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New in the

Preface

The second edition of Calculus supports a three-semester or four-quarter calculus sequence
typically taken by students studying mathematics, engineering, the natural sciences, or
economics. The second edition has the same goals as the first edition:

* to motivate the essential ideas of calculus with a lively narrative, demonstrating the util-
ity of calculus with applications in diverse fields;

* to introduce new topics through concrete examples, applications, and analogies, appeal-
ing to students’ intuition and geometric instincts to make calculus natural and believ-
able; and

* once this intuitive foundation is established, to present generalizations and abstractions
and to treat theoretical matters in a rigorous way.

The second edition both builds on the success and addresses the inevitable deficien-
cies of the first edition. We have listened to and learned from the instructors who used the
first edition. They have given us wise guidance about how to make the second edition an
even more effective learning tool for students and a more powerful resource for instruc-
tors. Users of the book continue to tell us that it mirrors the course they teach—and more
importantly, that students actually read it! Of course, the second edition also benefits from
our own experiences using the book, as well as our experiences teaching mathematics at
diverse institutions over the past 30 years.

We are grateful to users of the first edition—for their courage in adopting a first edi-
tion book, for their enthusiastic response to the book, and for their invaluable advice and
feedback. They deserve much of the credit for the improvements that we have made in the
second edition.

Second Edition

Narrative

The second edition of this book has undergone a thorough cover-to-cover polishing of the
narrative, making the presentation of material even more concise and lucid. Occasionally,
we discovered new ways to present material to make the exposition clearer for students
and more efficient for instructors.

Figures

The figures—already dynamic and informative in the first edition—were thoroughly re-
viewed and revised when necessary. The figures enrich the overall spirit of the book and
tell as much of the calculus story as the words do. The path-breaking interactive figures
in the companion eBook have been refined, and they still represent a revolutionary way
to communicate mathematics. See page xiv, eBook with Interactive Figures, for more
information.

17
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Exercises

The comprehensive 7656 exercises in the first edition were thoroughly reviewed and
refined. Then 19% more basic skills and mid-level exercises were added. The exercises at
the end of each section are still efficiently organized in the following categories.

* Review Questions begin each exercise set and check students’ conceptual understanding
of the essential ideas from the section.

e Basic Skills exercises are confidence-building problems that provide a solid foundation
for the more challenging exercises to follow. Each example in the narrative is linked di-
rectly to a block of Basic Skills exercises via Related Exercises references at the end of
the example solution.

e Further Explorations exercises expand on the Basic Skills exercises by challenging stu-
dents to think creatively and to generalize newly acquired skills.

* Applications exercises connect skills developed in previous exercises to applications and
modeling problems that demonstrate the power and utility of calculus.

e Additional Exercises are generally the most difficult and challenging problems; they in-
clude proofs of results cited in the narrative.

Each chapter concludes with a comprehensive set of Review Exercises.

Answers

The answers in the back of the book have been reviewed and thoroughly checked for accuracy.
The reliability that we achieved in the first edition has been maintained—if not improved.

New Topics

We have added new material on Newton’s method, surface area of solids of revolution,
hyperbolic functions, and TNB frames. Based on our own teaching experience, we also
added a brief new introductory section to the chapter on Techniques of Integration. We felt
it makes sense to introduce students to some general integration strategies before diving into
the standard techniques of integration by parts, partial fractions, and various substitutions.

MyMathLab

We (together with the team at Pearson) have made many improvements to the MyMathLab
course for the second edition. Hundreds of new algorithmic exercises that correspond to
those in the text were added to the course. Cumulative review exercises have been added,
providing an opportunity for students to get “mixed practice” with important skills such as
finding derivatives. New step-by-step exercises for key skills provide support for students
in their first attempts at new and important problems. Real-world exercises now require
that students provide units with their answer. We’ve added more exercises that call for
student manipulation and analysis of the Interactive Figures. We have greatly increased
the number of instructional videos. The graphing functionality in MyMathLab has become
more sophisticated and the answer-checking algorithms are more refined.

Differential Equations

This book has a single robust section devoted to an overview of differential equations.
However, for schools that require more expansive coverage of differential equations, we
provide complete online chapters on both first- and second-order differential equations,
available in MyMathLab as well as through the Pearson Math and Stats Resource page at
www.pearsonhighered.com/mathstatsresources.

Pedagogical Features

Figures

Given the power of graphics software and the ease with which many students assimilate
visual images, we devoted considerable time and deliberation to the figures in this book.
Whenever possible, we let the figures communicate essential ideas using annotations
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reminiscent of an instructor’s voice at the board. Readers will quickly find that the figures
facilitate learning in new ways.

Quick Check and Margin Notes

The narrative is interspersed with Quick Check questions that encourage students to read
with pencil in hand. These questions resemble the kinds of questions instructors pose in
class. Answers to the Quick Check questions are found at the end of the section in which
they occur. Margin Notes offer reminders, provide insight, and clarify technical points.

Guided Projects

The Instructor’s Resource Guide and Test Bank contains 78 Guided Projects. These proj-
ects allow students to work in a directed, step-by-step fashion, with various objectives: to
carry out extended calculations, to derive physical models, to explore related theoretical
topics, or to investigate new applications of calculus. The Guided Projects vividly dem-
onstrate the breadth of calculus and provide a wealth of mathematical excursions that go
beyond the typical classroom experience. A list of suggested Guided Projects is included
at the end of each chapter. Students may access the Guided Projects within MyMathLab.

Technology

We believe that a calculus text should help students strengthen their analytical skills and
demonstrate how technology can extend (not replace) those skills. Calculators and graph-
ing utilities are additional tools in the kit, and students must learn when and when not to
use them. Our goal is to accommodate the different policies about technology that various
instructors may use.

Throughout the book, exercises marked with £l indicate that the use of technology— rang-
ing from plotting a function with a graphing calculator to carrying out a calculation using a com-
puter algebra system—may be needed. See page xvi for information regarding our technology
resource manuals covering Maple, Mathematica and Texas Instruments graphing calculators.

eBook with Interactive Figures

The textbook is supported by a groundbreaking and award-winning electronic book, created
by Eric Schulz of Walla Walla Community College. This “live book™ contains the complete
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text of the print book plus interactive versions of approximately 700 figures. Instructors can
use these interactive figures in the classroom to illustrate the important ideas of calculus, and
students can explore them while they are reading the textbook. Our experience confirms that
the interactive figures help build students’ geometric intuition of calculus. The authors have
written Interactive Figure Exercises that can be assigned via MyMathLab so that students
can engage with the figures outside of class in a directed way. Additionally, the authors have
created short videos, accessed through the eBook, that tell the story of key Interactive Fig-
ures. Available only within MyMathLab, the eBook provides instructors with powerful new
teaching tools that expand and enrich the learning experience for students.

Content Highlights

In writing this text, we identified content in the calculus curriculum that consistently pres-
ents challenges to our students. We made organizational changes to the standard presenta-
tion of these topics or slowed the pace of the narrative to facilitate students’ comprehension
of material that is traditionally difficult. Two noteworthy modifications to the traditional
table of contents for this course appear in the material for Calculus IT and Calculus III.

Often appearing near the end of the term, the topics of sequences and series are the
most challenging in Calculus II. By splitting this material into two chapters, we have given
these topics a more deliberate pace and made them more accessible without adding sig-
nificantly to the length of the narrative.

There is a clear and logical path through multivariate calculus, which is not apparent
in many textbooks. We have carefully separated functions of several variables from vector-
valued functions, so that these ideas are distinct in the minds of students. The book culminates
when these two threads are joined in the last chapter, which is devoted to vector calculus.

