. lim
x→∞

3x2 − x

2x2 + 5
= lim

t→0+
3 − t

2 + 5t2
= 3

2
47. • b = 0.2:

x 5 10 50 100

f (x) 1.000064 1.000000 1.000000 1.000000

It appears that G(0.2) = 1.
• b = 0.8:

x 5 10 50 100

f (x) 1.058324 1.010251 1.000000 1.000000
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It appears that G(0.8) = 1.
• b = 2:

x 5 10 50 100

f (x) 2.012347 2.000195 2.000000 2.000000

It appears that G(2) = 2.
• b = 3:

x 5 10 50 100

f (x) 3.002465 3.000005 3.000000 3.000000

It appears that G(3) = 3.
• b = 5:

x 5 10 50 100

f (x) 5.000320 5.000000 5.000000 5.000000

It appears that G(5) = 5.
Based on these observations we conjecture that G(b) = 1 if

0 ≤ b ≤ 1 and G(b) = b for b > 1. The graph of y = G(b) is shown
below; the graph does appear to be continuous.

4

3

2

1

10 2 3 4
x

y

Section 2.8 Preliminary Questions
1. Observe that f (x) = x2 is continuous on [0, 1] with f (0) = 0

and f (1) = 1. Because f (0) < 0.5 < f (1), the Intermediate Value
Theorem guarantees there is a c ∈ [0, 1] such that f (c) = 0.5.

2. We must assume that temperature is a continuous function of
time.

3. If f is continuous on [a, b], then the horizontal line y = k for
every k between f (a) and f (b) intersects the graph of y = f (x) at
least once.

4.

a

f (a)

x

y

f (b)

b

5. (a) Sometimes true. (b) Always true. (c) Never true.
(d) Sometimes true.

Section 2.8 Exercises
1. Observe that f (1) = 2 and f (2) = 10. Since f is a polynomial,

it is continuous everywhere; in particular on [1, 2]. Therefore, by the
IVT there is a c ∈ [1, 2] such that f (c) = 9.

3. g(0) = 0 and g(π
4 ) = π2

16 . g(t) is continuous for all t between 0

and π
4 , and 0 < 1

2 < π2

16 ; therefore, by the IVT, there is a c ∈ [0, π
4 ]

such that g(c) = 1
2 .

5. Let f (x) = x − cos x. Observe that f is continuous with
f (0) = −1 and f (1) = 1 − cos 1 ≈ .46. Therefore, by the IVT there
is a c ∈ [0, 1] such that f (c) = c − cos c = 0.

7. Let f (x) = √
x + √

x + 2 − 3. Note that f is continuous on[
1
4 , 2
]

with f ( 1
4 ) = −1 and f (2) = √

2 − 1 ≈ .41. Therefore, by the

IVT there is a c ∈
[

1
4 , 2
]

such that f (c) = √
c + √

c + 2 − 3 = 0.

9. Let f (x) = x2. Observe that f is continuous with f (1) = 1 and
f (2) = 4. Therefore, by the IVT there is a c ∈ [1, 2] such that
f (c) = c2 = 2.

11. For each positive integer k, let f (x) = xk − cos x. Observe that

f is continuous on
[
0, π

2

]
with f (0) = −1 and f (π

2 ) = (π2 )k > 0.
Therefore, by the IVT there is a c ∈ [0, π

2

]
such that

f (c) = ck − cos(c) = 0.

13. Let f (x) = 2x + 3x − 4x . Observe that f is continuous on [0, 2]
with f (0) = 1 > 0 and f (2) = −3 < 0. Therefore, by the IVT, there
is a c ∈ (0, 2) such that f (c) = 2c + 3c − 4c = 0.

15. Let f (x) = ex + ln x. Observe that f is continuous on [e−2, 1]
with f (e−2) = ee−2 − 2 < 0 and f (1) = e > 0. Therefore, by the
IVT, there is a c ∈ (e−2, 1) ⊂ (0, 1) such that f (c) = ec + ln c = 0.

17. (a) f (1) = 1, f (1.5) = 21.5 − (1.5)3 < 3 − 3.375 < 0. Hence,
f (x) = 0 for some x between 1 and 1.5.

(b) f (1.25) ≈ 0.4253 > 0 and f (1.5) < 0. Hence, f (x) = 0 for
some x between 1.25 and 1.5.

(c) f (1.375) ≈ −0.0059. Hence, f (x) = 0 for some x between 1.25
and 1.375.

19. [0, .25]
21.

4321

1

3

2

4

y

x

23.

4321

1

−1

3

2

4

5

6

y

x

25. No; no

Section 2.9 Preliminary Questions
1. (c)

2. (b) and (d) are true

Section 2.9 Exercises
1. L = 4, ε = .8, and δ = .1

3. (a)
|f (x) − 35| = |8x + 3 − 35| = |8x − 32| = |8(x − 4)| = 8 |x − 4|
(b) Let ε > 0. Let δ = ε/8 and suppose |x − 4| < δ. By part (a),
|f (x) − 35| = 8|x − 4| < 8δ. Substituting δ = ε/8, we see
|f (x) − 35| < 8ε/8 = ε.
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5. (a) If 0 < |x − 2| < δ = .01, then |x| < 3 and∣∣∣x2 − 4
∣∣∣ = |x − 2||x + 2| ≤ |x − 2| (|x| + 2) < 5|x − 2| < .05.

(b) If 0 < |x − 2| < δ = .0002, then |x| < 2.0002 and∣∣∣x2 − 4
∣∣∣ = |x − 2||x + 2| ≤ |x − 2| (|x| + 2) < 4.0002|x − 2|

< .00080004 < .0009

(c) δ = 10−5

7. δ = 6 × 10−4

9. δ = 0.25

4.6 4.8 5 5.2 5.4

2.9

2.8

3.0

3.1

x

y

11. δ = 0.02

−0.04 −0.02 0 0.02 0.04
0.97
0.98

0.99

1.00
1.01

1.02

x

y

13. (a) Since |x − 2| < 1, it follows that 1 < x < 3, in particular

that x > 1. Because x > 1, then
1

x
< 1 and∣∣∣∣ 1x − 1

2

∣∣∣∣ =
∣∣∣∣2 − x

2x

∣∣∣∣ = |x − 2|
2x

<
1

2
|x − 2|.

(b) Let δ = min{1, 2ε} and suppose that |x − 2| < δ. Then by part
(a) we have ∣∣∣∣ 1x − 1

2

∣∣∣∣ < 1

2
|x − 2| <

1

2
δ <

1

2
· 2ε = ε.

(c) Choose δ = .02.

(d) Let ε > 0 be given. Then whenever
0 < |x − 2| < δ = min {1, 2ε}, we have∣∣∣∣ 1x − 1

2

∣∣∣∣ < 1

2
δ ≤ ε.

15.

0.25 0.5 0.75 1.00 1.25 1.50

1.0

0.8

0.6

0.4

0.2

x

y

17. Given ε > 0, we let

δ = min

{
|c|, ε

3|c|
}

.

Then, for |x − c| < δ, we have

|x2 − c2| = |x − c| |x + c| < 3|c|δ < 3|c| ε

3|c| = ε.

19. Let ε > 0 be given. Let δ = min(1, 3ε). If |x − 4| < δ,

|√x − 2| = |x − 4|
∣∣∣∣ 1√

x + 2

∣∣∣∣ < |x − 4|1

3
< δ

1

3
< 3ε

1

3
= ε.

21. Let ε > 0 be given. Let δ = min(1, ε
7 ), and assume |x − 1| < δ.

Since δ < 1, 0 < x < 2. Since x2 + x + 1 increases as x increases for
x > 0, x2 + x + 1 < 7 for 0 < x < 2, and so∣∣∣x3 − 1

∣∣∣ = |x − 1|
∣∣∣x2 + x + 1

∣∣∣ < 7|x − 1| < 7
ε

7
= ε.

23. Let ε > 0 be given. Let δ = min(1, 4
5 ε), and suppose

|x − 2| < δ. Since δ < 1, |x − 2| < 1, so 1 < x < 3. This means that
4x2 > 4 and |2 + x| < 5, so that 2+x

4x2 < 5
4 . We get:∣∣∣∣x−2 − 1

4

∣∣∣∣ = |2 − x|
∣∣∣∣2 + x

4x2

∣∣∣∣ < 5

4
|x − 2| <

5

4
· 4

5
ε = ε.

25. Let L be any real number. Let δ > 0 be any small positive
number. Let x = δ

2 , which satisfies |x| < δ, and f (x) = 1. We
consider two cases:

• (|f (x) − L| ≥ 1
2 ) : we are done.

• (|f (x) − L| < 1
2 ): This means 1

2 < L < 3
2 . In this case, let

x = − δ
2 . f (x) = −1, and so 3

2 < L − f (x).

In either case, there exists an x such that |x| < δ
2 , but |f (x) − L| ≥ 1

2 .

27. Let ε > 0 and let δ = min(1, ε
2 ). Then, whenever |x − 1| < δ, it

follows that 0 < x < 2. If 1 < x < 2, then min(x, x2) = x and

|f (x) − 1| = |x − 1| < δ <
ε

2
< ε.

On the other hand, if 0 < x < 1, then min(x, x2) = x2, |x + 1| < 2
and

|f (x) − 1| = |x2 − 1| = |x − 1| |x + 1| < 2δ < ε.

Thus, whenever |x − 1| < δ, |f (x) − 1| < ε.

31. Suppose that lim
x→c

f (x) = L. Let ε > 0 be given. Since

lim
x→c

f (x) = L, we know there is a δ > 0 such that |x − c| < δ forces

|f (x) − L| < ε/|a|. Suppose |x − c| < δ. Then
|af (x) − aL| = |a||f (x) − aL| < |a|(ε/|a|) = ε.

Chapter 2 Review
1. average velocity approximately 0.954 m/s; instantaneous velocity

approximately 0.894 m/s.

3. 200
9 5. 1.50 7. 1.69 9. 2.00

11. 5 13. − 1
2 15. 1

6 17. 2

19. Does not exist;

lim
t→9−

t − 6√
t − 3

= −∞ and lim
t→9+

t − 6√
t − 3

= ∞
21. ∞
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23. Does not exist;

lim
x→1−

x3 − 2x

x − 1
= ∞ and lim

x→1+
x3 − 2x

x − 1
= −∞

25. 2 27. 2
3 29. − 1

2 31. 3b2 33. 1
9 35. ∞

37. Does not exist;

lim
θ→ π

2 −
θ sec θ = ∞ and lim

θ→ π
2 +

θ sec θ = −∞

39. Does not exist;

lim
θ→0−

cos θ − 2

θ
= ∞ and lim

θ→0+
cos θ − 2

θ
= −∞

41. ∞ 43. ∞
45. Does not exist;

lim
x→ π

2 −
tan x = ∞ and lim

x→ π
2 +

tan x = −∞

47. 0 49. 0

51. According to the graph of f (x),

lim
x→0− f (x) = lim

x→0+ f (x) = 1

lim
x→2− f (x) = lim

x→2+ f (x) = ∞

lim
x→4− f (x) = −∞

lim
x→4+ f (x) = ∞.

The function is both left- and right-continuous at x = 0 and neither
left- nor right-continuous at x = 2 and x = 4.

53. At x = 0, the function has an infinite discontinuity but is
left-continuous.

−4 −2 2 4

−1

1

y

x

55. g(x) has a jump discontinuity at x = −1; g(x) is left-continuous
at x = −1.

57. b = 7; h(x) has a jump discontinuity at x = −2

59. Does not have any horizontal asymptotes

61. y = 2

63. y = 1

65.
B = B · 1 = B · L =

lim
x→a

g(x) · lim
x→a

f (x)

g(x)
= lim

x→a
g(x)

f (x)

g(x)
= lim

x→a
f (x) = A.

67. f (x) = 1

(x − a)3
and g(x) = 1

(x − a)5

71. Let f (x) = x2 − cos x. Now, f (x) is continuous over the

interval [0, π
2 ], f (0) = −1 < 0 and f (π

2 ) = π2

4 > 0. Therefore, by
the Intermediate Value Theorem, there exists a c ∈ (0, π

2 ) such that

f (c) = 0; consequently, the curves y = x2 and y = cos x intersect.

73. Let f (x) = e−x2 − x. Observe that f is continuous on [0, 1] with
f (0) = e0 − 0 = 1 > 0 and f (1) = e−1 − 1 < 0. Therefore, the IVT

guarantees there exists a c ∈ (0, 1) such that f (c) = e−c2 − c = 0.

75. g(x) = [x]; On the interval

x ∈
[

a

2 + 2πa
,
a

2

]
⊂ [−a, a],

1
x runs from 2

a to 2
a + 2π , so the sine function covers one full period

and clearly takes on every value from − sin a through sin a.

77. δ = 0.55;

7.0 7.5 8.0 8.5

1.95

1.90

2.00

2.05

x

y

79. Let ε > 0 and take δ = ε/8. Then, whenever
|x − (−1)| = |x + 1| < δ,

|f (x) − (−4)| = |4 + 8x + 4| = 8|x + 1| < 8δ = ε.

Chapter 3
Section 3.1 Preliminary Questions

1. B and D

2.
f (x) − f (a)

x − a
and

f (a + h) − f (a)

h

3. a = 3 and h = 2

4. Derivative of the function f (x) = tan x at x = π
4

5. (a) The difference in height between the points (0.9, sin 0.9) and
(1.3, sin 1.3).

(b) The slope of the secant line between the points (0.9, sin 0.9) and
(1.3, sin 1.3).

(c) The slope of the tangent line to the graph at x = 0.9.

Section 3.1 Exercises
1. f ′(3) = 30 3. f ′(0) = 9 5. f ′(−1) = −2

7. Slope of the secant line = 1; the secant line through (2, f (2)) and
(2.5, f (2.5)) has a larger slope than the tangent line at x = 2.

9. f ′(1) ≈ 0; f ′(2) ≈ 0.8

11. f ′(1) = f ′(2) = 0; f ′(4) = 1
2 ; f ′(7) = 0

13. f ′(5.5) 15. f ′(x) = 7 17. g′(t) = −3 19. y = 2x − 1

21. The tangent line at any point is the line itself

23. f (−2 + h) = 1

−2 + h
; −1

3

25. f ′(5) = − 1
10

√
5

27. f ′(3) = 22; y = 22x − 18

29. f ′(3) = −11; y = −11t + 18

31. f ′(0) = 1; y = x
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33. f ′(8) = − 1

64
; y = − 1

64
x + 1

4
35. f ′(−2) = −1; y = −x − 1

37. f ′(1) = 1

2
√

5
; y = 1

2
√

5
x + 9

2
√

5

39. f ′(4) = − 1

16
; y = − 1

16
x + 3

4

41. f ′(3) = 3√
10

; y = 3√
10

t + 1√
10

43. f ′(0) = 0; y = 1

45. W ′(4) ≈ 0.9 kg/year; slope of the tangent is zero at t = 10 and
at t = 11.6; slope of the tangent line is negative for 10 < t < 11.6.

47. (a) f ′(0) ≈ −0.68

y

x
−2 −1 1 2

y

x
−0.2 −0.1 0.1 0.2

0.5
1

1.5
2

3
2.5

1.8

2.0
2.2

2.4

(b) y = −0.68x + 2

y

x
−2 −1 1 2

0.5
1

1.5
2

3
2.5

49. For 1 < x < 2.5 and for x > 3.5

51. f (x) = x3 and a = 5

53. f (x) = sin x and a = π
6

55. f (x) = 5x and a = 2

57. f ′ (π

4

)
≈ 0.7071

59. • On curve (A), f ′(1) is larger than

f (1 + h) − f (1)

h
;

the curve is bending downwards, so that the secant line to the
right is at a lower angle than the tangent line.

• On curve (B), f ′(1) is smaller than

f (1 + h) − f (1)

h
;

the curve is bending upwards, so that the secant line to the right
is at a steeper angle than the tangent line.

61. (b) f ′(4) ≈ 20.0000

(c) y = 20x − 48

y

x
1 2 3 4 5 6−20

−40
−60

20
40
60
80

63. c ≈ 0.37.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x
0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x

65.

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;

P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K

67. −0.39375 kph·km/car

69. i(3) = 0.06 amperes

71. v′(4) ≈ 160; C ≈ 0.2 farads

73. It is the slope of the secant line connecting the points
(a − h, f (a − h)) and (a + h, f (a + h)) on the graph of f .

Section 3.2 Preliminary Questions
1. 8

2. (f − g)′(1) = −2 and (3f + 2g)′(1) = 19

3. (a), (b), (c) and (f)

4. (b)

5. The line tangent to f (x) = ex at x = 0 has slope equal to 1.

Section 3.2 Exercises

1. f ′(x) = 3 3. f ′(x) = 3x2 5. f ′(x) = 1 − 1

2
√

x

7.
d

dx
x4
∣∣∣∣
x=−2

= 4(−2)3 = −32

9.
d

dt
t2/3

∣∣∣∣
t=8

= 2

3
(8)−1/3 = 1

3

11. 0.35x−0.65 13.
√

17t
√

17−1

15. f ′(x) = 4x3; y = 32x − 48

17. f ′(x) = 5 − 16x−1/2; y = −3x − 32
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19. (a)
d

dx
12ex = 12ex . (b)

d

dt
(25t − 8et ) = 25 − 8et .

(c)
d

dt
et−3 = et−3.

21. f ′(x) = 6x2 − 6x 23. f ′(x) = 20

3
x2/3 + 6x−3

25. g′(z) = −5

2
z−19/14 − 5z−6

27. f ′(s) = 1

4
s−3/4 + 1

3
s−2/3

29. g′(x) = 0 31. h′(t) = 5et−3 33. P ′(s) = 32s − 24
35. g′(x) = −6x−5/2 37. 1 39. −60 41. 1 − e4

43. • The graph in (A) matches the derivative in (III).
• The graph in (B) matches the derivative in (I).
• The graph in (C) matches the derivative in (II).
• The graph in (D) matches the derivative in (III).
(A) and (D) have the same derivative because the graph in (D) is

just a vertical translation of the graph in (A).

45. Label the graph in (A) as f (x), the graph in (B) as h(x), and the
graph in (C) as g(x)

47. (B) might be the graph of the derivative of f (x)

49. (a)
d

dt
ct3 = 3ct2.

(b)
d

dz
(5z + 4cz2) = 5 + 8cz.

(c)
d

dy
(9c2y3 − 24c) = 27c2y2.

51. x = 1
2

53. a = 2 and b = −3

55. • f ′(x) = 3x2 − 3 ≥ −3 since 3x2 is nonnegative.
• The two parallel tangent lines with slope 2 are shown with the

graph of f (x) here.

−2
−1

−2
2

4

1

2
x

y

57. f ′(x) = 3

2
x1/2

59. f ′(0) = 1; y = x

61. Decreasing; y = −0.63216(m − 33) + 83.445;
y = −0.25606(m − 68) + 69.647

63.

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;

P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K

T 2

P

dP

dT
is roughly constant, suggesting that the Clausius–Clapeyron

law is valid, and that k ≈ 5000

67. y

x
1 2 3 4

69. For x < 0, f (x) = −x2, and f ′(x) = −2x. For x > 0,
f (x) = x2, and f ′(x) = 2x. Thus, f ′(0) = 0.

y

x
1 2

−1

−2

2

4

−4

−2

71. c = 1 73. c = 0 75. c = ±1

77. It appears that f is not differentiable at a = 0. Moreover, the
tangent line does not exist at this point.

79. It appears that f is not differentiable at a = 3. Moreover, the
tangent line appears to be vertical.

81. It appears that f is not differentiable at a = 0. Moreover, the
tangent line does not exist at this point.

83. The graph of f ′(x) is shown in the figure below at the left and it
is clear that f ′(x) > 0 for all x > 0. The positivity of f ′(x) tells us
that the graph of f (x) is increasing for x > 0.

8642
x

y

100

200

300

400

8642
x

y

200

−200

400

600

800

85.
10

7
87. The normal line intersects the x-axis at the point T with
coordinates (x + f (x)f ′(x), 0). The point R has coordinates (a, 0),
so the subnormal is |x + f (x)f ′(x) − x| = |f (x)f ′(x)|.
89. The tangent line to f at x = a is y = 2ax − a2. The x-intercept
of this line is a

2 so the subtangent is a − a/2 = a/2.

91. The subtangent is
1

n
a. 93. r ≤ 1

2

Section 3.3 Preliminary Questions
1. (a) False. The notation fg denotes the function whose value at x

is f (x)g(x).

(b) True.

(c) False. The derivative of a product fg is f ′(x)g(x) + f (x)g′(x).
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(d) False.
d

dx
(fg)

∣∣∣∣
x=4

= f (4)g′(4) + g(4)f ′(4).

(e) True.

2. −1 3. 5

Section 3.3 Exercises
1. f ′(x) = 10x4 + 3x2 3. f ′(x) = ex(x2 + 2x)

5.
dh

ds
= −7

2
s−3/2 + 3

2
s−5/2 + 14;

dh

ds

∣∣∣∣
s=4

= 871

64

7. f ′(x) = −2

(x − 2)2

9.
dg

dt
= − 4t

(t2 − 1)2
;

dg

dt

∣∣∣∣
t=−2

= 8

9

11. g′(x) = − ex

(1 + ex)2
13. f ′(t) = 6t2 + 2t − 4

15. h′(t) = 1 for t �= 1

17. f ′(x) = 6x5 + 4x3 + 18x2 + 5

19.
dy

dx
= − 1

(x + 10)2
;

dy

dx

∣∣∣∣
x=3

= − 1

169

21. f ′(x) = 1

23.
dy

dx
= 2x5 − 20x3 + 8x(

x2 − 5
)2 ;

dy

dx

∣∣∣∣
x=2

= −80

25.
dz

dx
= − 3x2

(x3 + 1)2
;

dz

dx

∣∣∣∣
x=1

= −3

4

27. h′(t) = −2t3 − t2 + 1(
t3 + t2 + t + 1

)2
29. f ′(t) = 0

31. f ′(x) = 3x2 − 6x − 13

33. f ′(x) = xex

(x + 1)2

35. For z �= −2 and z �= 1, g′(z) = 2z − 1

37. f ′(t) = −xt2 + 8t − x2

(t2 − x)2

39. (fg)′(4) = −20 and (f/g)′(4) = 0

41. G′(4) = −10 43. F ′(0) = −7 45.
d

dx
e2x = 2e2x

47. From the plot of f (x) shown below, we see that f (x) is
decreasing on its domain {x : x �= ±1}. Consequently, f ′(x) must be
negative. Using the quotient rule, we find

f ′(x) = (x2 − 1)(1) − x(2x)

(x2 − 1)2
= − x2 + 1

(x2 − 1)2
,

which is negative for all x �= ±1.

4321
x

y

5

−5

−2−3−4

49. a = 1

51. (a) Given R(t) = N(t)S(t), it follows that

dR

dt
= N(t)S′(t) + S(t)N ′(t).

(b)
dR

dt

∣∣∣∣
t=0

= 1, 250, 000

(c) The term 5S(0) is larger than the term 10, 000N(0). Thus, if only
one leg of the campaign can be implemented, it should be part A:
increase the number of stores by 5 per month.

53. • At x = −1, the tangent line is y = 1

2
x + 1

• At x = 1, the tangent line is y = −1

2
x + 1

55. Let g = f 2 = ff . Then

g′ =
(
f 2
)′ = (ff )′ = ff ′ + ff ′ = 2ff ′.

57. Let p = fgh. Then
p′ = (fgh)′ = f

(
gh′ + hg′)+ ghf ′ = f ′gh + fg′h + fgh′.

61.
d

dx
(xf (x)) = lim

h→0

(x + h)f (x + h) − f (x)

h

= lim
h→0

(
x

f (x + h) − f (x)

h
+ f (x + h)

)

= x lim
h→0

f (x + h) − f (x)

h
+ lim

h→0
f (x + h)

= xf ′(x) + f (x).

65. (a) Is a multiple root (b) Not a multiple root

67.

m(ab)(ab)x = d

dx
(ab)x = d

dx

(
axbx

)
= ax d

dx
bx + bx d

dx
ax

= m(b)axbx + m(a)axbx = (m(a) + m(b))(ab)x .

Section 3.4 Preliminary Questions
1. (a) atmospheres/meter. (b) moles/(liter·hour).

2. 90 mph

3. f (26) ≈ 43.75

4. (a) P ′(2009) measures the rate of change of the population of
Freedonia in the year 2009.

(b) P(2010) ≈ 5.2 million.

Section 3.4 Exercises
1. 10 square units per unit increase

3.

c ROC of f (x) with respect to x at x = c.

1 f ′(1) = 1
3

8 f ′(8) = 1
12

27 f ′(27) = 1
27
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5. d ′ = 2 7. dV/dr = 3πr2

9. (a) 100 km/hour (b) 100 km/hour (c) 0 km/hour
(d) −50 km/hour

11. (a) (i) (b) (ii) (c) (iii)

13.
dT

dt
≈ −1.5625◦C/hour

15. −8 × 10−6 1/s

17.
dT

dh

∣∣∣∣
h=30

≈ 2.94◦C/km;
dT

dh

∣∣∣∣
h=70

≈ −3.33◦C/km;
dT

dh
= 0

over the interval [13, 23], and near the points h = 50 and h = 90.

19. v′
esc(r) = −1.41 × 107r−3/2

21. t = 5
2 s

23. The particle passes through the origin when t = 0 seconds and
when t = 3

√
2 ≈ 4.24 seconds. The particle is instantaneously

motionless when t = 0 seconds and when t = 3 seconds.

25. Maximum velocity: 200 m/s; maximum height: 2040.82 m

27. Initial velocity: v0 = 19.6 m/s; maximum height: 19.6 m

31. (a)
dV

dv
= −1 (b) −4

35. Rate of change of BSA with respect to mass:

√
5

20
√

m
; m = 70 kg,

rate of change is ≈ 0.0133631 m2

kg ; m = 80 kg, rate of change is

1
80

m2

kg ; BSA increases more rapidly at lower body mass.

37. 2

39.
√

2 − √
1 ≈ 1

2 ; the actual value, to six decimal places, is

0.414214.
√

101 − √
100 ≈ .05; the actual value, to six decimal

places, is 0.0498756.

41. • F(65) = 282.75 ft
• Increasing speed from 65 to 66 therefore increases stopping

distance by approximately 7.6 ft.
• The actual increase in stopping distance when speed increases

from 65 mph to 66 mph is
F(66) − F(65) = 290.4 − 282.75 = 7.65 feet, which differs by
less than one percent from the estimate found using the
derivative.

43. The cost of producing 2000 bagels is $796. The cost of the 2001st
bagel is approximately $0.244, which is indistinguishable from the
estimated cost.

45. An increase in oil prices of a dollar leads to a decrease in demand
of 0.5625 barrels a year, and a decrease of a dollar leads to an
increase in demand of 0.5625 barrels a year.

47.
dB

dI
= 2k

3I1/3
;

dH

dW
= 3k

2
W1/2

(a) As I increases, dB
dI

shrinks, so that the rate of change of
perceived intensity decreases as the actual intensity increases.

(b) As W increases, dH
dW

increases as well, so that the rate of change
of perceived weight increases as weight increases.

49. (a) The average income among households in the bottom rth part
is

F(r)T

rN
= F(r)

r
· T

N
= F(r)

r
A.

(b) The average income of households belonging to an interval
[r, r + �r] is equal to

F(r + �r)T − F(r)T

�rN
= F(r + �r) − F(r)

�r
· T

N

= F(r + �r) − F(r)

�r
A

(c) Take the result from part (b) and let �r → 0. Because

lim
�r→0

F(r + �r) − F(r)

�r
= F ′(r),

we find that a household in the 100rth percentile has income F ′(r)A.
(d) The point P in Figure 14(B) has an r-coordinate of 0.6, while the
point Q has an r-coordinate of roughly 0.75. Thus, on curve L1, 40%
of households have F ′(r) > 1 and therefore have above-average
income. On curve L2, roughly 25% of households have
above-average income.
53. By definition, the slope of the line through (0, 0) and (x, C(x)) is

C(x) − 0

x − 0
= C(x)

x
= Cavg(x).

• At point A, average cost is greater than marginal cost.
• At point B, average cost is greater than marginal cost.
• At point C, average cost and marginal cost are nearly the same.
• At point D, average cost is less than marginal cost.

Section 3.5 Preliminary Questions
1. The first derivative of stock prices must be positive, while the

second derivative must be negative.
2. True
3. All quadratic polynomials
4. ex

Section 3.5 Exercises
1. y′′ = 28 and y′′′ = 0
3. y′′ = 12x2 − 50 and y′′′ = 24x

5. y′′ = 8πr and y′′′ = 8π

7. y′′ = −16

5
t−6/5 + 4

3
t−4/3 and y′′′ = 96

25
t−11/15 − 16

9
t−7/3

9. y′′ = −8z−3 and y′′′ = 24z−4

11. y′′ = 12θ + 14 and y′′′ = 12
13. y′′ = −8x−3 and y′′′ = 24x−4

15. y′′ = (x5 + 10x4 + 20x3)ex and
y′′′ = (x5 + 15x4 + 60x3 + 60x2)ex

17. f (4)(1) = 24 19.
d2y

dt2

∣∣∣∣∣
t=1

= 54

21.
d4x

dt4

∣∣∣∣∣
t=16

= 3465

134217728
23. f ′′′(−3) = 4e−3 − 6

25. h′′(1) = 7
4 e

27. y(0)(0) = d, y(1)(0) = c, y(2)(0) = 2b, y(3)(0) = 6a,
y(4)(0) = 24, and y(5)(0) = 0

29.
d6

dx6
x−1 = 720x−7
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31. f (n)(x) = (−1)n(n + 1)!x−(n+2)

33. f (n)(x) = (−1)n
(2n−1)×(2n−3)×...×1

2n x−(2n+1)/2

35. f (n)(x) = (−1)n(x − n)e−x

37. (a) a(5) = −120 m/min2

(b) The acceleration of the helicopter for 0 ≤ t ≤ 6 is shown in the
figure below. As the acceleration of the helicopter is negative, the
velocity of the helicopter must be decreasing. Because the velocity is
positive for 0 ≤ t ≤ 6, the helicopter is slowing down.

−20 1

y

x
2 3 4 5 6

−40
−60
−80

−100
−120
−140

39. (a) f ′′ (b) f ′ (c) f

41. Roughly from time 10 to time 20 and from time 30 to time 40

43. n = −3

45. (a) v(t) = −5.12 m/s (b) v(t) = −7.25 m/s

47. A possible plot of the drill bit’s vertical velocity follows:

−2

−4

4

2

21.510.5
x

y

Metal

A graph of the acceleration is extracted from this graph:

−20

−40

40

20

21.5

10.5
x

y

Metal

49. (a) Traffic speed must be reduced when the road gets more
crowded so we expect dS

dQ
to be negative.

(b) The decrease in speed due to a one-unit increase in density is

approximately dS
dQ

(a negative number). Since d2S
dQ2 = 5764Q−3 > 0

is positive, this tells us that dS
dQ

gets larger as Q increases.

(c) dS/dQ is plotted below. The fact that this graph is increasing
shows that d2S/dQ2 > 0.

x

y

−0.2
−0.4
−0.6
−0.8
−1.0
−1.2

400300100 200

51.

f ′(x) = − 3

(x − 1)2
= (−1)1 3 · 1

(x − 1)1+1
;

f ′′(x) = 6

(x − 1)3
= (−1)2 3 · 2 · 1

(x − 1)2+1
;

f ′′′(x) = − 18

(x − 1)4
= (−1)3 3 · 3!

(x − 1)3+1
; and

f (4)(x) = 72

(x − 1)5 = (−1)4 3 · 4!
(x − 1)4+1

.

From the pattern observed above, we conjecture

f (k)(x) = (−1)k
3 · k!

(x − 1)k+1
.

53. 99!
55. (fg)′′′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′;

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k)

57.
f ′(x) = x2ex + 2xex = (x2 + 2x)ex;
f ′′(x) = (x2 + 2x)ex + (2x + 2)ex = (x2 + 4x + 2)ex;
f ′′′(x) = (x2 + 4x + 2)ex + (2x + 4)ex = (x2 + 6x + 6)ex;

f (4)(x) = (x2 + 6x + 6)ex + (2x + 6)ex = (x2 + 8x + 12)ex .

From this information, we conjecture that the general formula is

f (n)(x) = (x2 + 2nx + n(n − 1))ex .

Section 3.6 Preliminary Questions

1. (a)
d

dx
(sin x + cos x) = − sin x + cos x

(b)
d

dx
sec x = sec x tan x

(c)
d

dx
cot x = − csc2 x

2. (a) This function can be differentiated using the Product Rule.

(b) We have not yet discussed how to differentiate a function like this.

(c) This function can be differentiated using the Product Rule.

3. 0

4. The difference quotient for the function sin x involves the
expression sin(x + h). The addition formula for the sine function is
used to expand this expression as
sin(x + h) = sin x cos h + sin h cos x.

Section 3.6 Exercises

1. y =
√

2

2
x +

√
2

2

(
1 − π

4

)
3. y = 2x + 1 − π

2
5. f ′(x) = − sin2 x + cos2 x 7. f ′(x) = 2 sin x cos x

9. H ′(t) = 2 sin t sec2 t tan t + sec t

11. f ′(θ) =
(

tan2 θ + sec2 θ
)

sec θ

13. f ′(x) = (2x4 − 4x−1) sec x tan x + sec x(8x3 + 4x−2)

15. y′ = θ sec θ tan θ − sec θ

θ2
17. R′(y) = 4 cos y − 3

sin2 y



A46 ANSWERS TO ODD-NUMBERED EXERCISES

19. f ′(x) = 2 sec2 x

(1 − tan x)2
21. f ′(x) = ex(cos x + sin x)

23. f ′(θ) = eθ (5 sin θ + 5 cos θ − 4 tan θ − 4 sec2 θ)

25. y = 1 27. y = x + 3

29. y = (1 − √
3)
(
x − π

3

)
+ 1 + √

3

31. y = x + 1 33. y = 2eπ/2
(
t − π

2

)
+ eπ/2

35. cot x = cos x
sin x

; use the quotient rule

37. csc x = 1
sin x

; use the quotient rule

39. f ′′(θ) = −θ sin θ + 2 cos θ

41.

y′′ = 2 sec2 x tan x

y′′′ = 2 sec4 x + 4 sec2 x tan2 x.

43. • Then f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x,
f (4)(x) = cos x, and f (5)(x) = − sin x.

• Accordingly, the successive derivatives of f cycle among

{− sin x, − cos x, sin x, cos x}
in that order. Since 8 is a multiple of 4, we have f (8)(x) = cos x.

• Since 36 is a multiple of 4, we have f (36)(x) = cos x.
Therefore, f (37)(x) = − sin x.

45. x = π
4 , 3π

4 , 5π
4 , 7π

4
47. (a)

y

x
2 4 6 8 10 12

2

4

6

8

10

12

(b) Since g′(t) = 1 − cos t ≥ 0 for all t , the slope of the tangent line
to g is always nonnegative.

(c) t = 0, 2π, 4π

49. f ′(x) = sec2 x = 1
cos2 x

. Note that f ′(x) = 1
cos2 x

has numerator

1; the equation f ′(x) = 0 therefore has no solution. The least slope
for a tangent line to tan x is 1. Here is a graph of f ′.

2 4−2−4

y

x

4
6
8

10
12
14

51.
dR

dθ
= (v2

0/9.8)(− sin2 θ + cos2 θ); if θ = 7π/24, increasing the

angle will decrease the range.

53.

f ′(x) = lim
h→0

cos(x + h) − cos x

h
= lim

h→0

cos x cos h − sin x sin h − cos x

h

= lim
h→0

(
(− sin x)

sin h

h
+ (cos x)

cos h − 1

h

)
= (− sin x) · 1 + (cos x) · 0 = − sin x.

Section 3.7 Preliminary Questions
1. (a) The outer function is

√
x, and the inner function is 4x + 9x2.

(b) The outer function is tan x, and the inner function is x2 + 1.
(c) The outer function is x5, and the inner function is sec x.
(d) The outer function is x4, and the inner function is 1 + ex .
2. The function x

x+1 can be differentiated using the Quotient Rule,
and the functions

√
x · sec x and xex can be differentiated using the

Product Rule. The functions tan(7x2 + 2),
√

x cos x and esin x require
the Chain Rule

3. (b)
4. We do not have enough information to compute F ′(4). We are

missing the value of f ′(1).

Section 3.7 Exercises
1.

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(x4 + 1)3/2 3
2u1/2 3

2 (x4 + 1)1/2 4x3 6x3(x4 + 1)1/2

3.

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

tan(x4) sec2 u sec2(x4) 4x3 4x3 sec2(x4)

5. 4(x + sin x)3(1 + cos x)

7. (a) 2x sin(9 − x2) (b)
sin(x−1)

x2
(c) − sec2 x sin(tan x)

9. 12 11. 12x3(x4 + 5)2 13.
7

2
√

7x − 3
15. −2(x2 + 9x)−3(2x + 9) 17. −4 cos3 θ sin θ

19. 9(2 cos θ + 5 sin θ)8(5 cos θ − 2 sin θ)

21. ex−12 23. 2 cos(2x + 1)

25. ex+x−1
(

1 − x−2
)

27.
d

dx
f (g(x)) = − sin(x2 + 1)(2x) = −2x sin(x2 + 1)

d

dx
g(f (x)) = −2 sin x cos x

29. 2x cos
(
x2
)

31.
t√

t2 + 9

33.
2

3

(
x4 − x3 − 1

)−1/3 (
4x3 − 3x2

)
35.

8(1 + x)3

(1 − x)5 37. − sec (1/x) tan (1/x)

x2

39. (1 − sin θ) sec2 (θ + cos θ) 41. −18te2−9t2

43. (2x + 4) sec2(x2 + 4x) 45. 3x sin (1 − 3x) + cos (1 − 3x)

47. 2(4t + 9)−1/2 49. 4(sin x − 3x2)(x3 + cos x)−5
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51.
cos 2x√
2 sin 2x

53.
x cos(x2) − 3 sin 6x√

cos 6x + sin(x2)

55. 3
(
x2 sec2(x3) + sec2 x tan2 x

)
57.

−1√
z + 1 (z − 1)3/2

59.
sin(−1) − sin(1 + x)

(1 + cos x)2
61. −35x4 cot6

(
x5
)

csc2
(
x5
)

63. −180x3 cot4
(
x4 + 1

)
csc2

(
x4 + 1

) (
1 + cot5

(
x4 + 1

))8

65. 24(2e3x + 3e−2x)3(e3x − e−2x)

67. 4(x + 1)(x2 + 2x + 3)e(x2+2x+3)2

69.
1

8
√

x
√

1 + √
x

√
1 +√1 + √

x

71. −k

3
(kx + b)−4/3 73. 2 cos

(
x2
)

− 4x2 sin
(
x2
)

75. −336(9 − x)5

77.
dv

dP

∣∣∣∣
P=1.5

= 290
√

3

3

m

s · atmospheres

79. (a) When r = 3,
dV

dt
= 1.6π(3)2 ≈ 45.24 cm/s.

(b) When t = 3, we have r = 1.2. Hence
dV

dt
= 1.6π(1.2)2 ≈ 7.24

cm/s.

81. W ′(10) ≈ 0.3566 kg/yr 83. (a)
π

360
(b) 1 + π

90

85. 5
√

3 87. 12 89.
1

16

91.
dP

dt

∣∣∣∣
t=3

= −0.727
dollars

year

93.
dP

dh
= −4.03366 × 10−16 (288.14 − 0.000649 h)4.256; for

each additional meter of altitude, �P ≈ −1.15 × 10−2 Pa

95. 0.0973 kelvins/yr

97. f ′(g(x))g′′(x) + f ′′(g(x))
(
g′(x)

)2
99. Let u = h(x), v = g(u), and w = f (v). Then

dw

dx
= df

dv

dv

dx
= df

dv

dv

du

du

dx
= f ′(g(h(x))g′(h(x))h′(x)

103. For n = 1, we find

d

dx
sin x = cos x = sin

(
x + π

2

)
,

as required. Now, suppose that for some positive integer k,

dk

dxk
sin x = sin

(
x + kπ

2

)
.

Then

dk+1

dxk+1
sin x = d

dx
sin
(
x + kπ

2

)

= cos

(
x + kπ

2

)
= sin

(
x + (k + 1)π

2

)
.

Section 3.8 Preliminary Questions

1. 2 2.
1

3
3. g(x) = tan−1 x

4. Angles whose sine and cosine are x are complementary.

Section 3.8 Exercises
1. g(x) = f −1(x) =

√
x2 − 9; g′(x) = x√

x2 − 9

3. g′(x) = 1

7
5. g′(x) = −1

5
x−6/5

7. g′(x) = 1

(1 − x)2
9. g(7) = 1; g′(7) = 1

5
11. g(1) = 0;

g′(1) = 1 13. g(4) = 2; g′(4) = 4

5
15. g(1/4) = 3;

g′(1/4) = −16 19.
5

4
21.

1

4
√

15

23.
d

dx
sin−1(7x) = 7√

1 − (7x)2
25.

d

dx
cos−1(x2) = −2x√

1 − x4

27.
d

dx
x tan−1 x = x

(
1

1 + x2

)
+ tan−1 x

29.
d

dx
sin−1(ex) = ex√

1 − e2x

31.
d

dt

(√
1 − t2 + sin−1 t

)
= 1 − t√

1 − t2

33.
d

dx

(
(tan−1 x)3

)
= 3(tan−1 x)2

x2 + 1

35.
d

dt
(cos−1 t−1 − sec−1 t) = 0

37. Let θ = cos−1 x. Then cos θ = x and

− sin θ
dθ

dx
= 1 or

dθ

dx
= − 1

sin θ
= − 1

sin(cos−1 x)
.