Additional Resources

Instructor’s Resource Guide and Test Bank

ISBN 0-321-95487-4 1 978-0-321-95487-9
Bernard Gillett, University of Colorado at Boulder

This guide represents significant contributions by the textbook authors and contains a vari-
ety of classroom support materials for instructors.

* Seventy-eight Guided Projects, correlated to specific chapters of the text, can be as-
signed to students for individual or group work. The Guided Projects vividly demon-
strate the breadth of calculus and provide a wealth of mathematical excursions that go
beyond the typical classroom experience.

e Lecture Support Notes give an Overview of the material to be taught in each section of
the text, and helpful classroom Teaching Tips. Connections among various sections of
the text are also pointed out, and Additional Activities are provided.

* Quick Quizzes for each section in the text consist of multiple-choice questions that can
be used as in-class quiz material or as Active Learning Questions. These Quick Quizzes
can also be found at the end of each section in the interactive eBook.

* Chapter Reviews provide a list of key concepts from each chapter, followed by a set of
chapter review questions.

* Chapter Test Banks consist of between 25 and 30 questions that can be used for in-class
exams, take-home exams, or additional review material.

* Learning Objectives Lists and an Index of Applications are tools to help instructors gear
the text to their course goals and students’ interests.

* Student Study Cards, consisting of key concepts for both single-variable and multivari-
able calculus, are included for instructors to photocopy and distribute to their students as
convenient study tools.

» Answers are provided for all exercises in the manual, including the Guided Projects.
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Instructor’s Solutions Manuals

Mark Woodard, Furman University
Single Variable Calculus (Chapters 1-11) ISBN 0-321-95485-8 1 978-0-321-95485-5
Multivariable Calculus (Chapters 9-15) ISBN 0-321-95430-0 | 978-0-321-95430-5

The Instructor’s Solutions Manual contains complete solutions to all the exercises in the text.

Student’s Solutions Manuals

Mark Woodard, Furman University
Single Variable Calculus (Chapters 1-11) ISBN 0-321-95495-5 1 978-0-321-95495-4
Multivariable Calculus (Chapters 9-15) ISBN 0-321-95431-9 1 978-0-321-95431-2

The Student’s Solutions Manual is designed for the student and contains complete solu-
tions to all the odd-numbered exercises in the text.

Just-in-Time Algebra and Trigonometry for Calculus, Fourth Edition

ISBN 0-321-67104-X |1 978-0-321-67104-2
Guntram Mueller and Ronald I. Brent, University of Massachusetts—Lowell

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time
Algebra and Trigonometry for Calculus is designed to bolster these skills while stu-
dents study calculus. As students make their way through calculus, this text is with them
every step of the way, showing them the necessary algebra or trigonometry topics and
pointing out potential problem spots. The easy-to-use table of contents has algebra and
trigonometry topics arranged in the order in which students will need them as they study
calculus.

Technology Resource Manuals

Maple Manual by Marie Vanisko, Carroll College
Mathematica Manual by Marie Vanisko, Carroll College
TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University

These manuals cover Maple™ 17, Mathematica® 8, and the TI-83 Plus/TI1-84 Plus and
TI-89, respectively. Each manual provides detailed guidance for integrating a specific
software package or graphing calculator throughout the course, including syntax and
commands. These manuals are available to instructors and students through the Pearson
Math and Stats Resources page, www.pearsonhighered.com/mathstatsresources, and
MyMathLab®.

MyMathLab® Online Course (access code required)

MyMathLab from Pearson is the world’s leading online resource in mathematics, inte-
grating interactive homework, assessment, and media in a flexible, easy-to-use format.
MyMathLab delivers proven results in helping individual students succeed. It provides
engaging experiences that personalize, stimulate, and measure learning for each student.
And it comes from an experienced partner with educational expertise and an eye on the
future.

MyMathLab for Calculus contains the groundbreaking eBook featuring over 700
Interactive Figures that can be manipulated to illuminate difficult-to-convey concepts.
Instructors can use these interactive figures in the classroom to illustrate the important
ideas of calculus, and students can manipulate the interactive figures while they are using
MyMathLab. In each case, these interactive figures help build geometric intuition of
calculus. Exercises for the Interactive Figures can be assigned as homework to encourage
students to explore the concepts presented.

The MyMathLab course for this text contains over 7500 assignable algorithmic
exercises. To learn more about how MyMathLab combines proven learning applica-
tions with powerful assessment, visit www.mymathlab.com or contact your Pearson
representative.


www.pearsonhighered.com/mathstatsresources

Preface Xvii

MathXL® Online Course (access code required)

MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab is

MathXL plus a learning management system.)

With MathXL, instructors can:

* Create, edit, and assign online homework and tests using algorithmically generated
exercises correlated at the objective level to the textbook.

* Create and assign their own online exercises.

* Maintain records of all student work tracked in MathXL’s online gradebook.
With MathXL, students can:

* Work through the Getting Ready for Calculus chapter, which includes hundreds of ex-
ercises that address prerequisite skills in algebra and trigonometry, and receive remedia-
tion for those skills with which they need help.

* Take chapter tests in MathXL and receive personalized study plans and/or personalized
homework assignments based on their test results.

* Use the study plan and/or the homework to link directly to tutorial exercises for the ob-
jectives they need to study.

* Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website at
www.mathxl.com or contact your Pearson representative.

TestGen®

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and
administer tests using a computerized bank of questions developed to cover all the objec-
tives of the text. TestGen is algorithmically based, allowing instructors to create multiple but
equivalent versions of the same question or test with the click of a button. Instructors can also
modify test bank questions or add new questions. The software and testbank are available for
download from Pearson Education’s online catalog, www.pearsonhighered.com/irc.

Video Resources

The Video Lectures With Optional Captioning feature an engaging team of mathematics in-
structors who present comprehensive coverage of topics in the text. The lecturers’ presenta-
tions include illustrative examples and exercises and support an approach that emphasizes
visualization and problem solving. Available only through MyMathLab and MathXL.

PowerPoint® Lecture Slides

These PowerPoint slides contain key concepts, definitions, figures, and tables from the
textbook. These files are available to qualified instructors through the Pearson Instructor
Resource Center, www.pearsonhighered.com/irc, and MyMathLab.
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Functions

Chapter PrEVIEW Mathematics is a language with an alphabet, a vocabulary, and
many rules. Before beginning your calculus journey, you should be familiar with the ele-
ments of this language. Among these elements are algebra skills; the notation and termi-
nology for various sets of real numbers; and the descriptions of lines, circles, and other
basic sets in the coordinate plane. A review of this material is found in Appendix A. This
chapter begins with the fundamental concept of a function and then presents some of the
functions needed for calculus: polynomials, rational functions, algebraic functions, and
the trigonometric functions. (Logarithmic, exponential, and inverse functions are intro-
duced in Chapter 7.) Before you begin studying calculus, it is important that you master
the ideas in this chapter.

1.1 Review of Functions

Everywhere around us we see relationships among quantities, or variables. For example,
the consumer price index changes in time and the temperature of the ocean varies with
latitude. These relationships can often be expressed by mathematical objects called func-
tions. Calculus is the study of functions, and because we use functions to describe the
world around us, calculus is a universal language for human inquiry.

DEFINITION Function

A function f is a rule that assigns to each value x in a set D a unique value denoted
f(x). The set D is the domain of the function. The range is the set of all values of
f(x) produced as x varies over the entire domain (Figure 1.1).

29 \'
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Domain Range
Figure 1.1

1.1 Review of Functions
1.2 Representing Functions

1.3 Trigonometric Functions



CHAPTER 1 ¢ FUNCTIONS

» If the domain is not specified, we take it The independent variable is the variable associated with the domain; the dependent
to be the set of all values of x for which variable belongs to the range. The graph of a function f is the set of all points (x, y)
[ is defined. We will see shortly that the in the xy-plane that satisfies the equation y = f(x). The argument of a function is the

domain and range of a function may be expression on which the function works. For example, x is the argument when we write
f(x). Similarly, 2 is the argument in f(2) and x> + 4 is the argument in f(x* + 4).

restricted by the context of the problem.

QUICK CHECK 1 If f(x) = x? — 2x, find f(—1), f(x?), f(¢), and f(p — 1). <

The requirement that a function assigns a unique value of the dependent variable to
each value in the domain is expressed in the vertical line test (Figure 1.2a). For example, the
outside temperature as it varies over the course of a day is a function of time (Figure 1.2b).

Two y values for one value Two times for one temperature
of x fails test—not a function —a function
y
g
2
<
o}
a.
£
(5]
H
0 X 0 Time
(@) (b)
Figure 1.2
Vertical Line Test

A graph represents a function if and only if it passes the vertical line test: Every
vertical line intersects the graph at most once. A graph that fails this test does not
represent a function.

» A set of points or a graph that does not

correspond to a function represents
a relation between the variables. All

EXAMPLE 1 Identifying functions State whether each graph in Figure 1.3 represents

functions are relations, but not all .
a function.

relations are functions.

O
\/x x

(a) (b) (© (d)
Figure 1.3
SOLUTION The vertical line test indicates that only graphs (a) and (c) represent func-
tions. In graphs (b) and (d), there are vertical lines that intersect the graph more than
once. Equivalently, there are values of x that correspond to more than one value of y.
Therefore, graphs (b) and (d) do not pass the vertical line test and do not represent
functions. Related Exercises 11-12 <

EXAMPLE 2 Domain and range Graph each function with a graphing utility using the
» A window of [a, b] X [c,d] means given window. Then state the domain and range of the function.

@=x=hmde=y=d a.y=f(x)=x>+1; [-3,3] X[-1,5]
b.z =g(t) = V4 -1 [-3,3] X [—1,3]

1
u—1

c. w=h(u) = [=3,5] X [~4,4]



Figure 1.4

Figure 1.5

Domain

Figure 1.6

» The dashed vertical line u = 1 in
Figure 1.6 indicates that the graph
of w = h(u) approaches a vertical
asymptote as u approaches 1 and that w
becomes large in magnitude for u near 1.

1.1 Review of Functions 3

SOLUTION

a. Figure 1.4 shows the graph of f(x) = x* + 1. Because f is defined for all values of x,
its domain is the set of all real numbers, written (—o°, ) or R. Because x% = 0 for
all x, it follows that x> + 1 = 1 and the range of f is [1, ).

b. When n is even, functions involving nth roots are defined provided the quantity un-
der the root is nonnegative (additional restrictions may also apply). In this case, the
function g is defined provided 4 — 2= 0, whichmeans 2 < 4, 0or —2 < t = 2.
Therefore, the domain of g is [ =2, 2]. By the definition of the square root, the range
consists only of nonnegative numbers. When r = 0, z reaches its maximum value of
2(0) = V4 = 2, and when ¢ = £ 2, 7 attains its minimum value of g( +2) = 0.
Therefore, the range of g is [0, 2] (Figure 1.5).

c. The function 4 is undefined at u = 1, so its domain is {u: u # 1}, and the graph
does not have a point corresponding to u = 1. We see that w takes on all values ex-
cept 0; therefore, the range is {w: w # 0}. A graphing utility does not represent this
function accurately if it shows the vertical line # = 1 as part of the graph (Figure 1.6).

Related Exercises 13-20 <

EXAMPLE 3 Domain and range in context At time r = 0, a stone is thrown verti-
cally upward from the ground at a speed of 30 m/s. Its height above the ground in meters
(neglecting air resistance) is approximated by the function & = f(¢) = 30r — 5%, where
t is measured in seconds. Find the domain and range of f in the context of this particular
problem.

SOLUTION Although f is defined for all values of #, the only relevant times are
between the time the stone is thrown (# = 0) and the time it strikes the ground, when
h = f(t) = 0. Solving the equation & = 30t — 5> = 0, we find that

30r — 512 =0
506 —1) =0 Factor.
5t=0 or 6 —1t=0 Seteach factor equal to 0.
t=0 or tr=6. Solve.

Therefore, the stone leaves the ground at + = 0 and returns to the ground at ¢t = 6. An
appropriate domain that fits the context of this problem is {#:0 = 7 =< 6}. The range
consists of all values of 4 = 30f — 5¢% as ¢ varies over [0, 6]. The largest value of / oc-
curs when the stone reaches its highest point at + = 3 (halfway through its flight), which
is h = f(3) = 45. Therefore, the range is [0, 45]. These observations are confirmed by
the graph of the height function (Figure 1.7). Note that this graph is not the trajectory of
the stone; the stone moves vertically.

h h =30t — 52
Downward
) o g740 l path of
8 g 30+ the stone
—C= =
Upward HE 20T
path of 2 5
the stone & 10T
€L y L
0 1 2 3 4 5 6 !
Figure 1.7 Time (seconds)

Related Exercises 21-24 <
QUICK CHECK 2 State the domain and range of f(x) = (x* + 1)7". <

Composite Functions

Functions may be combined using sums ( f + g), differences ( f — g), products ( fg), or
quotients ( f/g). The process called composition also produces new functions.
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» In the composition y = f(g(x)), f is the
outer function and g is the inner function.

» You have now seen three different
notations for intervals on the real number
line, all of which will be used throughout
the book:

* [—2, 3) is an example of interval
notation,

e —2 = x < 3is inequality notation,
and

e {x: =2 = x < 3} is set notation.

» Examples 4c and 4d demonstrate that, in
general,

f(g(x)) # &(f(x))-

» Techniques for solving inequalities are
discussed in Appendix A.

DEFINITION Composite Functions

Given two functions f and g, the composite function fo g is defined by

(fog)(x) = f(g(x)). Itis evaluated in two steps: y = f(u), where u = g(x).
The domain of fo g consists of all x in the domain of g such that u = g(x) is in the
domain of f (Figure 1.8).

—‘ | jjjjj |

— | Function Function

X 0 —_—u = g(x 29 —_—y = f(u) = X
~+1+ g [ g(x) ~+1 f |: y = flu) = f(g(x)
g ') = L

»

(a)

Domain of g Range of ¢ Domain of f ¢ Range of fog

{
N\
N
g(x,) is outside domain g(x,) is in domain
of f; s0 x, is not in of f; 0 x, is in
domain of fog. domain of fog.
(b)
Figure 1.8

EXAMPLE 4 Composite functions and notation Let f(x) = 3x> — x and
g(x) = 1/x. Simplify the following expressions.

a. f(5p + 1) b.g(1/x) e f(g(x))  d. g(f(x))
SOLUTION In each case, the functions work on their arguments.
a. The argument of fis 5p + 1, so
f5p + 1) =3(5p + 1)> = (5p + 1) = 75p> + 25p + 2.

b. Because g requires taking the reciprocal of the argument, we take the reciprocal of 1/x
and find that g(1/x) = 1/(1/x) = x.
c. The argument of f is g(x), so

o= () o2 - ()31 -2

Related Exercises 25-36 <

EXAMPLE5 Working with composite functions Identify possible choices for the
inner and outer functions in the following composite functions. Give the domain of the
composite function.

a. h(x) = V9x — x? b. h(x) = -z

SOLUTION

a. An obvious outer function is f(x) = V/x, which works on the inner function
g(x) = 9x — x?. Therefore, / can be expressed as h = fo g or h(x) = f(g(x)). The
domain of fo g consists of all values of x such that 9x — x> = 0. Solving this inequal-
ity gives {x: 0 = x = 9} as the domain of f°g.