Moreover, sin(cos−1 x) = sin θ =
√

1 − x2.

41. g′(x) = 1

f ′(g(x))
= 1

f ′(f −1(x))
= 1

f (f −1(x))
= 1

x

Section 3.9 Preliminary Questions

1. ln 4 2.
1

10
3. e2 4. e3

5. y(100) = cosh x and y(101) = sinh x

Section 3.9 Exercises

1.
d

dx
x ln x = ln x + 1 3.

d

dx
(ln x)2 = 2

x
ln x

5.
d

dx
ln(9x2 − 8) = 18x

9x2 − 8

7.
d

dt
ln(sin t + 1) = cos t

sin t + 1

9.
d

dx

ln x

x
= 1 − ln x

x2
11.

d

dx
ln(ln x) = 1

x ln x

13.
d

dx
(ln(ln x))3 = 3(ln(ln x))2

x ln x

15.
d

dx
ln((x + 1)(2x + 9)) = 4x + 11

(x + 1)(2x + 9)

17.
d

dx
11x = ln 11 · 11x

19.
d

dx

2x − 3−x

x
= x(2x ln 2 + 3−x ln 3) − (2x − 3−x)

x2
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21. f ′(x) = 1

x
· 1

ln 2
23.

d

dt
log3(sin t) = cot t

ln 3
25. y = 36 ln 6(x − 2) + 36

27. y = 320 ln 3(t − 2) + 318

29. y = 5−1 31. y = −1(t − 1) + ln 4

33. y = 12

25 ln 5
(z − 3) + 2 35. y = 8

ln 2

(
w − 1

8

)
− 3

37. y′ = 2x + 14 39. y′ = 3x2 − 12x + 79

41. y′ = x(x2 + 1)√
x + 1

(
1

x
+ 2x

x2 + 1
− 1

2(x + 1)

)
43.

y′ = 1

2

√
x(x + 2)

(2x + 1)(3x + 2)
·
(

1

x
+ 1

x + 2
− 2

2x + 1
− 3

3x + 2

)

45.
d

dx
x3x = x3x(3 + 3 ln x)

47.
d

dx
xex = xex

(
ex

x
+ ex ln x

)

49.
d

dx
x3x = x3x

(
3x

x
+ (ln x)(ln 3)3x

)

51.
d

dx
sinh(9x) = 9 cosh(9x)

53.
d

dt
cosh2(9 − 3t) = −6 cosh(9 − 3t) sinh(9 − 3t)

55.
d

dx

√
cosh x + 1 = 1

2
(cosh x + 1)−1/2 sinh x

57.
d

dt

coth t

1 + tanh t
= 1

1 + cosh t

59.
d

dx
sinh(ln x) = cosh(ln x)

x

61.
d

dx
tanh(ex) = ex sech2(ex)

63.
d

dx
sech(

√
x) = −1

2
x−1/2 sech

√
x tanh

√
x

65.
d

dx
sech x coth x = − csch x coth x

67.
d

dx
cosh−1(3x) = 3√

9x2 − 1

69.
d

dx
(sinh−1(x2))3 = 3(sinh−1(x2))2 2x√

x4 + 1

71.
d

dx
ecosh−1 x = ecosh−1 x

(
1√

x2 − 1

)

73.
d

dt
tanh−1(ln t) = 1

t (1 − (ln t)2)

75.
d

dx
coth x = d

dx

cosh x

sinh x
= sinh2 x − cosh2 x

sinh2 x
= −1

sinh2 x
=

− csch2 x

79. 1.22 cents per year

83. (a)
dP

dT
= − 1

T ln 10
(b) �P ≈ −0.054

85.
d

dx
logb x = d

dx

ln x

ln b
= 1

(ln b)x

Section 3.10 Preliminary Questions
1. The chain rule
2. (a) This is correct (b) This is correct

(c) This is incorrect. Because the differentiation is with respect to the
variable x, the chain rule is needed to obtain

d

dx
sin(y2) = 2y cos(y2)

dy

dx
.

3. There are two mistakes in Jason’s answer. First, Jason should
have applied the product rule to the second term to obtain

d

dx
(2xy) = 2x

dy

dx
+ 2y.

Second, he should have applied the general power rule to the third
term to obtain

d

dx
y3 = 3y2 dy

dx
.

4. (b)

Section 3.10 Exercises

1. (2, 1),
dy

dx
= −2

3

3.
d

dx

(
x2y3

)
= 3x2y2y′ + 2xy3

5.
d

dx

((
x2 + y2

)3/2
)

= 3
(
x + yy′)√x2 + y2

7.
d

dx

y

y + 1
= y′

(y + 1)2
9. y′ = − 2x

9y2

11. y′ = 1 − 2xy − 6x2y

x2 + 2x3 − 1
13. R′ = −3R

5x

15. y′ = y(y2 − x2)

x(y2 − x2 − 2xy2)
17. y′ = 9

4
x1/2y5/3

19. y′ = (2x + 1)y2

y2 − 1
21. y′ = 1 − cos(x + y)

cos(x + y) + sin y

23. y′ = ey − 2y

2x + 3y2 − xey

25. y′ = xy − y

xy + x
29. y′ = 1

4
31. y = −1

2
x + 2

33. y = −2x + 2 35. y = −12

5
x + 32

5
37. y = 4

3
x + 4

3
39. The tangent is horizontal at the points (−1,

√
3) and (−1, −√

3)

41. The tangent line is horizontal at(
2
√

78

13
, −4

√
78

13

)
and

(
−2

√
78

13
,

4
√

78

13

)
.

43. • When y = 21/4, we have

y′ = −21/4 − 1

4
(
23/4

) = −
√

2 + 4√2

8
≈ −0.3254.

When y = −21/4, we have

y′ = 21/4 − 1

−4
(
23/4

) = −
√

2 − 4√2

8
≈ −0.02813.

• At the point (1, 1), the tangent line is y = 1

5
x + 4

5
.

45. (21/3, 22/3) 47. x = 1

2
, 1 ± √

2
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49. • At (1, 2), y′ = 1

3
• At (1, −2), y′ = −1

3
• At (1, 1

2 ), y′ = 11

12
• At (1, − 1

2 ), y′ = − 11

12

51.
dx

dy
= y(2y2 − 1)

x
; The tangent line is vertical at:

(1, 0), (−1, 0),

(√
3

2
,

√
2

2

)
,

(
−

√
3

2
,

√
2

2

)
,

(√
3

2
, −

√
2

2

)
,

(
−

√
3

2
, −

√
2

2

)
.

53.
dx

dy
= 2y

3x2 − 4
; it follows that dx

dy
= 0 when y = 0, so the

tangent line to this curve is vertical at the points where the curve
intersects the x-axis.

1

2

−1

−2

−1−2 321
x

y

55. (b): y′′ = y3 − 2x2

y5 57. y′′ = 10

27

59. x
dy

dt
+ y

dx

dt
= 0, and

dy

dt
= −y

x

dx

dt

61. (a)
dy

dt
= x2

y2

dx

dt
(b)

dy

dt
= − x + y

2y3 + x

dx

dt

63. Let C1 be the curve described by x2 − y2 = c, and let C2 be the
curve described by xy = d . Suppose that P = (x0, y0) lies on the
intersection of the two curves x2 − y2 = c and xy = d. Since
x2 − y2 = c, y′ = x

y . The slope to the tangent line to C1 is x0
y0

. On

the curve C2, since xy = d , y′ = − y
x . Therefore the slope to the

tangent line to C2 is − y0
x0

. The two slopes are negative reciprocals of
one another, hence the tangents to the two curves are perpendicular.

65. • Upper branch:

−2−4 42
x

2

−2

y

• Lower part of lower left curve:

x

y

−4 −3 −2 −1

−2

−1

1

• Upper part of lower left curve:

x

y

−4 −3 −2 −1

−1

1

−2

• Upper part of lower right curve:

y

−1

−2

1

1 2 3 4
x

• Lower part of lower right curve:

y

−1

−2

1

1 2 3 4
x

Section 3.10 Preliminary Questions
1. Let s and V denote the length of the side and the corresponding

volume of a cube, respectively. Determine dV
dt

if ds
dt

= 0.5 cm/s.

2.
dV

dt
= 4πr2 dr

dt

3. Determine dh
dt

if dV
dt

= 2 cm3/min

4. Determine dV
dt

if dh
dt

= 1 cm/min

Section 3.10 Exercises
1. 0.039 ft/min

3. (a) 100π ≈ 314.16 m2/min (b) 24π ≈ 75.40 m2/min

5. 27000π cm3/min 7. 9600π cm2/min

9. −0.632 m/s 11. x = 4.737 m; dx
dt

≈ 0.405 m/s

13.
9

8π
≈ 0.36 m/min 15.

1000π

3
≈ 1047.20 cm3/s

17. 0.675 meters per second

19. (a) 799.91 km/h (b) 0 km/h
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21. 1.22 km/min 23.
1200

241
≈ 4.98 rad/hr

25. (a)
100

√
13

13
≈ 27.735 km/h (b) 112.962 km/h

27.
√

16.2 ≈ 4.025 m 29.
5

3
m/s 31. −1.92kPa/min

33. −1

8
rad/s

35. (b): when x = 1, L′(t) = 0; when x = 2, L′(t) = 16

3
37. −4

√
5 ≈ −8.94 ft/s

39. −0.79 m/min

41. Let the equation y = f (x) describe the shape of the roller coaster
track. Taking d

dt
of both sides of this equation yields dy

dt
= f ′(x) dx

dt
.

43. (a) The distance formula gives

L =
√

(x − r cos θ)2 + (−r sin θ)2.

Thus,

L2 = (x − r cos θ)2 + r2 sin2 θ.

(b) From (a) we have

0 = 2 (x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
.

(c) −80π ≈ −251.33 cm/min

45. (c):
3
√

5

2500
≈ 0.0027 m/min

Chapter 3 Review
1. 3; the slope of the secant line through the points (2, 7) and (0, 1)

on the graph of f (x)

3.
8

3
; the value of the difference quotient should be larger than the

value of the derivative

5. f ′(1) = 1; y = x − 1

7. f ′(4) = − 1

16
; y = − 1

16
x + 1

2

9. −2x 11.
1

(2 − x)2
13. f ′(1) where f (x) = √

x

15. f ′(π) where f (t) = sin t cos t 17. f (4) = −2; f ′(4) = 3

19. (C) is the graph of f ′(x)

21. (a) 8.05 cm/year (b) Larger over the first half
(c) h′(3) ≈ 7.8 cm/year; h′(8) ≈ 6.0 cm/year

23. A′(t) measures the rate of change in automobile production in
the United States; A′(1971) ≈ 0.25 million automobiles/year;
A′(1974) would be negative

25. (b)

27. g′(x) = 1

f ′(g(x))
= 1

f (g(x))2
= 1

x2
= x−2

29. 15x4 − 14x 31. −7.3t−8.3 33.
1 − 2x − x2

(x2 + 1)2

35. 6(4x3 − 9)(x4 − 9x)5 37. 27x(2 + 9x2)1/2

39.
2 − z

2(1 − z)3/2
41. 2x − 3

2
x−5/2

43.
1

2

(
x +

√
x + √

x

)−1/2 (
1 + 1

2

(
x + √

x
)−1/2

(
1 + 1

2
x−1/2

))
45. −3t−4 sec2(t−3)

47. −6 sin2 x cos2 x + 2 cos4 x

49.
1 + sec t − t sec t tan t

(1 + sec t)2
51.

8 csc2 θ

(1 + cot θ)2

53. − sec2(
√

1 + csc θ) csc θ cot θ

2(
√

1 + csc θ)

55. −36e−4x 57. (4 − 2t)e4t−t2
59.

8x

4x2 + 1
61.

2 ln s

s

63. cot θ 65. sec(z + ln z) tan(z + ln z)

(
1 + 1

z

)

67. −2(ln 7)(7−2x) 69.
1

1 + (ln x)2
· 1

x

71. − 1

|x|
√

x2 − 1 csc−1 x
73.

2 ln s

s
sln s

75. 2(sin2 t)t (t cot t + ln sin t) 77. 2t cosh(t2) 79.
ex

1 − e2x

81. α = 0 and α > 1

83. Let f (x) = xe−x . Then f ′(x) = e−x(1 − x). On [1, ∞),
f ′(x) < 0, so f (x) is decreasing and therefore one-to-one. The
domain of g(x) is (0, e−1], and the range is [1, ∞). g′(2e−2) = −e2.

85. −27 87. −57

16
89. −18 91. (−1, −1) and (3, 7)

93. a = 1

6
95. 72x − 10 97. −(2x + 3)−3/2

99. 8x2 sec2(x2) tan(x2) + 2 sec2(x2) 101.
dy

dx
= x2

y2

103.
dy

dx
= y2 + 4x

1 − 2xy
105.

dy

dx
= cos(x + y)

1 − cos(x + y)

107. For the plot on the left, the red, green and blue curves,
respectively, are the graphs of f , f ′ and f ′′. For the plot on the right,
the green, red and blue curves, respectively, are the graphs of f , f ′
and f ′′.

109.
(x + 1)3

(4x − 2)2

(
3

x + 1
− 4

2x − 1

)

111. 4e(x−1)2
e(x−3)2

(x − 2)

113.
e3x(x − 2)2

(x + 1)2

(
3 + 2

x − 2
− 2

x + 1

)

115.
dR

dp
= p

dq

dp
+ q = q

p

q

dq

dp
+ q = q(E + 1)

117. E(150) = −3; number of passengers increases 3% when the
ticket price is lowered 1%

119.
−11π

360
≈ −0.407 cm/min

121.
640

(336)2
≈ 0.00567 cm/s

123. 0.284 m/s
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Chapter 4
Section 4.1 Preliminary Questions

1. True 2. g(1.2) − g(1) ≈ 0.8 3. f (2.1) ≈ 1.3

4. The Linear Approximation tells us that up to a small error, the
change in output �f is directly proportional to the change in input
�x when �x is small.

Section 4.1 Exercises
1. �f ≈ 0.12 3. �f ≈ −0.00222 5. �f ≈ 0.003333

7. �f ≈ 0.0074074

9. �f ≈ 0.049390; error is 0.000610; percentage error is 1.24%

11. �f ≈ −0.0245283; error is 0.0054717; percentage error is
22.31%

13. �y ≈ −0.007 15. �y ≈ −0.026667

17. �f ≈ 0.1; error is 0.000980486

19. �f ≈ −0.0005; error is 3.71902 × 10−6

21. �f ≈ 0.083333; error is 3.25 × 10−3

23. �f ≈ −0.1; error is 4.84 × 10−3 25. f (4.03) ≈ 2.01

27.
√

2.1 − √
2 is larger than

√
9.1 − √

9

29. R(9) = 25110 euros; if p is raised by 0.5 euros, then �R ≈ 585
euros; on the other hand, if p is lowered by 0.5 euros, then
�R ≈ −585 euros.

31. (a) �W ≈ W ′(R)�x = −2wR2

R3
h = −2wh

R
≈ −0.0005wh

(b) �W ≈ −0.7 pounds

33. �L ≈ −0.00171 cm

35. (a) �P ≈ −0.434906 kilopascals

(b) The actual change in pressure is −0.418274 kilopascals; the
percentage error is 3.98%

37. (a) �h ≈ 0.71 cm (b) �h ≈ 1.02 cm.

(c) There is a bigger effect at higher velocities.

39. (a) If θ = 34◦ (i.e., t = 17
90π ), then

�s ≈ s′(t)�t = 625

16
cos

(
17

45
π

)
�t

= 625

16
cos

(
17

45
π

)
�θ · π

180
≈ 0.255�θ.

(b) If �θ = 2◦, this gives �s ≈ 0.51 ft, in which case the shot would
not have been successful, having been off half a foot.

41. �V ≈ 4π(25)2(0.5) ≈ 3927 cm3;
�S ≈ 8π(25)(0.5) ≈ 314.2 cm2

43. P = 6 atmospheres; �P ≈ ±0.45 atmospheres

45. L(x) = 4x − 3 47. L(θ) = θ − π

4
+ 1

2

49. L(x) = −1

2
x + 1 51. L(x) = 1 53. L(x) = 1

2
e(x + 1)

55. f (2) = 8

57.
√

16.2 ≈ L(16.2) = 4.025. Graphs of f (x) and L(x) are shown
below. Because the graph of L(x) lies above the graph of f (x), we
expect that the estimate from the Linear Approximation is too large.

y

x
1
2
3
4

0

5

5 10 15 2520

f (x)

L(x)

59.
1√
17

≈ L(17) ≈ 0.24219; the percentage error is 0.14%

61.
1

(10.03)2
≈ L(10.03) = 0.00994; the percentage error is

0.0027%

63. (64.1)1/3 ≈ L(64.1) ≈ 4.002083; the percentage error is
0.000019%

65. cos−1(0.52) ≈ L(0.02) = 1.024104; the percentage error is
0.015%

67. e−0.012 ≈ L(−0.012) = 0.988; the percentage error is 0.0073%

69. Let f (x) = √
x. Then f (9) = 3, f ′(x) = 1

2x−1/2 and

f ′(9) = 1
6 . Therefore, by the Linear Approximation,

f (9 + h) − f (9) = √
9 + h − 3 ≈ 1

6
h.

Moreover, f ′′(x) = − 1
4x−3/2, so |f ′′(x)| = 1

4x−3/2. Because this is
a decreasing function, it follows that for x ≥ 9,

K = max |f ′′(x)| ≤ |f ′′(9)| = 1

108
< 0.01.

From the following table, we see that for h = 10−n, 1 ≤ n ≤ 4,
E ≤ 1

2Kh2.

h E = |√9 + h − 3 − 1
6h| 1

2Kh2

10−1 4.604 × 10−5 5.00 × 10−5

10−2 4.627 × 10−7 5.00 × 10−7

10−3 4.629 × 10−9 5.00 × 10−9

10−4 4.627 × 10−11 5.00 × 10−11

71.
dy

dx

∣∣∣∣
(2,1)

= −1

3
; y ≈ L(2.1) = 0.967

73. L(x) = −14

25
x + 36

25
; y ≈ L(−1.1) = 2.056

75. Let f (x) = x2. Then

�f = f (5 + h) − f (5) = (5 + h)2 − 52 = h2 + 10h

and

E = |�f − f ′(5)h| = |h2 + 10h − 10h| = h2 = 1

2
(2)h2 = 1

2
Kh2.

Section 4.2 Preliminary Questions
1. A critical point is a value of the independent variable x in the

domain of a function f at which either f ′(x) = 0 or f ′(x) does not
exist.

2. (b) 3. (b)

4. Fermat’s Theorem claims: If f (c) is a local extreme value, then
either f ′(c) = 0 or f ′(c) does not exist.
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Section 4.2 Exercises
1. (a) 3 (b) 6 (c) Local maximum of 5 at x = 5

(d) Answers may vary. One example is the interval [4, 8]. Another is
[2, 6].
(e) Answers may vary. One example is [0, 2].
3. x = 1 5. x = −3 and x = 6 7. x = 0 9. x = ±1

11. t = 3 and t = −1

13. x = 0, x = ±√
2/3, x = ±1

15. θ = nπ

2
17. x = 1

e
19. x = ±

√
3

2
21. (a) c = 2 (b) f (0) = f (4) = 1

(c) Maximum value: 1; minimum value: −3.

(d) Maximum value: 1; minimum value: −2.

23. x = π

4
; Maximum value:

√
2; minimum value: 1

25. Maximum value: 1

y

x
0.2
0.4
0.6
0.8

0

1

1 2 3 4

27. Critical point: x ≈ 0.652185; maximum value: approximately
0.561096

29. Minimum: f (−1) = 3, maximum: f (2) = 21

31. Minimum: f (0) = 0, maximum: f (3) = 9

33. Minimum: f (4) = −24, maximum: f (6) = 8

35. Minimum: f (1) = 5, maximum: f (2) = 28

37. Minimum: f (2) = −128, maximum: f (−2) = 128

39. Minimum: f (6) = 18.5, maximum: f (5) = 26

41. Minimum: f (1) = −1, maximum: f (0) = f (3) = 0

43. Minimum: f (0) = 2
√

6 ≈ 4.9, maximum:f (2) = 4
√

2 ≈ 5.66

45. Minimum: f

(√
3

2

)
≈ −0.589980, maximum:

f (4) ≈ 0.472136

47. Minimum: f (0) = f
(π

2

)
= 0, maximum:f

(π

4

)
= 1

2
49. Minimum: f (0) = −1, maximum:

f
(π

4

)
= √

2
(π

4
− 1
)

≈ −0.303493

51. Minimum: g
(π

3

)
= π

3
− √

3 ≈ −0.685, maximum:

g

(
5

3
π

)
= 5

3
π + √

3 ≈ 6.968

53. Minimum: f
(π

4

)
= 1 − π

2
≈ −0.570796, maximum: f (0) = 0

55. Minimum: f (1) = 0, maximum is f (e) = e−1 ≈ 0.367879

57. Minimum: f (5) = 5 tan−1 5 − 5 ≈ 1.867004. maximum:
f (2) = 5 tan−1 2 − 2 ≈ 3.535744

59. (d) π
6 , π

2 , 5π
6 , 7π

6 , 3π
2 , and 11π

6 ; the maximum value is

f (π
6 ) = f ( 7π

6 ) = 3
√

3
2 and the minimum value is

f ( 5π
6 ) = f ( 11π

6 ) = − 3
√

3
2

(e) We can see that there are six flat points on the graph between 0
and 2π , as predicted. There are 4 local extrema, and two points at
( π

2 , 0) and ( 3π
2 , 0) where the graph has neither a local maximum nor

a local minimum.

x
1

2 3

4

5

6

1

2

−1

−2

y

61. Critical point: x = 2; minimum value: f (2) = 0, maximum:
f (0) = f (4) = 2

63. Critical point: x = 2; minimum value: f (2) = 0, maximum:
f (4) = 20

65. c = 1 67. c = 15

4
69. f (0) < 0 and f (2) > 0 so there is at least one root by the
Intermediate Value Theorem; there cannot be another root because
f ′(x) ≥ 4 for all x.

71. There cannot be a root c > 0 because f ′(x) > 4 for all x > 0.

75. b ≈ 2.86

77. (a) F = 1

2

(
1 − v2

2

v2
1

)(
1 + v2

v1

)
(b) F(r) achieves its maximum value when r = 1/3

(c) If v2 were 0, then no air would be passing through the turbine,
which is not realistic.

81. • The maximum value of f on [0, 1] is

f

((a

b

)1/(b−a)
)

=
(a

b

)a/(b−a) −
(a

b

)b/(b−a)
.

• 1

4
83. Critical points: x = 1, x = 4 and x = 5

2 ; maximum value:

f (1) = f (4) = 5
4 , minimum value: f (−5) = 17

70

−5 −4 −3 −2 −1 1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

y

x

85. (a) There are therefore four points at which the derivative is zero:

(−1, −√
2), (−1,

√
2), (1, −√

2), (1,
√

2).

There are also critical points where the derivative does not exist:

(0, 0), (± 4√
27, 0).

(b) The curve 27x2 = (x2 + y2)3 and its horizontal tangents are
plotted below.
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1

−1

y

x
−2 −1 1 2

87.

x
1 2 3

10

−10

y

89.

y

x
0

1

2

3

4

1 2 3 4

91. If f (x) = a sin x + b cos x, then f ′(x) = a cos x − b sin x, so
that f ′(x) = 0 implies a cos x − b sin x = 0. This implies tan x = a

b
.

Then,

sin x = ±a√
a2 + b2

and cos x = ±b√
a2 + b2

.

Therefore

f (x) = a sin x + b cos x = a
±a√

a2 + b2
+ b

±b√
a2 + b2

= ± a2 + b2√
a2 + b2

= ±
√

a2 + b2.

93. Let f (x) = x2 + rx + s and suppose that f (x) takes on both
positive and negative values. This will guarantee that f has two real
roots. By the quadratic formula, the roots of f are

x = −r ±
√

r2 − 4s

2
.

Observe that the midpoint between these roots is

1

2

(
−r +

√
r2 − 4s

2
+ −r −

√
r2 − 4s

2

)
= − r

2
.

Next, f ′(x) = 2x + r = 0 when x = − r
2 and, because the graph of

f (x) is an upward opening parabola, it follows that f (− r
2 ) is a

minimum.
95. b > 1

4a2

97. • Let f (x) be a continuous function with f (a) and f (b) local
minima on the interval [a, b]. By Theorem 1, f (x) must take on
both a minimum and a maximum on [a, b]. Since local minima
occur at f (a) and f (b), the maximum must occur at some other
point in the interval, call it c, where f (c) is a local maximum.

• The function graphed here is discontinuous at x = 0.

x
2 4 6 8−8 −6 −4 −2

4

6

8

y

Section 4.3 Preliminary Questions
1. m = 3 2. (c)

3. Yes. The figure below displays a function that takes on only
negative values but has a positive derivative.

x

y

4. (a) f (c) must be a local maximum. (b) No.

Section 4.3 Exercises

1. c = 4 3. c = 7π

4
5. c = ±√

7 7. c = −1

2
ln

(
1 − e−6

6

)
9. The slope of the secant line between x = 0 and x = 1 is

f (1) − f (0)

1 − 0
= 2 − 0

1
= 2.

It appears that the x-coordinate of the point of tangency is
approximately 0.62.

y = x5 + x2

y = 2x − 0.764

x
1

2

4

y

x

y

0.3

0.6

0.5

0.4

0.56 0.6 0.640.52

11. The derivative is positive on the intervals (0, 1) and (3, 5) and
negative on the intervals (1, 3) and (5, 6).

13. f (2) is a local maximum; f (4) is a local minimum

15. y

x
0

2

4

6

8

10

1 2 3 4 5

17.

x
1 2 3 4

2

4

6

8

−2

y



A54 ANSWERS TO ODD-NUMBERED EXERCISES

19. critical point: x = 3 - local maximum

21. critical point: x = −2 - local maximum; critical point: x = 0 -
local minimum

23. c = 7
2

x
(
−∞, 7

2

)
7/2

(
7
2 , ∞

)
f ′ + 0 −
f ↗ M ↘

25. c = 0, 8

x (−∞, 0) 0 (0, 8) 8 (8, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

27. c = −2, −1, 1

x (−∞, −2) −2 (−2, −1) −1 (−1, 1) 1 (1, ∞)

f ′ − 0 + 0 − 0 +
f ↘ m ↗ M ↘ m ↗

29. c = −2, −1

x (−∞, −2) −2 (−2, −1) −1 (−1, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

31. c = 0

x (−∞, 0) 0 (0, ∞)

f ′ + 0 +
f ↗ �= ↗

33. c = ( 3
2 )2/5

x (0, ( 3
2 )2/5) 3

2
2/5

(( 3
2 )2/5, ∞)

f ′ − 0 +
f ↘ m ↗

35. c = 1

x (0, 1) 1 (1, ∞)

f ′ − 0 +
f ↘ m ↗

37. c = 0

x (−∞, 0) 0 (0, ∞)

f ′ + 0 −
f ↗ M ↘

39. c = 0

x (−∞, 0) 0 (0, ∞)

f ′ + 0 +
f ↗ ¬ ↗

41. c = π
2 and c = π

x
(
0, π

2

)
π
2

(
π
2 , π

)
π (π, 2π)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

43. c = π
2 , 7π

6 , 3π
2 , and 11π

6

x
(
0, π

2

)
π
2

(
π
2 , 7π

6

)
7π
6

(
7π
6 , 3π

2

)
f ′ + 0 − 0 +
f ↗ M ↘ m ↗

x 3π
2

(
3π
2 , 11π

6

)
11π

6

(
11π

6 , 2π
)

f ′ 0 − 0 +
f M ↘ m ↗

45. c = 0

x (−∞, 0) 0 (0, ∞)

f ′ − 0 +
f ↘ m ↗

47. c = −π
4

x
[−π

2 , −π
4

) −π
4

(−π
4 , π

2

]
f ′ + 0 −
f ↗ M ↘

49. c = ±1

x (−∞, −1) −1 (−1, 1) 1 (1, ∞)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

51. c = 1

x (0, 1) 1 (1, ∞)

f ′ − 0 +
f ↘ m ↗

53.
(

1

e

)1/e

≈ 0.692201 55. f ′(x) > 0 for all x

57. The graph of h(x) is shown below at the left. Because h(x) is
negative for x < −1 and for 0 < x < 1, it follows that f (x) is
decreasing for x < −1 and for 0 < x < 1. Similarly, f (x) is
increasing for −1 < x < 0 and for x > 1 because h(x) is positive on
these intervals. Moreover, f (x) has local minima at x = −1 and
x = 1 and a local maximum at x = 0. A plausible graph for f (x) is
shown below at the right.
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x

0.3

0.2

0.1

21−1−2

−0.2

x

1.0

0.5

−1.0

−0.5

h(x) f (x)

1 2−2 −1

59. f ′(x) < 0 as long as x < 500; so,
8002 + 2002 = f (200) > f (400) = 6002 + 4002.

61. every point c ∈ (a, b)

69. (a) Let g(x) = cos x and f (x) = 1 − 1
2x2. Then

f (0) = g(0) = 1 and g′(x) = − sin x ≥ −x = f ′(x) for x ≥ 0 by
Exercise 67. Now apply Exercise 67 to conclude that
cos x ≥ 1 − 1

2x2 for x ≥ 0.

(b) Let g(x) = sin x and f (x) = x − 1
6x3. Then f (0) = g(0) = 0

and g′(x) = cos x ≥ 1 − 1
2x2 = f ′(x) for x ≥ 0 by part (a). Now

apply Exercise 67 to conclude that sin x ≥ x − 1
6x3 for x ≥ 0.

(c) Let g(x) = 1 − 1
2x2 + 1

24x4 and f (x) = cos x. Then

f (0) = g(0) = 1 and g′(x) = −x + 1
6x3 ≥ − sin x = f ′(x) for

x ≥ 0 by part (b). Now apply Exercise 67 to conclude that
cos x ≤ 1 − 1

2x2 + 1
24x4 for x ≥ 0.

(d) The next inequality in the series is sin x ≤ x − 1
6x3 + 1

120x5,
valid for x ≥ 0.

71. • Let f ′′(x) = 0 for all x. Then f ′(x) = constant for all x.
Since f ′(0) = m, we conclude that f ′(x) = m for all x.

• Let g(x) = f (x) − mx. Then g′(x) = f ′(x) − m = m − m = 0
which implies that g(x) = constant for all x and consequently
f (x) − mx = constant for all x. Rearranging the statement,
f (x) = mx + constant. Since f (0) = b, we conclude that
f (x) = mx + b for all x.

73. (a) Let g(x) = f (x)2 + f ′(x)2. Then

g′(x) = 2f (x)f ′(x) + 2f ′(x)f ′′(x) = 2f (x)f ′(x) + 2f ′(x)(−f (x)) = 0,

Because g′(0) = 0 for all x, g(x) = f (x)2 + f ′(x)2 must be a
constant function. To determine the value of C, we can substitute any
number for x. In particular, for this problem, we want to substitute
x = 0 and find C = f (0)2 + f ′(0)2. Hence,

f (x)2 + f ′(x)2 = f (0)2 + f ′(0)2.

(b) Let f (x) = sin x. Then f ′(x) = cos x and f ′′(x) = − sin x, so
f ′′(x) = −f (x). Next, let f (x) = cos x. Then f ′(x) = − sin x,
f ′′(x) = − cos x, and we again have f ′′(x) = −f (x). Finally, if we
take f (x) = sin x, the result from part (a) guarantees that

sin2 x + cos2 x = sin2 0 + cos2 0 = 0 + 1 = 1.

Section 4.4 Preliminary Questions
1. (a) increasing 2. f (c) is a local maximum

3. False 4. False

Section 4.4 Exercises
1. (a) In C, we have f ′′(x) < 0 for all x.

(b) In A, f ′′(x) goes from + to −.

(c) In B, we have f ′′(x) > 0 for all x.

(d) In D, f ′′(x) goes from − to +.

3. concave up everywhere; no points of inflection

5. concave up for x < −√
3 and for 0 < x <

√
3; concave down for

−√
3 < x < 0 and for x >

√
3; point of inflection at x = 0 and at

x = ±√
3

7. concave up for 0 < θ < π ; concave down for π < θ < 2π ; point
of inflection at θ = π

9. concave down for 0 < x < 9; concave up for x > 9; point of
inflection at x = 9

11. concave up on (0, 1); concave down on (−∞, 0) ∪ (1, ∞); point
of inflection at both x = 0 and x = 1

13. concave up for |x| > 1; concave down for |x| < 1; point of
inflection at both x = −1 and x = 1

15. concave down for x < 2
3 ; concave up for x > 2

3 ; point of

inflection at x = 2
3

17. concave down for x < 1
2 ; concave up for x > 1

2 ; point of

inflection at x = 1
2

19. The point of inflection in Figure 15 appears to occur at t = 40
days. The growth rate at the point of inflection is approximately 5.5
cm/day. Because the logistic curve changes from concave up to
concave down at t = 40, the growth rate at this point is the maximum
growth rate for the sunflower plant. Sketches of the first and second
derivative of h(t) are shown below at the left and at the right,
respectively.

20 40 60 80 100

1

2

3

4

6

5

t

10080604020
t

h´
0.1

−0.1

h´´

21. f (x) has an inflection point at x = b and another at x = e; f (x)

is concave down for b < x < e.

23. (a) f is increasing on (0, 0.4).

(b) f is decreasing on (0.4, 1) ∪ (1, 1.2).

(c) f is concave up on (0, 0.17) ∪ (0.64, 1).

(d) f is concave down on (0.17, 0.64) ∪ (1, 1.2).

25. critical points are x = 3 and x = 5; f (3) = 54 is a local
maximum, and f (5) = 50 is a local minimum

27. critical points are x = 0 and x = 1; f (0) = 0 is a local minimum,
Second derivative test is inconclusive at x = 1

29. critical points are x = −4 and x = 2; f (−4) = −16 is a local
maximum and f (2) = −4 is a local minimum

31. critical points are x = 0 and x = 2
9 ; f

(
2
9

)
is a local minimum;

f ′′(x) is undefined at x = 0, so the Second Derivative Test cannot be
applied there
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33. critical points are x = 0, x = π
3 and x = π ; f (0) is a local

minimum, f (π
3 ) is a local maximum and f (π) is a local minimum

35. critical points are x = ±
√

2
2 ; f

(√
2

2

)
is a local maximum and

f
(
−

√
2

2

)
is a local minimum

37. critical point is x = e−1/3; f
(
e−1/3

)
is a local minimum

39. x
(− ∞, 1

3

) 1
3

( 1
3 , 1
)

1 (1, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

x
(− ∞, 2

3

) 2
3

( 2
3 , ∞)

f ′′ − 0 +
f � I �

41. t
(− ∞, 0

)
0

(
0, 2

3

) 2
3

( 2
3 , ∞)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

t
(− ∞, 1

3

) 1
3

( 1
3 , ∞)

f ′′ + 0 −
f � I �

43. f ′′(x) > 0 for all x ≥ 0, which means there are no inflection
points

x 0
(

0, (2)2/3
)

(2)2/3
(
(2)2/3 , ∞

)
f ′ U − 0 +
f M ↘ m ↗

45.

x
(
−∞, −3

√
3
)

−3
√

3
(
−3

√
3, 3

√
3
)

3
√

3
(

3
√

3, ∞
)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

x (−∞, −9) −9 (−9, 0) 0 (0, 9) 9 (9, ∞)

f ′′ − 0 + 0 − 0 +
f � I � I � I �

47. θ (0, π) π (π, 2π)

f ′ + 0 +
f ↗ ¬ ↗

θ 0 (0, π) π (π, 2π) 2π

f ′′ 0 − 0 + 0

f ¬ � I � ¬

49. x
(−π

2 , π
2

)
f ′ +
f ↗

x
(−π

2 , 0
)

0
(
0, π

2

)
f ′′ − 0 +
f � I �

51.
x

(
0, 1 + √

3
)

1 + √
3

(
1 + √

3, ∞
)

f ′ + 0 −
f ↗ M ↘

x (0, 4) 4 (4, ∞)

f ′′ − 0 +
f � I �

53.

x
2 4

2

1

y

x
2 4

6

2

4

y

55.

x

10

5

−10

−5

y

1 2−2 −1

57. (a) Near the beginning of the epidemic, the graph of R is
concave up. Near the epidemic’s end, R is concave down.

(b) “Epidemic subsiding: number of new cases declining.”

59. The point of inflection should occur when the water level is equal
to the radius of the sphere. A possible graph of V (t) is shown below.

t

V

61. (a) f ′(u) = beb(a−u)

(1 + eb(a−u))2
> 0

(b) u = a + 1

b
ln 2

63. (a) From the definition of the derivative, we have

f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
h→0

f ′(c + h)

h
.

(b) We are given that f ′′(c) > 0. By part (a), it follows that

lim
h→0

f ′(c + h)

h
> 0;

in other words, for sufficiently small h,

f ′(c + h)

h
> 0.

Now, if h is sufficiently small but negative, then f ′(c + h) must also
be negative (so that the ratio f ′(c + h)/h will be positive) and
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c + h < c. On the other hand, if h is sufficiently small but positive,
then f ′(c + h) must also be positive and c + h > c. Thus, there exists
an open interval (a, b) containing c such that f ′(x) < 0 for a < x < c

and f ′(c) > 0 for c < x < b. Finally, because f ′(x) changes from
negative to positive at x = c, f (c) must be a local minimum.

65. (b) f (x) has a point of inflection at x = 0 and at x = ±1. The
figure below shows the graph of y = f (x) and its tangent lines at
each of the points of inflection. It is clear that each tangent line
crosses the graph of f (x) at the inflection point.

x

y

67. Let f (x) = anxn + an−1xn−1 + · · · + a1x + a0 be a
polynomial of degree n. Then
f ′(x) = nanxn−1 + (n − 1)an−1xn−2 + · · · + 2a2x + a1 and
f ′′(x) =
n(n − 1)anxn−2 + (n − 1)(n − 2)an−1xn−3 + · · · + 6a3x + 2a2. If
n ≥ 3 and is odd, then n − 2 is also odd and f ′′(x) is a polynomial of
odd degree. Therefore f ′′(x) must take on both positive and negative
values. It follows that f ′′(x) has at least one root c such that f ′′(x)

changes sign at c. The function f (x) will then have a point of
inflection at x = c. On the other hand, the functions f (x) = x2, x4

and x8 are polynomials of even degree that do not have any points of
inflection.

Section 4.5 Preliminary Questions
1. Not of the form 0

0 or ∞∞
2. No

Section 4.5 Exercises
1. L’Hôpital’s Rule does not apply.

3. L’Hôpital’s Rule does not apply.

5. L’Hôpital’s Rule does not apply.

7. L’Hôpital’s Rule does not apply.

9. 0

11. Quotient is of the form ∞∞ ; −9

2
13. Quotient is of the form ∞∞ ; 0

15. Quotient is of the form ∞∞ ; 0

17.
5

6
19. −3

5
21. −7

3
23.

9

7
25.

2

7
27. 1 29. 2

31. −1 33.
1

2
35. 0 37. − 2

π
39. 1 41. Does not exist

43. 0 45. ln a 47. e 49. e−3/2 51. 1 53.
1

π
55.

lim
x→π/2

cos mx

cos nx
=

⎧⎪⎪⎨
⎪⎪⎩

(−1)(m−n)/2, m, n even
does not exist, m even, n odd
0 m odd, n even
(−1)(m−n)/2 m

n , m, n odd

57.

lim
x→0

ln
(
(1 + x)1/x

)
= lim

x→0

1

x
ln(1 + x) = lim

x→0

ln(1 + x)

x
= 1,

so lim
x→0

(1 + x)1/x = e1 = e; x = 0.0005

59. (a) limx→0+ f (x) = 0; limx→∞ f (x) = e0 = 1.

(b) f is increasing for 0 < x < e, is decreasing for x > e and has a
maximum at x = e. The maximum value is f (e) = e1/e ≈ 1.444668.

61. Neither

63. lim
x→∞

ln x

xa
= lim

x→∞
x−1

axa−1
= lim

x→∞
1

a
x−a = 0

67. (a) 1 ≤ 2 + sin x ≤ 3, so

x

x2 + 1
≤ x(2 + sin x)

x2 + 1
≤ 3x

x2 + 1
;

it follows by the Squeeze Theorem that

lim
x→∞

x(2 + sin x)

x2 + 1
= 0.

(b) lim
x→∞ f (x) = lim

x→∞ x(2 + sin x) ≥ lim
x→∞ x = ∞ and

lim
x→∞ g(x) = lim

x→∞(x2 + 1) = ∞, but

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞
x(cos x) + (2 + sin x)

2x

does not exist since cos x oscillates. This does not violate L’Hôpital’s
Rule since the theorem clearly states

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)

“provided the limit on the right exists.”

69. (a) Using Exercise 68, we see that G(b) = eH(b). Thus,
G(b) = 1 if 0 ≤ b ≤ 1 and G(b) = b if b > 1.

(b)

4

y

x x

y

y

x x

y

3

2

1

4

3

2

1

4

5

6

3

2

1

5 10 15 5 10 15

5 10 155 10 15

4

3

2

1

b = 0.25 b = 0.5

b = 2.0 b = 3.0

71. lim
x→0

f (x)

xk = lim
x→0

1
xke1/x2 . Let t = 1/x. As x → 0, t → ∞.

Thus,

lim
x→0

1

xke1/x2 = lim
t→∞

tk

et2 = 0

by Exercise 70.
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73. For x �= 0, f ′(x) = e−1/x2
(

2
x3

)
. Here P(x) = 2 and r = 3.

Assume f (k)(x) = P(x)e−1/x2

xr . Then

f (k+1)(x) = e−1/x2

(
x3P ′(x) + (2 − rx2)P (x)

xr+3

)

which is of the form desired.
Moreover, from Exercise 71, f ′(0) = 0. Suppose f (k)(0) = 0.

Then

f (k+1)(0) = lim
x→0

f (k)(x) − f (k)(0)

x − 0
= lim

x→0

P(x)e−1/x2

xr+1

= P(0) lim
x→0

f (x)

xr+1
= 0.

77. lim
x→0

sin x
x = lim

x→0
cos x

1 = 1. To use L’Hôpital’s Rule to evaluate

limx→0
sin x

x , we must know that the derivative of sin x is cos x, but
to determine the derivative of sin x, we must be able to evaluate
limx→0

sin x
x .

79. (a) e−1/6 ≈ 0.846481724

x 1 0.1 0.01( sin x

x

)1/x2

0.841471 0.846435 0.846481

(b) 1/3

x ±1 ±0.1 ±0.01

1

sin2 x
− 1

x2
0.412283 0.334001 0.333340

Section 4.6 Preliminary Questions
1. An arc with the sign combination ++ (increasing, concave up) is

shown below at the left. An arc with the sign combination −+
(decreasing, concave up) is shown below at the right.

x

y

x

y

2. (c)

3. x = 4 is not in the domain of f

Section 4.6 Exercises
1. • In A, f is decreasing and concave up, so f ′ < 0 and

f ′′ > 0.
• In B, f is increasing and concave up, so f ′ > 0 and f ′′ > 0.
• In C, f is increasing and concave down, so f ′ > 0 and f ′′ < 0.

• In D, f is decreasing and concave down, so f ′ < 0 and f ′′ < 0.
• In E, f is decreasing and concave up, so f ′ < 0 and f ′′ > 0.
• In F, f is increasing and concave up, so f ′ > 0 and f ′′ > 0.
• In G, f is increasing and concave down, so f ′ > 0 and f ′′ < 0.

3. This function changes from concave up to concave down at
x = −1 and from increasing to decreasing at x = 0.

x

y

−1

0 1−1

5. The function is decreasing everywhere and changes from concave
up to concave down at x = −1 and from concave down to concave up
at x = − 1

2 .

x

y

0.05

−1 0

7.
15

y

x

10

5

2 4 6

9.

1

x
1 2 3−1

y

−1

2

−2

11.

2

x
2 4 6 8 10 12 14

y

4

6

0

13. Local maximum at x = −16, a local minimum at x = 0, and an
inflection point at x = −8.

−20 −15 −10 −5 5

1000

2000

3000

y

x
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15. f (0) is a local minimum, f ( 1
6 ) is a local maximum, and there is a

point of inflection at x = 1
12 .

0.04

x
0.2−0.2

y

−0.04

17. f has local minima at x = ±√
6, a local maximum at x = 0, and

inflection points at x = ±√
2.

5

x
2−2

y

10

19. Graph has no critical points and is always increasing, inflection
point at (0, 0).

20

x
21−2 −1

y

−40

40

−20

21. f ( 1−√
33

8 ) and f (2) are local minima, and f ( 1+√
33

8 ) is a local

maximum; points of inflection both at x = 0 and x = 3
2 .

4

x
21−1

y

6

2

−2

23. f (0) is a local maximum, f (12) is a local minimum, and there is
a point of inflection at x = 10.

1 × 107

5 × 106

−5 × 106

−5

y

x
5 10

25. f (4) is a local minimum, and the graph is always concave up.

4

y

x

2

5 10 15 20
−2

27. f has a local maximum at x = 6 and inflection points at x = 8
and x = 12.

−5
−10

−20

−30

5

y

x
10 15

29. f has a local minimum at x = −
√

2
2 , a local maximum at

x =
√

2
2 , inflection points at x = 0 and at x = ±

√
3

2 , and a horizontal
asymptote at y = 0.

−3 −2 −1 1 2 3
–0.2

0.2

0.4

y

x

31. f (2) is a local minimum and the graph is always concave up.

2

2 4 6 8

4

6

8

y

x

33. f has a local maximum at x = 1 and a point of inflection at
x = e−3/2.

−2
0.5 1.0 1.5 2.0 2.5

y

x

−4

−6
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35. Graph has an inflection point at x = 3
5 , a local maximum at

x = 1 (at which the graph has a cusp), and a local minimum at x = 9
5 .

40

x
321−2 −1

y

−20

20

−40
−60
−80

37. f has a local maximum at x = 0, local minima at x = ±3 and

points of inflection at x = ±
√

−6 + 3
√

5.

−6 −4 −2 2 4 6

−10

5

y

x

39. f has local minima at x = −1.473 and x = 1.347, a local

maximum at x = 0.126 and points of inflection at x = ±
√

2
3 .

20

y

x

15

10

5

−5−2 −1 1 2

41. Graph has an inflection point at x = π , and no local maxima or
minima.

y

x

1

2

3

4

5

6

0 654321

43. Local maximum at x = π
2 , a local minimum at x = 3π

2 , and

inflection points at x = π
6 and x = 5π

6 .

x
654

3

21

y

1

2

−2

−1

45. Local maximum at x = π
6 and a point of inflection at x = 2π

3 .

x
321

y

1

2

−2

−1

47. In both cases, there is a point where f is not differentiable at the
transition from increasing to decreasing or decreasing to increasing.

y

x

y

x

49. Graph (B) cannot be the graph of a polynomial.

51. (B) is the graph of f (x) = 3x2

x2 − 1
; (A) is the graph of

f (x) = 3x

x2 − 1
.

53. f is decreasing for all x �= 1
3 , concave up for x > 1

3 , concave

down for x < 1
3 , has a horizontal asymptote at y = 0 and a vertical

asymptote at x = 1
3 .

5

y

x

−5

−2 2

55. f is decreasing for all x �= 2, concave up for x > 2, concave
down for x < 2, has a horizontal asymptote at y = 1 and a vertical
asymptote at x = 2.

x
105−10 −5

y

−10

−5

10

5

57. f is decreasing for all x �= 0, 1, concave up for 0 < x < 1
2 and

x > 1, concave down for x < 0 and 1
2 < x < 1, has a horizontal

asymptote at y = 0 and vertical asymptotes at x = 0 and x = 1.

x
1 2−1

y

5

−5
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59. f is increasing for x < 0 and 0 < x < 1 and decreasing for
1 < x < 2 and x > 2; f is concave up for x < 0 and x > 2 and
concave down for 0 < x < 2; f has a horizontal asymptote at y = 0
and vertical asymptotes at x = 0 and x = 2.

−2

−5

5

y

x
4

61. f is increasing for x < 2 and for 2 < x < 3, is decreasing for
3 < x < 4 and for x > 4, and has a local maximum at x = 3; f is
concave up for x < 2 and for x > 4 and is concave down for
2 < x < 4; f has a horizontal asymptote at y = 0 and vertical
asymptotes at x = 2 and x = 4.

x
6542

3

1

y

5

−5

63. f is increasing for |x| > 2 and decreasing for −2 < x < 0 and
for 0 < x < 2; f is concave down for −2

√
2 < x < 0 and for

x > 2
√

2 and concave up for x < −2
√

2 and for 0 < x < 2
√

2; f has
a horizontal asymptote at y = 1 and a vertical asymptote at x = 0.

2

x
2 4 6−6 −4 −2

y

4

6

−6

−4

−2

65. f is increasing for x < 0 and for x > 2 and decreasing for
0 < x < 2; f is concave up for x < 0 and for 0 < x < 1, is concave
down for 1 < x < 2 and for x > 2, and has a point of inflection at
x = 1; f has a horizontal asymptote at y = 0 and vertical asymptotes
at x = 0 and x = 2.

x

2

4

−2

−4

y

1 2 3 4

−2 −1

67. f is increasing for x < 0, decreasing for x > 0 and has a local
maximum at x = 0; f is concave up for |x| > 1/

√
5, is concave

down for |x| < 1/
√

5, and has points of inflection at x = ±1/
√

5; f

has a horizontal asymptote at y = 0 and no vertical asymptotes.

x

1

0.8

42−2−4

y

69. f is increasing for x < 0 and decreasing for x > 0; f is concave

down for |x| <

√
2

2 and concave up for |x| >

√
2

2 ; f has a horizontal
asymptote at y = 0 and no vertical asymptotes.

x

1

0.8

0.2

105−5−10

y

73. f is increasing for x < −2 and for x > 0, is decreasing for
−2 < x < −1 and for −1 < x < 0, has a local minimum at x = 0,
has a local maximum at x = −2, is concave down on (−∞, −1) and
concave up on (−1, ∞); f has a vertical asymptote at x = −1; by
polynomial division, f (x) = x − 1 + 1

x+1 and

lim
x→±∞

(
x − 1 + 1

x + 1
− (x − 1)

)
= 0,

which implies that the slant asymptote is y = x − 1.

x

4

2

42−2−4

−4

−6

−2

y
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75. y = x + 2 is the slant asymptote of f (x); local minimum at
x = 2 + √

3, a local maximum at x = 2 − √
3 and f is concave down

on (−∞, 2) and concave up on (2, ∞); vertical asymptote at x = 2.

x

10

5
105−5−10

−10

−5

y

Section 4.7 Preliminary Questions
1. b + h +

√
b2 + h2 = 10

2. If the function tends to infinity at the endpoints of the interval,
then the function must take on a minimum value at a critical point.

3. No

Section 4.7 Exercises
1. (a) y = 3

2 − x (b) A = x( 3
2 − x) = 3

2x − x2

(c) Closed interval [0, 3
2 ]

(d) The maximum area 0.5625 m2 is achieved with x = y = 3
4 m.

3. Allot approximately 5.28 m of the wire to the circle.

5. The middle of the wire

7. The corral of maximum area has dimensions

x = 300

1 + π/4
m and y = 150

1 + π/4
m,

where x is the width of the corral and therefore the diameter of the
semicircle and y is the height of the rectangular section

9. Square of side length 4
√

2 11.
(

1

2
,

1

2

)

13. (0.632784, −1.090410) 15. θ = π

2
17.

3
√

3

4
r2

19. 60 cm wide by 100 cm high for the full poster (48 cm by 80 cm
for the printed matter)

21. Radius:
√

2
3R; half-height: R√

3

23. x = 10
√

5 ≈ 22.36 m and y = 20
√

5 ≈ 44.72 m where x is the
length of the brick wall and y is the length of an adjacent side

25. 1.0718 27. LH + 1
2 (L2 + H 2) 29. y = −3x + 24

33. s = 3 3√4 m and h = 2 3√4 m, where s is the length of the side of
the square bottom of the box and h is the height of the box

35. (a) Each compartment has length of 600 m and width of 400 m.

(b) 240000 square meters.

37. N ≈ 58.14 pounds and P ≈ 77.33 pounds

39. $990

41. 1.2 million euros in equipment and 600000 euros in labor

43. Brandon swims diagonally to a point located 20.2 m downstream
and then runs the rest of the way.

45. h = 3; dimensions are 9 × 18 × 3

47. A = B = 30 cm 49. x =
√

bh + h2

51. There are N shipments per year, so the time interval between
shipments is T = 1/N years. Hence, the total storage costs per year
are sQ/N . The yearly delivery costs are dN and the total costs is
C(N) = dN + sQ/N . Solving,

C′(N) = d − sQ

N2
= 0

for N yields N = √
sQ/d. N = 9.

53. (a) If b <
√

3a, then d = a − b/
√

3 > 0 and the minimum
occurs at this value of d. On the other hand, if b ≥ √

3a, then the
minimum occurs at the endpoint d = 0.
(b) Plots of S(d) for b = 0.5, b = √

3 and b = 3 are shown below.
For b = 0.5, the results of (a) indicate the minimum should occur for
d = 1 − 0.5/

√
3 ≈ 0.711, and this is confirmed in the plot. For both

b = √
3 and b = 3, the results of (a) indicate that the minimum

should occur at d = 0, and both of these conclusions are confirmed in
the plots.

1.6
x

0 0.2 0.4 0.6 0.8

b = 0.5

1

y

1.5

1.9
1.8
1.7

2
2.1

x
0 0.2 0.4 0.6 0.8 1

y

6.6

6.4

6.8
b = 3

4
x

0 0.2 0.4 0.6 0.8 1

y

4.2

4.1

4.3

4.4
b = �3

55. minimum value of F(θ) is
f mg√
1 + f 2

.

57. s ≈ 30.07 59. 15
√

5 61. 
 = (b2/3 + h2/3)3/2 ft
63. (a) α = 0 corresponds to shooting the ball directly at the basket
while α = π/2 corresponds to shooting the ball directly upward. In
neither case is it possible for the ball to go into the basket. If the angle
α is extremely close to 0, the ball is shot almost directly at the basket;
on the other hand, if the angle α is extremely close to π/2, the ball is
launched almost vertically. In either one of these cases, the ball has to
travel at an enormous speed.
(b) The minimum clearly occurs where θ = π/3.

π

6
π

4
π

3
5π

12
π

2

(c) v2 = 16d

F(θ)
; hence v2 is smallest whenever F(θ) is greatest.

(d) A critical point of F(θ) occurs where cos(α − 2θ) = 0, so that
α − 2θ = −π

2 (negative because 2θ > θ > α), and this gives us
θ = α/2 + π/4. The minimum value F(θ0) takes place at
θ0 = α/2 + π/4.
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(e) Plug in θ0 = α/2 + π/4. From Figure 34 we see that

cos α = d√
d2 + h2

and sin α = h√
d2 + h2

.

(f) This shows that the minimum velocity required to launch the ball
to the basket drops as shooter height increases. This shows one of the
ways height is an advantage in free throws; a taller shooter need not
shoot the ball as hard to reach the basket.

100

200

300

400

500

600

y

x
4 50 321

65. (a) From the figure, we see that

θ(x) = tan−1 c − f (x)

x
− tan−1 b − f (x)

x
.

Then

θ ′(x) = b − (f (x) − xf ′(x))

x2 + (b − f (x))2
− c − (f (x) − xf ′(x))

x2 + (c − f (x))2

= (b − c)
x2 − bc + (b + c)(f (x) − xf ′(x)) − (f (x))2 + 2xf (x)f ′(x)

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

= (b − c)
(x2 + (xf ′(x))2 − (bc − (b + c)(f (x) − xf ′(x)) + (f (x) − xf ′(x))2)

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

= (b − c)
(x2 + (xf ′(x))2 − (b − (f (x) − xf ′(x)))(c − (f (x) − xf ′(x)))

(x2 + (b − f (x))2)(x2 + (c − f (x))2)
.

(b) The point Q is the y-intercept of the line tangent to the graph of
f (x) at point P . The equation of this tangent line is

Y − f (x) = f ′(x)(X − x).

The y-coordinate of Q is then f (x) − xf ′(x).
(c) From the figure, we see that

BQ = b − (f (x) − xf ′(x)),

CQ = c − (f (x) − xf ′(x))

and

PQ =
√

x2 + (f (x) − (f (x) − xf ′(x)))2 =
√

x2 + (xf ′(x))2.

Comparing these expressions with the numerator of dθ/dx, it follows

that
dθ

dx
= 0 is equivalent to

PQ2 = BQ · CQ.

(d) The equation PQ2 = BQ · CQ is equivalent to

PQ

BQ
= CQ

PQ
.

In other words, the sides CQ and PQ from the triangle �QCP are
proportional in length to the sides PQ and BQ from the triangle
�QPB. As � PQB = � CQP , it follows that triangles �QCP and
�QPB are similar.

Section 4.8 Preliminary Questions
1. One

2. Every term in the Newton’s Method sequence will remain x0.

3. Newton’s Method will fail.

4. Yes, that is a reasonable description. The iteration formula for
Newton’s Method was derived by solving the equation of the tangent
line to y = f (x) at x0 for its x-intercept.

Section 4.8 Exercises
1.

n 1 2 3

xn 2.5 2.45 2.44948980

3.

n 1 2 3

xn 2.16666667 2.15450362 2.15443469

5.

n 1 2 3

xn 0.28540361 0.24288009 0.24267469

7. We take x0 = −1.4, based on the figure, and then calculate

n 1 2 3

xn −1.330964467 −1.328272820 −1.328268856

9. r1 ≈ 0.25917 and r2 ≈ 2.54264

11.
√

11 ≈ 3.317; a calculator yields 3.31662479

13. 27/3 ≈ 5.040; a calculator yields 5.0396842

15. 2.093064358 17. −2.225 19. 1.749

21. x = 4.49341, which is approximately 1.4303π

23. (2.7984, −0.941684)

25. (a) P ≈ $156.69

(b) b ≈ 1.02121; the interest rate is around 25.45%

27. (a) The sector SAB is the slice OAB with the triangle OPS

removed. OAB is a central sector with arc θ and radius OA = a, and

therefore has area a2θ
2 . OPS is a triangle with height a sin θ and base

length OS = ea. Hence, the area of the sector is

a2

2
θ − 1

2
ea2 sin θ = a2

2
(θ − e sin θ).
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(b) Since Kepler’s second law indicates that the area of the sector is
proportional to the time t since the planet passed point A, we get

πa2 (t/T ) = a2/2 (θ − e sin θ)

2π
t

T
= θ − e sin θ.

(c) From the point of view of the Sun, Mercury has traversed an
angle of approximately 1.76696 radians = 101.24◦. Mercury has
therefore traveled more than one fourth of the way around (from the
point of view of central angle) during this time.

29. The sequence of iterates diverges spectacularly, since
xn = (−2)n x0.

31. (a) Let f (x) = 1
x − c. Then

x − f (x)

f ′(x)
= x −

1
x − c

−x−2
= 2x − cx2.

(b) For c = 10.3, we have f (x) = 1
x − 10.3 and thus

xn+1 = 2xn − 10.3x2
n .

• Take x0 = 0.1.

n 1 2 3
xn 0.097 0.0970873 0.09708738

• Take x0 = 0.5.

n 1 2 3
xn −1.575 −28.7004375 −8541.66654

(c) The graph is disconnected. If x0 = .5, (x1, f (x1)) is on the other
portion of the graph, which will never converge to any point under
Newton’s Method.

33. θ ≈ 1.2757; hence, h = L
1 − cos θ

2 sin θ
≈ 1.11181

35. (a) a = 46.95

(b) s = 29.24

37. (a) a ≈ 28.46

(b) �L = 1 foot yields �s ≈ 0.61; �L = 5 yields �s ≈ 3.05

(c) s(161) − s(160) = 0.62, very close to the approximation
obtained from the Linear Approximation; s(165) − s(160) = 3.02,
again very close to the approximation obtained from the Linear
Approximation.

Section 4.9 Preliminary Questions
1. Any constant function is an antiderivative for the function

f (x) = 0.

2. No difference 3. No

4. (a) False. Even if f (x) = g(x), the antiderivatives F and G may
differ by an additive constant.

(b) True. This follows from the fact that the derivative of any
constant is 0.

(c) False. If the functions f and g are different, then the
antiderivatives F and G differ by a linear function:
F(x) − G(x) = ax + b for some constants a and b.

5. No

Section 4.9 Exercises

1. 6x3 + C 3.
2

5
x5 − 8x3 + 12 ln |x| + C

5. 2 sin x + 9 cos x + C 7. 12ex + 5x−1 + C

9. (a) (ii) (b) (iii) (c) (i) (d) (iv)

11. 4x − 9x2 + C 13.
11

5
t5/11 + C

15. 3t6 − 2t5 − 14t2 + C

17. 5z1/5 − 3

5
z5/3 + 4

9
z9/4 + C

19.
3

2
x2/3 + C 21. −18

t2
+ C

23.
2

5
t5/2 + 1

2
t2 + 2

3
t3/2 + t + C

25.
1

2
x2 + 3 ln |x| + 4x−1 + C

27. 12 sec x + C 29. − csc t + C

31. −1

3
tan(7 − 3x) + C 33.

25

3
tan(3z + 1) + C

35.
1

3
sin(3θ) − 2 tan

(
θ

4

)
+ C

37.
3

5
e5x + C 39. 4x2 + 2e5−2x + C

41. Graph (B) does not have the same local extrema as indicated by
f (x) and therefore is not an antiderivative of f (x).

43.
d

dx

(
1

7
(x + 13)7 + C

)
= (x + 13)6

45.
d

dx

(
1

12
(4x + 13)3 + C

)
= 1

4
(4x + 13)2(4) = (4x + 13)2

47. y = 1

4
x4 + 4 49. y = t2 + 3t3 − 2 51. y = 2

3
t3/2 + 1

3

53. y = 1

12
(3x + 2)4 − 1

3
55. y = 1 − cos x

57. y = 3 + 1

5
sin 5x 59. y = ex − e2 61. y = −3e12−3t + 10

63. f ′(x) = 6x2 + 1; f (x) = 2x3 + x + 2

65. f ′(x) = 1
4x4 − x2 + x + 1; f (x) = 1

20
x5 − 1

3
x3 + 1

2
x2 + x

67. f ′(t) = −2t−1/2 + 2; f (t) = −4t1/2 + 2t + 4

69. f ′(t) = 1

2
t2 − sin t + 2; f (t) = 1

6
t3 + cos t + 2t − 3

71. The differential equation satisfied by s(t) is

ds

dt
= v(t) = 6t2 − t,

and the associated initial condition is s(1) = 0;

s(t) = 2t3 − 1

2
t2 − 3

2
.

73. The differential equation satisfied by s(t) is

ds

dt
= v(t) = sin(πt/2),

and the associated initial condition is s(0) = 0;

s(t) = 2

π
(1 − cos(πt/2))

75. 6.25 seconds; 78.125 meters

77. 300 m/s 81. c1 = 1 and c2 = −1
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83. (a) By the Chain Rule, we have

d

dx

(
1

2
F(2x)

)
= 1

2
F ′(2x) · 2 = F ′(2x) = f (2x).

Thus 1
2F(2x) is an antiderivative of f (2x).

(b)
1

k
F (kx) + C

Chapter 4 Review
1. 8.11/3 − 2 ≈ 0.00833333; error is 3.445 × 10−5

3. 6251/4 − 6241/4 ≈ 0.002; error is 1.201 × 10−6

5. 1
1.02 ≈ 0.98; error is 3.922 × 10−4

7. L(x) = 5 + 1

10
(x − 25) 9. L(r) = 36π(r − 2)

11. L(x) = 1√
e
(2 − x) 13. �s ≈ 0.632

15. (a) An increase of $1500 in revenue.

(b) A small increase in price would result in a decrease in revenue.

17. 9% 21. c = 3

ln 4
≈ 2.164 ∈ (1, 4)

23. Let x > 0. Because f is continuous on [0, x] and differentiable
on (0, x), the Mean Value Theorem guarantees there exists a
c ∈ (0, x) such that

f ′(c) = f (x) − f (0)

x − 0
or f (x) = f (0) + xf ′(c).

Now, we are given that f (0) = 4 and that f ′(x) ≤ 2 for x > 0.
Therefore, for all x ≥ 0,

f (x) ≤ 4 + x(2) = 2x + 4.

25. x = 2
3 and x = 2 are critical points; f ( 2

3 ) is a local maximum
while f (2) is a local minimum.

27. x = 0, x = −2 and x = − 4
5 are critical points; f (−2) is neither

a local maximum nor a local minimum, f (− 4
5 ) is a local maximum

and f (0) is a local minimum.

29. θ = 3π

4
+ nπ is a critical point for all integers n; g

(
3π

4
+ nπ

)
is neither a local maximum nor a local minimum for any integer n.

31. Maximum value is 21; minimum value is −11.

33. Minimum value is −1; maximum value is
5

4
.

35. Minimum value is −1; maximum value is 3.

37. Minimum value is 12 − 12 ln 12 ≈ −17.818880; maximum value
is 40 − 12 ln 40 ≈ −4.266553.

39. Minimum value is 2; maximum value is 17.

41. x = 4

3
43. x = ± 2√

3
45. x = 1 and x = 4

47. No horizontal asymptotes; no vertical asymptotes

5
x

−1 1 2 3 54

y

10

−5
−10

49. No horizontal asymptotes; no vertical asymptotes

5

x
−1 1 2

y

10

−5

−10

51. y = 0 is a horizontal asymptote; x = −1 is a vertical asymptote

2

x
−1−2−3 1 2 3

y

4

−2

−4

53. horizontal asymptote of y = 0; no vertical asymptotes

0.8

x
−4 −2−6−8 2 4

y

1

0.4

0.2

0.6

55.

x

−1
1

4

5 62 3

y

1

57.

x
4 8−4

y

59. b = 3√12 meters and h = 1
3

3√12 meters

63.
16

9
π 69. 3√25 = 2.9240

71. x4 − 2

3
x3 + C 73. − cos(θ − 8) + C

75. −2t−2 + 4t−3 + C
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77. tan x + C 79.
1

5
(y + 2)5 + C 81. ex − 1

2
x2 + C

83. 4 ln |x| + C 85. y(x) = x4 + 3 87. y(x) = 2x1/2 − 1

89. y(x) = 4 − e−x 91. f (t) = 1

2
t2 − 1

3
t3 − t + 2

93. (0, 2
e ) is a local minimum

95. Local minimum at x = e−1; no points of inflection;
limx→0+ x ln x = 0; limx→∞ x ln x = ∞

1

2

4

6

y

x
2 3 4

97. Local maximum at x = e−2 and a local minimum at x = 1; point
of inflection at x = e−1; limx→0+ x(ln x)2 = 0;
limx→∞ x(ln x)2 = ∞

0.5 1 1.5

0.2

0.4

0.6

0.8

y

x

99. As x → ∞, both 2x − sin x and 3x + cos 2x tend toward infinity,

so L’Hôpital’s Rule applies to lim
x→∞

2x − sin x

3x + cos 2x
; however, the

resulting limit, lim
x→∞

2 − cos x

3 − 2 sin 2x
, does not exist due to the

oscillation of sin x and cos x. To evaluate the limit, we note

lim
x→∞

2x − sin x

3x + cos 2x
= lim

x→∞
2 − sin x

x

3 + cos 2x
x

= 2

3
.

101. 4 103. 0 105. 3 107. ln 2 109.
1

6
111. 2

Chapter 5
Section 5.1 Preliminary Questions

1. The right endpoints of the subintervals are then 5
2 , 3, 7

2 , 4, 9
2 , 5,

while the left endpoints are 2, 5
2 , 3, 7

2 , 4, 9
2 .

2. (a)
9

2
(b)

3

2
and 2

3. (a) Are the same (b) Not the same

(c) Are the same (d) Are the same

4. The first term in the sum
∑100

j=0 j is equal to zero, so it may be

dropped; on the other hand, the first term in
∑100

j=0 1 is not zero.

5. On [3, 7], the function f (x) = x−2 is a decreasing function.

Section 5.1 Exercises
1. Over the interval [0, 3]: 0.96 km; over the interval [1, 2.5]: 0.5 km

3. 28.5 cm; The figure below is a graph of the rainfall as a function
of time. The area of the shaded region represents the total rainfall.

252015105

0.5

1.0

1.5

2.0

2.5

y

x

5. L5 = 46; R5 = 44

7. (a) L6 = 16.5; R6 = 19.5

(b) Via geometry (see figure below), the exact area is A = 18. Thus,
L6 underestimates the true area (L6 − A = −1.5), while R6
overestimates the true area (R6 − A = +1.5).

0.5 1 1.5 2 2.5 3

3

6

9

x

y

9. R3 = 32; L3 = 20; the area under the graph is larger than L3 but
smaller than R3

14
12
10

8
6

4

1.0 1.5 2.0 2.5 3.0 3.5

1.0 1.5 2.0 2.5 3.0 3.5

14

y

y

x

x

12
10

8
6

4

L3

R3

11. R3 = 2.5; M3 = 2.875; L6 = 3.4375 13. R3 = 16

3

15. M6 = 87 17. L6 = 12.125 19. L4 ≈ 0.410236 21.
8∑

k=4

k7

23.
5∑

k=2

(2k + 2) 25.
n∑

i=1

i

(i + 1)(i + 2)

27. (a) 45 (b) 24 (c) 99
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29. (a) −1 (b) 13 (c) 12

31. 15050 33. 352800 35. 1093350 37. 41650

39. −123165 41.
1

2
43.

1

3
45. 18; the region under the graph is a triangle with base 2 and height
18

47. 12; the region under the curve is a trapezoid with base width 4
and heights 2 and 4

49. 2; the region under the curve over [0, 2] is a triangle with base
and height 2

51. limN→∞ RN = 16

53. RN = 1

3
+ 1

2N
+ 1

6N2
;

1

3

55. RN = 222 + 189

N
+ 27

N2
; 222

57. RN = 2 + 6

N
+ 8

N2
; 2

59. RN = (b − a)(2a + 1) + (b − a)2 + (b − a)2

N
;

(b2 + b) − (a2 + a)

61. The area between the graph of f (x) = x4 and the x-axis over the
interval [0, 1]
63. The area between the graph of y = ex and the x-axis over the
interval [−2, 3]

65. lim
N→∞ RN = lim

N→∞
π

N

N∑
k=1

sin

(
kπ

N

)

67. lim
N→∞ LN = lim

N→∞
4

N

N−1∑
j=0

√
15 + 8j

N

69. lim
N→∞ MN = lim

N→∞
1

2N

N∑
j=1

tan

(
1

2
+ 1

2N

(
j − 1

2

))

71. Represents the area between the graph of y = f (x) =
√

1 − x2

and the x-axis over the interval [0, 1]. This is the portion of the
circular disk x2 + y2 ≤ 1 that lies in the first quadrant. Accordingly,
its area is π

4 .

73. Of the three approximations, RN is the least accurate, then LN

and finally MN is the most accurate.

75. The area A under the curve is somewhere between L4 ≈ 0.518
and R4 ≈ 0.768.

77. f (x) is increasing over the interval [0, π/2], so
0.79 ≈ L4 ≤ A ≤ R4 ≈ 1.18.

79. L100 = 0.793988; R100 = 0.80399; L200 = 0.797074;
R200 = 0.802075; thus, A = 0.80 to two decimal places.

81. (a) Let f (x) = ex on [0, 1]. With n = N ,
�x = (1 − 0)/N = 1/N and

xj = a + j�x = j

N

for j = 0, 1, 2, . . . , N . Therefore,

LN = �x

N−1∑
j=0

f (xj ) = 1

N

N−1∑
j=0

ej/N .

(b) Applying Eq. (8) with r = e1/N , we have

LN = 1

N

(e1/N )N − 1

e1/N − 1
= e − 1

N(e1/N − 1)
.

(c) A = e − 1

83.

x

Right endpt approx, n = 1Graph of f (x)

0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0.5 1

1

0.5

0

Right endpt approx, n = 2

0.5 1

1

0.5

0

85. When f ′ is large, the graph of f is steeper and hence there is
more gap between f and LN or RN .

89. N > 30000

Section 5.2 Preliminary Questions
1. 2

2. (a) False.
∫ b
a f (x) dx is the signed area between the graph and

the x-axis.
(b) True. (c) True.

3. Because cos(π − x) = − cos x, the “negative” area between the
graph of y = cos x and the x-axis over [π

2 , π ] exactly cancels the
“positive” area between the graph and the x-axis over [0, π

2 ].
4.
∫ −5

−1
8 dx

Section 5.2 Exercises
1. The region bounded by the graph of y = 2x and the x-axis over

the interval [−3, 3] consists of two right triangles. One has area
1
2 (3)(6) = 9 below the axis, and the other has area 1

2 (3)(6) = 9 above
the axis. Hence, ∫ 3

−3
2x dx = 9 − 9 = 0.

−3 −2 −2
−4
−6

−1 1 2 3

2
4
6

x

y

3. The region bounded by the graph of y = 3x + 4 and the x-axis
over the interval [−2, 1] consists of two right triangles. One has area
1
2 ( 2

3 )(2) = 2
3 below the axis, and the other has area 1

2 ( 7
3 )(7) = 49

6
above the axis. Hence,∫ 1

−2
(3x + 4) dx = 49

6
− 2

3
= 15

2
.
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−2
−2

−1 1

2

4

8

6

x

y

5. The region bounded by the graph of y = 7 − x and the x-axis
over the interval [6, 8] consists of two right triangles. One triangle has
area 1

2 (1)(1) = 1
2 above the axis, and the other has area 1

2 (1)(1) = 1
2

below the axis. Hence,

∫ 8

6
(7 − x) dx = 1

2
− 1

2
= 0.

−1

8642

0.5

−0.5

1

x

y

7. The region bounded by the graph of y =
√

25 − x2 and the x-axis
over the interval [0, 5] is one-quarter of a circle of radius 5. Hence,

∫ 5

0

√
25 − x2 dx = 1

4
π(5)2 = 25π

4
.

54321

3

4

5

1

2

x

y

9. The region bounded by the graph of y = 2 − |x| and the x-axis
over the interval [−2, 2] is a triangle above the axis with base 4 and
height 2. Consequently,

∫ 2

−2
(2 − |x|) dx = 1

2
(2)(4) = 4.

−2 −1 21

2

1

x

y

11. (a) lim
N→∞ RN = lim

N→∞

(
30 − 50

N

)
= 30

(b) The region bounded by the graph of y = 8 − x and the x-axis
over the interval [0, 10] consists of two right triangles. One triangle
has area 1

2 (8)(8) = 32 above the axis, and the other has area
1
2 (2)(2) = 2 below the axis. Hence,∫ 10

0
(8 − x) dx = 32 − 2 = 30.

2

4

6

8

x

y

2 4 6 8 10

13. (a) −π

2
(b)

3π

2

15.
∫ 3

0
g(t) dt = 3

2
;
∫ 5

3
g(t) dt = 0

17. The partition P is defined by

x0 = 0 < x1 = 1 < x2 = 2.5 < x3 = 3.2 < x4 = 5

The set of sample points is given by
C = {c1 = 0.5, c2 = 2, c3 = 3, c4 = 4.5}. Finally, the value of the
Riemann sum is

34.25(1 − 0) + 20(2.5 − 1) + 8(3.2 − 2.5) + 15(5 − 3.2) = 96.85.

19. R(f, P, C) = 1.59; Here is a sketch of the graph of f and the
rectangles.

0.5 1 1.5 2 2.5

0.5

1

2

1.5

x

y

21. R(f, P, C) = 44.625; Here is a sketch of the graph of f and the
rectangles.

5

10

15

20

25

30

y

x
51 42 3

23.

−2

2

1 2 3 4 5

4

y

x

−4

+

−
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25.

−0.4

−0.8

−1.2

7531 642

0.4

x

y

−

27.

0.5 1 1.5 2

−0.6

−0.4

−0.2

0.2

0.4

0.6

y

x
−

+

29. The integrand is always positive. The integral must therefore be
positive, since the signed area has only a positive part.

31. The area below the axis is greater than the area above the axis.
Thus, the definite integral is negative.

33. 36 35. 243 37. −2

3
39.

196

3
41.

1

3
a3 − 1

2
a2 + 5

6

43. 17 45. −12 47. No. 49.
81

4
51. −63

4
53. 7 55. 8

57. −7 59.
∫ 7

0
f (x) dx 61.

∫ 9

5
f (x) dx 63.

4

5
65. −35

2
67. When f (x) takes on both positive and negative values on [a, b],∫ b
a f (x) dx represents the signed area between f (x) and the x-axis,

whereas
∫ b
a |f (x)| dx represents the total (unsigned) area between

f (x) and the x-axis. Any negatively signed areas that were part of∫ b
a f (x) dx are regarded as positive areas in

∫ b
a |f (x)| dx.

69. [−1,
√

2] or [−√
2, 1] 71. 9 73.

1

2
75. On the interval [0, 1], x5 ≤ x4; On the other hand, x4 ≤ x5 for
x ∈ [1, 2].
77. sin x is increasing on [0.2, 0.3]. Accordingly, for 0.2 ≤ x ≤ 0.3,
we have

m = 0.198 ≤ 0.19867 ≈ sin 0.2 ≤ sin x ≤ sin 0.3

≈ 0.29552 ≤ 0.296 = M

Therefore, by the Comparison Theorem, we have

0.0198 = m(0.3 − 0.2) =
∫ 0.3

0.2
m dx ≤

∫ 0.3

0.2
sin x dx ≤

∫ 0.3

0.2
M dx

= M(0.3 − 0.2) = 0.0296.

79. f (x) is decreasing and non-negative on the interval [π/4, π/2].
Therefore 0 ≤ f (x) ≤ f (π/4) = 2

√
2

π for all x in [π/4, π/2].
81. The assertion f ′(x) ≤ g′(x) is false. Consider a = 0, b = 1,
f (x) = x, g(x) = 2. f (x) ≤ g(x) for all x in the interval [0, 1], but
f ′(x) = 1 while g′(x) = 0 for all x.

83. If f is an odd function, then f (−x) = −f (x) for all x.
Accordingly, for every positively signed area in the right half-plane
where f is above the x-axis, there is a corresponding negatively
signed area in the left half-plane where f is below the x-axis.
Similarly, for every negatively signed area in the right half-plane

where f is below the x-axis, there is a corresponding positively
signed area in the left half-plane where f is above the x-axis.

Section 5.3 Preliminary Questions
1. (a) 4

(b) The signed area between y = f (x) and the x-axis.

2. 3

3. (a) False. The FTC I is valid for continuous functions.

(b) False. The FTC I works for any antiderivative of the integrand.

(c) False. If you cannot find an antiderivative of the integrand, you
cannot use the FTC I to evaluate the definite integral, but the definite
integral may still exist.

4. 0

Section 5.3 Exercises

1. A = 1

3

0.2 0.4 0.6 0.8 1

0.2

0.4

0.8

0.6

1

x

y

3. A = 1

2

0.2
1.0

y

x
1.2 1.4 1.6 1.8 2.0

0.4

0.6

0.8

1.0

5.
27

2
7. −1 9. 128 11.

27

2
13.

16

3
15.

31

40
17.

2

3

19. 12 21.
11

6
23. 60

√
3 − 8

3
25.

√
2 27.

3

2
29.

4

3
√

3

31.
1

5
(
√

2 − 1) 33. e − 1 35.
1

6
(e − e−17) 37. ln 5 39. ln 2

41. 3e−6 − 9 43.
5

2
45.

97

4
47. 2 49.

1

4

(
b4 − 1

)
51.

1

6
(b6 − 1) 53. ln 5 55.

707

12
57. Graphically speaking, for an odd function, the positively signed
area from x = 0 to x = 1 cancels the negatively signed area from
x = −1 to x = 0.

59. 24

61.
∫ 1

0 xn dx represents the area between the positive curve
f (x) = xn and the x-axis over the interval [0, 1]. This area gets
smaller as n gets larger, as is readily evident in the following graph,
which shows curves for several values of n.
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1

y

10

1/4
1/2

1
2

4
8

x

67. Let a > b be real numbers, and let f (x) be such that |f ′(x)| ≤ K

for x ∈ [a, b]. By FTC,∫ x

a
f ′(t) dt = f (x) − f (a).

Since f ′(x) ≥ −K for all x ∈ [a, b], we get:

f (x) − f (a) =
∫ x

a
f ′(t) dt ≥ −K(x − a).

Since f ′(x) ≤ K for all x ∈ [a, b], we get:

f (x) − f (a) =
∫ x

a
f ′(t) dt ≤ K(x − a).

Combining these two inequalities yields

−K(x − a) ≤ f (x) − f (a) ≤ K(x − a),

so that, by definition,

|f (x) − f (a)| ≤ K|x − a|.

Section 5.4 Preliminary Questions
1. (a) No (b) Yes

2. (c)

3. Yes. All continuous functions have an antiderivative, namely∫ x

a
f (t) dt .

4. (b), (e), and (f)

Section 5.4 Exercises

1. A(x) =
∫ x

−2
(2t + 4) dt = (x + 2)2.

3. G(1) = 0; G′(1) = −1 and G′(2) = 2; G(x) = 1

3
x3 − 2x + 5

3
5. G(1) = 0; G′(0) = 0 and G′( π

4 ) = 1

7.
1

5
x5 − 32

5
9. 1 − cos x 11.

1

3
e3x − 1

3
e12 13.