Figure 1.9
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b. A good choice for an outer function is f(x) = 2/x* = 2x~>, which works on
the inner function g(x) = x2 — 1. Therefore, i can be expressed as h = fo g
or h(x) = f(g(x)). The domain of f° g consists of all values of g(x) such that
g(x) # 0, whichis {x:x # £ 1}.
Related Exercises 3740 <

EXAMPLE 6 More composite functions Given f(x) = Vxand g(x) = x> — x — 6,
find (a) g o f and (b) g ° g, and their domains.

SOLUTION
a. We have
(gof)(x) = g(f(x)) = g(Vax) = (\f)2 Vx=6=xP-x -0
‘/'(7\‘) f(x)
Because the domains of f and g are (—, %), the domain of fo g is also (—, ).

b. In this case, we have the composition of two polynomials:
(g°8)(x) = g(s(x))
= g(x> —x — 6)
=(x*—x—-6P—(x*—x—6)—6

g(x) g(x)
= x* — 23 — 12x% + 13x + 36.

The domain of the composition of two polynomials is (=, ).
Related Exercises 41-54 <

QUICK CHECK 3 If f(x) = x* 4+ 1 and g(x) = x?, find fo g and g o f. <

EXAMPLE 7 Using graphs to evaluate composite functions Use the graphs of f and
g in Figure 1.9 to find the following values.

a. f(g(3))  b.g(f(3)) e f(f(4))  d. f(g(f(8)))
SOLUTION

a. The graphs indicate that g(3) = 4 and f(4) = 8,0 f(g(3)) = f(4) = 8.
b. We see that g( f(3)) = g(5) = 1. Observe that f(g(3)) # g(f(3))-
c. In this case, f( f(4)) = f(8) = 6.

——

8

d. Starting on the inside,

Related Exercises 55-56 <

EXAMPLE 8 Using a table to evaluate composite functions Use the function values
in the table to evaluate the following composite functions.

a. (feg)(0)  b. g(f(—=1)) e f(gg(—1)))
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SOLUTION

a. Using the table, we see that g(0) = —2and f(—2) = 0. Therefore, (f° g)(0) = 0.
b. Because f(—1) = 1 and g(1) = —3, it follows that g(f(—1)) = —3.

c¢. Starting with the inner function,

Related Exercises 55-56 <

FLC I () i H e y = f(x)

Secant Lines and the Difference Quotient
Jx+m =f®  As you will see shortly, slopes of lines and curves play a fundamental role in
calculus. Figure 1.10 shows two points P(x,f(x)) and Q(x + h,f(x + k)) on
fQT-=-- the graph of y = f(x) in the case that 7 > 0. A line through any two points on a
curve is called a secant line; its importance in the study of calculus is explained in
Chapters 2 and 3. For now, we focus on the slope of the secant line through P and Q,

| |
| |
i Forh=0 i which is denoted mg.. and is given by
5 l l changeiny _ f(x + h) — f(x) _ f(x + h) — f(x)
X = = = :
/ N e Mhee change in x (x +h) —x h
_ St h)—fx)
h fl +h) — f(x) . . . .
' The slope formula o is also known as a difference quotient, and it can
Figure 1.10 be expressed in several ways depending on how the coordinates of P and Q are
y labeled. For example, given the coordinates P(a,f(a)) and Q(x, f(x)) (Figure 1.11),
the difference quotient is
0 f(x) — fla)
T Y= £ Mee = :

X —da
f) —f@  We interpret the slope of the secant line in this form as the average rate of change of f
over the interval [a, x].

fl@t----
¢ EXAMPLE9 Working with difference quotients

flx + k) — f(x)

a. Simplify the difference quotient ,for f(x) = 3x? — x.

|
|
|
|
|
i
= N . f(x) — fla _ 3
x ¥ b. Simplify the difference quotient I — for f(x) = x°.

h
m = JW—f@
sec Y—a SOLUTION
Figure 1.1 a. First note that f(x + h) = 3(x + h)?> — (x + h). We substitute this expression into
the difference quotient and simplify:
» Treat f(x + h) like the composition flx + h) f(x)
f(g(x)), where x + h plays the role of ’ —_——
g(x). It may help to establish a pattern in f(x + ]’l) - f(x) . 3()6 + h)2 - ()C + /’l) - (3)62 - x)
your mind before evaluating f(x + h). h - h

For instance, using the function in 3<x2 ok + hz) _ (x " h) _ (3x2 _ x)

Example 9a, we have = Expand (x + h)?

h
f(x) =327 = x
() = 3"~ x 32+ 6xh + 30 —x — h— 32 + x o

f(12) =3-122 - 12; = Y Distribute.

BN
fb) =367 = b 6xh + 3h> — h o
f(math) = 3-math’> — math; = T Simplify.
therefore, h(6x + 3h — 1)
=—=06x+3h — 1. Factor and simplify.

fx+h) =3(x+ h)?— (x + h). h



» Some useful factoring formulas:

1.

0.15

0.10 T

0.05 1

Difference of perfect squares:

=yr= (=) +y).
Sum of perfect squares: x> + y?
does not factor over the real
numbers.

Difference of perfect cubes:
B3 -y =

Sum of perfect cubes:

By =+ y) = xy + ).

1
My = — %W/m2 per meter

Figure 1.12

(x = )+ xy +y7).

f(x) = fla)  x*—a’

X —a

X —a

(x —

1.1 Review of Functions 7

a)(x* + ax + %)

X —a

ax + a*.

. The factoring formula for the difference of perfect cubes is needed:

Factoring formula

Simplify.

Related Exercises 57-66 <

EXAMPLE 10 Interpreting the slope of the secant line Sound intensity /, measured
in watts per square meter (W /m?), at a point r meters from a sound source with acoustic

power P is given by I(r)

Aqr?

a. Find the sound intensity at two points r; = 10 m and , = 15 m from a sound source
with power P = 100 W. Then find the slope of the secant line through the points
(10, 1(10)) and (15, 1(15)) on the graph of the intensity function and interpret the

result.

b. Find the slope of the secant line through any two points (ry, I(r;)) and (r,, I(r,)) on
the graph of the intensity function with acoustic power P.

SOLUTION

a. The sound intensity 10 m from the source is /(10) =

100 W 1

47(10 m)?

= —W/m’ At
4ar

W /m?. To find the slope of the

~ —0.0088 W /m? per meter.

15 m, the intensity is I(15) = sz - L
47 (15 m) 9w
secant line (Figure 1.12), we compute the change in intensity divided by the change in
distance:
1 1
(15— 1(10) 97 4w 1
Tee ™5 100 5 36w

The units provide a clue to the physical meaning of the slope: It measures the average
rate at which the intensity changes as one moves from 10 m to 15 m away from the
sound source. In this case, because the slope of the secant line is negative, the intensity
decreases (slowly) at an average rate of 1/(367) W /m? per meter.

b.
1(r,) = I(r)

P P

471'r22 471'r12

Mo — =
sec rn—n

n —n

P11 _1
47 r22 r12

rhy — N
P(r12 - r22) 1
% r12r22 Iy — 1
P (n—n)ntn) 1
am riry? = (= n)
P(ry + 1)
47Tr12r22

Evaluate I(r,) and I(r;).

Factor.

Simplify.

Factor.

Cancel and simplify.

This result is the average rate at which the sound intensity changes over an interval
[r1, 12]. Because r; > 0 and r, > 0, we see that m. is always negative. Therefore, the
sound intensity I(r) decreases as r increases, for r > 0.

Related Exercises 67-70 <
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y
(=x,y) (x, y)
Symmetry
about y-axis
o X

(a)
Figure 1.13

Even function: If (x, y) is on the
graph, then (—x, y) is on the graph.

y
20+
104
F— -+ F—t——
-4 -3 -1 12/ 3 4 X
(-2, -12) 107 2. -12)
y=x*—2x*-20
730__
Figure 1.14

Symmetry

The word symmetry has many meanings in mathematics. Here we consider symmetries of
graphs and the relations they represent. Taking advantage of symmetry often saves time
and leads to insights.

DEFINITION Symmetry in Graphs

A graph is symmetric with respect to the y-axis if whenever the point (x, y) is on
the graph, the point (—x, y) is also on the graph. This property means that the graph is
unchanged when reflected across the y-axis (Figure 1.13a).

A graph is symmetric with respect to the x-axis if whenever the point (x, y)
is on the graph, the point (x, —y) is also on the graph. This property means that the
graph is unchanged when reflected across the x-axis (Figure 1.13b).

A graph is symmetric with respect to the origin if whenever the point (x, y) is
on the graph, the point (—x, —y) is also on the graph (Figure 1.13c). Symmetry about
both the x- and y-axes implies symmetry about the origin, but not vice versa.

)
Symmetry )
about x-axis Symmetry
about origin

4
Q x 0 X

&, =)
(_X, _y)

(b) ©

DEFINITION Symmetry in Functions

An even function f has the property that f(—x) = f(x), for all x in the domain. The
graph of an even function is symmetric about the y-axis.

An odd function f has the property that f(—x) = —f(x), for all x in the domain.
The graph of an odd function is symmetric about the origin.

Polynomials consisting of only even powers of the variable (of the form x*", where 1
is a nonnegative integer) are even functions. Polynomials consisting of only odd powers
of the variable (of the form x>"*!, where n is a nonnegative integer) are odd functions.

QUICK CHECK 4 Explain why the graph of a nonzero function is never symmetric with re-
spect to the x-axis. <«

EXAMPLE 11 Identifying symmetry in functions Identify the symmetry, if any, in
the following functions.

a. f(x) = x* — 2% — 20 b. g(x) = x> —3x + 1 c. h(x) =

SOLUTION

a. The function f consists of only even powers of x (where 20 = 20-1 = 20x° and x° is
considered an even power). Therefore, f is an even function (Figure 1.14). This fact is
verified by showing that f(—x) = f(x):

f(=x) = (—=x)* = 2(—x)* = 20 = x* — 2x% — 20 = f(x).



Figure 1.15

» The symmetry of compositions of even

and odd functions is considered in
Exercises 95-101.

Figure 1.16

SECTION 1.1 EXERCISES

Review Questions

1.

Use the terms domain, range, independent variable, and depen-
dent variable to explain how a function relates one variable to
another variable.

Is the independent variable of a function associated with the
domain or range? Is the dependent variable associated with the
domain or range?

Explain how the vertical line test is used to detect functions.
If f(x) = 1/(x* + 1), what is f(2)? What is f(y*)?

Which statement about a function is true? (i) For each value of
x in the domain, there corresponds one unique value of y in the
range; (ii) for each value of y in the range, there corresponds one
unique value of x in the domain. Explain.

If f(x) = Vxand g(x) = x> — 2, find the compositions
feg geof.fof andgeg.

Suppose f and g are even functions with f(2) = 2 and
g(2) = —2.Evaluate f(g(2)) and g(f(—2)).

Explain how to find the domain of fe° g if you know the domain
and range of f and g.

1.1 Review of Functions 9

No symmetry: neither an b. The function g consists of two odd powers and one even power (again, 1 = x°is an
even nor odd function. even power). Therefore, we expect that g has no symmetry about the y-axis or the ori-
y gin (Figure 1.15). Note that
) = (—y)3 — 3(— — _.3
04 g(—x) = (—x) 3(=x) + 1= —x"+3x + 1,
so g(—x) equals neither g(x) nor —g(x); therefore, g has no symmetry.
10+ c. In this case, & is a composition of an odd function f(x) = 1/x with an odd function
g(x) = x* — x. Note that
I/-I\\ 1 1 1 1 1 1
B A B e S R M(x) = S R
(=) = (=) x’-x
-10+ y=x>—3x+1 . . .
Because i(—x) = —h(x), h is an odd function (Figure 1.16).
720 -
Odd function: If (x, y) is on the

graph, then (—x, —y) is on the graph.

[
\
[
[
[
[
[
[
[
[
[
Il
T
1
}
L
(9.5, —2.67)
[
[
[
[
|

Related Exercises 71-80 <

9. Sketch a graph of an even function f and state how f(x) and
f(—x) are related.

10. Sketch a graph of an odd function f and state how f(x) and f(—x)

are related.

Basic Skills

11-12. Vertical line test Decide whether graphs A, B, or both
represent functions.

11. y
A
/ B
— 0 -
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12. y 37-40. Working with composite functions Find possible choices for
B the outer and inner functions f and g such that the given function h
equals f° g. Give the domain of h.
37. h(x) = (x* = 5)1°
2
38. W(ix)=—F—7F"F7—"=
) (x® + x% + 1)
o X
39. h(x) = Vax*+2
40. h(x) !
. h(x) = ———
A V x3 -1
41-48. More composite functions Le f(x) = | x|, g(x) = x> — 4,
F(x) = Vx, and G(x) = 1/(x — 2). Determine the following com-
13-20. Domain and range Graph eachﬁmction with a graphmg util- posi[efunc[i()ns and give their domains.
ity using the given window. Then state the domain and range of the
fanction, 41. fog 42. gof 43. foG
13. f(x) = 3x* — 10; [-2.2] X [~10, 15] 4. fogoG 45. Geogef 46. Fogog
14, gly) = y+ 1 —4.6] X [-3.3] 47. gog 48. G° G
- 8) = (y +2)(y = 3) ’ ’ 49-54. Missing piece Let g(x) = x> + 3. Find a function f that pro-
15. f(x) = m; [—4,4] X [—4, 4] duces the given composition.
16. F(w) = V2 — w; [—3,2] X [0,2] 49. (fog)(x) = x? 50. (fog)(x) = 5
s x“+3
17. h(u) = Vu—1; [-7,9] X [=2,2]
51. (feg)(x) =x*+6x?+9 52. (fog)(x) =x*+ 6x% + 20
18. g(x) = (x* —4)Vx +5; [-5,5] X [—10,50]
53. (gof)(x) =x*+3 54. (gof)(x) =x+3
19. f(x) = (9 = 2% [-4.4] X [0,30]
1 55. Composite functions from graphs Use the graphs of f and g in
20. g(1) = P [—7,7] X [0, 1.5] the figure to determine the following function values.
t
a. (fog)(2) b. ¢(f(2)) c. f(g(4))
21-24. Domain in context Determine an appropriate domain of each d. g(f(5)) e. f(f(8)) f. g(f(g(5)))
function. Identify the independent and dependent variables.
y
21. A stone is thrown vertically upward from the ground at a speed 04
of 40 m/s at time ¢ = 0. Its distance d (in meters) above the 1
ground (neglecting air resistance) is approximated by the function ’
f(t) = 40t — 5¢2. 81 y = f(x)
’7 —
22. A stone is dropped off a bridge from a height of 20 m above a 6
river. If ¢ represents the elapsed time (in seconds) after the stone is sl
released, then its distance d (in meters) above the river is approxi- s
mated by the function f(r) = 20 — 5¢% N
23. A cylindrical water tower with a radius of 10 m and a height of 2
50 m is filled to a height of 4. The volume V of water (in cubic 14
meters) is given by the function g(k) = 1007h.
0
24. The volume V of a balloon of radius r (in meters) filled with he-

lium is given by the function f(r) = $7r>. Assume the balloon

can hold up to 1 m? of helium. 6. Composite functions from tables Use the table to evaluate the

given compositions.
25-36. Composite functions and notation Let f(x) = x* — 4,

g(x) = x3, and F(x) = 1/(x — 3). Simplify or evaluate the following x -1 0 1 3
expressions. f(x) 3 1 0 -1 -3 -1