1

2
x4 − 1

2

15. −e−9x−2 + e−3x 17. F(x) =
∫ x

5

√
t3 + 1 dt

19. F(x) =
∫ x

0
sec t dt 21. x5 − 9x3 23. sec(5t − 9)

25. (a) A(2) = 4; A(3) = 6.5; A′(2) = 2 and A′(3) = 3.
(b)

A(x) =
{

2x, 0 ≤ x < 2
1
2x2 + 2, 2 ≤ x ≤ 4

4321
x

Area Function
A(x)

2

4

8

6

10

y

29.
2x3

x2 + 1
31. − cos4 s sin s

33. 2x tan(x2) − tan(
√

x)

2
√

x

35. The minimum value of A(x) is A(1.5) = −1.25; the maximum
value of A(x) is A(4.5) = 1.25.
37. A(x) = (x − 2) − 1 and B(x) = (x − 2)

39. (a) A(x) does not have a local maximum at P .
(b) A(x) has a local minimum at R.
(c) A(x) has a local maximum at S.
(d) True.
41. g(x) = 2x + 1; c = 2 or c = −3
43. (a) If x = c is an inflection point of A(x), then
A′′(c) = f ′(c) = 0.
(b) If A(x) is concave up, then A′′(x) > 0. Since A(x) is the area
function associated with f (x), A′(x) = f (x) by FTC II, so
A′′(x) = f ′(x). Therefore f ′(x) > 0, so f (x) is increasing.
(c) If A(x) is concave down, then A′′(x) < 0. Since A(x) is the area
function associated with f (x), A′(x) = f (x) by FTC II, so
A′′(x) = f ′(x). Therefore, f ′(x) < 0 and so f (x) is decreasing.
45. (a) A(x) is increasing on the intervals (0, 4) and (8, 12) and is
decreasing on the intervals (4, 8) and (12, ∞).
(b) Local minimum: x = 8; local maximum: x = 4 and x = 12.
(c) A(x) has inflection points at x = 2, x = 6, and x = 10.
(d) A(x) is concave up on the intervals (0, 2) and (6, 10) and is
concave down on the intervals (2, 6) and (10, ∞).
47. The graph of one such function is:

x

y

49. Smallest positive critical point: x = (π/2)2/3 corresponds to a
local maximum; smallest positive inflection point: x = π2/3, F(x)

changes from concave down to concave up.
51. (a) Then by the FTC, Part II, A′(x) = f (x) and thus A(x) and
F(x) are both antiderivatives of f (x). Hence F(x) = A(x) + C for
some constant C.
(b)

F(b) − F(a) = (A(b) + C) − (A(a) + C) = A(b) − A(a)

=
∫ b

a
f (t) dt −

∫ a

a
f (t) dt

=
∫ b

a
f (t) dt − 0 =

∫ b

a
f (t) dt
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which proves the FTC, Part I.

53. Write∫ v(x)

u(x)
f (x) dx =

∫ 0

u(x)
f (x) dx +

∫ v(x)

0
f (x) dx

=
∫ v(x)

0
f (x) dx −

∫ u(x)

0
f (x) dx.

Then, by the Chain Rule and the FTC,

d

dx

∫ v(x)

u(x)
f (x) dx = d

dx

∫ v(x)

0
f (x) dx − d

dx

∫ u(x)

0
f (x) dx

= f (v(x))v′(x) − f (u(x))u′(x).

Section 5.5 Preliminary Questions
1. The total drop in temperature of the metal object in the first T

minutes after being submerged in the cold water.

2. 560 km

3. Quantities (a) and (c) would naturally be represented as
derivatives; quantities (b) and (d) would naturally be represented as
integrals.

Section 5.5 Exercises
1. 15250 gallons 3. 3,660,000 5. 33 meters 7. 3.675 meters

9. Displacement: 10 meters; distance: 26 meters

0 18

t  = 0

t  = 5
t  = 3

10
Distance

11. Displacement: 0 meters; distance: 1 meter

0 0.5

t = 0

t = 2
t = 1

Distance

13. 39 m/s 15. 9200 cars

17. Total cost: $650; average cost of first 10: $37.50; average cost of
last 10: $27.50

19. 112.5 feet

21. The area under the graph in Figure 5 represents the total power
consumption over one day in California; 3.627 × 1011 joules

23. (a) 2.916 × 1010

(b) Approximately 240526 asteroids of diameter 50 km

25.
∫ 365

0 R(t) dt ≈ 605.05 billion cubic feet

27. 100 ≤ t ≤ 150: 404.968 families; 350 ≤ t ≤ 400: 245.812
families

29. The particle’s velocity is v(t) = s′(t) = t−2, an antiderivative for
which is F(t) = −t−1. Hence, the particle’s position at time t is

s(t) =
∫ t

1
s′(u) du = F(u)

∣∣∣∣t
1

= F(t) − F(1) = 1 − 1

t
< 1

for all t ≥ 1. Thus, the particle will never pass x = 1, which implies it
will never pass x = 2 either.

Section 5.6 Preliminary Questions
1. (a) and (b)

2. (a) u(x) = x2 + 9 (b) u(x) = x3 (c) u(x) = cos x

3. (c)

Section 5.6 Exercises
1. du = (3x2 − 2x) dx

3. du = −2x sin(x2) dx

5. du = 4e4x+1 dx

7.
∫

(x − 7)3 dx =
∫

u3 du = 1

4
u4 + C = 1

4
(x − 7)4 + C

9.∫
t
√

t2 + 1 dt = 1

2

∫
u1/2 du = 1

3
u3/2 + C = 1

3
(t2 + 1)3/2 + C

11.
∫

t3

(4 − 2t4)11
dt = −1

8

∫
u−11 du = 1

80
u−10 + C =

1

80
(4 − 2t4)−10 + C

13.

∫
x(x + 1)9 dx =

∫
(u − 1)u9 du =

∫
(u10 − u9) du

= 1

11
u11 − 1

10
u10 + C = 1

11
(x + 1)11 − 1

10
(x + 1)10 + C.

15.∫
x2√

x + 1 dx =
∫

(u − 1)2u1/2 du =
∫

(u5/2 − 2u3/2 + u1/2) du

= 2

7
u7/2 − 4

5
u5/2 + 2

3
u3/2 + C

= 2

7
(x + 1)7/2 − 4

5
(x + 1)5/2 + 2

3
(x + 1)3/2 + C.

17.
∫

sin2 θ cos θ dθ =
∫

u2 du = 1

3
u3 + C = 1

3
sin3 θ + C

19.
∫

xe−x2
dx = −1

2

∫
eu du = −1

2
eu + C = −1

2
e−x2 + C

21.
∫

(ln x)2

x
dx =

∫
u2 du = 1

3
u3 + C = 1

3
(ln x)3 + C

23. u = x4;
1

4
sin(x4) + C 25. u = x3/2;

2

3
sin(x3/2) + C

27.
1

40
(4x + 5)10 + C 29. 2

√
t + 12 + C

31. − 1

4(x2 + 2x)2
+ C 33.

√
x2 + 9 + C 35.

1

3
(x3 + x)3 + C

37.
1

36
(3x + 8)12 + C 39.

2

9
(x3 + 1)3/2 + C

41. −1

2
(x + 5)−2 + C 43.

1

39
(z3 + 1)13 + C

45.
4

9
(x + 1)9/4 + 4

5
(x + 1)5/4 + C 47.

1

3
cos(8 − 3θ) + C

49. 2 sin
√

t + C 51.
1

4
ln | sec(4θ + 9)| + C 53. ln | sin x| + C

55.
1

4
tan(4x + 9) + C 57. 2 tan(

√
x) + C
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59. −1

6
(cos 4x + 1)3/2 + C 61.

1

2
(sec θ − 1)2 + C

63.
1

14
e14x−7 + C 65. − 1

3(ex + 1)3
+ C 67. − 1

et + 1
+ C

69.
1

5
(ln x)5 + C 71. − ln | cos(ln x)| + C

73. − 2

1 + √
x

+ 1

(1 + √
x)2

+ C

75. With u = sin x,
1

2
sin2 x + C1; with u = cos x, −1

2
cos2 x + C2;

the two results differ by a constant.

77. u = π and u = 4π 79. 136 81.
3

16
83.

98

3
85.

243

4

87.
1

2
ln(sec 1) 89.

1

4
91.

20

3

√
5 − 32

5

√
3

93. (a) The probability that v ∈ [0, b] is∫ b

0

1

32
ve−v2/64 dv.

Let u = −v2/64. Then du = −v/32 dv and∫ b

0

1

32
ve−v2/64 dv = −

∫ −b2/64

0
eu du

= −eu

∣∣∣∣−b2/64

0
= −e−b2/64 + 1.

(b) e−1/16 − e−25/64

95.
1

4
f (x)4 + C

97. Let u = sin θ . Then u(π/6) = 1/2 and u(0) = 0, as required.
Furthermore, du = cos θ dθ , so that

dθ = du

cos θ
.

If sin θ = u, then u2 + cos2 θ = 1, so that cos θ =
√

1 − u2.
Therefore dθ = du/

√
1 − u2. This gives∫ π/6

0
f (sin θ) dθ =

∫ 1/2

0
f (u)

1√
1 − u2

du.

99. I = π/4

Section 5.7 Preliminary Questions
1. (a) b = 3 (b) b = e3

2. b = √
3 3. (b) 4. x = 4u

Section 5.7 Exercises

1. ln 9 3. 3 5.
1

3
ln 4 7. 7 9.

π

6
11. Let u = x/3. Then, x = 3u, dx = 3 du, 9 + x2 = 9(1 + u2), and∫

dx

9 + x2
=
∫

3 du

9(1 + u2)
= 1

3

∫
du

1 + u2

= 1

3
tan−1 u + C = 1

3
tan−1 x

3
+ C.

13.
π

3
√

3
15.

1

4
sin−1(4t) + C 17.

1√
3

sin−1

√
3

5
t + C

19.
1√
3

sec−1(2x) + C 21.
1

2
sec−1 x2 + C

23.
π

4
− tan−1(1/2) 25.

(tan−1 x)2

2
+ C 27.

2

ln 3
29.

1

ln 2

31. − 1

ln 9
cos(9x) + C 33.

1

2
ey2 + C 35.

1

4

√
4x2 + 9 + C

37. −7−x

ln 7
+ C 39.

1

8
tan8 θ + C 41. −

√
7 − t2 + C

43.
3

2
ln(x2 + 4) + tan−1(x/2) + C 45.

1

4
sin−1(4x) + C

47. −e−x − 2x2 + C 49. ex − e3x

3
+ C

51. −
√

4 − x2 + 5 sin−1(x/2) + C 53. sin(ex) + C

55.
1

4
sin−1

(
4x

3

)
+ C 57.

e7x

7
+ 3e5x

5
+ e3x + ex + C

59.
1

3
ln |x3 + 2| + C 61. ln | sin x| + C 63.

1

8
(4 ln x + 5)2 + C

65.
3x2

2 ln 3
+ C 67.

(ln(sin x))2

2
+ C

69.
2

7
(t − 3)7/2 + 12

5
(t − 3)5/2 + 6(t − 3)3/2 + C

71. The definite integral
∫ x

0

√
1 − t2 dt represents the area of the

region under the upper half of the unit circle from 0 to x. The region
consists of a sector of the circle and a right triangle. The sector has a
central angle of π

2 − θ , where cos θ = x, and the right triangle has a

base of length x and a height of
√

1 − x2.

73. Show that
d

dt

(√
1 − t2 + t sin−1 t

)
= sin−1 t .

75. Integrating both sides of the inequality et ≥ 1 yields∫ x

0
et dt = ex − 1 ≥ x or ex ≥ 1 + x.

Integrating both sides of this new inequality then gives∫ x

0
et dt = ex − 1 ≥ x + x2/2 or ex ≥ 1 + x + x2/2.

Finally, integrating both sides again gives∫ x

0
et dt = ex − 1 ≥ x + x2/2 + x3/6

or

ex ≥ 1 + x + x2/2 + x3/6

as requested.

77. By Exercise 76, ex ≥ 1 + x + x2

2 + x3

6 . Thus

ex

x2
≥ 1

x2
+ 1

x
+ 1

2
+ x

6
≥ x

6
.

Since lim
x→∞ x/6 = ∞, lim

x→∞ ex/x2 = ∞. More generally, by

Exercise 75,

ex ≥ 1 + x2

2
+ · · · + xn+1

(n + 1)! .
Thus

ex

xn
≥ 1

xn
+ · · · + x

(n + 1)! ≥ x

(n + 1)! .

Since lim
x→∞

x
(n+1)! = ∞, lim

x→∞
ex

xn = ∞.
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79. (a) The domain of G(x) is x > 0 and, by part (i) of the previous
exercise, the range of G(x) is R. Now,

G′(x) = 1

x
> 0

for all x > 0. Thus, G(x) is increasing on its domain, which implies
that G(x) has an inverse. The domain of the inverse is R and the
range is {x : x > 0}. Let F(x) denote the inverse of G(x).

(b) Let x and y be real numbers and suppose that x = G(w) and
y = G(z) for some positive real numbers w and z. Then, using part
(b) of the previous exercise

F(x + y) = F(G(w) + G(z)) = F(G(wz)) = wz = F(x) + F(y).

(c) Let r be any real number. By part (k) of the previous exercise,
G(Er) = r . By definition of an inverse function, it then follows that
F(r) = Er .

(d) By the formula for the derivative of an inverse function

F ′(x) = 1

G′(F (x))
= 1

1/F (x)
= F(x).

81.

lim
n→−1

∫ x

1
tn dt = lim

n→−1

tn+1

n + 1

∣∣∣∣∣
x

1

= lim
n→−1

(
xn+1

n + 1
− 1n+1

n + 1

)

= lim
n→−1

xn+1 − 1

n + 1
= lim

n→−1
(xn+1) ln x

= ln x =
∫ x

1
t−1 dt

83. (a) Interpreting the graph with y as the independent variable, we
see that the function is x = ey . Integrating in y then gives the area of

the shaded region as
∫ ln a

0 ey dy

(b) We can obtain the area under the graph of y = ln x from x = 1 to
x = a by computing the area of the rectangle extending from x = 0 to
x = a horizontally and from y = 0 to y = ln a vertically and then
subtracting the area of the shaded region. This yields∫ a

1
ln x dx = a ln a −

∫ ln a

0
ey dy.

(c) By direct calculation∫ ln a

0
ey dy = ey

∣∣∣∣ln a

0
= a − 1.

Thus, ∫ a

1
ln x dx = a ln a − (a − 1) = a ln a − a + 1.

(d) Based on these results it appears that∫
ln x dx = x ln x − x + C.

Section 5.8 Preliminary Questions
1. Doubling time is inversely proportional to the growth constant.

Consequently, the quantity with k = 3.4 doubles more rapidly.

2. It takes longer for the population to increase from one cell to two
cells.

3.
dS

dn
= − ln 2S(n) 4. (b)

5. If the interest rate goes up, the present value of $1 a year from
now will decrease.

Section 5.8 Exercises

1. (a) 2000 bacteria initially (b) t = 1

1.3
ln 5 ≈ 1.24 hours

3. f (t) = 5et ln 7

5. N ′(t) = ln 2

3
N(t); 1048576 molecules after one hour

7. y(t) = Ce−5t for some constant C; y(t) = 3.4e−5t

9. y(t) = 1000e3(t−2) 11. 5.33 years

13. k ≈ 0.023 hours−1; P0 ≈ 332

15. Double: 11.55 years; triple: 18.31 years; seven-fold: 32.43 years

17. One-half: 1.98 days; one-third: 3.14 days; one-tenth: 6.58 days

19. Set I 21. (a) 26.39 years (b) 1969

23. 7600 years 25. 2.34 × 10−13 to 2.98 × 10−13

27. 2.55 hours

29. (a) Yes, the graph looks like an exponential graph especially
towards the latter years; k ≈ 0.369 years−1.

(b)

y

x

1×107

2×107

3×107

4×107

20001995199019851980

(c) N(t) = 2250e0.369t

(d) The doubling time is ln 2/0.369 ≈ 1.88 years.

(e) ≈ 2.53 × 1010 transistors

(f) No, you can’t make a microchip smaller than an atom.

31. With t0 = 10, the doubling time is then 24; with t0 = 20, the
doubling time is 44.

33. (a) P(10) = $4870.38 (b) P(10) = $4902.71
(c) P(10) = $4919.21

35. (a) 1.0508 (b) 1.0513

37. $12,752.56

39. In 3 years:

(a) PV = $4176.35

(b) PV = $3594.62

In 5 years:

(a) PV = $3704.09

(b) PV = $2884.75
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41. 9.16%

43. (a) The present value of the reduced labor costs is

7000(e−0.08 + e−0.16 + e−0.24 + e−0.32 + e−0.4) = $27,708.50.

This is more than the $25,000 cost of the computer system, so the
computer system should be purchased.

(b) The present value of the savings is

$27,708.50 − $25,000 = $2708.50.

45. $39,346.93 47. $41,906.75 51. R = $1200

53. $71,460.53 55. T = −1

k
ln

(
1 − d

L

)
57. P(t) = 204eae0.15t

with a ≈ −0.02; 136 rats after 20 months

59. For m-fold growth, P(t) = mP0 for some t . Solving
mP0 = P0ekt for t , we find t = ln m

k
.

61. Start by expressing

ln
(

1 + x

n

)
=
∫ 1+x/n

1

dt

t
.

Following the proof in the text, we note that

x

n + x
≤ ln

(
1 + x

n

)
≤ x

n

provided x > 0, while

x

n
≤ ln

(
1 + x

n

)
≤ x

n + x

when x < 0. Multiplying both sets of inequalities by n and passing to
the limit as n → ∞, the squeeze theorem guarantees that

lim
n→∞

(
ln
(

1 + x

n

))n = x.

Finally,

lim
n→∞

(
1 + x

n

)n = ex .

63. (a) 9.38%

(b) In general,

P0(1 + r/M)Mt = P0(1 + re)
t ,

so (1 + r/M)Mt = (1 + re)
t or re = (1 + r/M)M − 1. If interest is

compounded continuously, then P0ert = P0(1 + re)
t so

ert = (1 + re)
t or re = er − 1.

(c) 11.63%

(d) 18.26%

Chapter 5 Review

1. L4 = 23

4
; M4 = 7

3. In general, RN is larger than
∫ b
a f (x) dx on any interval [a, b]

over which f (x) is increasing. Given the graph of f (x), we may take
[a, b] = [0, 2]. In order for L4 to be larger than

∫ b
a f (x) dx, f (x)

must be decreasing over the interval [a, b]. We may therefore take
[a, b] = [2, 3].

5. R6 = 625
8

2.0

10

15
20
25
30

35

y

x
2.5 3.0 3.5 4.0 4.5

M6 = 1127
16

2.0

10

15
20
25
30

35

y

x
2.5 3.0 3.5 4.0 4.5

L6 = 505
8 The rectangles corresponding to this approximation are

shown below.

2.0

10

15
20
25
30

35

y

x
2.5 3.0 3.5 4.0 4.5

7. RN = 141

2
+ 45

N
+ 9

2N2
;

141

2
9. R5 ≈ 0.733732; M5 ≈ 0.786231; L5 ≈ 0.833732

11. The area represented by the shaded rectangles is R5; R5 = 90;
L5 = 90

13. lim
N→∞

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)
=
∫ π/2

π/3
sin x dx = 1

2

15. lim
N→∞

5

N

N∑
j=1

√
4 + 5j/N =

∫ 9

4

√
x dx = 38

3

17.
1

4
ln

5

3
19.

1

5

(
1 − 9

√
3

32

)

21. 4x5 − 9

4
x4 − x2 + C 23.

4

5
x5 − 3x4 + 3x3 + C

25.
1

4
x4 + x3 + C 27.

46

3
29. 3

31.
1

150
(10t − 7)15 + C 33. − 1

24
(3x4 + 9x2)−4 + C 35. 506

37. −3
√

3

2π
39.

1

27
tan(9t3 + 1) + C 41.

1

2
cot(9 − 2θ) + C

43. 3 − 3 3√4

2
45. −1

2
e9−2x + C 47.

1

3
ex3 + C

49.
10xex

ln 10 + 1
+ C 51.

1

2(e−x + 2)2
+ C 53.

1

2
ln 2

55. tan−1(ln t) + C 57.
1

2
59.

1

6
tan−1

(
2x

3

)
+ C
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61. sec−112 − sec−14 63.
π

12
65.

1

2
sin−1(x2) + C

67.
1√
2

tan−1(4
√

2) 69.
π4

1024
71.

∫ 6

−2
f (x) dx

73. Local minimum at x = 0, no local maxima, inflection points at
x = ±1

75. Daily consumption: 9.312 million gallons; From 6 PM to
midnight: 1.68 million gallons

77. $208,245 79. 0

83. The function f (x) = 2x is increasing, so 1 ≤ x ≤ 2 implies that
2 = 21 ≤ 2x ≤ 22 = 4. Consequently,

2 =
∫ 2

1
2 dx ≤

∫ 2

1
2x dx ≤

∫ 2

1
4 dx = 4.

On the other hand, the function f (x) = 3−x is decreasing, so
1 ≤ x ≤ 2 implies that

1

9
= 3−2 ≤ 3−x ≤ 3−1 = 1

3
.

It then follows that

1

9
=
∫ 2

1

1

9
dx ≤

∫ 2

1
3−x dx ≤

∫ 2

1

1

3
dx = 1

3
.

85.
4

3
≤
∫ 1

0
f (x) dx ≤ 5

3
87. − 1

1 + π

89. sin3 x cos x 91. −2

93. Consider the figure below, which displays a portion of the graph
of a linear function.

x

y

The shaded rectangles represent the differences between the
right-endpoint approximation RN and the left-endpoint
approximation LN . Because the graph of y = f (x) is a line, the
lower portion of each shaded rectangle is exactly the same size as the
upper portion. Therefore, if we average LN and RN , the error in the
two approximations will exactly cancel, leaving

1

2
(RN + LN) =

∫ b

a
f (x) dx.

95. Let

F(x) = x
√

x2 − 1 − 2
∫ x

1

√
t2 − 1dt.

Then

dF

dx
=
√

x2 − 1 + x2√
x2 − 1

− 2
√

x2 − 1

= x2√
x2 − 1

−
√

x2 − 1 = 1√
x2 − 1

.

Also, d
dx

(cosh−1x) = 1√
x2−1

; therefore, F(x) and cosh−1x have the

same derivative. We conclude that F(x) and cosh−1x differ by a
constant:

F(x) = cosh−1x + C.

Now, let x = 1. Because F(1) = 0 and cosh−1 1 = 0, it follows that
C = 0. Therefore,

F(x) = cosh−1x.

99. Approximately 6065.9 years
101. 5.03% 103. $17,979.10

Chapter 6
Section 6.1 Preliminary Questions

1. Area of the region between the graphs of y = f (x) and y = g(x),
bounded on the left by the vertical line x = a and on the right by the
vertical line x = b.

2. Yes
3.
∫ 3

0 (f (x) − g(x)) dx − ∫ 5
3 (g(x) − f (x)) dx

4. Negative

Section 6.1 Exercises
1. 102 3. 32

3

5.
√

2 − 1

π

4
π

2

y = cos x

y = sin x1

y

x

7. 343
3

g(x)

f (x)

10

−5−2 5

y

x

9. 1
2 e2 − e + 1

2
11. π − 2

π

4
π

4

y = sec2 x

y = 22

1

y

x
−

13. 160
3 15.

12
√

3−12+
(√

3−2
)
π

24 17. 2 − π
2 19. 1,331

6
21. 256 23. 32

3 25. 64
3
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27. 64
3

2

4

−2

−4

y

x
21−2 −1

y = x2 − 4

y = 4 − x2

29. 2

210.5 1.5
x

y = x
y + 3x = 4

x + y = 4

1

4

3

2

y

31. 128
3

160
0

8

y

x

y = 8 − �x

y = �x

33. 1
2

10.2 0.6 0.80.4
x

0.4

0.2

y

−0.2

−0.4 x = |y| x = 1 − |y|

35. 1,225
8

2010
x

2

y

−2
−10−20

y + 2x = 0

x = y3 − 18y

37. 32
3

x
2 4 6 8

x + 1 = ( y − 1)2

x = 2y

1

2

3

4

y

39. 3
√

3
4

0.5 1 1.5 2
x

1

0.5

y

−0.5

−1

y = cos x

y = cos 2x

41. 2−√
2

2

π

4
π

2

y = sin x

y = csc2 x

1

y

x

43. 4 ln 2 − 2 ≈ 0.77259

−ln 2 ln 2

y = exy = e−x

y = 2
2

y

x

45. ≈ 0.7567130951

�x2 + 1

y = (x − 1)2

2.01.51.00.5
x

1.0

0.8

0.6

0.4

0.2

y

y = x

47. (a) (ii) (b) No
(c) At 10 seconds, athlete 1; at 25 seconds, athlete 2.

49. 8
3 c3/2; c = 91/3

4 ≈ 0.520021.

51.
∫ √(−1+√

5)/2

−
√

(−1+√
5)/2

[
(1 + x2)−1 − x2

]
dx

53. 0.8009772242 55. 214.75 in2

57. (b) 1
3 (c) 0 (d) 1

59. m = 1 −
(

1
2

)1/3 ≈ 0.206299

Section 6.2 Preliminary Questions
1. 3 2. 15
3. Flow rate is the volume of fluid that passes through a

cross-sectional area at a given point per unit time.
4. The fluid velocity depended only on the radial distance from the

center of the tube.
5. 15
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Section 6.2 Exercises
1. (a) 4

25 (20 − y)2

(b) 1,280
3

3. πR2h
3 5. π

(
Rh2 − h3

3

)
7. 1

6abc 9. 8
3 11. 36 13. 18

15. π
3 17. 96π

21. (a) 2
√

r2 − y2 (b) 4(r2 − y2) (c) 16
3 r3

23. 160π 25. 5 kg 27. 0.36 g

29. P ≈ 4, 423.59 thousand 31. L10 = 442.24, R10 = 484.71
33. P ≈ 61 deer 35. Q = 128π cm3/s 37. Q = 8π

3 cm3/s

39. 16 41. 3
π 43. 1

10 45. −4 47. 1
n+1

49. Over [0,24], the average temperature is 20; over [2,6] the average
temperature is 20 + 15

2π
≈ 22.387325.

51. 17
2 m/s

53. Average acceleration = −80 m/s2; average speed = 20
√

5 + 104
m/s ≈ 148.7213596 m/s

55. 3
51/4 ≈ 2.006221

57. Mean Value Theorem for Integrals; c = A
3√4

59. Over [0, 1], f (x); over [1, 2], g(x).

61. Many solutions exist. One could be:

−1

−2

1

y

x
1 2

63. v0/2

Section 6.3 Preliminary Questions
1. (a), (c) 2. True

3. False, the cross sections will be washers.

4. (b)

Section 6.3 Exercises
1. (a)

−2

2

y

x
1 2 3

(b) Disk with radius x + 1

(c) V = 21π

3. (a)

−2

−1

2

1

y

x
1 2 3 4

(b) Disk with radius
√

x + 1

(c) V = 21π
2

5. V = 81π
10 7. V = 24,573π

13 9. V = π

11. V = π
2

(
e2 − 1

)
13. (iv)

15. (a)

−2

2

10

2
x

y

y = 10 − x2

y = x2 + 2

(b) A washer with outer radius R = 10 − x2 and inner radius
r = x2 + 2.

(c) V = 256π

17. (a)

10

y

−1.0 −0.5
x

0.5 1.0

y = 16 − x

y = 3x + 12

(b) A washer with outer radius R = 16 − x and inner radius
r = 3x + 12.

(c) V = 656π
3

19. (a)

0.8

1.2

0.4

y
y = sec x

−0.4
x

0.4

(b) A circular disk with radius R = sec x.

(c) V = 2π

21. V = 15π
2 23. V = 3π

10 25. V = 32π 27. V = 704π
15

29. V = 128π
5 31. V = 40π 33. V = 376π

15 35. V = 824π
15

37. V = 32π
3 39. V = 1,872π

5 41. V = 1,400π
3

43. V = π
(

7π
9 − √

3
)

45. V = 96π
5 47. V = 32π

35

49. V = 1184π
15 51. V = 7π (1 − ln 2) 53. V ≈ 43, 000 cm3

55. V = 1
3πr2h

57. V = 32π
105

1

−1

y

x
1−1

59. V = 4π
√

3 61. V = 4
3πa2b
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Section 6.4 Preliminary Questions
1. (a) Radius h and height r . (b) Radius r and height h.
2. (a) With respect to x. (b) With respect to y.

Section 6.4 Exercises
1. V = 2

5π

1

y

x
−1 1

3. V = 4π

321

0.2

0.6

0.8

−3 −2 −1
x

y

5. V = 18π
(

2
√

2 − 1
)

321

1

2

4

−3 −2 −1
x

y

7. V = 32π
3 9. V = 16π 11. V = 32π

5
13. The point of intersection is x = 1.376769504; V = 1.321975576
15. V = 3π

5

y

x
0

1

4

17. V = 280π
81

0.8

0.4

y

−2
x

10

19. V = 1
3πa3 + πa2

−2 −2 −1−a

a

a

21. V = π
3

1

1y = 0

x = 1

x = y

y

x

23. V = 128π
3

4

4

y

x

x = y(4 − y)

25. V = 8π

4

2

y

x

y = 4 − x2

27. (a) V = 576π
7 (b) V = 96π

5

29. (a) AB generates a disk with radius R = h(y); CB generates a
shell with radius x and height f (x).

(b) Shell, V = 2π
∫ 2

0 xf (x) dx ; Disk, V = π
∫ 1.3

0 (h(y))2 dy.

31. V = 602π
5 33. V = 8π 35. V = 40π

3 37. V = 1,024π
15

39. V = 16π 41. V = 32π
3 43. V = 776π

15 45. V = 625π
6

47. V = 121π
525 49. V = 563π

30 51. V = 4
3πr3

53. V = 2π2ab2

55. (b) V ≈ 4π
(

R
N

)∑N
k=1

(
kR
N

)2
(c) V = 4

3πR3
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Section 6.5 Preliminary Questions
1. Because the required force is not constant through the stretching

process.

2. The force involved in lifting the tank is the weight of the tank,
which is constant.

3. 1
2kx2

Section 6.5 Exercises
1. W = 627.2 J 3. W = 5.76 J 5. W = 8 J 7. W = 11.25 J

9. W = 3.800 J 11. W = 105, 840 J

13. W = 56,448π
5 J ≈ 3.547 × 104 J 15. W ≈ 1.842 × 1012 J

17. W = 3.92 × 10−6 J 19. W ≈ 1.18 × 108 J
21. W = 9800π
r3 J 23. W = 2.94 × 106 J
25. W ≈ 1.222 × 106 J 27. W = 3920 J 29. W = 529.2 J
31. W = 1, 470 J 33. W = 374.85 J

37. W ≈ 5.16 × 109 J 41.

√
2GMe

(
1
Re

− 1
r+Re

)
m/s

43. vesc =
√

2GMe
Re

m/s

Chapter 6 Review
1. 32

3 3. 1
2 5. 24 7. 1

2 9. 3
√

2 − 1 11. e − 3
2

13. Intersection points x = 0, x = 0.7145563847; Area
= 0.8235024596

15. V = 4π 17. 2.7552 kg 19. 9
4 21. 1

2 sinh 1 23. 3π
4

25. 27 27. 2πm5

15 29. V = 162π
5 31. V = 64π 33. V = 8π

35. V = 56π
15 37. V = 128π

15 39. V = 4π
(

1 − 1√
e

)
41. V = 2π

(
c + c3

3

)
43. V = cπ

45. (a)
∫ 1

0

(√
1 − (x − 1)2 − (1 −

√
1 − x2)

)
dx

(b) π
∫ 1

0

[
(1 − (x − 1)2) − (1 −

√
1 − x2)2

]
dx

47. W = 1.08 J 49. 0.75 ft

51. W = 117600π J ≈ 3.695 × 105 J 53. W = 98, 000 J

Chapter 7
Section 7.1 Preliminary Questions

1. The Integration by Parts formula is derived from the Product
Rule.

3. Transforming v′ = x into v = 1
2x2 increases the power of x and

makes the new integral harder than the original.

Section 7.1 Exercises
1. −x cos x + sin x + C 3. ex(2x + 7) + C

5. x4

16 (4 ln x − 1) + C 7. −e−x(4x + 1) + C

9. 1
25 (5x − 1)e5x+2 + C 11. 1

2x sin 2x + 1
4 cos 2x + C

13. −x2 cos x + 2x sin x + 2 cos x + C

15. − 1
2 e−x(sin x + cos x) + C

17. − 1
26 e−5x(cos(x) + 5 sin(x)) + C

19. 1
4x2(2 ln x − 1) + C 21. x3

3

(
ln x − 1

3

)
+ C

23. x
[
(ln x)2 − 2 ln x + 2

]
+ C

25. x tan x − ln | sec x| + C

27. x cos−1 x −
√

1 − x2 + C

29. x sec−1 x − ln |x +
√

x2 − 1| + C

31.
3x(sin x + ln 3 cos x)

1 + (ln 3)2
+ C

33. (x2 + 2) sinh x − 2x cosh x + C

35. x tanh−1 4x + 1
8 ln |1 − 16x2| + C

37. 2e
√

x(
√

x − 1) + C

39. 1
4x sin 4x + 1

16 cos 4x + C

41. 2
3 (x + 1)3/2 − 2(x + 1)1/2 + C

43. sin x ln(sin x) − sin x + C

45. 2xe
√

x − 4
√

xe
√

x + 4e
√

x + C

47. 1
4 (ln x)2[2 ln(ln x) − 1] + C

49. 1
16 (11e12 + 1)

10.80.60.40.2
−10

30

10

20

x

y

51. 2 ln 2 − 3
4 53. eπ+1

2

55. ex(x4 − 4x3 + 12x2 − 24x + 24) + C.

57.
∫

xne−x dx = −xne−x + n
∫

xn−1e−x dx

59. Use Integration by Parts, with u = ln x and v′ = √
x.

61. Use substitution, followed by algebraic manipulation, with
u = 4 − x2 and du = −2x dx.

63. Use substitution with u = x2 + 4x + 3, du
2 = x + 2 dx.

65. Use Integration by Parts, with u = x and v′ = sin(3x + 4).

67. x(sin−1 x)2 + 2
√

1 − x2 sin−1 x − 2x + C

69. 1
4x4 sin(x4) + 1

4 cos(x4) + C

71. 2π(e2 + 1) 73. $42, 995

75. For k = 2: x(ln x)2 − 2x ln x + 2x + C; for k = 3:
x(ln x)3 − 3x(ln x)2 + 6x ln x − 6x + C.

77. Use Integration by Parts with u = x and v′ = bx .

79. (b) V (x) = 1
2x2 + 1

2 is simpler, and yields
1
2 (x2 tan−1 x − x + tan−1 x) + C.

81. An example of a function satisfying these properties for some λ is
f (x) = sin πx.

83. (a) In = 1
2xn−1 sin(x2) − n−1

2 Jn−2;

(c) 1
2x2 sin(x2) + 1

2 cos(x2) + C
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Section 7.2 Preliminary Questions
1. Rewrite sin5 x = sin x sin4 x = sin x(1 − cos2 x)2 and then

substitute u = cos x.

3. No, a reduction formula is not needed because the sine function is
raised to an odd power.

5. The second integral requires the use of reduction formulas, and
therefore more work.

Section 7.2 Exercises
1. sin x − 1

3 sin3 x + C

3. − 1
3 cos3 θ + 1

5 cos5 θ + C

5. − 1
4 cos4 t + 1

6 cos6 t + C 7. 2

9. 1
4 cos3 y sin y + 3

8 cos y sin y + 3
8y + C

11. 1
6 sin5 x cos x − 1

24 sin3 x cos x − 1
16 sin x cos x + 1

16x + C

13. 1
5 sin4 x cos x − 1

15 sin2 x cos x − 2
15 cos x + C

15. 1
3 sec3 x − sec x + C

17. 1
5 tan x sec4 x − 1

15 tan(x) sec2 x − 2
15 tan x + C

19. − 1
2 cot2 x + ln | csc x| + C 21. − 1

6 cot6 x + C

23. − 1
6 cos6 x + C

25. 1
12 (cos3 x sin x + 3

2 (x + sin x cos x)) + C

27. 1
5π

sin5(πθ) − 1
7π

sin7(πθ) + C

29. − 1
12 sin3(3x) cos(3x) − 1

8 sin(3x) cos(3x) + 9
8x + C

31. 1
2 cot(3 − 2x) + C 33. 1

2 tan2 x + C

35. 1
8 sec8 x − 1

3 sec6 x + 1
4 sec4 x + C

37. 1
9 tan9 x + 1

7 tan7 x + C

39. − 1
9 csc9 x + 2

7 csc7 x − 1
5 csc5 x + C

41. 1
4 sin2 2x + C

43. 1
6 cos2(t2) sin(t2) + 1

3 sin(t2) + C

45. 1
2 cos(sin t) sin(sin t) + 1

2 sin t + C

47. π 49. 8
15 51. ln

(√
2 + 1

)
53. ln 2

55. 8
3 57. − 6

7 59. 8
15

61. First, observe sin 4x = 2 sin 2x cos 2x = 2 sin 2x(1 − 2 sin2 x) =
2 sin 2x − 4 sin 2x sin2 x = 2 sin 2x − 8 sin3 x cos x. Then
1

32 (12x − 8 sin 2x + sin 4x) + C = 3
8x − 3

16 sin 2x −
1
4 sin3 x cos x + C = 3

8x − 3
8 sin x cos x − 1

4 sin3 x cos x + C.

63. π2

2 65. 1
8x − 1

16 sin 2x cos 2x + C

67. 1
16x − 1

48 sin 2x − 1
32 sin 2x cos 2x + 1

48 cos2 2x sin 2x + C

69. Use the identity tan2 x = sec2 x − 1 and the substitution
u = tan x, du = sec2 x dx.

71. (a) I0 = ∫ π/2
0 sin0 x dx = π

2 ; I1 = ∫ π/2
0 sin x dx = 1

(b) m−1
m

∫ π/2
0 sinm−2 x dx

(c) I2 = π
4 ; I3 = 2

3 ; I4 = 3π
16 ; I5 = 8

15
73. cos(x) − cos(x) ln(sin(x)) + ln | csc(x) − cot(x)| + C

77. Use Integration by Parts with u = secm−2 x and v′ = sec2 x.

Section 7.3 Preliminary Questions
1. (a) x = 3 sin θ (b) x = 4 sec θ (c) x = 4 tan θ

(d) x = √
5 sec θ

3. 2x
√

1 − x2

Section 7.3 Exercises
1. (a) θ + C (b) sin−1 ( x

3

)+ C

3. (a)
∫

dx√
4x2+9

= 1
2

∫
sec θ dθ

(b) 1
2 ln | sec θ + tan θ | + C

(c) ln |
√

4x2 + 9 + 2x| + C

5. 8√
5

arccos(
√

16−5x2

4 ) + x
√

16−5x2

2 + C

7. 1
3 sec−1 ( x

3

)+ C 9. −x

4
√

x2−4
+ C

11.
√

x2 − 4 + C

13. (a) −
√

1 − x2 (b) 1
8 (arcsin x − x

√
1 − x2(1 − 2x2))

(c) − 1
3 (1 − x2)

3
2 + 1

5 (1 − x2)
5
2

(d)
√

1 − x2(− x3

4 − 3x
8 ) + 3

8 arcsin(x)

15. 9
2 sin−1 ( x

3

)− 1
2x
√

9 − x2 + C

17. 1
4 ln |

√
x2+16−4

x | + C 19. ln
∣∣∣x +

√
x2 − 9

∣∣∣+ C

21. −
√

5−y2

5y
+ C 23. 1

5 ln
√

25x2 + 25x + C

25. 1
16 sec−1 ( z

2

)+
√

z2−4
8z2 + C

27. 1
12x
√

6x2 − 49 + 1
2 ln x +

√
x2 − 1 + C

29. 1
54 tan−1 ( t

3

)+ t
18(t2+9)

+ C

31. x√
x2−1

+ ln x +
√

x2 − 1 + C

33. Use the substitution x = √
a u.

35. (a) x2 − 4x + 8 = x2 − 4x + 4 + 4 = (x − 2)2 + 4

(b) ln
∣∣∣√u2 + 4 + u

∣∣∣+ C

(c) ln
∣∣∣√(x − 2)2 + 4 + x − 2

∣∣∣+ C

37. ln
∣∣∣√x2 + 4x + 13 + x + 2

∣∣∣+ C

39. 1√
6

ln 12x + 1 + 2
√

6
√

x + 6x2 + C

41. 1
2 (x − 2)

√
x2 − 4x + 3 + 7

2 ln
∣∣∣x − 2 +

√
x2 − 4x + 3

∣∣∣+ C

43. Begin by multiplying by −1, then completing the square, and
then follow up with u-substitution (u = (x + 3); du = dx) and then
trigonometric substitution.

45. Use one of the following trigonometric methods: rewrite
sin3 x = (1 − cos2 x) sin x and let u = cos x, or rewrite
cos3 x = (1 − sin2 x) cos x and let u = sin x.

47. Use trigonometric substitution, with x = 3 sin θ or substitution
with x = 3u and dx = 3 du.

49. The techniques learned thus far are insufficient to solve this
integral.
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51. The techniques we have covered thus far are not sufficient to treat
this integral. This integral requires a technique known as partial
fractions.

53. x sec−1 x − ln
∣∣∣x +

√
x2 − 1

∣∣∣+ C

55. x(ln(x2 + 1) − 2) + 2 tan−1 x + C

57. π
4 59. 4π

[√
3 − ln

∣∣∣2 + √
3
∣∣∣]

61. 1
2 ln |x − 1| − 1

2 ln |x + 1| + C

63. (a) 1.789 × 106 V
m (b) 3.526 × 106 V

m

Section 7.4 Preliminary Questions
1. (a) x = sinh t (b) x = 3 sinh t (c) 3x = sinh t

3. 1
2 ln

∣∣∣ 1+x
1−x

∣∣∣
Section 7.4 Exercises

1. 1
3 sinh 3x + C. 3. 1

2 cosh(x2 + 1) + C

5. − 1
2 tanh(1 − 2x) + C 7.

tanh2 x

2
+ C 9. ln cosh x + C

11. ln | sinh x| + C 13. 1
16 sinh(8x − 18) − 1

2x + C

15. 1
32 sinh 4x − 1

8x + C 17. cosh−1 x + C

19. 1
5 sinh−1

(
5x
4

)
+ C 21. 1

2x
√

x2 − 1 − 1
2 cosh−1 x + C

23. 2 tanh−1
(

1
2

)
25. sinh−1 1

27. 1
4

(
csch−1

(
− 1

4

)
− csch−1

(
− 3

4

))
29. cosh−1 x −

√
x2−1
x + C

31. Let x = sinh t for the first formula and x = cosh t for the second.

33. 1
2x
√

x2 + 16 + 8 ln

∣∣∣∣ x4 +
√(

x
4

)2 + 1

∣∣∣∣+ C

35. Using Integration by Parts with u = coshn−1 x and v′ = cosh x

to begin proof.

37. − 1
2

(
tanh−1 x

)2 + C

39. x tanh−1 x + 1
2 ln |1 − x2| + C

41. u =
√

cosh x−1
cosh x+1 . From this it follows that cosh x = 1+u2

1−u2 ,

sinh x = 2u
1−u2 and dx = 2du

1−u2 .

43.
∫

du = u + C = tanh x
2 + C

45. Let gd(y) = tan−1(sinh y). Then

d

dy
gd(y) = 1

1 + sinh2 y
cosh y = 1

cosh y
= sech y,

where we have used the identity 1 + sinh2 y = cosh2 y.

47. Let x = gd(y) = tan−1(sinh y). Solving for y yields
y = sinh−1(tan x). Therefore, gd−1(y) = sinh−1(tan y).

49. Let x = it . Then cosh2 x = (cosh(it))2 = cos2 t and
sinh2 x = (sinh(it))2 = i2 sin2 t = − sin2 t. Thus,
1 = cosh2(it) − sinh2(it) = cos2 t − (− sin2 t) = cos2 t + sin2 t, as
desired.

Section 7.5 Preliminary Questions
1. No, f (x) cannot be a rational function because the integral of a

rational function cannot contain a term with a non-integer exponent
such as

√
x + 1

3. (a) Square is already completed; irreducible.
(b) Square is already completed; factors as (x − √

5)(x + √
5).

(c) x2 + 4x + 6 = (x + 2)2 + 2; irreducible.
(d) x2 + 4x + 2 = (x + 2)2 − 2; factors as
(x + 2 − √

2)(x + 2 + √
2).

Section 7.5 Exercises

1. (a)
x2 + 4x + 12

(x + 2)(x2 + 4)
= 1

x + 2
+ 4

x2 + 4
.

(b)
2x2 + 8x + 24

(x + 2)2(x2 + 4)
= 1

x + 2
+ 2

(x + 2)2
+ −x + 2

x2 + 4
.

(c)
x2 − 4x + 8

(x − 1)2(x − 2)2
= −8

x − 2
+ 4

(x − 2)2
+ 8

x − 1
+ 5

(x − 1)2
.

(d)
x4 − 4x + 8

(x + 2)(x2 + 4)
= x − 2 + 4

x + 2
− 4x − 4

x2 + 4
.

3. −2 5. 1
9 (3x + 4 ln(3x − 4)) + C

7. x3

3 + ln(x + 2) + C 9. − 1
2 ln |x − 2| + 1

2 ln |x − 4| + C

11. ln |x| − ln |2x + 1| + C

13. x − 3 arctan x
3 + C

15. 2 ln |x + 3| − ln |x + 5| − 2
3 ln |3x − 2| + C

17. 3 ln |x − 1| − 2 ln |x + 1| − 5
x+1 + C

19. 2 ln |x − 1| − 1
x−1 − 2 ln |x − 2| − 1

x−2 + C

21. ln(x) − ln(x + 2) + 2
x+2 + 2

(x+2)2 + C

23. 1
2
√

6
ln
∣∣∣√2x − √

3
∣∣∣− 1

2
√

6
ln
∣∣∣√2x + √

3
∣∣∣+ C

25. 5
2x+5 − 5

4(2x+5)2 + 1
2 ln(2x + 5) + C

27. − ln |x| + ln |x − 1| + 1
x−1 − 1

2(x−1)2 + C

29. x + ln |x| − 3 ln |x + 1| + C

31. 2 ln |x − 1| + 1
2 ln |x2 + 1| − 3 tan−1 x + C

33. 1
25 ln |x| − 1

50 ln |x2 + 25| + C

35. 6x − 14 ln x + 3 + 2 ln x − 1 + C

37. − 1
5 ln |x − 1| − 1

x−1 + 1
10 ln |x2 + 9| − 4

15 tan−1 ( x
3

)+ C

39. 1
64 ln |x| − 1

128 ln |x2 + 8| + 1
16(x2+8)

+ C

41. 1
6 ln |x + 2| − 1

12 ln |x2 + 4x + 10| + C

43. ln |x| − 1
2 ln |x2 + 2x + 5| − 5

5

2(x2 + 2x + 5)
−

3 tan−1
(

x+1
2

)
+ C

45. 1
2 arctan(x2) + C 47. ln(ex − 1) − x + C

49. 2
√

x + ln |√x − 1| − ln |√x + 1| + C

51. ln

∣∣∣∣ x√
x2−1

− 1√
x2−1

∣∣∣∣+ C = ln

∣∣∣∣ x−1√
x2−1

∣∣∣∣+ C

53. − 1
4

(√
4−x2

x

)
+ C = −

√
4−x2

4x
+ C

55. 1
2x + 1

8 sin 4x cos 4x + C
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57. 1
54 tan−1 ( x

3

)+ x
18(x2+9)

+ C

59. 1
5 sec5 x − 2

3 sec3 x + sec x + C

61. x ln(x2 + 1) + (x + 1) ln(x + 1) + (x − 1) ln(x − 1) − 4x −
2 arctan x + C

63. ln
∣∣∣x +

√
x2 − 1

∣∣∣− x√
x2−1

+ C

65. 2
3 tan−1(x3/2) + C

67. If θ = 2 tan−1 t , then dθ = 2 dt/(1 + t2). We also have that

cos( θ
2 ) = 1/

√
1 + t2 and sin( θ

2 ) = t/
√

1 + t2. To find cos θ , we use

the double angle identity cos θ = 1 − 2 sin2( θ
2 ). This gives us

cos θ = 1−t2

1+t2 . To find sin θ , we use the double angle identity

sin θ = 2 sin( θ
2 ) cos( θ

2 ). This gives us sin θ = 2t
1+t2 . It follows then

that
∫

dθ

cos θ + 3
4 sin θ

=

−4

5
ln

∣∣∣∣2 − tan

(
θ

2

)∣∣∣∣+ 4

5
ln

∣∣∣∣1 + 2 tan

(
θ

2

)∣∣∣∣+ C.

69. Partial fraction decomposition shows 1
(x−a)(x−b)

=
1

a−b
x−a +

1
b−a

x−b
.

This can be used to show
∫

dx
(x−a)(x−b)

= 1
a−b

ln
∣∣∣ x−a
x−b

∣∣∣+ C.

71. 2
x−6 + 1

x+2

Section 7.6 Preliminary Questions
1. (a) The integral is converges.

(b) The integral is diverges.

(c) The integral is diverges.

(d) The integral is converges.

3. Any value of b satisfying |b| ≥ 2 will make this an improper
integral.

5. Knowing that an integral is smaller than a divergent integral does
not allow us to draw any conclusions using the comparison test.

Section 7.6 Exercises
1. (a) Improper. The function x−1/3 is infinite at 0.

(b) Improper. Infinite interval of integration.

(c) Improper. Infinite interval of integration.

(d) Proper. The function e−x is continuous on the finite
interval [0, 1].
(e) Improper. The function sec x is infinite at π

2 .

(f) Improper. Infinite interval of integration.

(g) Proper. The function sin x is continuous on the finite
interval [0, 1].
(h) Proper. The function 1/

√
3 − x2 is continuous on the finite

interval [0, 1].
(i) Improper. Infinite interval of integration.

(j) Improper. The function ln x is infinite at 0.

3.
∫∞

1 x−2/3 dx = limR→∞
∫ R

1 x−2/3 dx =
limR→∞ 3

(
R1/3 − 1

)
= ∞

5. The integral does not converge.

7. The integral converges; I = 10,000e0.0004.

9. The integral does not converge.

11. The integral converges; I = 4.

13. The integral converges; I = 1
8 .

15. The integral converges; I = 2.

17. The integral converges; I = 1.25.

19. The integral converges; I = 1
3e12 .

21. The integral converges; I = 1
3 .

23. The integral converges; I = 2
√

2.

25. The integral does not converge.

27. The integral converges; I = 1
2 .

29. The integral converges; I = 1
2 .

31. The integral converges; I = π
2 .

33. The integral does not converge.

35. The integral does not converge.

37. The integral converges; I = −1.

39. The integral does not converge.

41. (a) Partial fractions yields dx
(x−2)(x−3)

= dx
x−3 − dx

x−2 . This

yields
∫ R

4
dx

(x−2)(x−3)
= ln

∣∣∣R−3
R−2

∣∣∣− ln 1
2

(b) I = limR→∞
(

ln
∣∣∣R−3
R−2

∣∣∣− ln 1
2

)
= ln 1 − ln 1

2 = ln 2

43. The integral does not converge.

45. The integral does not converge.

47. The integral converges; I = 0.

49.
∫ 1

−1

dx

x1/3
=
∫ 0

−1

dx

x1/3
+
∫ 1

0

dx

x1/3
= 0

51. The integral converges for a < 0.

53.
∫∞
−∞ dx

1+x2 = π .

55. 1
x3+4

≤ 1
x3 . Therefore, by the comparison test, the integral

converges.

57. For x ≥ 1, x2 ≥ x, so −x2 ≤ −x and e−x2 ≤ e−x . Now∫∞
1 e−x dx converges, so

∫∞
1 e−x2

dx converges by the
comparison test. We conclude that our integral converges by writing it

as a sum:
∫∞

0 e−x2
dx = ∫ 1

0 e−x2
dx + ∫∞

1 e−x2
dx.

59. Let f (x) = 1 − sin x

x2
. Since f (x) ≤ 2

x2
and

∫ ∞
1

2x−2 dx = 2,

it follows that
∫ ∞

1

1 − sin x

x2
dx converges by the comparison test.

61. The integral converges.

63. The integral does not converge.

65. The integral converges.

67. The integral does not converge.

69. The integral converges.

71. The integral converges.

73. The integral does note converge.

75.
∫ 1

0

dx

x1/2(x + 1)
and

∫ ∞
1

dx

x1/2(x + 1)
both converge, therefore

J converges.

77. 250
0.07 79. $2,000,000

81. (a) π (b)
∫∞

1
1
x

√
1 + 1

x4 dx diverges.



ANSWERS TO ODD-NUMBERED EXERCISES A83

83. W = limT →∞ CV 2
(

1
2 − e−T/RC + 1

2 e−2T/RC
)

=
CV 2

(
1
2 − 0 + 0

)
= 1

2CV 2

85. The integrand is infinite at the upper limit of integration,
x = √

2E/k, so the integral is improper.

T = lim
R→√

2E/k
T (R) = 4

√
m
k

sin−1(1) = 2π
√

m
k

.

87. Lf (s) = −1

s2 + α2
lim

t→∞ e−st (s sin(αt) + αcos(αt)) − α.

89. s
s2+α2 91. Jn = n

α Jn−1 = n
α · (n−1)!

αn = n!
αn+1

93. E = 8πh
c3

∫∞
0

ν3

eαν−1 dν. Because α > 0 and 8πh/c3 is a
constant, we know E is finite by Exercise 92.

95. Because t > ln t for t > 2, F(x) =
∫ x

2

dt

ln t
>

∫ x

2

dt

t
> ln x.

Thus, F(x) → ∞ as x → ∞. Moreover,

lim
x→∞ G(x) = lim

x→∞
1

1/x
= lim

x→∞ x = ∞. Thus, lim
x→∞

F(x)

G(x)
is of the

form ∞/∞, and L’Hôpital’s Rule applies. Finally,

L = lim
x→∞

F(x)

G(x)
= lim

x→∞
1

ln x
ln x−1
(ln x)2

= lim
x→∞

ln x

ln x − 1
= 1.

97. The integral is absolutely convergent. Use the comparison test
with 1

x2 .

Section 7.7 Preliminary Questions
1. No, p(x) ≥ 0 fails. 3. p(x) = 4e−4x

Section 7.7 Exercises
1. C = 2; P(0 ≤ X ≤ 1) = 3

4

3. C = 1
π ; P

(− 1
2 ≤ X ≤ 1

2

) = 1
3

5. C = 2
π ; P

(− 1
2 ≤ X ≤ 1

) = 2
3 +

√
3

4π

7.
∫∞

1 3x−4 = 1; μ = 3
2

9. Integration confirms
∫∞

0
1

50 e−t/50 = 1

11. e− 3
2 ≈ 0.2231 13. 1

2

(
2 − 10e−2

)
≈ 0.32

15. F(− 2
3 ) − F(− 13

6 ) ≈ 0.2374

17. (a) ≈ 0.8849 (b) ≈ 0.6554

19. 1 − F(z) and F(−z) are the same area on opposite tails of the
distribution function. Simple algebra with the standard normal
cumulative distribution function shows
P(μ − rσ ≤ X ≤ μ + rσ ) = 2F(r) − 1

21. ≈ 0.0062 23. μ = 5/3; σ = √
10/3 25. μ = 3; σ = 3

27. (a) f (t) is the fraction of initial atoms present at time t .
Therefore, the fraction of atoms that decay is going to be the rate of
change of the total number of atoms. Over a small interval, this is
simply −f ′(t)�t .

(b) The fraction of atoms that decay over an arbitrarily small interval
is equivalent to the probability that an individual atom will decay over
that same interval. Thus, the probability density function becomes
−f ′(t). (c)

∫∞
0 −tf ′(t) dt = 1

k

Section 7.8 Preliminary Questions
1. T1 = 6; T2 = 7

3. The Trapezoidal Rule integrates linear functions exactly, so the
error will be zero.

5. The two graphical interpretations of the Midpoint Rule are the
sum of the areas of the midpoint rectangles and the sum of the areas
of the tangential trapezoids.

Section 7.8 Exercises
1. T4 = 2.75; M4 = 2.625

3. T6 = 64.6875; M6 ≈ 63.2813

5. T6 ≈ 1.4054; M6 ≈ 1.3769

7. T6 = 1.1703; M6 = 1.2063

9. T4 ≈ 0.3846; M5 ≈ 0.3871

11. T5 = 1.4807; M5 = 1.4537

13. S4 ≈ 5.2522 15. S6 ≈ 1.1090 17. S4 ≈ 0.7469
19. S8 ≈ 2.5450 21. S10 ≈ 0.3466 23. ≈ 2.4674
25. ≈ 1.8769 27. ≈ 608.611

29. (a) Assuming the speed of the tsunami is a continuous function,
at x miles from the shore, the speed is

√
15f (x). Covering an

infinitesimally small distance, dx, the time T required for the tsunami

to cover that distance becomes
dx√

15f (x)
. It follows from this that

T = ∫M
0

dx√
15f (x)

.

(b) ≈ 3.347 hours.

31. (a) Since x3 is concave up on [0, 2], T6 is too large.

(b) We have f ′(x) = 3x2 and f ′′(x) = 6x. Since |f ′′(x)| = |6x| is
increasing on [0, 2], its maximum value occurs at x = 2 and we may
take K2 = |f ′′(2)| = 12. Thus, Error(T6) ≤ 2

9 .

(c) Error(T6) ≈ 0.1111 < 2
9

33. T10 will overestimate the integral. Error(T10) ≤ 0.045.

35. M10 will overestimate the integral. Error(M10) ≤ 0.0113

37. N ≥ 103; Error ≈ 3.333 × 10−7

39. N ≥ 750; Error ≈ 2.805 × 10−7

41. Error(T10) ≤ 0.0225; Error(M10) ≤ 0.01125

43. S8 ≈ 4.0467; N ≥ 23

45. Error(S40) ≤ 1.017 × 10−4.

47. N ≥ 305 49. N ≥ 186

51. (a) The maximum value of |f (4)(x)| on the interval [0, 1] is 24.

(b) N ≥ 20; S20 ≈ 0.785398; |0.785398 − π
4 | ≈ 1.55 × 10−10.

53. (a) Notice |f ′′(x)| = |2 cos(x2) − 4x2 sin(x2)|; proof follows.

(b) When K2 = 2, Error(MN) ≤ 1
4N2 .

(c) N ≥ 16

55. Error(T4) ≈ 0.1039; Error(T8) ≈ 0.0258; Error(T16) ≈ 0.0064;
Error(T32) ≈ 0.0016; Error(T64) ≈ 0.0004. Thes are about twice as
large as the error in MN .

57. S2 = 1
4 . This is the exact value of the integral.

59. TN = r(b2 − a2)

2
+ s(b − a) =

∫ b

a
f (x) dx
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61. (a) This result follows because the even-numbered interior
endpoints overlap:

(N−2)/2∑
i=0

S
2j
2 = b − a

6
[(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + · · · ]

= b − a

6

[
y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 4yN−1 + yN

] = SN .

(b) If f (x) is a quadratic polynomial, then by part (a) we have

SN = S0
2 + S2

2 + · · · + SN−2
2 =

∫ b

a
f (x) dx.

63. Let f (x) = ax3 + bx2 + cx + d, with a �= 0, be any cubic
polynomial. Then, f (4)(x) = 0, so we can take K4 = 0. This yields
Error(SN ) ≤ 0

180N4 = 0. In other words, SN is exact for all cubic
polynomials for all N .

Chapter 7 Review
1. (a) (v) (b) (iv) (c) (iii) (d) (i) (e) (ii)

3. sin9θ
9 − sin11θ

11 + C.

5.
tan θsec5θ

6 − 7 tan θsec3θ
24 + tan θ sec θ

16 + 1
16 ln | sec θ + tan θ | + C

7. − 1√
x2−1

− sec−1x + C 9. 2tan−1√
x + C

11. − tan−1x
x + ln |x| − 1

2 ln
(

1 + x2
)

+ C.

13. 5
32 e4 − 1

32 ≈ 8.50 15. cos126θ
72 − cos106θ

60 + C

17. 5 ln |x − 1| + ln |x + 1| + C

19. tan3θ
3 + tan θ + C 21. ≈ 1.0794

23. − cos5θ
5 + 2cos3θ

3 − cos θ + C 25. − 1
4

27. 2
3 (tan x)3/2 + C

29. sin6θ
6 − sin8θ

8 + C 31. − 1
3u3 + C = − 1

3 cot3 x + C

33. ≈ 0.4202 35. 1
49 ln

∣∣∣ t+4
t−3

∣∣∣− 1
7 · 1

t−3 + C

37. 1
2 sec−1 x

2 + C

39.
∫

dx

x3/2 + ax1/2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2√
a

tan−1
√

x
a + C a > 0

1√−a
ln
∣∣∣√x−√−a√

x+√−a

∣∣∣+ C a < 0

− 2√
x

+ C a = 0

41. ln |x + 2| + 5
x+2 − 3

(x+2)2 + C

43. − ln |x − 2| − 2 1
x−2 + 1

2 ln
(
x2 + 4

)
+ C

45. 1
3 tan−1

(
x+4

3

)
+ C 47. ln |x + 2| + 5

x+2 − 3
(x+2)2 + C

49. −
(
x2+4

)3/2

48x3 +
√

x2+4
16x

+ C 51. − 1
9 e4−3x(3x + 4) + C

53. 1
2x2 sin x2 + 1

2 cos x2 + C

55. x2

2 tanh−1 x + x
2 − 1

4 ln
∣∣∣ 1+x

1−x

∣∣∣+ C

57. x ln
(
x2 + 9

)
− 2x + 6tan−1 ( x

3

)+ C

59. 1
2 sinh 2 61. t + 1

4 coth(1 − 4t) + C 63. π
3

65. tan−1(tanh x) + C

67. (a) In =
∫

xn

x2 + 1
dx =

∫
xn−2(x2 + 1 − 1)

x2 + 1
dx =∫

xn−2 dx −
∫

xn−2

x2 + 1
dx = xn−1

n − 1
− In−2

(b) I0 = tan−1x + C; I1 = 1
2 ln

(
x2 + 1

)
+ C;

I2 = x − tan−1x + C; I3 = x2

2 − 1
2 ln

(
x2 + 1

)
+ C;

I4 = x3

3 − x + tan−1x + C; I5 = x4

4 − x2

2 + 1
2 ln

(
x2 + 1

)
+ C

(c) Prove by induction; show it works for n = 1, then assume it
works for n = k and use that to show it works for n = k + 1.

69. 3
4 71. C = 2; p(0 ≤ X ≤ 1) = 1 − 2

e

73. (a) 0.1587 (b) 0.49997

75. Integral converges; I = 1
2 .

77. Integral converges; I = 3 3√4.

79. Integral converges; I = π
2 .

81. The integral does not converge.

83. The integral does not converge.

85. The integral converges.

87. The integral converges.

89. The integral converges. 91. π 95. 2
(s−α)3

97. (a) TN is smaller and MN is larger than the integral.
(b) MN is smaller and TN is larger than the integral.
(c) MN is smaller and TN is larger than the integral.
(d) TN is smaller and MN is larger than the integral.

99. M5 ≈ 0.7481 101. M4 ≈ 0.7450 103. S6 ≈ 0.7469
105. V ≈ T9 ≈ 20 hectare-ft = 871,200 ft3 107. Error ≤ 3

128 .
109. N ≥ 29

Chapter 8
Section 8.1 Preliminary Questions

1.
∫ π

0

√
1 + sin2 x dx

2. The graph of y = f (x) + C is a vertical translation of the graph
of y = f (x); hence, the two graphs should have the same arc length.
We can explicitly establish this as follows:

Length of y = f (x) + C =
∫ b

a

√
1 +

[
d

dx
(f (x) + C)

]2
dx

=
∫ b

a

√
1 + [f ′(x)]2 dx

= length of y = f (x).

3. Since
√

1 + f ′(x)2 ≥ 1 for any function f , we have

Length of graph of f (x) over [1, 4] =
∫ 4

1

√
1 + f ′(x)2 dx

≥
∫ 4

1
1 dx = 3
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Section 8.1 Exercises
1. L = ∫ 6

2

√
1 + 16x6 dx 3. 13

12 5. 3
√

10

7. 1
27 (22

√
22 − 13

√
13) 9. e2 + ln 2

2 + 1
4

11.
∫ 2

1

√
1 + x6 dx ≈ 3.957736

13.
∫ 2

1

√
1 + 1

x4 dx ≈ 1.132123

15. 6

19. a = sinh−1(5) = ln(5 + √
26)

23. Let s denote the arc length. Then

s = a
2

√
1 + 4a2 + 1

4 ln |
√

1 + 4a2 + 2a|. Thus, when a = 1,

s = 1
2

√
5 + 1

4 ln(
√

5 + 2) ≈ 1.478943.

25.
√

1 + e2a + 1
2 ln

√
1+e2a−1√
1+e2a+1

− √
2 + 1

2 ln 1+√
2√

2−1

27. ln(1 + √
2) 31. 1.552248 33. 16π

√
2

35. π
27 (1453/2 − 1) 37. 384π

5 39. π
16 (e4 − 9)

41. 2π
∫ 3

1 x−1
√

1 + x−4 dx ≈ 7.60306

43. 2π
∫ 2

0 e−x2/2
√

1 + x2e−x2
dx ≈ 8.222696

45. 2π ln 2 + 15π
8 47. 4π2br

49. 2πb2 + 2πba2√
b2−a2

ln

∣∣∣∣√b2−a2

a + b
a

∣∣∣∣
Section 8.2 Preliminary Questions

1. Pressure is defined as force per unit area.

2. The factor of proportionality is the weight density of the fluid,
w = ρg.

3. Fluid force acts in the direction perpendicular to the side of the
submerged object.

4. Pressure depends only on depth and does not change horizontally
at a given depth.

5. When a plate is submerged vertically, the pressure is not constant
along the plate, so the fluid force is not equal to the pressure times the
area.

Section 8.2 Exercises
1. (a) Top: F = 176, 500 N; bottom: F = 705, 600 N

(b) F ≈
N∑

j=1
ρg3yj �y (c) F = ∫ 8

2 ρg3y dy

(d) F = 882, 000 N

3. (a) The width of the triangle varies linearly from 0 at a depth of
y = 3 m to 1 at a depth of y = 5 m. Thus, f (y) = 1

2 (y − 3).

(b) The area of the strip at depth y is 1
2 (y − 3)�y, and the pressure at

depth y is ρgy, where ρ = 103 kg/m3 and g = 9.8. Thus, the fluid
force acting on the strip at depth y is approximately equal to
ρg 1

2y(y − 3)�y.

(c) F ≈
N∑

j=1
ρg 1

2yj (yj − 3) �y → ∫ 5
3 ρg 1

2y(y − 3) dy

(d) F = 127,400
3 N

5. (b) F = 19,600
3 r3 N

7. F = 19,600
3 r3 + 4,900πmr2 N

9. F ≈ 321, 250, 000 lb

11. F = 815360
3 N 13. F ≈ 5593.804 N 15. F ≈ 5652.4 N

17. F = 940, 800 N
19. F = 4, 532, 500, 000 sec( 7π

36 ) ≈ 5.53316 × 109 N

21. F = (15b + 30a)h2 lb

23. Front and back: F = 62.5
√

3
9 H 3; slanted sides: F = 62.5

√
3

3 
H 2.

Section 8.3 Preliminary Questions
1. Mx = My = 0 2. Mx = 21 3. Mx = 5; My = 10

4. Because a rectangle is symmetric with respect to both the vertical
line and the horizontal line through the center of the rectangle, the
Symmetry Principle guarantees that the centroid of the rectangle must
lie along both these lines. The only point in common to both lines of
symmetry is the center of the rectangle, so the centroid of the
rectangle must be the center of the rectangle.

Section 8.3 Exercises
1. (a) Mx = 4m; My = 9m; center of mass:

(
9
4 , 1
)

(b)
(

46
17 , 14

17

)
5. A sketch of the lamina is shown here.

y

x

8

4

6

2

0 2 31 1.5 2.50.5

(a) Mx = 729
10 ; My = 243

4

(b) Area = 9 cm2; center of mass:
(

9
4 , 27

10

)
7. Mx = 64ρ

7 ; My = 32ρ
5 ; center of mass :

(
8
5 , 16

7

)
9. (a) Mx = 24

(b) M = 12, so ycm = 2; center of mass: (0, 2)

11.
(

93
35 , 45

56

)
13.

(
9
8 , 18

5

)
15.

(
1−5e−4

1−e−4 , 1−e−8

4(1−e−4)

)
17.

(
π
2 , π

8

)
19. A sketch of the region is shown here.

y

x

4

2

3

1

5

0 21 1.50.5

The region is clearly symmetric about the line y = 3, so we expect the
centroid of the region to lie along this line. We find Mx = 24,

My = 28
3 , centroid:

(
7
6 , 3
)

.

21.
(

9
20 , 9

20

)
23.

(
1

2(e−2)
, e2−3

4(e−2)

)
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25.
(

π
√

2−4
4
(√

2−1
) , 1

4(
√

2−1)

)
27. A sketch of the region is shown here. Centroid:

(
0, 2

7

)

1

1

−1

y

x

29.
(

0, 4b
3π

)
31.

(
4

3π
, 4

3π

)
33.

(
0,

2
3 (r2−h2)3/2

r2 sin−1
√

1−h2/r2−h
√

r2−h2

)
; with r = 1 and h = 1

2 :(
0, 3

√
3

4π−3
√

3

)
≈ (0, 0.71)

35.
(

0, 49
24

)
37.

(
− 4

9π
, 4

9π

)
39. For the square on the left: (4, 4); for the square on the right:(

4, 25
7

)
.

Section 8.4 Preliminary Questions
1. T3(x) = 9 + 8(x − 3) + 2(x − 3)2 + 2(x − 3)3

2. The polynomial graphed on the right is a Maclaurin polynomial.

3. A Maclaurin polynomial gives the value of f (0) exactly.

4. The correct statement is (b): |T3(2) − f (2)| ≤ 2
3

Section 8.4 Exercises
1. T2(x) = x; T3(x) = x − x3

6

3. T2(x) = 1
3 − 1

9 (x − 2) + 1
27 (x − 2)2;

T3(x) = 1
3 − 1

9 (x − 2) + 1
27 (x − 2)2 − 1

81 (x − 2)3

5. T2(x) = 75 + 106(x − 3) + 54(x − 3)2;
T3(x) = 75 + 106(x − 3) + 54(x − 3)2 + 12(x − 3)3

7. T2(x) = x; T3(x) = x + x3

3

9. T2(x) = 2 − 3x + 5x2

2 ; T3(x) = 2 − 3x + 5x2

2 − 3x3

2

11. T2(x) = 1
e + 1

e (x − 1) − 1
2e

(x − 1)2;

T3(x) = 1
e + 1

e (x − 1) − 1
2e

(x − 1)2 − 1
6e

(x − 1)3

13. T2(x) = (x − 1) − 3(x−1)2

2 ;

T3(x) = (x − 1) − 3(x−1)2

2 + 11(x−1)3

6
15. Let f (x) = ex . Then, for all n,

f (n)(x) = ex and f (n)(0) = 1.

It follows that

Tn(x) = 1 + x
1! + x2

2! + · · · + xn

n! .

19. Tn(x) = 1 + x + x2 + x3 + · · · + xn

21. Tn(x) = e + e(x − 1) + e(x−1)2

2! + · · · + e(x−1)n

n!

23.
Tn(x) = 1√

2
− 1√

2

(
x − π

4

)− 1
2
√

2

(
x − π

4

)2 + 1
6
√

2

(
x − π

4

)3 · · ·
In general, the coefficient of (x − π/4)n is

± 1

(
√

2)n!
with the pattern of signs +, −, −, +, +, −, −, . . . .

25. T2(x) = 1 + x + x2

2 ;
∣∣T2(−0.5) − f (−0.5)

∣∣ ≈ 0.018469

27. T2(x) = 1 − 2
3 (x − 1) + 5

9 (x − 1)2;
|f (1.2) − T2(1.2)| ≈ 0.00334008

29. T3(x) = 1 + 1
2 (x − 1) − 1

8 (x − 1)2 + 1
16 (x − 1)3

31. e1.1|1.1|4
4!

33. T5(x) = 1 − x2

2 + x4

24 ; maximum error = (0.25)6

6!
35. T3(x) = 1

2 − 1
16 (x − 4) + 3

256 (x − 4)2 − 5
2048 (x − 4)3;

maximum error = 35(0.3)4

65,536

37. T3(x) = x − x3

3 ; T3

(
1
2

)
= 11

24 . With K = 5,

∣∣∣T3

(
1
2

)
− tan−1 1

2

∣∣∣ ≤ 5
(

1
2

)4

4! = 5
384 .

39. T3(x) = cos(0.25) − sin(0.25)(x − 0.5) −
cos(0.25)+2 sin(0.25)

2 (x − 0.5)2 + sin(0.25)−6 cos(0.25)
6 (x − 0.5)3;

|T3(0.6) − f (0.6)| ≤ K(0.0001)
24 ; K = 10 is acceptable.

41. n = 4

43. n = 6

47. n = 4

51. T4n(x) = 1 − x4

2 + x8

4! + · · · + (−1)n x4n

(2n)!
53. At a = 0,

T1(x) = −4 − x

T2(x) = −4 − x + 2x2

T3(x) = −4 − x + 2x2 + 3x3 = f (x)

T4(x) = T3(x)

T5(x) = T3(x)

At a = 1,

T1(x) = 12(x − 1)

T2(x) = 12(x − 1) + 11(x − 1)2

T3(x) = 12(x − 1) + 11(x − 1)2 + 3(x − 1)3

= −4 − x + 2x2 + 3x3 = f (x)

T4(x) = T3(x)

T5(x) = T3(x)

55. T2(t) = 60 + 24t − 3
2 t2; truck’s distance from intersection after

4 s is ≈ 132 m

57. (a) T3(x) = − k
R3 x + 3k

2R5 x3

65. T4(x) = 1 − x2 + 1
2x4; the error is approximately

|0.461458 − 0.461281| = 0.000177
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67. (b)
∫ 1/2

0 T4(x) dx = 1841
3840 ; error bound:∣∣∣∣∣

∫ 1/2

0
cos x dx −

∫ 1/2

0
T4(x) dx

∣∣∣∣∣ < ( 1
2 )7

6!
69. (a) T6(x) = x2 − 1

6x6

Chapter 8 Review
1. 779

240 3. 4
√

17 7. 24π
√

2 9. 67π
36

11. 12π + 4π2 13. 176,400 N

15. Fluid force on a triangular face: 183, 750
√

3 + 306, 250 N; fluid
force on a slanted rectangular edge: 122, 500

√
3 + 294, 000 N

17. Mx = 20480; My = 25600; center of mass:
(

2, 8
5

)
19.

(
0, 2

π

)
21. T3(x) = 1 + 3(x − 1) + 3(x − 2)2 + (x − 1)3

23. T4(x) = (x − 1) + 1
2 (x − 1)2 − 1

6 (x − 1)3 + 1
12 (x − 1)4

25. T4(x) = x − x3

27. Tn(x) = 1 + 3x + 1
2! (3x)2 + 1

3! (3x)3 + · · · + 1
n! (3x)n

29. T3(1.1) = 0.832981496;
∣∣∣T3(1.1) − tan−11.1

∣∣∣ = 2.301 × 10−7

31. n = 11 is sufficient.

33. The nth Maclaurin polynomial for g(x) = 1
1+x

is

Tn(x) = 1 − x + x2 − x3 + · · · + (−x)n.

Chapter 9
Section 9.1 Preliminary Questions

1. (a) First order (b) First order (c) Order 3 (d) Order 2

2. Yes 3. Example: y′ = y2 4. Example: y′ = y2

5. Example: y′ + y = x

Section 9.1 Exercises
1. (a) First order (b) Not first order (c) First order

(d) First order (e) Not first order (f) First order

3. Let y = 4x2. Then y′ = 8x and y′ − 8x = 8x − 8x = 0.

5. Let y = 25e−2x2
. Then y′ = −100xe−2x2

and

y′ + 4xy = −100xe−2x2 + 4x(25e−2x2
) = 0

7. Let y = 4x4 − 12x2 + 3. Then

y′′ − 2xy′ + 8y = (48x2 − 24) − 2x(16x3 − 24x) + 8(4x4 − 12x2 + 3)

= 48x2 − 24 − 32x4 + 48x2 + 32x4 − 96x2 + 24 = 0

9. (a) Separable: y′ = 9
x y2 (b) Separable: y′ = sin x√

4 − x2
e3y

(c) Not separable (d) Separable: y′ = (1)(9 − y2)

11. C = 4

13. y =
(

2x2 + C
)−1

, where C is an arbitrary constant.

15. y = ln
(

4t5 + C
)

, where C is an arbitrary constant.

17. y = Ce−(5/2)x + 4
5 , where C is an arbitrary constant.

19. y = Ce−
√

1−x2
, where C is an arbitrary constant.

21. y = ±
√

x2 + C, where C is an arbitrary constant.

23. x = tan( 1
2 t2 + t + C), where C is an arbitrary constant.

25. y = sin−1
(

1
2x2 + C

)
, where C is an arbitrary constant.

27. y = C sec t , where C is an arbitrary constant.

29. y = 75e−2 x 31. y = −
√

ln
(
x2 + e4

)
33. y = 2 + 2e x(x−2)/2 35. y = tan

(
x2/2

)
37. y = e1−e−t

39. y = et
e1/t − 1 41. y = sin−1

(
1
2 ex
)

43. a = −3, 4

45. t = ±√
π + 4

47. (a) ≈ 1145 s or 19.1 min (b) ≈ 3910 s or 65.2 min

49. y = 8 − (8 + 0.0002215t)2/3; te ≈ 66000 s or 18 hr, 20 min

53. (a) q(t) = CV
(

1 − e−t/RC
)

(b)

lim
t→∞ q(t) = lim

t→∞ CV
(

1 − e−t/RC
)

= lim
t→∞ CV (1 − 0) = CV

(c) q(RC) = CV
(

1 − e−1
)

≈ (0.63) CV

55. V = (kt/3 + C)3, V increases roughly with the cube of time.

57. g(x) = Ce(3/2)x , where C is an arbitrary constant; g(x) = C
x−1 ,

where C is an arbitrary constant.

59. y = Cx3 and y = ±
√

A − x2

3
61. (b) v(t) = −9.8t + 100(ln(50) − ln(50 − 4.75t));
v(10) = −98 + 100(ln(50) − ln(2.5)) ≈ 201.573 m/s

67. (c) C = 7π
60B

R5/2

Section 9.2 Preliminary Questions
1. y(t) = 5 − ce4t for any positive constant c

2. No 3. True

4. The difference in temperature between a cooling object and the
ambient temperature is decreasing. Hence the rate of cooling, which is
proportional to this difference, is also decreasing in magnitude.

Section 9.2 Exercises
1. General solution: y(t) = 10 + ce2t ; solution satisfying y(0) =

25 : y(t) = 10 + 15e2t ; solution satisfying y(0) = 5: y(t) =
10 − 5e2t

y

x

200

400

600

800

1.5

y(0) = 25

10.5

x

y

−50

−100

−150

−200

−250

y(0) = 5

1.510.5

3. y = −6 + 11e4x

5. (a) y′ = −0.02(y − 10) (b) y = 10 + 90e− 1
50 t

(c) 100 ln 3 s ≈ 109.8 s

7. ≈ 5:50 AM 9. ≈ 0.77 min = 46.6 s
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11. 500 ln 3
2 s ≈ 203 s = 3 min 23 s

200
−20

20

40

y

yA

yB

x
400 600 800 1000

13. −58.8 m/s 15. −11.8 m/s

17. (a) $17, 563.94 (b) 13.86 yr

19. $120, 000 21. 8%

23. (b) t = 1
0.09 ln

(
13,333.33
3,333.33

)
≈ 15.4 yr (c) No

25. (a) N ′(t) = k(1 − N(t)) = −k(N(t) − 1)

(b) N(t) = 1 − e−kt (c) ≈ 64.63%

29. (a) v(t) = −g

k
+
(
v0 + g

k

)
e−kt

Section 9.3 Preliminary Questions
1. 7 2. y = ±√

1 + t 3. (b) 4. 20

Section 9.3 Exercises
1. 3.

5. (a)

0 3
−1

−1 1 2

t0

1

2

3
y

7. For y′ = t , y′ only depends on t . The isoclines of any slope c will
be the vertical lines t = c.

2
−2

−1

−2 −1 0 1

t

2

1

0

y

9. (i) C (ii) B (iii) F (iv) D (v) A (vi) E

11. (a)

2
−2

−1

−2 −1 0 1

t

2

1

0

y

13. (a) y1 = 3.1 (b) y2 = 3.231

(c) y3 = 3.3919, y4 = 3.58171, y5 = 3.799539, y6 = 4.0445851

(d) y(2.2) ≈ 3.231, y(2.5) ≈ 3.799539

15. y(0.5) ≈ 1.7210 17. y(3.3) ≈ 3.3364

19. y(2) ≈ 2.8838 23. y(0.5) ≈ 1.794894

25. y(0.25) ≈ 1.094871

Section 9.4 Preliminary Questions
1. (a) No (b) Yes (c) No (d) Yes

2. No 3. Yes

Section 9.4 Exercises

1. y = 5

1 − e−3t /C
and y = 5

1 + (3/2)e−3t

3. lim
t→∞ y(t) = 2

5. (a) P(t) = 2000

1 + 3e−0.6t
(b) t = 1

0.6 ln 3 ≈ 1.83 yrs

7. k = ln 81
31 ≈ 0.96 yrs−1; t = ln 9

2 ln 9−ln 31 ≈ 2.29 yrs

9. After t = 8 hours, or at 4:00 PM

11. (a) y1(t) = 10
10−9e−t and y2(t) = 1

1−2e−t

(b) t = ln 9
8 (c) t = ln 2

13. (a) A(t) = 16(1 − 5
3 et/40)2/(1 + 5

3 et/40)2

(b) A(10) ≈ 2.1

(c)

1

16
A(t)

0 100 200

y

x

15. ≈ 943 million

17. (d) t = − 1
k

(ln y0 − ln (A − y0))

Section 9.5 Preliminary Questions
1. (a) Yes (b) No (c) Yes (d) No

2. (b)
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Section 9.5 Exercises
1. (c) y = x4

5 + C
x (d) y = x4

5 − 1
5x

5. y = 1
2x + C

x

7. y = − 1
4x−1 + Cx1/3 9. y = 1

5x2 + 1
3 + Cx−3

11. y = −x ln x + Cx 13. y = 1
2 ex + Ce−x

15. y = x cos x + C cos x 17. y = xx + Cxxe−x

19. y = 1
5 e2x − 6

5 e−3x 21. y = ln |x|
x+1 − 1

x(x+1)
+ 5

x+1
23. y = − cos x + sin x 25. y = tanh x + 3sech x

27. For m �= −n: y = 1
m+nemx + Ce−nx ; for m = −n:

y = (x + C)e−nx

29. (a) y′ = 4000 − 40y
500+40t

; y = 1000 4t2+100t+125
2t+25

(b) 40 g/L
31. 50 g/L
33. (a) dV

dt
= 20

1+t
− 5 and V (t) = 20 ln(1 + t) − 5t + 100

(b) The maximum value is V (3) = 20 ln 4 − 15 + 100 ≈ 112.726
(c)

−20

20
40
60
80

100

V

t
10 20 30 40

35. I (t) = 1
10

(
1 − e−20t

)
37. (a) I (t) = V

R
− V

R
e−(R/L)t (c) Approximately 0.0184 s

39. (b) c1(t) = 10e−t/6

Chapter 9 Review
1. (a) No, first order (b) Yes, first order (c) No, order 3

(d) Yes, second order

3. y = ±
(

4
3 t3 + C

)1/4
, where C is an arbitrary constant

5. y = Cx − 1, where C is an arbitrary constant

7. y = 1
2

(
x + 1

2 sin 2x
)

+ π
4 9. y = 2

2−x2

11.