2 -1 0 2 4
25. £(10) 26. f(p?) 27. g(1/2) ig; 0 -1 0o 3 0 4
28. F(y*) 29. F(3(v)) 30. f(g(w))

f2+h) - f(2 - h(g(0)) b. g(f(4)) - h(h(0))
3L g(f(w) S ,i S NG & () e S E HAAO))
g- f(h((2))) h. ¢(f(h(4))) i g(g(e(1)))

4. G(F(f) 35 f(Vx+4) 36. F(3x+ 1) J f(f(R(3)))
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57-61. Working with difference quotients Simplify the difference 79. Symmetry in graphs State whether the functions represented by
x + h) — f(x hs A, B, and C in the fi , odd, ither.
quotient £ })l f(x) for the following functions. graphs and Cin the 1;iure are even, odd, or neither
A
57. f(x) = x? 58. f(x) =4x—3
B
59. f(x) =2/x 60. f(x) =2x*—3x+1
X
61. =
/) x + 1
62-66. Working with difference quotients Simplify the difference ¥
- f(x) — fla) , :
quotient T a4 for the following functions.
62. f(x) =x* 63. f(x) =x%— 2 c
) 4
64. f(x) =4 —4x—x 65. f(x) = ——
X 80. Symmetry in graphs State whether the functions represented by

1 graphs A, B, and C in the figure are even, odd, or neither.
66. f(x) = T x2

y
67-70. Interpreting the slope of secant lines /n each exercise, a c
function and an interval of its independent variable are given. The
endpoints of the interval are associated with the points P and Q on the B
graph of the function.
a. Sketch a graph of the function and the secant line through P and Q. 4 \/

b. Find the slope of the secant line in part (a) and interpret your
answer in terms of an average rate of change over the interval.
Include units in your answer.

67. After t seconds, an object dropped from rest falls a distance
d = 167, where d is measured in feet and 2 < 1 < 5.

68. After ¢ seconds, the second hand on a clock moves through

an angle D = 6t, where D is measured in degrees and Further Explorations

5=1=20 81. Explain why or why not Determine whether the following state-
69. The volume V of an ideal gas in cubic centimeters is given ments are true and give an explanation or counterexample.

by V = 2/p, where p is the pressure in atmospheres and a. The range of f(x) = 2x — 38 is all real numbers.

05=p=2 b. The relation y = x® + 1 is nor a function because y = 2 for

70. The speed of a car prior to hard braking can be estimated by the bothx = —1andx = L

_ 1 _
length of the skid mark. One model claims that the speed S in mi/hr - I f(x) = 2", then f(1/x) = 1/f(x).

c
— 2
is S = \/30¢, where ¢ is the length of the skid mark in feet and d. In general, f(f(x)) = (f(x))".
50 = ¢ = 150. e. In general, f(g(x)) = g(f(x)).
f.
g

. By definition, f(g(x)) = (f°g)(x).
71-78. Symmetry Determine whether the graphs of the following . If f(x) is an even function, then ¢ f(ax) is an even function,
equations and functions are symmetric about the x-axis, the y-axis, or where a and ¢ are nonzero real numbers.
the origin. Check your work by graphing. h. If f(x) is an odd function, then f(x) + d is an odd function,
_ 4 2 where d is a nonzero real number.
L flx) =204 57 =12 i. If f is both even and odd, then f(x) = 0 for all x.

. =30 + 253 —
72 f(x) =3+ 20— x 82. Range of power functions Using words and figures, explain why
73 fx) =X —x* -2 the range of f(x) = x", where n is a positive odd integer, is all
74, f(x) = 2|x] real numbers. Explain why the range of g(x) = x", where n is a

. f(x) =2|x

positive even integer, is all nonnegative real numbers.

75. X+ P =1 _
83. Absolute value graph Use the definition of absolute value

76. x> =y =0 (see Appendix A) to graph the equation |x| — |y| = 1. Usea
raphing utility to check your work.
77. f(x) = x|x]| graping Y Y

84. Even and odd at the origin
78. |x| + |y| =1

a. If £(0) is defined and f is an even function, is it necessarily
true that f(0) = 0? Explain.

b. If f(0) is defined and f is an odd function, is it necessarily
true that f(0) = 0? Explain.
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85-88. Polynomial calculations Find a polynomial f that satisfies the
following properties. (Hint: Determine the degree of f; then substitute
a polynomial of that degree and solve for its coefficients.)

85. f(f(x)) =9x—8 86. (f(x))?=9>—12x + 4
87. f(f(x)) =x* — 1227 + 30 88. (f(x))> =x"— 1242 + 36
89-92. Difference quotients Simplify the difference quotients

fx+h) —fx)  f(x) — fla) o
and by rationalizing the numerator.
h xX—a
89. f(x) = Vx 90. f(x) = V1 —2x
91. f(x) = _3 92. f(x) = Vx> +1
Vax
Applications

93. Launching a rocket A small rocket is launched vertically up-
ward from the edge of a cliff 80 ft off the ground at a speed of

96 ft/s. Its height (in feet) above the ground is given by h(7) =
—161% + 961 + 80, where 7 represents time measured in seconds.

a. Assuming the rocket is launched at t = 0, what is an appropri-
ate domain for 4?

b. Graph / and determine the time at which the rocket reaches its
highest point. What is the height at that time?

94. Draining a tank (Torricelli’s Law) A cylindrical tank with a
cross-sectional area of 100 cm? is filled to a depth of 100 cm with
water. At ¢ = 0, a drain in the bottom of the tank with an area
of 10 cm? is opened, allowing water to flow out of the tank. The
depth of water in the tank at time = 0is d(r) = (10 — 2.2)%

a. Check that d(0) = 100, as specified.
b. At what time is the tank empty?
¢. What is an appropriate domain for d?

Additional Exercises

95-101. Combining even and odd functions Let E be an even func-
tion and O be an odd function. Determine the symmetry, if any, of the
following functions.

9. E-O
100. 0O~ 0

95. E+ 0O 97. E/O

101. O°E

98. E-O
99. Eo°FE

102. Composition of even and odd functions from tables Assume f
is an even function and g is an odd function. Use the (incomplete)
table to evaluate the given compositions.

x 1 2 3 4
f®) 2 -1 3 -4
g(x) -3 -1 —4 =2

a. f(g(=1)) b. g(f(—4)) ¢ f(g(=3))
d. f((=2)) e. g(g(—1)) f. f(g(0) — 1)

g f(e(e(=2)))  h g(f(f(—4))) i g(s(e(—1)))

103. Composition of even and odd functions from graphs Assume f
is an even function and g is an odd function. Use the (incomplete)
graphs of f and g in the figure to determine the following function
values.

a. f(g(—2)
d. g(f(5) —8)

8T y =/

QUICK CHECK ANSWERS

1. 3,x* — 2% — 2t,p*> — 4p + 3 2. Domain

is all real numbers; range is {y:0 <y = 1}.

3.0 (fog)(x) =2 + Land (gof)(x) = (@ + 1)°

4. If the graph were symmetric with respect to the x-axis, it
would not pass the vertical line test. <

1.2 Representing Functions

We consider four approaches to defining and representing functions: formulas, graphs,

tables, and words.