0 1−2 2−1

−2

−1

0

1

2

t

y

13. y(t) = tan t

0 1−2 2−1

−2

−1

0

1

y

t

2

15. y(0.1) ≈ 1.1; y(0.2) ≈ 1.209890; y(0.3) ≈ 1.329919

17. y = x2 + 2x 19. y = 1
2 + e−x − 11

2 e−2x

21. y = 1
2 sin 2x − 2 cos x 23. y = 1 −

√
t2 + 15

25. w = tan
(
k ln x + π

4

)
27. y = − cos x + sin x

x + C
x , where C is an arbitrary constant

29. Solution satisfying y(0) = 3: y(t) = 4 − e−2t ; solution
satisfying y(0) = 4: y(t) = 4

y(0) = 4

y(0) = 3

y

x

1

2

3

4

0 1.510.5

31. (a) 12

(b) ∞, if y(0) > 12; 12, if y(0) = 12; −∞, if y(0) < 12

(c) −3

33. 400, 000 − 200, 000e0.25 ≈ $143, 194.91

35. $400, 000

39.
−1.77

√
y

240y+64800 ; t = 9198 s about 2.56 hours.

41. 2 43. t = 5 ln 441 ≈ 30.45 days

47. (a) dc1
dt

= − 2
5 c1 (b) c1(t) = 8e(−2/5)t g/L

Chapter 10
Section 10.1 Preliminary Questions

1. a4 = 12 2. (c) 3. lim
n→∞ an = √

2 4. (b)

5. (a) False. Counterexample: an = cos πn

(b) True (c) False. Counterexample: an = (−1)n

Section 10.1 Exercises
1. (a) (iv) (b) (i) (c) (iii) (d) (ii)

3. c1 = 3, c2 = 9
2 , c3 = 9

2 , c4 = 27
8

5. a1 = 2, a2 = 5, a3 = 47, a4 = 4415

7. b1 = 4, b2 = 6, b3 = 4, b4 = 6

9. c1 = 1, c2 = 3
2 , c3 = 11

6 , c4 = 25
12

11. b1 = 2, b2 = 3, b3 = 8, b4 = 19

13. (a) an = (−1)n+1

n3 (b) an = n+1
n+5

15. lim
n→∞ 12 = 12 17. lim

n→∞
5n−1

12n+9 = 5
12

19. lim
n→∞

(−2−n
) = 0 21. The sequence diverges.

23. lim
n→∞

n√
n2+1

= 1 25. lim
n→∞ ln

(
12n+2
−9+4n

)
= ln 3
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27. lim
n→∞

√
4 + 1

n = 2 29. lim
n→∞ cos−1

(
n3

2n3+1

)
= π

3

31. (a) M = 999 (b) M = 99999

35. lim
n→∞

(
10 +

(
− 1

9

)n) = 10 37. The sequence diverges.

39. lim
n→∞ 21/n = 1 41. lim

n→∞
9n

n! = 0

43. lim
n→∞

3n2+n+2
2n2−3

= 3
2 45. lim

n→∞
cos n

n = 0

47. The sequence diverges. 49. lim
n→∞

(
2 + 4

n2

)1/3 = 21/3

51. lim
n→∞ ln

(
2n+1
3n+4

)
= ln 2

3 53. The sequence diverges.

55. lim
n→∞

en+(−3)n

5n = 0 57. lim
n→∞ n sin π

n = π

59. lim
n→∞

3−4n

2+7·4n = − 1
7 61. lim

n→∞
(

1 + 1
n

)n = e

63. lim
n→∞

(ln n)2

n = 0 65. lim
n→∞ n

(√
n2 + 1 − n

) = 1
2

67. lim
n→∞

1√
n4+n8

= 0 69. lim
n→∞ (2n + 3n)1/n = 3 71. (b)

73. Any number greater than or equal to 3 is an upper bound.

75. Example: an = (−1)n 79. Example: f (x) = sin πx

87. (e) AGM
(

1,
√

2
)

≈ 1.198

Section 10.2 Preliminary Questions
1. The sum of an infinite series is defined as the limit of the

sequence of partial sums. If the limit of this sequence does not exist,
the series is said to diverge.

2. S = 1
2

3. The result is negative, so the result is not valid: a series with all
positive terms cannot have a negative sum. The formula is not valid
because a geometric series with |r| ≥ 1 diverges.

4. No 5. No 6. N = 13

7. No, SN is increasing and converges to 1, so SN ≤ 1 for all N .

8. Example:
∞∑

n=1

1
n9/10

Section 10.2 Exercises

1. (a) an = 1
3n (b) an =

(
5
2

)n−1

(c) an = (−1)n+1 nn

n! (d) an = 1+ (−1)n+1+1
2

n2+1

3. S2 = 5
4 , S4 = 205

144 , S6 = 5369
3600

5. S2 = 2
3 , S4 = 4

5 , S6 = 6
7

7. S6 = 1.24992

9. S10 = 0.03535167962, S100 = 0.03539810274,
S500 = 0.03539816290, S1000 = 0.03539816334. Yes.

11. S3 = 3
10 , S4 = 1

3 , S5 = 5
14 ,

∞∑
n=1

(
1

n+1 − 1
n+2

)
= 1

2

13. S3 = 3
7 , S4 = 4

9 , S5 = 5
11 ,

∞∑
n=1

1
4n2−1

= 1
2

15. S = 1
2 17. lim

n→∞
n

10n+12 = 1
10 �= 0

19. lim
n→∞ (−1)n

(
n−1
n

)
does not exist.

21. lim
n→∞ an = cos 1

n+1 = 1 �= 0

23. S = 8
7 25. The series diverges. 27. S = 59049

3328

29. S = 1
e−1 31. S = 35

3 33. S = 4 35. S = 7
15

37. (b) and (c)

41. (a) Counterexample:
∞∑

n=1

(
1
2

)n = 1.

(b) Counterexample: If an = 1, then SN = N .

(c) Counterexample:
∞∑

n=1

1
n diverges.

(d) Counterexample:
∞∑

n=1

cos 2πn �= 1.

43. The total area is 1
4 .

45. The total length of the path is 2 + √
2.

Section 10.3 Preliminary Questions
1. (b)

2. A function f (x) such that an = f (n) must be positive,
decreasing, and continuous for x ≥ 1.

3. Convergence of p-series or integral test

4. Comparison Test

5. No;
∞∑

n=1

1

n
diverges, but since e−n

n < 1
n for n ≥ 1, the

Comparison Test tells us nothing about the convergence of
∞∑

n=1

e−n

n .

Section 10.3 Exercises
1.
∫∞

1
dx
x4 dx converges, so the series converges.

3.
∫∞

1 x−1/3 dx = ∞, so the series diverges.

5.
∫∞

25
x2

(x3+9)5/2 dx converges, so the series converges.

7.
∫∞

1
dx

x2+1
converges, so the series converges.

9.
∫∞

1
dx

x(x+1)
converges, so the series converges.

11.
∫∞

2
1

x(ln x)2 dx converges, so the series converges.

13.
∫∞

1
dx

2ln x = ∞, so the series diverges.

15. 1
n3+8n

≤ 1
n3 , so the series converges.

19. 1
n2n ≤

(
1
2

)n
, so the series converges.

21. 1
n1/3+2n ≤

(
1
2

)n
, so the series converges.

23. 4
m!+4m ≤ 4

(
1
4

)m
, so the series converges.

25. 0 ≤ sin2 k
k2 ≤ 1

k2 , so the series converges.

27. 2
3n+3−n ≤ 2

(
1
3

)n
, so the series converges.

29. 1
(n+1)! ≤ 1

n2 , so the series converges.
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31. ln n
n3 ≤ 1

n2 for n ≥ 1, so the series converges.

33. (ln n)100

n1.1 ≤ 1
n1.09 for n sufficiently large, so the series converges.

35. n
3n ≤

(
2
3

)n
for n ≥ 1, so the series converges.

39. The series converges. 41. The series diverges.

43. The series converges. 45. The series diverges.

47. The series converges. 49. The series converges.

51. The series diverges. 53. The series converges.

55. The series diverges. 57. The series converges.

59. The series diverges. 61. The series diverges.

63. The series diverges. 65. The series converges.

67. The series diverges. 69. The series diverges.

71. The series converges. 73. The series converges.

75. The series diverges. 77. The series converges.

79. The series converges for a > 1 and diverges for a ≤ 1.

87.
∞∑

n=1

n−5 ≈ 1.0369540120.

91.
1000∑
n=1

1
n2 = 1.6439345667 and 1 +

100∑
n=1

1
n2(n+1)

= 1.6448848903.

The second sum is a better approximation to
π2

6
≈ 1.6449340668.

Section 10.4 Preliminary Questions
1. Example:

∑
(−1)n

3√n
2. (b) 3. No.

4. |S − S100| ≤ 10−3, and S is larger than S100.

Section 10.4 Exercises
3. Converges conditionally

5. Converges absolutely

7. Converges conditionally

9. Converges conditionally

11. (a) n Sn n Sn

1 1 6 0.899782407
2 0.875 7 0.902697859
3 0.912037037 8 0.900744734
4 0.896412037 9 0.902116476
5 0.904412037 10 0.901116476

13. S5 = 0.947 15. S44 = 0.06567457397

17. Converges (by geometric series)

19. Converges (by Comparison Test)

21. Converges (by Limit Comparison Test)

23. Diverges (by Limit Comparison Test)

25. Converges (by geometric series and linearity)

27. Converges absolutely (by Integral Test)

29. Converges conditionally (by Leibniz Test)

31. Converges (by Integral Test)

33. Converges conditionally

Section 10.5 Preliminary Questions

1. ρ = lim
n→∞

∣∣∣ an+1
an

∣∣∣
2. The Ratio Test is conclusive for

∞∑
n=1

1
2n and inconclusive

for
∞∑

n=1

1
n .

3. No.

Section 10.5 Exercises
1. Converges absolutely 3. Converges absolutely

5. The ratio test is inconclusive. 7. Diverges

9. Converges absolutely 11. Converges absolutely

13. Diverges 15. The ratio test is inconclusive.

17. Converges absolutely 19. Converges absolutely

21. ρ = 1
3 < 1 23. ρ = 2|x|

25. ρ = |r| 29. Converges absolutely

31. The ratio test is inconclusive, so the series may converge or
diverge.

33. Converges absolutely 35. The ratio test is inconclusive.

37. Converges absolutely 39. Converges absolutely

41. Converges absolutely

43. Converges (by geometric series and linearity)

45. Converges (by the Ratio Test)

47. Converges (by the Limit Comparison Test)

49. Diverges (by p-series) 51. Converges (by geometric series)

53. Converges (by Limit Comparison Test)

55. Diverges (by Divergence Test)

Section 10.6 Preliminary Questions
1. Yes. The series must converge for both x = 4 and x = −3.

2. (a), (c) 3. R = 4

4. F ′(x) =
∞∑

n=1

n2xn−1; R = 1

Section 10.6 Exercises
1. R = 2. It does not converge at the endpoints.

3. R = 3 for all three series.

9. (−1, 1) 11. [−√
2,

√
2] 13. [−1, 1] 15. (−∞, ∞)

17. [− 1
4 , 1

4 ) 19. (−1, 1] 21. (−1, 1) 23. [−1, 1) 25. (2, 4)

27. (6, 8) 29.
[− 7

2 , − 5
2

)
31. (−∞, ∞) 33.

(
2 − 1

e , 2 + 1
e

)
35.

∞∑
n=0

3nxn on the interval
(− 1

3 , 1
3

)

37.
∞∑

n=0

xn

3n+1 on the interval (−3, 3)

39.
∞∑

n=0

(−1)nx2n on the interval (−1, 1)
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43.
∞∑

n=0

(−1)n+1(x − 5)n on the interval (4, 6)

47. (c) S4 = 69
640 and |S − S4| ≈ 0.000386 < a5 = 1

1920

49. R = 1 51.
∞∑

n=1

n
2n = 2 53. F(x) = 1−x−x2

1−x3

55. −1 ≤ x ≤ 1 57. P(x) =
∞∑

n=0

(−1)n xn

n!

59. N must be at least 5; S5 = 0.3680555556

61. P(x) = 1 − 1
2x2−

∞∑
n=2

1·3·5···(2n−3)
(2n)! x2n; R = ∞

Section 10.7 Preliminary Questions
1. f (0) = 3 and f ′′′(0) = 30

2. f (−2) = 0 and f (4)(−2) = 48

3. Substitute x2 for x in the Maclaurin series for sin x.

4. f (x) = 4 +
∞∑

n=1

(x−3)n+1

n(n+1)
5. (c)

Section 10.7 Exercises
1. f (x) = 2 + 3x + 2x2 + 2x3 + · · ·
3. 1

1−2x
=

∞∑
n=0

2nxn on the interval
(− 1

2 , 1
2

)

5. cos 3x =
∞∑

n=0

(−1)n 9nx2n

(2n)! on the interval (−∞, ∞)

7. sin(x2) =
∞∑

n=0

(−1)n x4n+2

(2n+1)! on the interval (−∞, ∞)

9. ln(1 − x2) = −
∞∑

n=1

x2n

n on the interval (−1, 1)

11. tan−1(x2) =
∞∑

n=0

(−1)n x4n+2

2n+1 on the interval [−1, 1]

13. ex−2 =
∞∑

n=0

xn

e2n! on the interval (−∞, ∞)

15. ln(1 − 5x) = −
∞∑

n=1

5nxn

n on the interval
[− 1

5 , 1
5

)

17. sinh x =
∞∑

k=0

x2k+1

(2k+1)! on the interval (−∞, ∞)

19. ex sin x = x + x2 + x3

3 − x5

30 + · · ·
21. sin x

1−x
= x + x2 + 5x3

6 + 5x4

6 + · · ·
23. (1 + x)1/4 = 1 + 1

4x − 3
32x2 + 7

128x3 + · · ·
25. ex tan−1 x = x + x2 + 1

6x3 − 1
6x4 + · · ·

27. esin x = 1 + x + 1
2x2 − 1

8x4 + · · ·

29. 1
x =

∞∑
n=0

(−1)n(x − 1)n on the interval (0, 2)

31. 1
1−x

=
∞∑

n=0

(−1)n+1 (x−5)n

4n+1 on the interval (1, 9)

33. 21 + 35(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4 on the
interval (−∞, ∞)

35. 1
x2 =

∞∑
n=0

(−1)n(n + 1)
(x − 4)n

4n+2
on the interval (0, 8)

37. 1
1−x2 =

∞∑
n=0

(−1)n+1(2n+1−1)

22n+3 (x − 3)n on the interval (1, 5)

39. cos2 x = 1
2 + 1

2

∞∑
n=0

(−1)n
(4)nx2n

(2n)!

45. S4 = 0.1822666667

47. (a) 4 (b) S4 = 0.7474867725

49.
∫ 1

0 cos(x2) dx =
∞∑

n=0

(−1)n

(2n)!(4n+1)
; S3 = 0.9045227920

51.
∫ 1

0
e−x3

dx =
∞∑

n=0

(−1)n

n!(3n+1)
; S5 = 0.8074461996

53.
∫ x

0
1−cos(t)

t dt =
∞∑

n=1

(−1)n+1 x2n

(2n)!2n

55.
∫ x

0 ln(1 + t2) dt =
∞∑

n=1

(−1)n−1 x2n+1

n(2n + 1)

57. 1
1+2x

63. ex3
65. 1 − 5x + sin 5x

67. 1
(1−2x)(1−x)

=
∞∑

n=0

(
2n+1 − 1

)
xn

69. I (t) = V
R

∞∑
n=1

(−1)n+1

n!
(

Rt
L

)n

71. f (x) =
∞∑

n=0

(−1)nx6n

(2n)! and f (6)(0) = −360.

73. e20x = 1 + x20 + x40

2 + · · · 75. No.

81. lim
x→0

sin x − x + x3

6
x5 = 1

120

83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)
= 1

2

85. S = π
4 − 1

2 ln 2 89. L ≈ 28.369

Chapter 10 Review
1. (a) a2

1 = 4, a2
2 = 1

4 , a2
3 = 0

(b) b1 = 1
24 , b2 = 1

60 , b3 = 1
240

(c) a1b1 = − 1
12 , a2b2 = − 1

120 , a3b3 = 0

(d) 2a2 − 3a1 = 5, 2a3 − 3a2 = 3
2 , 2a4 − 3a3 = 1

12

3. lim
n→∞(5an − 2a2

n) = 2 5. lim
n→∞ ean = e2

7. lim
n→∞(−1)nan does not exist.



ANSWERS TO ODD-NUMBERED EXERCISES A93

9. lim
n→∞

(√
n + 5 − √

n + 2
)

= 0 11. lim
n→∞ 21/n2 = 1

13. The sequence diverges.

15. lim
n→∞ tan−1

(
n+2
n+5

)
= π

4

17. lim
n→∞

(√
n2 + n −

√
n2 + 1

)
= 1

2

19. lim
m→∞

(
1 + 1

m

)3m

= e3 21. lim
n→∞(n ln(n + 1) − ln n) = 1

25. lim
n→∞

an+1

an
= 3 27. S4 = − 11

60 , S7 = 41
630

29.
∞∑

n=2

( 2
3 )n = 4

3 31.
∞∑

n=−1

2n+3

3n
= 36

33. Example: an =
(

1
2

)n + 1, bn = −1

35. S = 47
180 37. The series diverges.

39.
∫∞

1
1

(x+2)(ln(x+2))3 dx = 1
2(ln(3))2 , so the series converges.

41. 1
(n+1)2 < 1

n2 , so the series converges.

43.
∞∑

n=0

1
n1.5 converges, so the series converges.

45. n√
n5+2

< 1
n3/2 , so the series converges.

47.
∞∑

n=0

(
10
11

)n
converges, so the series converges.

49. Converges

53. (b) 0.3971162690 ≤ S ≤ 0.3971172688, so the maximum size
of the error is 10−6.

55. Converges absolutely 57. Diverges

59. (a) 500 (b) K ≈
499∑
n=0

(−1)k

(2k+1)2 = 0.9159650942

61. (a) Converges (b) Converges (c) Diverges
(d) Converges

63. Converges 65. Converges 67. Diverges

69. Diverges 71. Converges 73. Converges

75. Converges (by geometric series)

77. Converges (by geometric series)

79. Converges (by the Leibniz Test)

81. Converges (by the Leibniz Test)

83. Converges (by the Comparison Test)

85. Converges using partial sums (the series is telescoping)

87. Diverges (by the Comparison Test)

89. Converges (by the Comparison Test)

91. Converges (by the Comparison Test)

93. Converges on the interval (−∞, ∞)

95. Converges on the interval [2, 4]
97. Converges at x = 0

99. 2
4−3x

= 1
2

∞∑
n=0

(
3
4

)n
xn. The series converges on the interval

(−4
3 , 4

3 )

101. (c) y

x
−1−2 1

1

2

3

4

5

6

7

2

103. e4x =
∞∑

n=0

4n

n! xn

105. x4 = 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4

107. sin x =
∞∑

n=0

(−1)n+1(x−π)2n+1

(2n+1)!

109. 1
1−2x

=
∞∑

n=0

2n

5n+1 (x + 2)n 111. ln x
2 =

∞∑
n=1

(−1)n+1(x−2)n

n2n

113. (x2 − x)ex2 =
∞∑

n=0

( x2n+2−x2n+1

n! ) so f (3)(0) = −6

115. 1
1+tan x

= −x + x2 − 4
3x3 + 2

3x4 + · · · so f (3)(0) = −8

117. π
2 − π3

233! + π5

255! − π7

277! + · · · = sin π
2 = 1

Chapter 11
Section 11.1 Preliminary Questions

1. A circle of radius 3 centered at the origin.
2. The center is at (4, 5) 3. Maximum height: 4
4. Yes; no 5. (a) ↔ (iii), (b) ↔ (ii), (c) ↔ (i)

Section 11.1 Exercises
1. (t = 0)(1, 9); (t = 2)(9, −3); (t = 4)(65, −39)

5. (a)

x

y (b)

x

y

t =      (−1,−1)3π
2

t =     (1,1)π

2

t = 0
t = 2π

(c)

x

y (d)

x

y

t = 1(1, 1)

t = −1 (−1, −1)

7. y = 4x − 12 9. y = tan−1
(
x3 + ex

)
11. y = 6

x2 (where x > 0) 13. y = 2 − ex
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15.

x

y

t = 0

17.

x

y

(4π2,0)

(−2π2,0)

19. (a) ↔ (iv), (b) ↔ (ii), (c) ↔ (iii), (d) ↔ (i)

21. π ≤ t ≤ 2π 23. c(t) = (t, 9 − 4t) 25. c(t) =
(

5+t2

4 , t
)

27. c(t) = (−9 + 7 cos t, 4 + 7 sin t) 29. c(t) = (−4 + t, 9 + 8t)

31. c(t) = (3 − 8t, 1 + 3t) 33. c(t) = (1 + t, 1 + 2t) (0 ≤ t ≤ 1)

35. c(t) = (3 + 4 cos t, 9 + 4 sin t) 37. c(t) =
(
−4 + t, −8 + t2

)
39. c(t) = (2 + t, 2 + 3t) 41. c(t) =

(
3 + t, (3 + t)2

)
43. y =

√
x2 − 1 (1 ≤ x<∞) 45. Plot III.

47. y

x

t = 1

t = 0

t = 2

t = −1

t = −2

49. dy
dx

∣∣∣
t=−4

= −1

6
51. dy

dx

∣∣∣
s=−1

= −3

4

53. y = −9

2
x + 11

2
; dy

dx
= −9

2

55. y = x2 + x−1; dy
dx

= 2x − 1

x2

57. (0, 0), (96, 180)

59.

x

y

20

t = 0
(−9,0)

t = 8
(55,0)

t = 3
(0,−15)

t = −3 (0,33)

t = 4 (7,−16)

40 60−20

−20

20

40

60

The graph is in: quadrant (i) for t < −3 or t > 8, quadrant (ii) for
−3 < t < 0, quadrant (iii) for 0 < t < 3, quadrant (iv) for 3 < t < 8.

61. (55, 0)

63. The coordinates of P , (R cos θ, r sin θ), describe an ellipse for
0 ≤ θ ≤ 2π .

67. c(t) = (3 − 9t + 24t2 − 16t3, 2 + 6t2 − 4t3), 0 ≤ t ≤ 1

x

y

1 2 3

1

2

3

4

71. y = −√
3x +

√
3

2

x

y

=     (0, 1)π

2

θ =      (0, −1)3π
2

θ = 0
(1, 0)

θ = π
(−1, 0)

73. ((2k − 1)π, 2) , k = 0, ±1, ±2, . . .

83. d2y

dx2

∣∣∣∣
t=2

= − 21

512
85. d2y

dx2

∣∣∣∣
t=−3

= 0 87. Concave up: t > 0

Section 11.2 Preliminary Questions
1. S = ∫ b

a

√
x′(t)2 + y′(t)2 dt 2. The speed at time t

3. Displacement: 5; no 4. L = 180 cm

Section 11.2 Exercises
1. S = 10 3. S = 16

√
13 5. S = 1

2 (653/2 − 53/2) ≈ 256.43

7. S = 3π 9. S = −8
(√

2
2 − 1

)
≈ 2.34

13. S = ln(cosh(A)) 15. ds
dt

∣∣∣∣
t=2

= 4
√

10 ≈ 12.65 m/s

17. ds
dt

∣∣∣∣
t=9

= √
41 ≈ 6.4 m/s 19.

(
ds
dt

)
min

≈ √
4.89 ≈ 2.21

21. ds
dt

= 8

23. y

t = 0, t = 2π, (1, 1)t = π, (−1, 1)

x

t =     (0, e)π

2

t =      (0,    )3π
2

1
e

M10 = 6.903734, M20 = 6.915035, M30 = 6.914949,
M50 = 6.914951
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25. y

t = 0
t = 2π

x

M10 = 25.528309, M20 = 25.526999, M30 = 25.526999,
M50 = 25.526999

27. S = 2π2R 29. S = m
√

1 + m2πA2 31. S = 64π
3

33. (a)

y

x
t = 10π

t = 0

302010

15

20

10

5

x

y

(b) L ≈ 212.09

Section 11.3 Preliminary Questions
1. (b)

2. Positive: (r,θ) = (1, π
2

)
; Negative: (r, θ) =

(
−1, 3π

2

)
3. (a) Equation of the circle of radius 2 centered at the origin.

(b) Equation of the circle of radius
√

2 centered at the origin.

(c) Equation of the vertical line through the point (2, 0).

4. (a)

Section 11.3 Exercises
1. (A):

(
3
√

2, 3π
4

)
; (B): (3, π); (C):(√

5, π + 0.46
)

≈
(√

5, 3.60
)

; (D):
(√

2, 5π
4

)
; (E):

(√
2, π

4

)
; (F):(

4, π
6

)
; (G):

(
4, 11π

6

)
3. (a) (1, 0) (b)

(√
12, π

6

)
(c)
(√

8, 3π
4

)
(d)

(
2, 2π

3

)
5. (a)

(
3
√

3
2 , 3

2

)
(b)

(
− 6√

2
, 6√

2

)
(c) (0, 0) (d) (0, −5)

7. (A): 0 ≤ r ≤ 3, π ≤ θ ≤ 2π , (B): 0 ≤ r ≤ 3, π
4 ≤ θ ≤ π

2 , (C):

3 ≤ r ≤ 5, 3π
4 ≤ θ ≤ π

9. m = tan 3π
5 ≈ −3.1 11. x2 + y2 = 72

13. x2 + (y − 1)2 = 1 15. y = x − 1 17. r = √
5

19. r = tan θ sec θ

21. (a)↔(iii), (b)↔(iv), (c)↔(i), (d)↔(ii)

23. (a) (r, 2π − θ) (b) (r, θ + π) (c) (r, π − θ)

(d)
(
r, π

2 − θ
)

25. r cos
(
θ − π

3

) = d

27.

π

4
3π
4

3π
2

5π
4

7π
4

π

2

O

D

E

A

G

C
B

0
2π

π
H

F

29.

7π

4
3π

2

5π

4

3π

4

π

2
π

4

π 0
0 1 2 x

y

31. (a) A, θ = 0, r = 0; B, θ = π
4 , r = sin 2π

4 = 1; C, θ = π
2 ,

r = 0; D, θ = 3π
4 , r = sin 2·3π

4 = −1; E, θ = π , r = 0; F, θ = 5π
4 ,

r = 1; G, θ = 3π
2 , r = 0; H, θ = 7π

4 , r = −1; I, θ = 2π , r = 0

(b) 0 ≤ θ ≤ π
2 is in the first quadrant. π

2 ≤ θ ≤ π is in the fourth

quadrant. π ≤ θ ≤ 3π
2 is in the third quadrant. 3π

2 ≤ θ ≤ 2π is in the
second quadrant.

33.

7π

4
3π

2

5π

4

3π

4

π

2
π

4

π 0
0 1 2 x

y

35.
(
x − a

2

)2 +
(
y − b

2

)2 = a2+b2

4 , r =
√

a2 + b2 , centered at the

point
(

a
2 , b

2

)

37. r2 = sec 2θ 39. (x2 + y2) = x3 − 3y2x

41. r = 2 sec
(
θ − π

9

)
43. r = 2

√
10 sec (θ − 4.39)
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47. r2 = 2a2 cos 2θ

r2 = 8 cos 2θ

3π

2

π

2

π 0

51. θ = π
2 , m = − 2

π ; θ = π , m = π

53.
(√

2
2 , π

6

)
,
(√

2
2 , 5π

6

)
,
(√

2
2 , 7π

6

)
,
(√

2
2 , 11π

6

)
55. A: m = 1, B: m = −1, C: m = 1

Section 11.4 Preliminary Questions
1. (b) 2. Yes 3. (c)

Section 11.4 Exercises
1. A = 1

2

∫ π
π/2 r2 dθ = 25π

4

x

y
θ =

θ = π

π

2

3. A = 1
2

∫ π
0 r2 dθ = 4π 5. A = 16

7. A = 3π
2 9. A = π

8 ≈ 0.39

11.

x

y

θ = 2π,
r = 2π

θ = π,
r = π

θ = π/2,
r = π/2

θ = 0,
r = 0

A = π3

48

13. A =
√

15
2 + 7 cos−1

(
1
4

)
≈ 11.163

15. A = π − 3
√

3
2 ≈ 0.54 17. A = π

8 − 1
4 ≈ 0.14 19. A = 4π

21. A = 9π
2 − 4

√
2 23. A = 4π

25. L = 1
3

((
π2 + 4

)3/2 − 8

)
≈ 14.55

27. L = √
2
(
e2π − 1

)
≈ 755.9 29. L = 8

31. L = ∫ 2π
0

√
5 − 4 cos θ (2 − cos θ)−2 dθ 33. L ≈ 6.682

35. L ≈ 79.564

37. θ = π
2 , m = − 2

π ; θ = π , m = π

39.
(√

2
2 , π

6

)
,
(√

2
2 , 5π

6

)
,
(√

2
2 , 7π

6

)
,
(√

2
2 , 11π

6

)
41. A: m = 1, B: m = −1, C: m = 1

Section 11.5 Preliminary Questions
1. (a) True (b) False (c) True (d) True

2. ‖−3a‖ = 15

3. The components are not changed.

4. (0, 0)

5. (a) True (b) False

Section 11.5 Exercises
1. v1 = 〈2, 0〉 , ‖v1‖ = 2 v2 = 〈2, 0〉 , ‖v2‖ = 2

y

x

QP
v1

y

x

QP
v2

v3 = 〈3, 1〉 , ‖v3‖ = √
10 v4 = 〈2, 2〉 , ‖v4‖ = 2

√
2

y

x

Q

P v3

y

x

Q

P v4

Vectors v1 and v2 are equivalent.

3. (3, 5)

y

x

P

Q

0

a0

a

5.
−→
PQ = 〈−1, 5〉 7.

−→
PQ = 〈−2, − 9〉 9. 〈5, 5〉

11. 〈30, 10〉 13.
〈

5
2 , 5

〉
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15. Vector (B)

w

vv − w

−w

−w

17. 2v = 〈4, 6〉 −w = 〈−4, − 1〉

2 4 61 3 5

2v

1

2

3

4

5

x

y

y

x
w

−w

2v − w = 〈0, 5〉 v + w = 〈6, 4〉

2v − w

y

x

y

x
w

v

v + w

19. 3v + w = 〈−2, 10〉, 2v − 2w = 〈4, − 4〉
y

x

w

v

3v + w

2v − 2w

21.

1 2

3

1

−4

−3

y

x

v

v1

v2

23. (b) and (c)

25.
−→
AB = 〈2, 6〉 and

−→
PQ = 〈2, 6〉; equivalent

27.
−→
AB = 〈3, −2〉 and

−→
PQ = 〈3, −2〉; equivalent

29.
−→
AB = 〈2, 3〉 and

−→
PQ = 〈6, 9〉; parallel and point in the same

direction

31.
−→
AB = 〈−8, 1〉 and

−→
PQ = 〈8, −1〉; parallel and point in

opposite directions

33.
∥∥∥−→
OR

∥∥∥ = √
53 35. P = (0, 0) 37. ev = 1

5 〈3, 4〉
39. 4eu =

〈
−2

√
2, − 2

√
2
〉

41. e =
〈
cos 4π

7 , sin 4π
7

〉
= 〈−0.22, 0.97〉

43. λ = ± 1√
13

45. P = (4, 6)

47. (a) → (ii), (b) → (iv), (c) → (iii), (d) → (i) 49. 9i + 7j
51. −5i − j

53.
y

x

w

v
B

sw
rv

y

x

w

vsw

rv

C

y

x

A

w

v

sw

rv

55. u = 2v − w

y

x

v

u

w

57. The force on cable 1 is ≈ 45 lb, and force on cable 2 is ≈ 21 lb.

59. 230 km/hr 61. r = 〈6.45, 0.38〉

Section 11.6 Preliminary Questions
1. Scalar 2. Obtuse 3. Distributive Law

4. (a) v (b) v

5. (b); (c) 6. (c)

Section 11.6 Exercises
1. 5 3. 0 5. Acute 7. π/4 9. ‖v‖2 11. ‖v‖2 − ‖w‖2

13. 8 15. 2 17. π 19. (b) 7 23. 51.91◦ 25.
〈

7
2 , 7

2

〉
27.

√
17 29. a =

〈
1
2 , 1

2

〉
+
〈

1
2 , − 1

2

〉
35. ≈ 68.07 N

Section 11.7 Preliminary
1. d

dt
(f (t)r(t)) = f (t)r′(t) + f ′(t)r(t)

d
dt

(r1(t) · r2(t)) = r1(t) · r′
2(t) + r′

1(t) · r2(t)

2. True 3. False 4. True 5. False

6. (a) Vector (b) Scalar
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Section 11.7 Exercises
1. lim

t→3

〈
t2, 4t

〉
= 〈9, 12〉

3. lim
t→0

(e2t i + ln(t + 1)j) = i

5. lim
h→0

r(t+h)−r(t)
h

=
〈
− 1

t2 , cos t
〉

7. dr
dt

= 〈1, 2t〉
9. dr

ds
=
〈
3e3s , −e−s

〉
11. c′(t) = −t−2i

13. r′(t) = 〈1, 2t〉, r′′(t) = 〈0, 2〉
15.

r2(t)

r ´2(1)

r1(t)

r ´1(1)

17. d
dt

r(g(t)) =
〈
2e2t , −et

〉
19. 
(t) = 〈4 − 4t, 16 − 32t〉
21.

〈
212
3 , 124

〉
23. 〈0, 0〉

25. 〈1, 2〉 27. (ln 4)i + 56
3 j

29. r(t) =
〈
−t2 + t + 3, 2t2 + 1

〉
31. r(t) =

〈
0, t2

〉
+ c1t + c2 ; with initial conditions,

r(t) =
〈
1, t2 − 6t + 10

〉
33. r(3) =

〈
45
4 , 5

〉
35. r(t) = (t − 1)v + w 37. r(t) = e2tc

Chapter 11 Review
1. (a), (c)

3. c(t) = (1 + 2 cos t, 1 + 2 sin t). The intersection points with the

y-axis are
(

0, 1 ± √
3
)

. The intersection points with the x-axis are(
1 ± √

3, 0
)

.

5. c (θ) = (cos (θ + π) , sin (θ + π)) 7. c(t) = (1 + 2t, 3 + 4t)

9. y = − x
4 + 37

4 11. y = 8
(3−x)2 + 3−x

2

13. dy
dx

∣∣∣∣
t=3

= 3
14 15. dy

dx

∣∣∣∣
t=0

= cos 20
e20

17. (0, 1), (π, 2), (0.13, 0.40), and (1.41, 1.60)

19. x(t) = −2t3 + 4t2 − 1, y(t) = 2t3 − 8t2 + 6t − 1

21. ds
dt

= √
3 + 2(cos t − sin t); maximal speed:

√
3 + 2

√
2

23. s = √
2

25.

x

y

2

1

−2

−1

−2 −1 21

s = 2
∫ π

0

√
cos2 2t + sin2 t dt ≈ 6.0972

27.
(
1, π

6

)
and

(
3, 5π

4

)
have rectangular coordinates

(√
3

2 , 1
2

)
and(

− 3
√

2
2 , − 3

√
2

2

)
.

29.
√

x2 + y2 = 2x
x−y 31. r = 3 + 2 sin θ

r = 3 + 2sin θ

5

40 31−4 2−1−2−3
−2

4

3

2

1

0

−1

33. A = π
16 35. e − 1

e
Note: One needs to double the integral from −π

2 to π
2 in order to

account for both sides of the graph.

37. A = 3πa2

2

39. 〈21, − 25〉 and 〈−19, 31〉 41.
〈 −2√

29
, 5√

29

〉
43. i = 2

11 v + 5
11 w 45.

−→
PQ = 〈−4, 1〉 ;

∥∥∥−→
PQ

∥∥∥ = √
17

47.
〈

3√
2
, − 3√

2

〉
49. β = 3

2

51.

3−2

4

x

y

v1

v1 + v2 + v3

v 1
 +

 v
2

v2

v3

55. ‖F1‖ = 2‖F2‖√
3

; ‖F1‖ = 980 N

57. ‖e − 4f‖ = √
13

59. r′(t) =
〈
−1, −2t−3

〉
61. r′(0) = 〈2, 0〉

63. d
dt

et 〈1, t〉 = et 〈1, 1 + t〉
65. d

dt
(6r1(t) − 4r2(t))|t=3 = 〈0, −8〉

67.
∫ 3

0

〈
4t + 3, t2

〉
dt = 〈27, 9〉

69. (3, 3) 71. r(t) =
〈
2t2 − 8

3 t3 + t, t4 − 1
6 t3 + 1

〉
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73. v0 ≈ 67.279 m/s

75. T(π) =
〈−1√

2
, 1√

2

〉

Chapter 12
Section 12.1 Preliminary Questions

1. Same shape, but located in parallel planes

2. The parabola z = x2 in the xz-plane 3. Not possible

4. The vertical lines x = c with distance of 1 unit between adjacent
lines

5. In the contour map of g(x, y) = 2x, the distance between two
adjacent vertical lines is 1

2 .

Section 12.1 Exercises
1. f (2, 2) = 18, f (−1, 4) = −5

3. h(3, 8, 2) = 6;h(3, − 2, − 6) = − 1
6

5. The domain is the entire xy-plane.

7.

x

y y = 4x2 9. D =
{
(y, z) : z �= −y2

}

y

z

z = −y2

z + y2 �= 0

11.

I

R

I R ≥ 0

13. Domain: entire (x, y, z)−space; range: entire real line

15. Domain: {(r, s, t) : |rst | ≤ 4} ; range: {w : 0 ≤ w ≤ 4}
17. f ↔ (B), g ↔ (A)

19. (a) D (b) C (c) E (d) B (e) A (f) F

21.

y

x

z

3

12

4

Horizontal trace: 3x + 4y = 12 − c in the plane z = c

Vertical trace: z = (12 − 3a) − 4y and z = −3x + (12 − 4a) in
the planes x = a, andy = a, respectively

23.

y

x

z

The horizontal traces are ellipses for c > 0.

The vertical trace in the plane x = a is the parabola z = a2 + 4y2.

The vertical trace in the plane y = a is the parabola z = x2 + 4a2.

25. z

y

x

The horizontal traces in the plane z = c, |c| ≤ 1, are the lines
x − y = sin−1 c + 2kπ and x − y = π − sin−1 c + 2kπ, for
integer k

The vertical trace in the plane x = a is z = sin (a − y).

The vertical trace in the plane y = a is z = sin (x − a).

27. m = 1 : m = 2 :

420−4

−4

−2

0

2

4

−2 420−4

−4

−2

0

2

4

−2

m = 1 m = 2

29.

4

21 3−2−3 −1 0

3

2

1

5

6
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31.

−1

0.2 0.4 0.6 0.8 1
0

1

y

x

−0.5

0.5

33. 4

2

0

−2

−4

−4 −2 0 2 4

35.

420−4

−4

−2

0

2

4

−2

37. m = 6 : f (x , y) = 2x + 6y + 6
m = 3 : f (x , y) = x + 3y + 3

39. (a) Only at (A) (b) Only at (C) (c) West

41. Average ROC from B to C = 0.000625 kg/m3 · ppt

43. At point A

45. Average ROC from A to B ≈ 0.0737 , average ROC from A to
C ≈ 0.0457

47.

i

B

iii

D

C

A

ii 400

500

0 1 2 km
Contour interval = 20 m

540

49. f (r, θ) = cos θ ; the level curves are
θ = ±cos−1 (c)for |c| < 1, c �= 0 ;
the y−axis for c = 0;
the positive x−axis for c = 1;
the negative x−axis for c = −1.

Section 12.2 Preliminary Questions
1. D∗(p, r) consists of all points in D(p , r) other than p itself.

2. f (2, 3) = 27

3. All three statements are true

4. lim
(x, y)→(0, 0)

f (x, y) does not exist.