Using Formulas

The following list is a brief catalog of the families of functions that are studied systemati-
cally throughout this book; they are all defined by formulas.

» One version of the Fundamental
Theorem of Algebra states that a nonzero
polynomial of degree n has exactly n
(possibly complex) roots, counting each
root up to its multiplicity.

1. Polynomials are functions of the form
p(x) = apx" + a,_x" '+ -+ ax + a,

where the coefficients a(, ay, . . ., a, are real numbers with a,, # 0 and the nonnega-
tive integer n is the degree of the polynomial. The domain of any polynomial is the

set of all real numbers. An nth-degree polynomial can have as many as n real zeros
or roots—values of x at which p(x) = 0; the zeros are points at which the graph of p

intersects the x-axis.



» Exponential and logarithmic functions,
along with inverse trigonometric
functions, are introduced in Chapter 7.

QUICK CHECK 1 Are all polynomials
rational functions? Are all algebraic
functions polynomials? <

1.2 Representing Functions 13

. Rational functions are ratios of the form f(x) = p(x)/q(x), where p and g are poly-

nomials. Because division by zero is prohibited, the domain of a rational function is the
set of all real numbers except those for which the denominator is zero.

. Algebraic functions are constructed using the operations of algebra: addition, sub-

traction, multiplication, division, and roots. Examples of algebraic functions are
f(x) = V2x® + 4and g(x) = x"4(x> + 2). In general, if an even root (square root,
fourth root, and so forth) appears, then the domain does not contain points at which the
quantity under the root is negative (and perhaps other points).

. Exponential functions have the form f(x) = b*, where the base b # 1 is a positive

real number. Closely associated with exponential functions are logarithmic functions
of the form f(x) = log, x, where b > 0 and b # 1. Exponential functions have a do-
main consisting of all real numbers. Logarithmic functions are defined for positive real
numbers.

The natural exponential function is f(x) = ¢*, with base b = e, where
e =~ 2.71828. . .1is one of the fundamental constants of mathematics. Associated with
the natural exponential function is the natural logarithm function f(x) = In x, which
also has the base b = e.

X

. The trigonometric functions are sin x, cos x, tan x, cot x, sec x, and csc x; they are

fundamental to mathematics and many areas of application. Also important are their
relatives, the inverse trigonometric functions.

. Trigonometric, exponential, and logarithmic functions are a few examples of a large

family called transcendental functions. Figure 1.17 shows the organization of these
functions, which are explored in detail in upcoming chapters.

Transcendental functions
Algebraic functions

- ~ Trigonometric
" Rational functions P~ - N
( ) (\ Exponential | Many more!
\\ > // = Logarithmic
Figure 1.17
Using Graphs

Although formulas are the most compact way to represent many functions, graphs often
provide the most illuminating representations. Two of countless examples of functions
and their graphs are shown in Figure 1.18. Much of this book is devoted to creating and
analyzing graphs of functions.

Snapshot of a traveling wave packet Probability of getting at least one
y P pair of sixes after n throws of two
dice (defined for positive integers n)

0.8+

th 0:4 —+

—-1.01 I I I 1 1 1
T

T T
0 20 40 60 80 100 120 n
n number of throws

Figure 1.18
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y-intercept

(0, 6)

Figure 1.19

» The units of the slope have meaning:
For every dollar the price is reduced, an
average of 50 more pizzas can be sold.

The demand function

d d= —50p + 1100
is defined on the interval
1200 + 0=p=22

1000

800

6001 d= —50p + 1100
400 +
200+
} } } } }
0 5 10 15 20 25 P

Figure 1.20

There are two approaches to graphing functions.

* Graphing calculators, tablets, and software are easy to use and powerful. Such technol-
ogy easily produces graphs of most functions encountered in this book. We assume you
know how to use a graphing utility.

* Graphing utilities, however, are not infallible. Therefore, you should also strive to
master analytical methods (pencil-and-paper methods) in order to analyze functions
and make accurate graphs by hand. Analytical methods rely heavily on calculus and are
presented throughout this book.

The important message is this: Both technology and analytical methods are essential and
must be used together in an integrated way to produce accurate graphs.

Linear Functions One form of the equation of a line (see Appendix A)isy = mx + b,
where m and b are constants. Therefore, the function f(x) = mx + b has a straight-line
graph and is called a linear function.

EXAMPLE 1 Linear functions and their graphs Determine the function represented
by the line in Figure 1.19.

SOLUTION From the graph, we see that the y-intercept is (0, 6). Using the points (0, 6)
and (7, 3), the slope of the line is
3—-6

3
m=_——=—_.
7-0 7
Therefore, the line is described by the function f(x) = —3x/7 + 6.
Related Exercises 11-14 <

EXAMPLE 2 Demand function for pizzas After studying sales for several months,
the owner of a pizza chain knows that the number of two-topping pizzas sold in a week
(called the demand) decreases as the price increases. Specifically, her data indicate that
at a price of $14 per pizza, an average of 400 pizzas are sold per week, while at a price of
$17 per pizza, an average of 250 pizzas are sold per week. Assume that the demand d is a
linear function of the price p.

a. Find the constants m and b in the demand function d = f(p) = mp + b. Then graph f.

b. According to this model, how many pizzas (on average) are sold per week at a price of
$20?

SOLUTION

a. Two points on the graph of the demand function are given: (p,d) = (14, 400) and
(17,250). Therefore, the slope of the demand line is
400 — 250

m = Ta—17 —50 pizzas per dollar.

It follows that the equation of the linear demand function is
d — 250 = =50(p — 17).
Expressing d as a function of p, we have d = f(p) = —50p + 1100 (Figure 1.20).

b. Using the demand function with a price of $20, the average number of pizzas that
could be sold per week is f(20) = 100.
Related Exercises 15-18 <

Piecewise Functions A function may have different definitions on different parts of
its domain. For example, income tax is levied in tax brackets that have different tax rates.
Functions that have different definitions on different parts of their domain are called piece-
wise functions. If all the pieces are linear, the function is piecewise linear. Here are some
examples.



4+

2+

st 3;\-\y—g(x)
“4.3)

Figure 1.21

—4 -3 -2 -1

Figure 1.24

1.2 Representing Functions 15

EXAMPLE 3 Defining a piecewise function The graph of a piecewise linear function
g is shown in Figure 1.21. Find a formula for the function.

SOLUTION For x < 2, the graph is linear with a slope of 1 and a y-intercept of (0, 0); its
equation is y = x. For x > 2, the slope of the line is —% and it passes through (4, 3); so
an equation of this piece of the function is

1 1
y—3=—-——(x—4) or y=——x+5.

2 2

For x = 2, we have g(2) = 3. Therefore,
X ifx <2
3 ifx =2

s() =9y |
—Ex +5 ifx > 2.

Related Exercises 19-22 <

EXAMPLE 4 Graphing piecewise functions Graph the following functions.

x> —5x+6
—— ifx # 2
a f) =9 x-2 7
1 ifx =2
b. f(x) = |x|, the absolute value function

SOLUTION
a. The function f is simplified by factoring and then canceling x — 2, assuming x # 2:

x2—5x+6_(x_2)(x_3)
x—2 x—2

=x— 3.

Therefore, the graph of f is identical to the graph of the line y = x — 3 when x # 2.
We are given that f(2) = 1 (Figure 1.22).

y
T 21D
1+ ° y
f — F——+— T
1 X
4 T y =
2 _ 1T
/ {x Sx + 6 if'x # 2 1 1 1 1 1 1 1 1
T V= x—2 T T T T T T T T
. 1 X
-+ 1 ifx=2 41
Figure 1.22 Figure 1.23

b. The absolute value of a real number is defined as

X ifx=0

fo) = Ixl = {—x ifx < 0.