Section 12.2 Exercises
1. lim

(x, y)→(1, 2)
(x2 + y) = 3

3. lim
(x, y)→(2, −1)

(xy − 3x2y3) = 10

5. lim
(x, y)→(

π
4 , 0)

tan x cos y = 1

7. lim
(x, y)→(1, 1)

ex2 −e−y2

x+y = 1
2 (e − e−1)

9. lim
(x, y)→(2, 5)

(g(x, y) − 2f (x, y)) = 1

11. lim
(x, y)→(2, 5)

ef (x, y)2−g(x, y) = e2

13. No; the limit along the x-axis and the limit along the y-axis are
different.

17. lim
(x, y)→(4, 0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
= 0

19. lim
(z, w)→(−2, 1)

z4 cos(πw)
ez+w = −16e

21. lim
(x, y)→(4, 2)

y−2√
x2 −4

= 0

23. lim
(x, y)→(3, 4)

1√
x2 +y2

= 1
5

25. lim
(x, y)→(1, −3)

ex−y ln(x − y) = e4 ln(4)

27. lim
(x, y)→(−3, −2)

(x2y3 + 4xy) = −48

29. lim
(x, y)→(0, 0)

tan(x2 + y2)tan−1
(

1
x2 +y2

)
= 0

31. lim
(x, y)→(0, 0)

x2 +y2√
x2 +y2 +1−1

= 2

35. lim
(x, y)→Q

g(x, y) = 4

37. Yes

41. (b) f
(
10−1, 10−2) = 1

2 , f
(
10−5, 10−10) = 1

2 ,

f
(
10−20, 10−40) = 1

2

Section 12.3 Preliminary Questions
1. ∂

∂x
(x2y2) = 2xy2

2. In this case, the Constant Multiple Rule can be used. In the
second part, since y appears in both the numerator and the
denominator, the Quotient Rule is preferred.

3. (a), (c) 4. fx = 0 5. (a), (d)

Section 12.3 Exercises
3. ∂

∂y
y

z+y = x

(x+y)2 5. fz(2, 3, 1) = 6

7. m = 10 9. fx(A) ≈ 8, fy(A) ≈ −16.7 11. NW

13. ∂
∂x

(x2 + y2) = 2x, ∂
∂y

(x2 + y2) = 2y

15. ∂
∂x

(x4y + xy−2) = 4x3y + y−2,
∂
∂y

(x4y + xy−2) = x4 − 2xy−3

17. ∂
∂x

(
x
y

)
= 1

y , ∂
∂y

(
x
y

)
= −x

y2

19. ∂
∂x

(√
9 − x2 − y2

)
= −x√

9−x2 −y2
, ∂

∂y

(√
9 − x2 − y2

)
=

−y√
9−x2 −y2

21. ∂
∂x

(sin x sin y) = sin y cos x, ∂
∂y

(sin x sin y) = sin x cos y
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23. ∂
∂x

(
tan x

y

)
= 1

y cos2
(

x
y

) , ∂
∂y

(
tan x

y

)
= −x

y2cos2
(

x
y

)
25. ∂

∂x
ln(x2 + y2) = 2x

x2 +y2 , ∂
∂y

ln(x2 + y2) = 2y

x2 +y2

27. ∂
∂r

er+s = er+s , ∂
∂s

er+s = er+s

29. ∂
∂x

exy = yexy, ∂
∂y

exy = xexy

31. ∂z
∂y

= −2xe−x2−y2
, ∂z

∂y
= −2ye−x2−y2

33. ∂U
∂t

= −e−rt , ∂U
∂r

= −e−rt (rt+1)

r2

35. ∂
∂x

sinh(x2y) = 2xy cosh(x2y), ∂
∂y

sinh(x2y) = x2 cosh(x2y)

37. ∂w
∂x

= y2z3, ∂w
∂y

= 2xz3y, ∂w
∂z

= 3xy2z2

39. ∂Q
∂L

= M − L t
M2 e−Lt/M , ∂Q

∂M
= L(Lt − M)

M3 e−Lt/M ,
∂Q
∂t

= − L2

M2 e−Lt/M

41. fx(1, 2) = −164 43. gu(1, 2) = ln 3 + 1
3

45. N = 2865.058, �N ≈ −217.74

47. (a) I (95, 50) ≈ 73.1913 (b) ∂I
∂T

; 1.66

49. A 1-cm increase in r

51. ∂W
∂E

= − 1
kT

e−E/kT , ∂W
∂T

= E
kT 2 e−E/kT

55. (a), (b) 57. ∂2f

∂x2 = 6y,
∂2f

∂y2 = −72xy2

59. hvv = 32u

(u + 4v)3 61. fyy(2, 3) = − 4
9

63. fxyxzy = 0 65. fuuv = 2v sin(u + v2)

67. Frst = 0 69. Fuuθ = cosh(uv + θ2) · 2θv2

71. gxyz = 3xyz

(x2 +y2 +z2)
5/2 73. f (x, y) = x2y

77. B = A2

Section 12.4 Preliminary Questions
1. L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

2. f (x, y) − L(x, y) = ∈ (x, y)

√
(x − a)2 + (y − b)2

3. (b) 4. f (2, 3, 1) ≈ 8.7 5. �f ≈ −0.1

6. Criterion for Differentiability

Section 12.4 Exercises
1. z = −34 − 20x + 16y 3. z = 5x + 10y − 14

5. z = 8x − 2y − 13 7. z = 4r − 5s + 2

9. z =
(

4
5 + 12

25 ln 2
)

− 12
25x + 12

25y 11.
(
− 1

4 , 1
8 , 1

8

)
13. (a) f (x, y) = −16 + 4x + 12y

(b) f (2.01, 1.02) ≈ 4.28; f (1.97, 1.01) ≈ 4

15. �f ≈ 3.56 17. f (0.01, − 0.02) ≈ 0.98

19. L(x, y, z) = −8.66025 + 0.721688x + 0.721688y + 3.4641z

21. 5.07 23. 8.44 25. 4.998 27. 3.945

29. z = 3x − 3y + 13 31. �I ≈ 0.5644

33. (b) �H ≈ 0.022m

35. (b) 6% (c) 1% error in r

37. (a) $7.10 (b) $28.85, $57.69 (c) −$74.24

39. Maximum error in V is about 8.948 m.

Section 12.5 Preliminary Questions
1. (b) 〈3, 4〉
2. False

3. ∇f points in the direction of maximum rate of increase of f and
is normal to the level curve of f .

4. (b) NW and (c) SE

5. 3
√

2

Section 12.5 Exercises
1. (a) ∇f =

〈
y2, 2xy

〉
, c′(t) =

〈
t, 3t2

〉
(b) d

dt
(f (c(t)))

∣∣∣
t=1

= 4; d
dt

(f (c(t)))
∣∣∣
t=−1

= −4

3. A: zero, B: negative, C: positive, D: zero

5. ∇f = − sin(x2 + y) 〈2x, 1〉
7. ∇h =

〈
yz−3, xz−3, − 3xyz−4

〉
9. d

dt

(
f (c(t))

)∣∣∣
t=0

= −7 11. d
dt

(
f (c(t))

)∣∣∣
t=0

= −3

13. d
dt

(
f (c(t))

)∣∣∣
t=0

= 5 cos 1 ≈ 2.702

15. d
dt

(
f (c(t))

)∣∣∣
t=4

= −56

17. d
dt

(
f (c(t))

)∣∣∣
t=π/4

= −1 + π
8 ≈ 1.546

19. d
dt

(
g(c(t))

)∣∣∣
t=1

= 0

21. Duf (1, 2) = 8.8 23. Duf
(

1
6 , 3

)
= 39

4
√

2

25. Duf (3, 4) = 7
√

2
290 27. Duf (1, 0) = 6√

13

29. Duf (1, 2, 0) = − 1√
3

31. Duf (3, 2) = −50√
13

33. Duf (P ) = − e5

3 ≈ −49.47

35. f is increasing at P in the direction of v.

37. Duf (P ) =
√

6
2 39. 〈6, 2, − 4〉

41.
(

4√
17

, 9√
17

, − 2√
17

)
and
(
− 4√

17
, − 9√

17
, 2√

17

)
43. 9x + 10y + 5z = 33

45. 0.5217x + 0.7826y − 1.2375z = −5.309

47.

x

y

4

2

−2

2

−4

4−2−4

49. f (x, y, z) = x2 + y + 2z

51. f (x, y, z) = xz + y2 55. �f ≈ 0.08

57. (a) 〈34, 18, 0〉
(b)

〈
2 + 32√

21
t, 2 + 16√

21
t, 8 − 8√

21
t
〉
; ≈ 4.58 s

61. x = 1 − 4t, y = 2 + 26t, z = 1 − 25t

73. y =
√

1 − ln(cos2x)
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Section 12.6 Preliminary Questions
1. (a) ∂f

∂x
and ∂f

∂y
(b) u and v

2. (a) 3. f (u, v)| (r,s)=(1,1) = e2 4. (b) 5. (c) 6. No

Section 12.6 Exercises
1. (a) ∂f

∂x
= 2xy3,

∂f
∂y

= 3x2y2,
∂f
∂z

= 4z3

(b) ∂x
∂s

= 2s,
∂y
∂s

= 2t2, ∂z
∂s

= 2st

(c) ∂f
∂s

= 7s6t6 + 8s7t4

3. ∂f
∂s

= 6rs2,
∂f
∂r

= 2s3 + 4r3

5. ∂g
∂u

= −10 sin(10u − 20v),
∂g
∂v

= 20 sin(10u − 20v)

7. ∂F
∂y

= xex2 +xy 9. ∂h
∂t2

= 0

11. ∂f
∂u

∣∣∣
(u,v)=(−1,−1)

= 1,
∂f
∂v

∣∣∣
(u,v)=(−1,−1)

= −2

13. ∂g
∂θ

∣∣∣
(r,θ)=

(
2
√

2, π/4
) = 1

6 15. ∂f
∂v

∣∣∣
(u,v)=(0,1)

= 2 cos 2

17. (b) ∂f
∂t

= 19
2
√

7

23. (a) Fx = z2 + y, Fy = 2yz + x, Fz = 2xz + y2

(b) ∂z
∂x

= − z2 + y

2xz + y2 , ∂z
∂y

= − 2yz + x

2xz + y2

25. ∂z
∂x

= − 2xy + z2

2xz + y2 27. ∂z
∂y

= − xexy + 1
x cos(xz)

29. ∂w
∂y

= −y(w2 + x2)
2

w
(
(w2 + y2)

2 + (w2 + x2)
2
) ; at (1, 1, 1), ∂w

∂y
= − 1

2

33. ∇
(

1
r

)
= − 1

r3 r 35. (c) ∂z
∂x

= x − 6
z + 4

37. ∂P
∂T

= − nR
V − nb

, ∂V
∂P

= nbV 3 − V 4

PV 3 + 2an3b − an2V

Section 12.7 Preliminary Questions
1. f has a local (and global) min at (0, 0); g has a saddle point at

(0, 0).

2.

0

1

1

−1
−1

−3

−3

3

3

1

R

Point R is a saddle point.

1 30−1−3 S

Point S is neither a local extremum nor a saddle point.

2

6

10

−2

−6

−10

0

P Q

Point P is a local minimum and point Q is a local maximum.

3. Statement (a)

Section 12.7 Exercises
1. (b) P1 = (0, 0) is a saddle point, P2 =

(
2
√

2,
√

2
)

and

P3 =
(
−2

√
2, −√

2
)

are local minima; absolute minimum value of

f is −4.

3. (0, 0) saddle point,
(

13
64 , − 13

32

)
and

(
− 1

4 , 1
2

)
local minima

5. (c) (0, 0), (1, 0), and (0, −1) saddle points,
(

1
3 , − 1

3

)
local

minimum.

7.
(
− 2

3 , − 1
3

)
local minimum

9. (−2, −1) local maximum,
(

5
3 , 5

6

)
saddle point

11.
(

0, ±√
2
)

saddle points,
(

2
3 , 0
)

local maximum,(
− 2

3 , 0
)

local minimum

13. (0, 0) saddle point, (1, 1) and (−1, −1) local minima

15. (0, 0) saddle point,
(

1√
2
, 1√

2

)
and

(
− 1√

2
, − 1√

2

)
local

maximum,
(

1√
2
, − 1√

2

)
and

(
− 1√

2
, 1√

2

)
local minimum

17. Critical points are
(
jπ, kπ + π

2

)
, for

j,k even: saddle points
j,k odd: local maxima
j even, k odd: local minima
j odd, k even: saddle points

19.
(

1, 1
2

)
local maximum 21.

(
3
2 , − 1

2

)
saddle point

23.
(
− 1

6 , − 17
18

)
local minimum

27. x = y = 0.27788 local minimum

29. Global maximum 2, global minimum 0

31. Global maximum 1, global minimum 1
35

35. Maximum value 1
3

37. Global minimum f (0, 1) = −2 , global maximum f (1, 0) = 1

39. Global maximum 3, global minimum 0

41. Global minimum f (1, 1) = −1 , global maximum
f (1, 0) = f (0, 1) = 1

43. Global minimum f (1, 0) = f (−1, 0) = −0.368 , global
maximum f (0, − 1) = f (0, 1) = 1.472

45. Maximum volume 3
4

49. (a) No. In the box B with minimal surface area, z is smaller than
3√
V , which is the side of a cube with volume V .
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(b) Width: x = (2V )1/3; length: y = (2V )1/3;

height: z =
(

V
4

)1/3

51. f (x) = 1.9629x − 1.5519

Section 12.8 Preliminary Questions
1. Statement (b)
2. f had a local maximum 2, under the constraint, at A; f (B) is

neither a local minimum nor a local maximum of f .
3. (a)

Contour plot of f (x, y)
(contour interval 2)

26 −2

2 6
g (x, y) = 0�fA, �gA

A

E

C

D

B

−2−6

−6

(b) Global minimum −4, global maximum 6

Section 12.8 Exercises
1. (c) Critical points (−1, −2) and (1, 2)

(d) Maximum 10, minimum −10
3. Maximum 4

√
2 , minimum −4

√
2

5. Minimum 36
13 , no maximum value

7. Maximum 8
3 , minimum − 8

3
9. Maximum

√
2 , minimum 1

11. Maximum 3.7, minimum −3.7
13. No maximum and minimum values
15. (−1, e−1)

17. (a) h =
√

2√
3π

≈ 0.6, r =
√

1√
3π

≈ 0.43 (b) h
r = √

2

(c) There is no cone of volume 1 and maximal surface area.

19. (8, − 2) 21.
(

48
97 , 108

97

)
23. aabb

(a+b)a+b 25.
√

aabb

(a+b)a+b

31. r = 3, h = 6 33. x + y + z = 3

39.
( −6√

105
, −3√

105
, 30√

105

)
41. (−1, 0, 2)

43. Minimum 138
11 ≈ 12.545 , no maximum value

47. (b) λ = c
2p1p2

Chapter 12 Review
1. (a)

x
−3

y

(b) f (3, 1) =
√

2
3 , f (−5, − 3) = −2 (c)

(
− 5

3 , 1
)

3.

x

y

z

Vertical and horizontal traces: the line z = (c2 + 1) − y in the
plane x = c, the parabola z = x2 − c + 1 in the plane y = c.

5. (a) Graph (B) (b) Graph (C) (c) Graph (D) (d) Graph (A)

7. (a) Parallel lines 4x − y = ln c, c > 0, in the xy-plane

(b) Parallel lines 4x − y = ec in the xy-plane

(c) Hyperbolas 3x2 − 4y2 = c in the xy-plane

(d) Parabolas x = c − y2 in the xy-plane

9. lim
(x,y)→(1,−3)

(xy + y2) = 6

11. The limit does not exist.

13. lim
(x,y)→(1,−3)

(2x + y)e−x+y = −e−4

17. fx = 2, fy = 2y

19. fx = e−x−y(y cos(xy) − sin(xy))

fy = e−x−y(x cos(yx) − sin(yx))

21. fxxyz = − cos(x + z) 23. z = 33x + 8y − 42

25. Estimate, 12.146; calculator value to three places, 11.996.

27. Statements (ii) and (iv) are true.

29. d
dt

(
f (c(t))

)∣∣∣
t=2

= 3 + 4e4 ≈ 221.4

31. d
dt

(
f (c(t))

)∣∣∣
t=1

= 4e − e3e ≈ −3469.3

33. Duf (3, − 1) = − 54√
5

35. Duf (P ) = −
√

2e
5 37.

〈
1√
2
, 1√

2
, 0
〉

41. ∂f
∂s

= 3s2t + 4st2 + t3 − 2st3 + 6s2t2

∂f
∂t

= 4s2t + 3st2 + s3 + 4s3t − 3s2t2

45. ∂z
∂x

= − ez − 1
xez + ey

47. (0, 0) saddle point, (1, 1) and (−1, −1) local minima

49.
(

1
2 , 1

2

)
saddle point

53. Global maximum f (2, 4) = 10 , global minimum
f (−2, 4) = −18

55. Maximum 26√
13

, minimum − 26√
13

57. Maximum 12√
3

, minimum − 12√
3

59. f (0.8, 0.52, − 0.32) = 0.88 and f (−0.13, 0.15, 0.99) = 3.14

61. r =
(

V
2π

)1/3
, h = 2

(
V
2π

)1/3



ANSWERS TO PREPARING
FOR THE AP EXAM

Chapter 2 Solutions

Multiple Choice Questions
1. B 3. C 5. E 7. E

9. C 11. C 13. D 15. B

17. D 19. E

Free Response Questions

1. (a)
f ( 3π

2 )−f ( π
2 )

3π
2 − π

2
=

−1
( 3π

2 )
− 1

( π
2 )

π
= −1

π
( 2

3π
+ 2

π
) = −8

3π2

(b) lim
x→0

f (x) = 1

(c) No, lim
x→0

f (x) = 1, so neither the left-hand limit nor the right

hand limit is infinite, which is needed for the graph to have a
vertical asymptote.

(d) We know −1 ≤ sin x ≤ 1, so if x > 0, then −1
x

≤ sin x
x

≤ 1
x
,

and since lim
x→∞

−1
x

= 0 = lim
x→∞

1
x
, the SqueezeTheorem implies

lim
x→∞

sin x
x

= 0. This means the line y = 0 is a horizontal asymp-

tote.

3. (a) Since −5 ≤ f (x) ≤ 10, if x > 0 then −5x ≤ xf (x) ≤
10x. Thus by the Squeeze Theorem lim

x→0+ xf (x) = 0. Next, if

x < 0, then −5x ≥ xf (x) ≥ 10x. Applying the Squeeze Theo-
rem again, lim

x→0− xf (x) = 0. Thus lim
x→0

xf (x) = lim
x→0

g(x) = 0.

Checking the functional value, we have g(0) = 0 · 3 = 0. Thus
lim
x→0

g(x) = g(0), so g is continuous at x = 0.

(b) No. lim
x→0

g(x)−0
x−0 = lim

x→0

xf (x)
x

= lim
x→0

f (x), which does not

exist.

Chapter 3 Solutions

Multiple Choice Questions
1. A 3. B 5. D 7. D

9. E 11. E 13. C 15. A

17. A 19. D

Free Response Questions
1. (a) The line through (3, −7) with slope −2 has equation

y = −7 − 2(x − 3) = −2x − 1. To see where this line meets
y = x2, set x2 = −2x − 1; we get x = −1. The point (−1, 1)

is on the graph of y = x2, and the derivative is 2x, so the slope
of the tangent line is 2(−1) = −2. Thus y = −7 − 2(x − 3) is
tangent to y = x2 at (−1, 1).
(b) Let the slope of the line be m. Then we have two equations
to solve: first, as we did in (a), set x2 = −7 + m(x − 3). Next,
at the solution to that equation, we will have m = 2x. Thus we
need to solve x2 = −7 + 2x(x − 3), or x2 − 6x − 7 = 0. That
is, (x + 1)(x − 7) = 0, so x = −1 or 7. The x = −1 confirms

our solution to (a). The slope we want is m = 14, so the line is
y = −7 + 14(x − 3).

(c) No. The x-coordinates of the points on the graph of y = x2

must satisfy the quadratic x2 − 6x − 7 = 0, which has only two
solutions.

3. (a) The volume of sand in the box is V = (20)(40)(y),
where y is the depth of the sand in the box. Thus −300 = dV

dt
=

800 dy
dt

, so dy
dt

= − 3
8 . The depth of the sand is decreasing at the

rate of 3
8 inch per minute.

(b) (i) The area of the circular base is A = πr2, so dA
dt

=
2πr dr

dt
= 2π(8)(.75) = 12π . The area is increasing at the rate

of 12π square inches per minute. Note that the diameter is twice
the radius.
(ii) dV

dt
= π

3 [(2r dr
dt

)h + r2 dh
dt

], and the sand is coming in at 300
cubic inches per minute, so 300 = π

3 [(2(8)(.75))23 + (8)2 dh
dt

],
or dh

dt
= 1

64 ( 900
π

− 276) inches per minute.

A104
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Chapter 4 Solutions

Multiple Choice Questions
1. B 3. B 5. C 7. C

9. D 11. C 13. E 15. E

17. C 19. C

Free Response Questions
1. (a) No. There are various justifications. For example, dx

dt
<

0 when y > 0 and dx
dt

> 0 when y < 0 since the runner is going
counterclockwise. Or, dx

dt
= 0 when y = 0, and since the runner

is moving, dx
dt

cannot be constantly zero.

(b) Let P = (x, y) be a point in the first quadrant on the ellipse.
Then construct the rectangle R with vertices (x, y), (−x, y),
(x, −y), and (−x, −y). The area of R is A = 4xy. Since

y > 0, y =
√

50000−10x2

2 , so A = 2x
√

50000 − 10x2. A′(x) =
100000−4x2√

50000−10x2
= 0 when x = 50 (remember x > 0) and changes

sign from plus to minus. Thus A has a maximum at x = 50.
A(50) = A = 5000

√
10. Next, A(1) < 5000 < A(50), so the

Intermediate Value Theorem says there is a rectangle with area
exactly 5000 square yards.

3. (a) If k = 30, then f (0) = 30. Since f (x) is a cubic and the
coefficient of x3 > 0, we know f (x) will be negative for some
negative values of x. Experimenting, we find f (−3) = −15.
Thus there is a c in (−3, 0) with f (c) = 0.

(b) We have f ′(x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2). Thus
f (x) has a local maximum x = −1 and a local minimum at x =
2. With k = 30, f (x) is increasing on (−∞, −1] and f (−1) =
37. So f (x) = 0 has exactly one solution in (−∞, −1]. f (x) is
decreasing on [−1, 2], and f (2) = 10, so there is no solution to
f (x) = 0 in [−1, 2]. f (x) now is increasing for x > 2, so there
is no solution to f (x) = 0 in [2, ∞).

(c) We want the graph to intersect the x-axis exactly once, so
we want either (i) the local maximum to be less than 0 or (ii) the
local minimum to be greater than 0.

For (i), f (−1) = 7 + k so k < −7.
For (ii), f (2) = −20 + k, so k > 20.
(Note, for k = −7 or 20, there are exactly two solutions.)

Chapter 5 Solutions

Multiple Choice Questions
1. B 3. E 5. C 7. A

9. C 11. C 13. C 15. E

17. C 19. E

Free Response Questions
1. (a) If v(t) > 0, then x(t) will be increasing, so set 1

2 −
sin t > 0. Solution is 0 ≤ t < π

6 and 5π
6 < t ≤ 2π .

(b) 3 + ∫ 2π

0 ( 1
2 − sin t)dt = 3 + π

(c)
∫ π

6
0 ( 1

2 − sin t)dt + ∫ 5π
6

π
6

−( 1
2 − sin t)dt + ∫ 2π

5π
6

( 1
2 −

sin t)dt = 2
√

3 + π
3

(d) When t = π
4 , v(t) = 1

2 −
√

2
2 < 0 and a(t) = − cos t =

−√
2

2 < 0. v(t) is negative and decreasing, so |v(t)|, or the speed,
is increasing.

3. (a) g has a local maximum when g′(x) = f (x) changes
from positive to negative; this happens when x = 4.

(b) The maximum occurs either at a local maximum,
or at an end point. g(4) = 1

2 · 2 · 4 = 4, the area of
the triangle; g decreases from 4 to 5, so we only
need to check g(−3) = ∫ −3

2 f (x)dx = − ∫ 2
−3 f (x)dx =

−(
∫ 0
−3 f (x)dx + ∫ 2

0 f (x)dx) = −(−9 + 4) = 5. The maxi-
mum value of g(x) is 5.

(c) The graph of g is concave up when g′ = f is increasing,
that is on (−3, 2).

Chapter 6 Solutions

Multiple Choice Questions
1. E 3. C 5. B 7. E

9. C 11. D 13. C 15. A

17. D 19. E

Free Response Questions
1. (a) average acceleration = 1

10

∫ 10
0 (6 − 2t) dt =

1
10 (6t − t2)

∣∣∣10

0
= −4 (ft/sec)/sec
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(b) average velocity = 1
10

∫ 10
0 (6t − t2 + 7) dt =

1
10 (3t2 − t3

3 + 7t)

∣∣∣10

0
= 11

3 ft/sec

(c) Note that v(t) ≥ 0 for 0 ≤ t ≤ 7, v(t) ≤ 0 for 7 ≤ t ≤ 10.
average speed = 1

10

∫ 10
0

∣∣6t − t2 + 7
∣∣ dt =

1
10

(∫ 7
0 (6t − t2 + 7t)dt − ∫ 10

7 (6t − t2 + 7t)dt
)

=
1
10

(
(3t2 − t3

3 + 7t)

∣∣∣7
0
− (3t2 − t3

3 + 7t)

∣∣∣10

7

)
= 38

3 ft/sec

3. (a) Let h be the depth of water in the bowl. Then the
amount of water is given byV (h) = ∫ −6+h

−6 π(36 − y2)dy.Thus
dV
dt

= dV
dh

dh
dt

= π(36 − (−6 + h)2) dh
dt

. When h = 2, we have
4 = π20 dh

dt
, so dh

dt
= 4

20π
ft/min.

(b) The volume of water is
∫ −1
−6 π(36 − y2)dy = 325π

3 cubic
feet. Water came in at 4 cubic feet per minute, so the time is
325π

12 minutes.

Chapter 7 Solutions

Multiple Choice Questions
1. B 3. C 5. C 7. B

9. C 11. A 13. B 15. D

17. D 19. B

Free Response Questions
1. (a) u = sin−1x ⇒ du = 1√

1−x2
dx and dv = dx ⇒

v = x so
∫

sin−1x dx = xsin−1x − ∫
x√

1−x2
dx =

xsin−1x + √
1 − x2 + C

(b) (xsin−1x + √
1 − x2)

∣∣∣1
0

= π
2 − 1

(c) The area under the curve y = sin−1x in the first quadrant
plus the area to the left of this curve in the first quadrant forms a
rectangle of height π

2 and base 1, so total area is π
2 . The area to

the left of the curve, when viewed from the y-axis, is under the

graph x = sin y, and so this area is
∫ π

2
0 sin y dy. Thus total area is

π
2 = area to left + area under = ∫ 1

0 sin−1x dx + ∫ π
2

0 sin y dy.

3. (a) Let g(x) = 1
x
. Then for x ≥ 2, 1

x
= 1√

x2
< 1√

x2−1

and
∫ ∞

2
1
x
dx = lim

w→∞
∫ w

2
1
x
dx = lim

w→∞(ln(w) − ln(2)) = ∞.

Since f (x) > g(x) > 0, and
∫ ∞

2 g(x)dx diverges, so does∫ ∞
2 f (x)dx.

(b)
∫ ∞

2 π f (x)2dx = lim
w→∞

∫ w

2 π 1
x2−1

dx. Let g(x) = x
3
2 .

Then lim
x→∞

x
3
2

x2−1
= 0, so for large values of x, x

3
2 < (x2 − 1),

or 1

x
3
2

> 1
x2−1

> 0. The integral
∫ ∞

2
1

x
3
2
dx converges by the

p-test, hence so does
∫ ∞

2
1

x2−1
dx and then so does

∫ ∞
2

π

x2−1
dx.

Chapter 8 Solutions

Multiple Choice Questions
1. D 3. E 5. D 7. E

9. E 11. E 13. C 15. A

17. D 19. E

Free Response Questions
1. (a) P(x) = 3 + 6x + 2x2 + 2x3

(b) First, g(0) = f (0) = 3. Next, g′(x) = f ′(3x) · 3, so
g′(0) = f ′(0) · 3 = 18. Next, g′′(x) = f ′′(3x) · 9, so
g′′(0) = f ′′(0) · 9 = 36. Finally, g′′′(x) = f ′′′(3x) · 27,
so g′′′(0) = f ′′′(0) · 27 = 324. The Taylor polynomial for
g is 3 + 18x + 36

2! x
2 + 324

3! x3 = 3 + 18x + 18x2 + 54x3 =
3 + 6(3x) + 2(3x)2 + 2(3x)3 = P(3x).
(c) First, h(0) = 0. Next, h′(x) = f (x) + xf ′(x), so h′(0) =
f (0) = 3. Next, h′′(x) = f ′(x) + f ′(x) + xf ′′(x), so h′′(0) =
2f ′(0) = 12. Finally, h′′′(x) = 2f ′′(x) + f ′′(x) + xf ′′′(x), so
h′′′(0) = 3f ′′(0) = 12. Thus the third Maclaurin polynomial for

h is 3x + 6x2 + 2x3 = x(3 + 6x + 2x2), which is x times the
Maclaurin polynomial for f of degree two.

3. (a)
∫ 20

0 50(20 − y)10dy = 100000 pounds

(b) The force on the plate below L is
∫ D

0 50(20 − y)10dy

which is half the force, so set
∫ D

0 50(20 − y)10dy = 50000, or∫ D

0 (20 − y)dy = 100. Thus 20y − y2

2

∣∣∣D
0

= 20D − D2

2 = 100,

or D2 − 40D + 200 = 0. D = 40±√
1600−800

2 . Must select the
root between 0 and 20. D = 20 − 10

√
2

(c) A(x) = ∫ 20
D

50(x − y)10dy = 500(xy − y2

2 )

∣∣∣20

D
=

500[(20x − 200) − (Dx − D2

2 ). Thus A′(x) = 500(20 − D).

B(x) = ∫ D

0 50(x − y)10dy = 500(xy − y2

2 )

∣∣∣D
0

=
500(Dx − D2

2 ).
Thus B ′(x) = 500D. Since

√
2 > 1, D < 10, so 20–D >

10 > D. Thus A′(x) > B ′(x).
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Chapter 9 Solutions

Multiple Choice Questions
1. C 3. B 5. D 7. A

9. C 11. C 13. D 15. C

17. B 19. C

Free Response Questions
1. (a) w = 1

y
means dw

dt
= − 1

y2
dy
dt

= − 1
y2 (y)(6 − 2y) =

−( 6
y

− 2) = −(6w − 2) = 2 − 6w.

(b) dw
2−6w

= dt , so − 1
6 ln |2 − 6w| = t + C1; ln |2 − 6w| =

−6t + C2
|2 − 6w| = e−6t+C2 = eC2e−6t = K1e

−6t for K1 > 0
2 − 6w = K2e

−6t for K2 	= 0

Next, w = −1
6 (K2e

−6t − 2) = K3e
−6t + 1

3 for K3 	= 0. Fi-
nally, note that w = 1

3 is a constant solution to dw
dt

= 2 − 6w,
so the general solution is w = Ce−6t + 1

3 for all real numbers
C.

(c) y = 1
w

= 1
Ce−6t+ 1

3
= 3

Ce−6t+1

3. (a) Write dy
dx

= 2x(y2 + 1), so dy

y2+1
= 2xdx. Integrating

we get arctan(y) = x2 + C. So y = tan(x2 + C).

(b) Using x = 0, y = 1 we have C = π
4 , so the solution is

y = tan(x2 + π
4 ). Since the domain includes x = 0, we must

have −π
2 < x2 + π

4 < π
2 , or − 3π

4 < x2 < π
4 ; we need x2 < π

4 ,

so the domain is −
√

π

2 < x <
√

π

2 .

Chapter 10 Solutions

Multiple Choice Questions
1. C 3. B 5. D 7. D

9. B 11. D 13. B 15. D

17. D 19. A

Free Response Questions
1. (a) Dn = |xn − xn−1| = |−0.8xn−1 − xn−1| = 1.8 |xn−1|.

Thus Dn

Dn−1
= 1.8|xn−1|

1.8|xn−2| =
∣∣∣−0.8xn−2

xn−2

∣∣∣ = 0.8. Thus the series is

geometric with ratio R = 0.8.
(b) D1 = 3 − (−2.4) = 5.4; the total distance is 5.4

1−0.8 = 27.
(c) The particle moves to the left on the odd segments; we
want D1 + D3 + D5 + · · · .This is a geometric series with ratio
(0.8)2 = .64; the sum is 5.4

.36 = 15.

(d) Let Tn be the time to travel Dn. Then Tn = k
√

Dn, so
Tn

Tn−1
= k

√
Dn

k
√

Dn−1
= √

0.8 and the time is a geometric series with

first element equal to 4. Total time is 4
1−√

0.8
seconds.

3. (a) Let an = n+1
n2+1

xn, then∣∣∣ an+1
an

∣∣∣ =
(

n+2
(n+1)2+1

· n2+1
n+1 |x|

)
→ |x| as n → ∞, so the series

converges for |x| < 1. For x = 1, the series is
∞∑
0

n+1
n2+1

, which

diverges by limit comparison with
∞∑
1

1
n
. For x = −1, the series

is
∞∑
0

n+1
n2+1

(−1)n, which converges by the alternating series test.

The interval of convergence is [−1, 1).

(b) g is an antiderivative of f , so the series for g is C0 +
∞∑
0

n+1
n2+1

xn+1

n+1 = 3 +
∞∑
0

1
n2+1

xn+1.

(c) The series has the same radius of convergence, so converges
for |x| < 1. Now however the series converges for |x| = 1 by

comparison with
∞∑
1

1
n2 , so series converges on [−1, 1].

Chapter 11 Solutions

Multiple Choice Questions
1. C 3. D 5. A 7. D

9. E 11. B 13. E 15. A

17. B 19. D

Free Response Questions
1. (a) a(t) = 〈

2, 8e2t
〉
, so a(3) = 〈

2, 8e6
〉

(b) The length of the velocity vector is ‖v(0)‖ = ‖〈5, 4〉‖ =√
52 + 42 = √

41.

(c) dy
dt

= 4e2t and dx
dt

= 2t + 5, so when t = 0, dy
dx

= dy/dt
dx/dt

=
4
5 . An equation of the line is y − 2 = 4

5 (x + 6).



A108 ANSWERS TO PREPARING FOR THE AP EXAM

(d) The second coordinate is always positive, so we need the
first coordinate positive also. x(t) = ∫

2t + 5dt = t2 + 5t +
C, and x(0) = −6 means C = −6. Thus x(t) = t2 + 5t − 6 =
(t + 6)(t − 1), which is positive for t < −6 and t > 1.

3. (a) We have for F that x′(t) = 2x(t), so x(t) = Ce2t and
3 = Ce−2, thus C = 3e2 and x(t) = 3e2t+2. Similarly, we have
y(t) = 4e2t+2. F(t) = 〈3e2t+2, 4e2t+2〉. In like manner, G(t) =
〈9e−3t , 12e−3t 〉.
(b) F(t) = G(t) means 3e2t+2 = 9e−3t , or e5t+2 = 3; 5t +
2 = ln 3; t = ln(3)−2

5 . We must also have 4e2t+2 = 12e−3t , or

t = ln(3)−2
5 .The particles are at the same point when t = ln(3)−2

5 .

(c) F(t) = e2t+2〈3, 4〉, since the range of e2t+2 is all positive
numbers, F visits all points of the form y = 4

3x, x > 0. Simi-
larly, G(t) = e−3t 〈9, 12〉 = 3e−3t 〈3, 4〉 the same set of points.

(d)
∫ ∞

0

√
(−27e−3t )

2 + (−36e−3t )
2
dt =∫ ∞

0

√
(272 + 362)e−6t dt = ∫ ∞

0

√
272 + 362e−3t dt =

lim
B→∞

√
272+362

−3 e−3t

∣∣∣∣B
0

= −
√

272+362

9 lim
B→∞(e−3B − 1) =

√
27 · 3 + 36 · 4 = 3

√
9 + 16 = 15. Alternatively, G goes in a

straight line from 〈9, 12〉 to 〈0, 0〉 in the limit, so the distance is√
92 + 122 = 15.
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INDEX

abscissa, see x-coordinate
absolute convergence, 569
absolute (global) extreme values, 735
absolute maximum and absolute minimum,

215
absolute value function:

integral of, 314
nondifferentiability of, 136

absolute value of a real number, 2
absolutely convergent improper integral, 447
absorption spectra, 537
absorption wavelength of hydrogen atom,

537
acceleration, 161
addition formulas, 30
additivity:

for adjacent intervals, 304
of moments, 481, 484, 485

adjacent intervals, 304
Agnesi, Maria, 149
air resistance, 525, 526, 530
algebra:

vector, 641–646
algebraic functions, 22
alternating harmonic series, 572–573
alternating series, 570
amplitude (of a graph), 9
Andrews, George, 558
angle measurement:

radians and degrees, 25, 26
angle of incidence, 261
angle of inclination, 719
angle of reflection, 261
angles:

complementary, 30, 199
in radians, 25
obtuseness testing, 656

angles between vectors:
and dot product, 653–655

angular coordinate, 627, 628, 631
angular momentum, 668
angular velocity, 623
annuity, 513
annuity, perpetual, 439
antiderivatives, 275–278, 328, 666
antiderivatives:

computing definite integrals with, 316, 318

definition of, 275
and Fundamental Theorem of Calculus

(FTC), 309, 310
general, 275
as integrals, 318, 322

antidifferentiation, see integration
AP-style questions

Applications of the Derivative,
AP4-1–AP4-4

Applications of the Integral, AP6-1–AP6-4
Differentiation, AP3-1–AP3-4
Further Applications of the Integral and

Taylor Polynomials, AP8-1–AP8-4
Infinite Series, AP10-1–AP10-4
Integrals, AP5-1–AP5-4
Introduction to Differential Equations,

AP9-1–AP9-4
Limits, AP2-1–AP2-4
Parametric Equations, Polar Coordinates,

and Vector Functions,
AP11-1–AP11-4

Techniques of Integration, AP7-1–AP7-4
Apollonius of Perga, 142
Apollonius’s Theorem, 142
approximately equal to (≈), 207
approximations:

to the derivative, 123
endpoint, 299, 300, 323
first-order, 488
of infinite sums, 548
left-endpoint, 301–302, 416
linear, 207–210, 488, 706–708
by linearization, 210
midpoint, 290, 299, 300
numerical, 269–270
parabolic, 460
polygonal, 467–468
by Riemann sum, 300
right-endpoint, 288, 291, 400
by Trapezoidal Rule, 454

arc length, 467–469, 620–621
Archimedes, 315, 555
Archimedes’s Law of the Lever, 485
arcs:

circular, length of, 621
graph shapes of, 249–251

arcsine function, 38

derivative of, 179
arctangent, of linear or quadratic functions,

433
area, 286

approximating and computing of,
287–295

approximating of by rectangles, 287–289
approximating of under the graph,

287–295
between graphs, 357–359
between two curves, 357–360, 377, 486
calculating of as a limit, 292
calculating of by dividing the region, 292
computing of as the limit of

approximations, 292–295
and polar coordinates, 635–637
signed, 302, 360
surface, 623
of a trapezoid, 454
under the graph approximation by

trapezoids, 454
area function (cumulative area function),

316
and concavity, 321
derivative of, 316

arithmetic-geometric mean, 548
associative law, 645
asymptote, horizontal, 54, 252–253
asymptote, vertical, 53, 252–254
asymptotes:

functions with, 54
asymptotic behavior, 248, 251, 253
atmospheric pressure, 350
average (mean) time of atom decay, 353
average cost function, 159
average rate of change, 63–64, 150, 694–696
average value of a function (mean value),

370–371
average velocity, 60–62

and slope of a secant line, 64
axes, 3

horizontal, 395–397, 404

Babylonians, ancient, and completing the
square technique, 18

ball grid array (BGA), 694
Balmer series, 537, 540
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Balmer wavelengths, 539–540
Banker’s Rule of, 352
Barrow, Isaac, 309
base (of exponential function), 43
basepoint (in the plane), 641–642
Basic Limit Laws, 77–79
basic trigonometric integrals, 278
Beer–Lambert Law, 350
Bernoulli, Jacob, 295, 555, 612
Bernoulli, Johann, 555
Bernoulli numbers, 295
Bernoulli’s formula, 295
Bernstein, Sergei, 614
Bernstein polynomials, 614
Bessel functions, 580, 586
Bézier, Pierre, 614
Bézier curves, 614
binomial coefficient, 596, 597

recursion relation for, A15
binomial series, 596, 597
Binomial Theorem, 596, 597, A15
bird flight, 54
bird migration, 257, 266
Bisection Method, 107–108
Body Mass Index (BMI), 707
Boltzmann distribution, 754
Bolzano-Weierstrass Theorem, A10
boundary of the square, 735
boundary point of a domain, 735
bounded constraint curve, 745
bounded domains, 736
bounded monotonic sequences, 544
bounded sequences, 543–545
brachistochrone property, 612
branches (of a graph), 190
Bubble Sort, 244

cable position transducer, 209
calculators:

and exponential functions, 43
graphing, 52–55

calculus:
differential, 59, 120
infinite series, 537
integral, 59
inventors of, 60, 130, 221
and theory of infinite series, 537
see also Fundamental Theorem of

Calculus (FTC)
calorie, 391
Cantor’s disappearing table, 599
carbon dating, 344–345
carrying capacity, 524
Cartesian coordinates, see rectangular

coordinates
Cauchy, Augustin Louis, 69, 111, 575

center of mass (COM), 480–485
center of the linearization, 210
centripetal force, 510
centroid, 482–484
Chain Rule, 130, 143, 169–174, 318, 662,

696, 723–726
combining of with Fundamental Theorem

of Calculus (FTC), 318
for gradients, 712
and implicit differentiation, 726–727
in partial derivatives, 693
proof of, 173

Chain Rule for Paths, 712–714
chambered nautilus, 607
change of base formula, 46
Change of Variables Formula, 329, 331–333

and Fundamental Theorem of Calculus
(FTC), 336

linearity of, 303
properties of, 303–305

Chauvet Caves, 351
Chebyshev polynomials, 56
circle:

area of, 636
equation of, 4
involute of, 629
moment of, 484
parametrization of, 610, 726–727
and polar equations, 631

circuits:
current in, 516

circular arc:
length of, 25

cissoid, 633
Clairaut, Alexis, 697
Clairaut’s Theorem, 697, A24
closed domains, 770
closed intervals, 3, 259–261

optimizing on, 218–220
versus optimizing on open intervals,

260–261
Cobb, Charles, 747
Cobb-Douglas Production Function, 747
coefficients, 21

binomial, 596
pattern of, 458
undetermined and partial fractions, 430

common ratio, 540, 551
Commutative Law, 645
commutativity:

of dot product, 654
Comparison Test, 438, 441–442

for convergence of positive series, 562
for limits, 564

Comparison Theorem (for Integrals), 305
complementary angles, 30, 179
completeness property of real numbers, 108,

216

completing the square technique, 18, 738
complex numbers, 423

imaginary, 423
component of u, 657
components:

and vector operations, 645
of vectors, 642

composite functions, 169, 318, 328, 687
and Chain Rule, 724
continuity of, 85

composition:
and construction of new functions, 22

compound interest, 345–347
computational fluid dynamics, 467
computer algebra systems, 406, 433,

458-459, 674
and Euler’s Method, 520–521

computer technology, 51
concave up and concave down curves,

234–235
concavity:

and area functions, 321
definition of, 234
and second derivative test, 237
test for, 235

conchoid, 194
conditional convergence, 570
Conductivity-Temperature-Depth instrument,

672
cone, 681
constant mass density, 480, 686
Constant Multiple Law, 77, 78
Constant Multiple Rule, 132, 662
constant:

integral of a, 303
constant of integration, 276
constant vector, 666
constraint curve, 745–748
constraint equation, 257
constraints, 749

and Lagrange multipliers, 749
continuity, 81

of composite functions, 85
and differentiability, 136
for functions, 686, 687
of inverse function, 85
left-continuous, 82
and limits, 81–87
one-sided, 82
at a point, 81
of polynomial and rational functions, 84
of power series, 591
right-continuous, 82
and Substitution Method, 85–86

Continuity, Laws of, 83–85
Continuity Law for Quotients, 84–85
continuous functions, 81–82, 83–85, 86–87,

136, 215–216, 736, 762
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integrability of, 301, A22
continuously compounded interest, 346
contour intervals, 676, 678, 679, 701
contour maps, 676–680

and critical points, 734
and directional derivative, 718
and estimating partial derivatives, 695
of a linear function, 678–679

convergence:
absolute, 569
conditional, 569
of improper integral, 439
infinite radius of, 588
of an infinite series, 549
of positive series, 574–580
radius of, 594–596

convergent sequence, 542, 543–544
cooling, rate of, 511
cooling constant, 511
coordinates, 3

angular, 626–627
polar, 626–630, 634–637, 726
radial, 626
rectangular, 626–627, 629–630
x and y, 3

cosecant, 28
hyperbolic, 47, 451

cosine function:
basic properties of, 31
derivative of, 165
Maclaurin expansions of, 596–597
period of, 27
unit circle definition of, 26

Cosines, Law of, 30
cost function, 325
cotangent, 28

hyperbolic, 47
Couette flow, see shear flow
critical points, 217–218

analyzing, 229–230
first derivative test for, 229–230
and optimization problems, 261
outside the interval, 218–219
second derivative for, 236–237
testing of, 229–230
without a sign transition, 231

cross product:
Product Rules for, 662–663

cross sections:
horizontal, 365
see also washers

cumulative area function, see area
function

cuneiform texts:
completing the square, 18

current:
in a circuit, 516
transient, 534

curve integrals, see line integrals
curve length, see arc length
curves:

area between two, 357–361, 636
Bézier, 614
concave down and up, 235–236
and conic sections, 609
integral, 517
lemniscate, 633
orthogonal family of, 510
parametric (parametrized) 607–608, 611,

614, 618
resonance, 224
trident, 193

cycloid, 612–613, 618, 621
horizontal tangent vector on, 664–665

cylindrical shells, method of, see Shell
Method

decimal expansion, 1–2
decimals:

finite, 1
repeating (or periodic), 1

decreasing function, 6
decreasing sequence, 544
definite integral, 300–301
degree of a polynomial, 21
degrees, 25, 26
delta (�) notation, 61
delta (δ), 110–111
density, see mass density
dependent variable, 5
derivatives:

acceleration, 161
of bx , 134–135, 182, 183
of constant function, 123
definition of, 120–121
directional, 715–717
discontinuous, 177
estimating, 123
first, 159, 235–236
as a function, 129–132
higher, 159–162
of hyperbolic functions, 185–186, 422
of inverse function, 178
of inverse hyperbolic functions, 185–186,

422
of inverse trigonometric functions,

179–180, 337–338
of logarithmic functions, 182–184
mixed partials, 696
nth-order, 159
partial, 672, 692–699, 706, 732
in polar coordinates, 626
of power series, 584

primary, 724–725
scalar-valued, 621, 631, 633
second, 159
sign of the, 227
and tangent line, 121
as a tangent vector, 663–665
trigonometric, in degrees, 173
of trigonometric functions, 165–167
vector-valued, 660–661, 665
see also antiderivatives; First Derivative

Test; Second Derivative Test
Descartes, René, 3, 221
Descartes, folium of, 193, 618
Dichotomy Theorem for Positive Series, 560,

562
difference, see first difference
difference quotient, 120

and approximations to the derivative, 123
difference quotient points, 735
Difference Rule, 132
differentiability, 703–707

and continuity, 136
criterion for, 704, A25
and local linearity, 137
and tangent plane, 704

differentiable functions, 121, 136
differential calculus, 59, 120
differential equations, 279, 502–507

and exponential functions, 341–342, 351
first-order linear, 528
first-order, 519
general solution, 502
Gompertz, 352
homogeneous, 534
linear, 503
logistic, 524–526
order of, 503
particular solution, 279
power series solutions of, 585–588
second-order, 423
for vector-valued functions, 666

differentials, 130, 208, 276, 329, 707
substitution using, 319–320

differentiation, 122, 160
and integration, 318
basic rules of, 131–133
implicit, 143, 188–192, 726–727
logarithmic, 184
of a power series, 584

differentiation rules, 661–662
directional derivatives, 715–720
Dirichlet, Lejeune, 575
discontinuity, 81–83

of a function, 215
infinite, 83, 440
jump, 82–83
removable, 82

discriminants, 17, 733–735, 738–739
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disk method (for computing volume),
375–377

displacement, 622
and change in position, 61

Distance Formula, 3–4, 633
and vectors, 641

distance traveled:
and displacement, 622
and velocity and time, 286

distinct linear factors, 427
Distributive Law, 655

and cross products, 663–664
and dot product, 653

distributive law for scalars, 645
divergence:

of an improper integral, 437
of an infinite series, 549
of harmonic series, 555
of a sequence, 538

Divergence Test, 553
divergent sequences, 543
divergent series, 549, 553–554
domains, 4, 5, 34, 35, 735

bounded, 735
closed, 735
and differentiability, 704
and n variables, 672–673
open, 735
and sequence, 537

dot product, 653–654
and angle between vectors, 653–654
properties of, 653
Product Rules for, 665
and testing for orthogonality, 655

double-angle formulas, 30
double integration, 368
double roots, 18
doubling time, 343–344
doubly infinite improper integral, 437
Douglas, Paul, 747
dummy variable, 289, 301
Dürer, Albrecht, 630

e, 45, 134
irrationality of, 603

eccentricity:
of Mercury’s orbit, 273

effect of a small change, 207
Einstein, Albert, 49, 155, 301, 392
Einstein’s Law of Velocity Addition, 49
elementary functions, 23
ellipse

area of, 336
parametrization of, 610–611

elliptic function of the first kind, 598
elliptic function of the second kind, 603
elliptic integral of the second kind, 603
endpoint approximations, 295, 520

endpoints, 219–220
energy:

conservation of, 439
kinetic, 439
and work, 391–394

epsilon (ε), 111
equation of a line, 13, 16

intercept-intercept form of, 19
point-point form of, 16
slope-intercept form of, 13, 16, 17

equations:
constraint, 257
graphing of, 6
logistic differential, 524–526
parametric, 607–615
polar, 628
reverse logistic, 528
of tangent line, 121

equiangular spiral, 607
equilibrium solution, 524
equivalent vectors, 642
error, 111

in Linear Approximation, 207, 211–212
in linearization, 210–211

error, percentage, 211
Error Bound, 211

for Simpson’s Rule, 458–459
for Taylor polynomials, 492-495, 593
for Trapezoidal Rule and Midpoint Rule,

454–455
escape velocity, 397, 439
Euler, Leonhard, 45, 423, 555
Euler’s Constant, 548
Euler’s Formula, 424
Euler’s Method, 516, 519–521
Euler’s Midpoint Method, 523
even functions, 7
exponential functions, 22, 43, 134

with base b, 22, 45
continuity of, 84
derivatives of, 134, 182–183
differential equations of, 352
and financial calculations, 345
power series of, 579
properties of, 43–44

exponential growth and decay, 341–344
Exponents, Laws of, 43–44
exponents, negative, 44
extreme values (extrema), 215–218

existence on a closed interval, A21

Faraday’s Law of Induction, 157
Fermat, Pierre de, 221
Fermat’s Theorem on Local Extrema, 218,

834
Feynmann, Richard, 153, 391
Fibonacci sequence, A16

financial calculations:
and exponential functions, 345–346

finite decimal expansion, 1
Fior, Antonio, 273
first derivative, 160

and points of inflection, 235
First Derivative Test, 229

for critical points, 229–231
first difference, 24
first octant, 668
first-order approximation, 488
first-order differential equations, 516, 519
first-order linear differential equations,

528–532
general solutions of, 529

flow rate, 368–369
fluid force, 474–477
fluid pressure, 474–477
folium of Descartes, 193, 618
foot-pounds (ft-lb), 391
force, 391, 474–477

calculating, 475
on an inclined surface, 476

force diagram, 648
force vectors, 647
forces:

as vector quantity, 647
Fourier Series, 409
fractions:

derivatives as, 171
Fractions, Method of Partial, 426–433
Franklin, Benjamin, 527
Fraunhofer diffraction pattern, 76
free fall, 511–512
Fresnel zones, 498
functions:

algebraic, 22
and antiderivatives, 275
arccosine, 39
arcsine, 39
area, 316, 321
with asymptotes, 54
average value of, 370–371, 379–381
basic classes of, 21–23
Bessel, 22, 598
composite, 85, 87, 169, 666
constructing new, 22–23
continuity of, 81–82
continuous, 81–87, 136, 215–216, 686
decreasing, 6, 226
definition of, 4
derivative of, 121–123
derivatives as, 129–134
and differentiability, 703
differentiable, 120, 129, 703
discontinuous, 81–83, 119
elementary, 23
even, 6
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exponential, 21, 22, 43, 54, 84, 131
extreme values of, 215–220
gamma, 22, 447
Gaussian, 454
gradient of, 711
graph of, 5
and graphs of two variables, 673–675
greatest integer function, 86
harmonic, 548, 561
higher-order partial derivatives of,

696–699
hyperbolic, 47–48, 184, 420
implicitly defined, 22
increasing, 6, 227
indeterminate forms of, 91
with infinite discontinuity, 83
integrable, 301
inverse, 34–38
inverse hyperbolic, 47–78, 184, 420
inverse trigonometric, 33–38
invertible, 34
level curves of, 674–676
linear, 674, 678–679
linear combination, 21
linear and nonlinear, 13, 16, 123
linearization of, 703–704
local extrema of, 216–218
local linearity of, 212
locally linear, 137
logarithmic, 22
monotonic, 226, 291
nondecreasing, 227
nondifferentiable, 217
numerical, 5
odd, 6
one-to-one, 35, 36
parity of, 6–7
periodic, 27, 28
piecewise-defined, 82
polynomials, 21
power, 21, 686
probability density, 448
product of, 687
product, 766
quadratic, 17, 19, 458
radial, 731
radial density, 368, 369
range of, 4, 5
rational, 21, 84, 102, 426, 686
real-valued of n variables, 672
real-world modeling of, 86–87
represented as a power series, 580
root of, 107
sequences defined by, 539
of several variables, 672
and Squeeze Theorem, 95–98
transcendental, 22

trigonometric, 22, 25–31, 165–167, 185,
336–337, 421, 423

of two or more variables, 672–680
value of, 4, 5
vector-valued, 660–666
vector-valued integral, 665
velocity, 666
zero (or root) of, 5, 107–108, 269
with zero derivative, 227

Fundamental Theorem of Calculus (FTC),
309–313, 316

proof of, 322

Galilei, Galileo, 60, 155
Galileo’s Law, 49
Galois Theory, 269
gamma function, 447
Gauss, C. F., 301
Gauss’s Theorem, see Divergence Theorem
Gaussian function, 454
Gauss-Ostrogradsky Theorem, see

Divergence Theorem
general antiderivative, 275
General Exponential Rule, 171
General Power Rule, 171
general solution (of a differential equation),

502
general term (of a sequence), 537

in summation notation, 289–291
General Theory of Relativity, 155, 301
geometric sequence, 540
geometric series, 550, 551, 552, 555, 556

sum of, 552
global (absolute) extreme values, 731,

735–739
Gompertz, Benjamin, 352
Gompertz differential equation, 352
gradient vectors, 711–712, 714, 718

Product Rule and Chain Rule for, 712
properties of, 712

graphing, 3–9
of equations, 6
of functions of two variables, 673–674

graphing calculator, 52, 55
graphs:

amplitude of, 8, 9
approximating area under, 286–288
branches of, 190
of a function, 5
of a linear function, 13, 16
of a nonlinear function, 16
of one-to-one function, 35
of a quadratic function, 16
and scales, 14
of trigonometric functions, 28
polar, 636
scaling (dilation) of, 8–9
shape of, 234–237

sketching, 7, 248–254
translating (shifting of), 7–8
and viewing rectangle, 52

gravity:
and acceleration, 154, 161
inverse square law of, 392
and motion, 153
and work, 39

Greek, ancient, mathematicians and
philosophers, 485

Gregory, James, 408, 593
Gregory–Leibniz series, 537
grid lines:

in polar coordinates, 626
gudermannian, 426
Guldin’s Rule, see Pappus’s Theorem

half-life, 344
half-open interval, 2
Ham Sandwich Theorem, 110
harmonic series, 555, 561

alternating, 572–573
divergence of, 575

head (in the plane), 641
heat capacity, 327
heat equation, 698
height:

maximum, 154–155
and velocity, 154

Heron of Alexandria, 261
homogeneous differential equation, 534
Hooke, Robert, 392
Hooke’s Law, 392
horizontal asymptote, 54, 100–101
horizontal axis, revolving about a, 387–379,

404
horizontal cross sections:

and volume, 366
horizontal line, 14
Horizontal Line Test, 36
horizontal scaling, 8, 9
horizontal traces, 676–677
horizontal translation, 8
Huxley, Julian, 5
Huygens, Christiaan, 171, 498, 612
hyperbolas, 48

horizontal traces, 676
hyperbolic functions, 48–49, 420–425

derivatives of, 184–185, 422, 423
inverse, 185–186, 423

hyperbolic substitution, 421
hyperboloid, 383, 680

i and j components, 647
identities, 47

trigonometric, 29–31
implicit differentiation, 143, 188–192,

726–727
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Implicit Function Theorem, 727, 746
implicitly defined function, 22
improper integrals, 436–449, 442

absolutely convergent, 447
Comparison Test for, 442
convergence of, 438
of xp , 441

income stream, 347
increasing function, 6
increasing sequence, 543
indefinite integral, 276, 277

and Fundamental Theorem of Calculus
(FTC), 311

linearity of, 277
independent variables, 5, 723
indeterminate forms, 91, 243
index (of a sequence), 537
index (of an infinite series), 549
Indonesian tsunami (1996), 400
induction, principle of, A13
inequalities and intervals, 3
infinite discontinuity, 83, 441
infinite integrals, 444
infinite interval, 2, 440
infinite limit, 72–73
infinite radius of convergence, 588
infinite series, 537

convergence of, 549
linearity of, 551
summing of, 548–556

inflection points, 218, 235–238
initial condition, 504–505

and antiderivatives, 279–280
initial guess, 269, 271
initial value problem, 279

solution of, 279
inner product, see dot product
instantaneous rate of change, 63–64, 150
instantaneous velocity, 60, 61–62
integrable functions, 301
integral calculus, 59, 286
integral curves, 517
integral formulas, 422
Integral Test, 560, 561
integrals:

of an absolute value, 314
antiderivatives as, 318, 322
applications of, 357–388
arc length, 467–469, 621, 622
basic trigonometric, 278
and Change of Variables Formula, 329, 331
comparison of, 442
for computing net or total change, 322, 323
of a constant, 303
definite, 301–305, 309, 316–317, 331, 401
differentiating, 318
improper, 436–444
indefinite, 276–280, 301

infinite, 437, 438
reduction formulas for, 402–403
of velocity, 323–324
and volume, 365

integrands, 276, 301, 329
and improper integrals, 440
with infinite discontinuities, 440
and Integration by Parts formula, 400

integrating factor, 528
integration:

and area of an irregular region, 286
for computing volume, 365–366
constant of, 276
to calculate work, 391
and differentiation, 318
and finding an antiderivative, 286
limits of, 301, 347
numerical, 400–424
of power series, 584
reversing limits of, 304
term-by-term, 584
using partial fractions, 426
using substitution, 328–329
using trigonometric substitution, 413
vector-valued, 665

Integration by Parts formula, 400
integration formulas, 278

of inverse trigonometric functions, 336
intercept-intercept form of an equation, 19
interest rate, 345
interior point of a domain, 735
Intermediate Value Theorem (IVT), 106–108,

371, A12
intervals:

adjacent, 304
and test points, 230
closed, 2, 3, 216, 218, 259
critical points and endpoints of, 217
describing of via inequalities, 3
extreme values on, 215
half-open, 2
of increase and decrease, 230
infinite, 2
midpoint of, 3
open, 2, 3, 216, 259
radius of, 3
standard notation for, 2
test values within, 236

inverse functions, 33–38
continuity of, 85
defined, 34
derivative of, A24
existence of, 36

inverse hyperbolic functions, 49, 185–186,
422

inverse operations:
integration and differentiation, 318

inverse trigonometric functions, 38–40,
336–338

derivatives of, 179–180, 336–338
integration formulas for, 338

invertible function, 34–35
invertible function:

derivatives of, 178–179
involute, 625
irrational numbers, 1
irreducible quadratic factors, 430–431
isocline, 518
iteration:

Newton’s Method, 269–271

joule, 391
jump discontinuity, 82

Kepler, Johannes, 60, 263, 273
Kepler’s Laws, 274, 392
Kepler’s Second Law, 274
Kepler’s Third Law, 626
Kepler’s Wine Barrel Problem, 263
kinetic energy, 397
Kleiber’s Law, 158
Koch snowflake, 559
Koch, Helge von, 559
Korteweg-deVries equation, 702
Kummer’s acceleration method, 568

Lagrange, Joseph Louis, 130
Lagrange condition, 746
Lagrange equations, 746–747
Lagrange multipliers:

in three variables, 748–749
with multiple constraints, 749

laminar flow, 369
laminas, 481–484
Laplace, Pierre Simon, Marquis de, 423
Laplace operator (�), 702, 731
Laplace transform, 446
Lascaux cave paintings, 345
latitude, 717
Law of Cosines, 30, 654
Laws of Continuity, 83–85
Laws of Exponents, 43–44
laws of logarithms, 46
leading coefficient:

of a polynomial, 21
Least Distance, Principle of, 261
Least Time, Principle of, 261
Least Upper Bound (LUB) Property, 581
left-continuous function, 82
left-endpoint approximation, 290, 400
Leibniz, Gottfried Wilhelm von, 22, 122, 130,

145, 171, 221, 301, 329, 555, 594, 612
Leibniz notation, 130, 143, 150, 171

Chain Rule, 171
and definite integral, 301
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differentials, 329
for higher derivatives, 159
for higher-order partial derivatives, 696
for partial derivatives, 692
vector-valued derivatives, 662

Leibniz Test for alternating series, 570–571
lemniscate curve, 194–195, 633
length:

and dot product, 653
of a vector, 641

level curves, 674–680, 734
spacing of, 676–677

level surfaces
of a function of three variables, 680

L’Hôpital, Guillaume François Antoine,
Marquis de, 241

L’Hôpital’s Rule, 241–244
for limits, 244, 439, 539
proof of, 245

Libby, Willard, 344
light intensity, 350
limaçon, 629–630
limaçon of Pascal, 193
limit of approximations, 292–295
Limit Comparison Test, 564
Limit Laws, 70, 83, 686

for sequences, 541
Limit Laws, Basic, 77–79
Limit Laws of scalar functions, 661
limits, 59, 67–73, 685

calculating area as, 293
and continuity, 81–87
definition of, 68–69
discontinuous, 81
evaluating algebraically, 90–93
evaluating by substitution, 687
evaluation of with Substitution Method,

86–87
formal definition, 110–111
graphical and numerical investigation of,

69–71
indeterminate, 91
infinite, 72–73
at infinity, 251–252
and instantaneous velocity, 59
linearity rules for, 551
need for, 124
one-sided, 72, 440
of polygonal approximations, 620
of a sequence, 539–540
in several variables, 684–686
trigonometric, 95–98
of vector-valued functions, 660–663
verifying, 689

limits of integration, 301, 331
Linear Approximation, 207, 706–707

error in, 208, 211–212
and Taylor polynomials, 488

linear combination function, 22–23
linear combination of vectors, 645–646
linear differential equations, 503
linear equation, 16

first-order, 528–532
linear functions, 13

contour map of, 677–678
derivative of, 123
graph of, 16–17
traces of, 678

linear mass density, 367
linear motion, 153
linear regression, 16
linear relationship, 16
linearity:

of indefinite integral, 277
local, 55, 137, 212
of summations, 289

linearization, 210–212
error in, 210–211
of a function, 703–704

lines:
equation of a, 13–15
horizontal and vertical, 14
parallel, 14
perpendicular, 14
and slope of, 14
and traces of a linear function, 678

local extrema, 216–218, 731–732
local extreme values, 731
local linearity, 55, 212, 704
local linearity of differentiable functions, 212
local maximum, 216, 229, 731–733
local minimum, 216, 229, 731–735
locally linear functions, 137
logarithm functions, 22, 45
logarithmic differentiation, 183–184
logarithms, 45–46

with base b, 45
calculus of, 344
derivatives of, 182–184
laws of, 46
natural, 46, 183

logistic differential equation, 524–526
lower bound of a sequence, 543

Maclaurin, Colin, 491, 593
Maclaurin expansions, 593–594
Maclaurin polynomials, 489, 491–493
Maclaurin series, 592, 594–595, 597, 599
Madhava, 594
magnetic declination:

of United States, 701
magnitude:

of a vector, 641
Mandelbrot Set, 52
marginal cost, 152–153, 325
marginal cost of abatement, 327

marginal utility, 753
Mars Climate Orbiter, 154
mass:

center of, 480
computing of by mass density, 367–368

mass density
constant, 481
linear, 367–368
and total mass, 367–368

maximum height, 154
maximum (max) value, 215–220

of unit square, 736
maximum volume, 737
Maxwell, James Clerk, 711
mean value, see average value
Mean Value Theorem (MVT), 226–227, 231,

311, 371, 468, 555, 620
median:

of a triangle, 487
Mengoli, Pietro, 555
Mercator map projection, 408
Method of Partial Fractions, 426–433
microchips:

testing for reliability of, 694
midpoint approximations, 290, 299
Midpoint Rule, 456
midpoints, 456, 458

of intervals, 3
minimum (min) value, 215–220
mixed partial derivatives, 696
mixed partial derivatives:

equality of, 697
mixing problem, 531
modeling:

and differential equations, 505
moments, 480

additivity of, 481, 484
of the circle, 484
of a triangle, 484

monkey saddle, 837
monotonic functions, 291
monotonic sequences, bounded, 544
Moore, Gordon, 43, 351
Moore’s Law, 43, 351
motion:

and gravity, 153
linear, 152
Newton’s laws of, 60, 155
nonuniform circular, 761

motion, laws of, for falling objects, 155
Mount Whitney Range, 678
mountains:

and contour maps, 678–679
Multiples Rule, 277
multiplying by the conjugate, 92
multiplying Taylor series, 595
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n variables, 672
nabla, 711
natural logarithm, 46, 183, 338
negative slope, 14
net change, 310, 322–323
newton, 391, 439
Newton, Isaac, 60, 122, 171, 309, 348, 392,

516, 596
Newton’s Law of Cooling, 511–512, 519
Newton’s laws of motion, 60, 155
Newton’s Method, 269–271
Newton’s Second Law of Motion, 397
Newton’s Universal Law of Gravitation, 485
nondifferentiable function, 217
nonlinear function, 15
nonzero vector, 644, 647
norm (of a vector), see length; magnitude
norm (of partition), 301
normal, see perpendicular
normal force, 657
nth-order derivative, 160
numbers:

Bernoulli, 295
complex, 423
e, 45
imaginary complex, 423
irrational, 1
rational, 1
real, 1
sequences of, 537
whole, 1

numerical approximations, 269–271
numerical functions, 5
numerical integration, 454–460

obtuseness:
testing for, 656

odd functions, 6–7
Ohm’s Law, 148, 692
one-sided continuity, 82
one-sided limits, 72–73
one-to-one functions, 35–37

graph of, 38
one-unit change, 151–152
open disk, 685
open domains, 704
open intervals, 2, 218
optimization problems, 257–258, 262
optimization, 215

with Lagrange multipliers, 745–749
on an open interval, 216
in several variables, 731–739

order:
of a differential equation, 503

ordinate, see y-coordinate
Oresme, Nicole d’, 555
origin, 1, 3
orthogonal families of curves, 510

orthogonal unit vectors, 657
orthogonal vectors, 656
orthogonality relations, 413
orthogonality:

of vector-valued functions,
665

testing for, 655

p-series, 561
parabola, 17

graph of quadratic function, 14
vertical traces, 674

parabolic approximations:
and Simpson’s Rule, 460

parallel lines, 14
parallel vectors, 642
parallelogram, 646
Parallelogram Law, 644, 647, 649
parameters, 607

and parametric equations, 607
parametric (parametrized) curve, 607–608,

610–611, 614
area under, 619
second derivative of, 618

parametric equations, 607–614
parametric line, 609
parametrization, 607
parity:

of a function, 6–7, 47
partial derivatives, 672, 692–698

estimating with contour maps, 695
higher-order, 696–698

partial differential equation (PDE), 698
partial differentiation:

and Clairaut’s Theorem, 697
partial fraction decomposition, 427–429
partial sums, 548, 549

even, 571
odd, 571
of positive series, 560

particular solution (of a differential
equation), 279

partitions, 300
Pascal, Blaise, 183, 612
Pascal, limaçon of, 183
Pascal’s Triangle, A14–A15
path

Chain Rule for, 712–714
path of steepest ascent, 680
path of steepest descent, 680
percentage error, 211
periodic function, 27
perpendicular lines, 14
perpetual annuity, 439
piecewise-defined function, 82
p-integral, 438, 440
Planck’s Radiation Law, 447

plane curve:
arc length of, 620

planetary motion:
Kepler’s laws of, 60

point masses, 481
point of inflection, 235–236
point-point equation of a line, 16
points (or real numbers), 1
point-slope equation of line, 16
Poiseuille, Jean, 369
Poiseuille’s Law of Laminar Flow, 369
polar coordinates, 626–630, 634–637, 726

and area, 634–637
arc length in, 634–637
derivative in, 634

polar equations, 631
polygonal approximations, 467–470, 620
polynomials, 21

Bernstein, 614
Chebyshev, 56
coefficients of, 21
continuity of, 84
continuous, 686
degree of a, 21
graphs of, 249–252
Maclaurin, 489, 491, 493
quadratic, 249–250, 430
Taylor, 488–495

population density, 368, 374
population growth, 524
position:

and rates of change, 59
position vector, 642
positive series, 559–565
pound, 391
power consumption:

and velocity, 36, 37
power functions, 21, 686
Power Rule, 131–133, 311

for derivatives, 276
for fractional exponents, 177
for integrals, 276

power series, 579–588, 591
adapting, 583
and integration, 584
differentiating, 584
finding radius of convergence, 581
interval of convergence of, 580
representing functions by, 556
solutions of differential equations,

585–588
term-by-term differentiating, 584

power series expansion, 583, 591–592
power sums, 292, 294
power to a power rule, 44
present value (PV), 347–348

of income stream, 348
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pressure, 474
and depth, 474
atmospheric, 350
fluid, 474–477

primary derivatives, 724
prime meridian, 717
prime notation, 130
principal, 345
Principle of Equivalence, 155
Principle of Least Distance, 261
Principle of Least Time, 261
probability density function, 448
Product Formula:

for cross products, 663
Product Law, 77–79, 686
Product Rule, 143, 161, 662–663

and computing derivatives, 143–145
for gradients, 712

production level, 152
products, 44, 46, 328
projection, 656
proper rational function, 426
psi (ψ), 719
punctured disk, 685
pyramid:

volume of, 366
Pythagorean Theorem, 29

quadratic convergence to square roots, 274
quadratic factors, 430–433
quadratic forms, 738
quadratic formula, 17
quadratic functions, 17

finding minimum of, 18
graph of, 17

quadratic polynomials, 17–18, 249, 433
Quick Sort, 244
Quotient Law, 77, 686
Quotient Rule, 143, 145, 166

and computing derivatives, 143
quotients, 1, 21, 44, 46

continuity law for, 84–85
difference, 120
limits of, and L’Hôpital’s Rule, 244

radial coordinate, 626–628
radial density function, 368–369
radial functions, 731
radians, 25, 26
radius:

of intervals, 3
radius of convergence, 580–588

infinite, 588
Radon-222, 344
range (of a function), 4, 5, 34
rate of change (ROC), 14, 59, 63, 195–199,

511
average, 63–64, 678–679

and exponential growth and decay, 342
of a function, 150–155
instantaneous, 63, 150
and Leibniz notation, 150
and partial derivatives, 794

Ratio Test, 575–578, 581–588
rational functions, 21, 426

continuity of, 87
continuous, 686

rational numbers, 1
real numbers, 1

absolute value of, 2
completeness property of, 108, 216,

Appendix D
distance between, 2

real roots, 17
real-valued functions

of n variables, 672
real-world modeling by continuous

functions, 86
reciprocals, 46
rectangle, viewing, 52
rectangles:

and approximating area, 287–288
left-endpoint, 290–291

rectangular (or Cartesian) coordinates, 3,
607, 626–630

recursion relation, 586–587
recursive formulas, see reduction formulas,

402
recursive sequences, 538
recursively defined sequences, 537
reducible quadratic factors, 431
reduction formulas, 402–403

for integrals, 402–403
for sine and cosine, 406

reflection (of a function), 37
regions, see domains
regression, linear, 16
regular parametrization, 750
related rate problems, 195–199
remainder term, 494
removable discontinuity, 82
repeated linear factors, 429
repeating decimal expansion, 1
resonance curve, 224
resultant force, 647 see fluid force
reverse logistic equation, 528
Richter scale, 45
Riemann, Georg Friedrich, 301
Riemann hypothesis, 301
Riemann sum approximations, 300, 311
Riemann sums, 300–305, 348, 468, 470,

475–476, 620, 634
right-continuous function, 82–83
right cylinder:

volume of, 365

right-endpoint approximation, 288–290, 293,
385

right triangles, 26
Rolle’s Theorem, 220–221, 231

and Mean Value Theorem, 226
root (zero):

as a function, 5, 107, 269
Root Test, 577
roots:

double, 17
real, 17

saddle, 677
saddle point, 733, 734
scalar, 644

and dot product, 653
scalar functions:

Limit Laws of, 661
scalar multiplication, 644
scalar product, see dot product
scalar-valued derivatives, 664
scale, 14
scaling (dilation) of a graph, 8
seawater density, 672, 702

contour map of, 695
secant, 28

hyperbolic, 48
integral of, 408

secant line, 62, 120–121
and Mean Value Theorem, 226
slope of, 120

Second Derivative Test, 738
for critical points, 237, 733–735
proof of, 240

second derivatives, 159–162, 236–237
for a parametrized curve, 618
trapezoid, 455, 456

second-order differential equation, 423
seismic prospecting, 268
separable equations, 503
separation of variables, 503
sequences, 537

bounded, 542–545
bounded monotonic, 544
convergence of, 538–539, 543, 544
decreasing, 544
defined by a function, 539
difference from series, 550
divergence of, 538, 543
geometric, 540
increasing, 543
Limit Laws for, 541
limits of, 538–539, 540
recursive, 544
recursively defined, 537–538
Squeeze Theorem for, 541
term of, 537
unbounded, 543
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series:
absolutely convergent, 569–570
alternating, 570
alternating harmonic, 572–573
binomial, 597–598
conditionally convergent, 570
convergent, 549, 555
difference from a sequence, 550
divergent, 549, 553
geometric, 550, 551, 552, 553, 555,

583
Gregory–Leibniz, 537
harmonic, 555, 561, 572–573
infinite, 537, 548–555
Maclaurin, 592, 594, 595, 597–599
partial sums of, 548
positive, 559–565
power, 579–588, 591
p-series, 561
Taylor, 592–599
telescoping, 549–550

set (S), 3
of rational numbers, 1

set of intermediate points, 354
Shell Method, 384, 398
shift formulas, 30
Shifting and Scaling Rule, 172, 174
shifting:

of a graph, 8
sigma (�), 289
sign:

on interval, 286
sign change, 228–229, 232, 248
sign combinations, 248
signed areas, 436
Simpson, Thomas, 264
Simpson’s Rule, 458, 460, 520
sine function:

basic properties of, 31
derivative of, 165–166
Maclaurin expansion of, 594–595
period of, 27
unit circle definition of, 26

sine wave, 27
slope field, 516–522
slope-intercept form of an equation, 13
slope of a line, 14

and polar equation, 628
Snell’s Law, 261
solids:

cross sections of, 375
volume of, 365

solids of revolution, 375
volume of, 375–380, 385–387

Solidum, Renato, 45
sound:

speed of, 63
spanning with vectors, 646

Special Theory of Relativity, 49
speed, 60, 622

along parametrized path, 622
sphere:

and gradient, 717
and level surfaces, 680
parametrization of, 746
volume of, 365

spring constant, 392
square root expressions, 413
square roots:

quadratic convergence to, 274
Squeeze Theorem, 95–98

for sequences, 537–538
stable equilibrium, 524
standard basis vectors, 647, 649
steepness of the line, 13–14
stopping distance, 152
stream lines, see integral curves
strictly decreasing function, 6
strictly increasing function, 6
subintervals, 287
substitution:

and evaluating limits, 686–687
with hyperbolic functions, 420
and Maclaurin series, 592
and partial fractions, 426
trigonometic, 413–418
using differentials, 329–332

Substitution Method, 87–88, 329
Sum Law, 77–80, 114, 686

proof of, 114
Sum Law for Limits, 165
Sum Rule, 132–133, 277, 662
summation notation, 289–292
sums, partial, 548, 549, 560, 570–571
surface area, 623
surface of revolution, 469
symmetry, 483

and parametrization, 607
Symmetry Principle, 483, 487

tail (in the plane), 641
Tait, P. G., 711
tangent, 28

hyperbolic, 49, 50
tangent function:

derivative of, 166
integral of, 416–417

tangent line approximation (Linear
Approximation), 208

tangent lines, 59–60, 121, 734, 703
for a curve in parametric form, 612–613
defined, 121
limit of secant lines, 62, 120
and polar equation, 133

slopes of, 62, 63, 120, 613, 700, 717
vertical, 117

tangent plane, 704
and differentiability, 706
finding an equation of, 718
at a local extremum, 731

Tangent Rule, see Midpoint Rule, 455
tangent vectors, 665

derivatives, 663–665
horizontal, on the cycloid, 664–665
plotting of, 664

Tartaglia, Niccolo, 263, 273
Taylor, Brook, 488
Taylor expansions, 593, 594
Taylor polynomials, 488–499, 592, 593, 595
Taylor series, 591–603

integration of, 595
multiplying, 595
shortcuts to finding, 594–596
see also Maclaurin series

Taylor’s Theorem: Version I, 494
Taylor’s Theorem: Version II, 495
temperature:

directional derivative of, 717
term-by-term differentiation and integration,

584
terms (of the sequence), 537
test point, 229, 230
test values:

within intervals, 236
tests for convergence and divergence of

series:
Comparison Test, 562
Dichotomy Theorem for Positive Series,

560
Divergence Test, 553–554
Integral Test, 560
Leibniz Test for alternating series, 570–571
Limit Comparison Test, 564
p-series, 561–562
Ratio Test, 575–576
Root Test, 577

theorems:
analyzing, A6
uniqueness, 504

thermal expansion, 209
thin shell, 384
third derivative, 160
time interval:

and average velocity, 60–61, 62
time step, 519, 520–521
Torricelli’s Law, 506
torus, 383
total cost, 325
total force, see fluid force
total mass, 367–368
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trace curves:
and tangent lines, 703

traces, 674–676
tractrix, 383, 509, 619, 623
transcendental function, 22
transformations, see maps
transient current, 534
transition points:

of graphs, 248
translation (shifting) of a graph, 8
translation of a vector, 642
Trapezoidal Approximation, 323
Trapezoidal Rule, 454
trapezoidal sums, 455
trapezoids:

area of, 455
area under the graph approximations, 454

Triangle Inequality, 2, 648, 649
triangles:

and fluid force, 476
median of, 487
moment of, 484

trident curve, 193
trigonometric derivatives:

in degrees, 173
trigonometric functions, 22, 25–30

derivatives of, 166, 185, 422
integrals of, 278
inverse, 336–337

trigonometric identities: 29–30
trigonometric integrals, 278, 405–410

table of, 405–409, 410
trigonometric limits, 95–98
trigonometric substitution, 413–417
two-dimensional vector, 641

unbounded sequences, 543
undetermined coefficients:

and partial fractions, 430
uniform density, see constant mass density
uniqueness theorem, 504
unit circle, 25, 26, 28, 48, 612
unit vectors, 657, 715
universal laws of motion and gravitation, 60
unknown quantity:

estimating of, 119
unstable equilibrium, 324
upper bound of a sequence, 543
utility, 753

Valladas, Helene, 351
value:

of a function, 4, 5

variables:
Change of Variables Formula, 343
dummy, 284, 301
functions of two or more, 672–681
graphing functions of, 673–681
independent and dependent, 5, 734
and limits, 692–694
separation of, 514

vector addition, 643–645
vector algebra, 643–645
vector operations:

using components, 645–651
vector parametrization, 654

of the cycloid, 664
vector product, see cross product
vector quantity, 647
vector subtraction, 643
vector sum, 643
vectors:

components of, 661
direction, 661
equivalent, 643
force, 641
gradient, 672
length of, 656
Lenz, 678–682
linear combination of, 645–646
nonzero, 647, 649
normal, 728
orthogonal unit, 657
position, 642, 649, 651
radial, 676
translation of, 642
two-dimensional, 641
unit, 726
unit tangent, 685
velocity, 664, 667

vector-valued functions, 660–667
calculus of, 666
differential equations of, 677
fundamental theory of calculus for, 666
limits of, 661
orthogonality of, 665

vector-valued integration, 665–666
velocity, 58–59, 631

and acceleration, 160
angular, 634
average, 60–62
Einstein’s Law of Velocity Addition, 51
escape, 397, 439
and flow rate, 368–369
graphical interpretation of, 62
instantaneous, 60–62

integral of, 346–347
and rates of change, 59
and speed, 60, 153

velocity vector, 664, 667, 724
Verhuls, Pierre-François, 524
vertical asymptote, 247–248
vertical axis:

revolving about a, 396
rotating around a, 401

vertical cross sections:
and volume, 380

vertical line, 14
Vertical Line Test, 6
vertical scaling, 8–9
vertical tangents, 137
vertical traces, 674
vertical translation, 7–8
Viète’s formula, 21
viewing rectangle, 51
volume:

computing of by integration, 375–376
of a cylindrical shell, 384
as integral of cross-sectional area,

379
of a pyramid, 366–367
of a solid of revolution, 390–394
of a sphere, 377

washers (disks), 386–387
weighted average:

and Simpson’s Rule, 458
whole numbers, 1
witch of Agnesi, 149
work:

definition of, 391–392
and energy, 393–394
and gravity, 393, 967
using integration to calculate, 392

Work-Kinetic Energy Theorem, 439
Wright, Edward, 408

x-axis, 3
rotating about, 375
symmetry about, 629–630

x-coordinate, 3
x-moments, 484

y-axis, 3
integration along, 377–378

y-coordinate, 3
y-moments, 484

zeros of functions, 5, 103–104, 276
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