Graphing y = —x, forx < 0, and y = x, for x = 0, produces the graph in Figure 1.23.
Related Exercises 23-28 <

Power Functions Power functions are a special case of polynomials; they have the form
f(x) = x", where n is a positive integer. When 7 is an even integer, the function values are
nonnegative and the graph passes through the origin, opening upward (Figure 1.24). For
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Figure 1.25

» Recall that if n is a positive integer,
then x!/" is the nth root of x; that is,

flx) = xm =

QUICK CHECK 3 What are the
domain and range of f(x) = x'/7?
What are the domain and range of
flx) = x/1%7«

odd integers, the power function f(x) = x" has values that are positive when x is positive
and negative when x is negative (Figure 1.25).

QUICK CHECK2 What is the range of f(x) = x’? What is the range of f(x) = x®? <

Root Functions Root functions are a special case of algebraic functions; they have the
form f(x) = x!'/" where n > 1 is a positive integer. Notice that when 7 is even (square
roots, fourth roots, and so forth), the domain and range consist of nonnegative numbers.
Their graphs begin steeply at the origin and flatten out as x increases (Figure 1.26).

By contrast, the odd root functions (cube roots, fifth roots, and so forth) are defined
for all real values of x and their range is all real numbers. Their graphs pass through the
origin, open upward for x < 0 and downward for x > 0, and flatten out as x increases in
magnitude (Figure 1.27).

y
2__
y y= Pl
14+ y =3
1 1 1 1
T T T T
-2 -1 1 2 X

Figure 1.26 Figure 1.27

Rational Functions Rational functions appear frequently in this book, and much is said
later about graphing rational functions. The following example illustrates how analysis and
technology work together.

EXAMPLE 5 Technology and analysis Consider the rational function
3 —x— 1

) = X+ 22— 6

a. What is the domain of f?

b. Find the roots (zeros) of f.

c. Graph the function using a graphing utility.

d. At what points does the function have peaks and valleys?

e. How does f behave as x grows large in magnitude?
SOLUTION

a. The domain consists of all real numbers except those at which the
denominator is zero. A graphing utility shows that the denomina-
tor has one real zero at x = 1.34; therefore, the domain of fis

Domain =~ 1.34
Figure 1.28

{x:x # 1.34}.

b. The roots of a rational function are the roots of the numerator, pro-
vided they are not also roots of the denominator. Using a graphing
utility, the only real root of the numerator is x = 0.85.

c. After experimenting with the graphing window, a reasonable graph
of f is obtained (Figure 1.28). At the point x = 1.34, where the
denominator is zero, the function becomes large in magnitude and f
has a vertical asymptote.



» In Chapter 4, we show how calculus is

used to locate the local maximum and

local minimum values of a function.

Table 1.1
t(s) d (cm)
0 0
1 2
2 6
3 14
4 24
5 34
6 44
7 54

y
3__
2__
1__

f F—— f
1 2 3 z\s X

Figure 1.31
y

—o0

2 ifx<1
14 glx) = 0ifl <x<2
-1

ifx>2

Figure 1.32
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d. The function has two peaks (soon to be called local maxima), one near x = —3.0 and
one near x = 0.4. The function also has two valleys (soon to be called local minima),
one near x = —0.3 and one near x = 2.6.

e. By zooming out, it appears that as x increases in the positive direction, the graph
approaches the horizontal asymptote y = 3 from below, and as x becomes large
and negative, the graph approaches y = 3 from above.
Related Exercises 29-34 <

Using Tables

Sometimes functions do not originate as formulas or graphs; they may start as numbers
or data. For example, suppose you do an experiment in which a marble is dropped into a
cylinder filled with heavy oil and is allowed to fall freely. You measure the total distance
d, in centimeters, that the marble falls at times ¢t = 0, 1, 2, 3, 4, 5, 6, and 7 seconds after it
is dropped (Table 1.1). The first step might be to plot the data points (Figure 1.29).

d d
60 T 60 T
°
50+ 50
- ° ~
5 w0+t 5 401
15 ® V
g 07T S 30
8 ° S
Z 20+ Z 20
A S A
10+ 10 A
°
-ttt —
0 1 2 3 4 5 6 7 I 0 !
Time (s) Time (s)
Figure 1.29 Figure 1.30

The data points suggest that there is a function d = f(¢) that gives the distance that
the marble falls at all times of interest. Because the marble falls through the oil without
abrupt changes, a smooth graph passing through the data points (Figure 1.30) is reason-
able. Finding the best function that fits the data is a more difficult problem, which we
discuss later in the text.

Using Words

Using words may be the least mathematical way to define functions, but it is often the way
in which functions originate. Once a function is defined in words, it can often be tabu-
lated, graphed, or expressed as a formula.

EXAMPLE 6 A slope function Let g be the slope function for a given function f. In
words, this means that g(x) is the slope of the curve y = f(x) at the point (x, f(x)). Find
and graph the slope function for the function f in Figure 1.31.

SOLUTION For x < 1, the slope of y = f(x) is 2. The slope is O for | < x < 2, and the
slopeis —1 for x > 2. At x = 1 and x = 2, the graph of f has a corner, so the slope is
undefined at these points. Therefore, the domain of g is the set of all real numbers ex-
cept x = 1 and x = 2, and the slope function (Figure 1.32) is defined by the piecewise
function

2 ifx <1
g(x) = 0 ifl <x<?2
-1 ifx > 2.

Related Exercises 35-38 <
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y EXAMPLE 7 An area function Let A be an area function for a positive function f. In
gt words, this means that A(x) is the area of the region bounded by the graph of f and the
74 t-axis from ¢t = 0tot = x. Consider the function (Figure 1.33)
6+ .
2t f0=r=3
1 N =
1 7) {6 ifr > 3.
34+ f(t):{zz ifo=r=3 a. Find A(2) and A(5).
2T 6 ifr=3 b. Find a piecewise formula for the area function for f.
l —
—————+—— SOLUTION
Of 1 23 4596 7 8 !

a. The value of A(2) is the area of the shaded region between the graph of f and the

Figure 1.33 . . . .
g t-axis from t = 0 to ¢t = 2 (Figure 1.34a). Using the formula for the area of a triangle,
—_ 1 —_
AQR) =5 (2)(4) = 4
» Slope functions and area functions y y
reappear in upcoming chapters and play
an essential part in calculus. 8T 8T
74+ 74+
=f( =f(t
6l S ol £t
5+ 5+
44 44
34 34+ S Area = A(5)
21/ Area = A(2) 24
1+ 1+
1 1
0] 1 2 3 4 5 6 7 8 ! 0] 1 23 45 6 7 8 !
(@) (b)
Figure 1.34

The value of A(5) is the area of the shaded region between the graph of f and the
t-axis on the interval [0, 5] (Figure 1.34b). This area equals the area of the triangle whose
base is the interval [0, 3] plus the area of the rectangle whose base is the interval [3, 5]:

area of the .
triancle area of the
- rectangle
1 A
A(5) = 7 (3)(6) + (2)(6) = 21.

b. For 0 = x = 3 (Figure 1.35a), A(x) is the area of the triangle whose base is the inter-
val [0, x]. Because the height of the triangle at 7 = x is f(x),

A(x) = le(x) = lx(2x) = x%
2 2
fx)
y y
8-+ g4
T+ R
y=ro =0
5+ 54
4+ 4+
3+ 34
24 ’d
1+ 1+
¢ S a2 B S
(@) (b)

Figure 1.35



y
20+
18+
16+
14+
2+
10+

8__
6 .
oS-l Eezs
2__

— —t—+—+—
0] 1 2 3 45 6 7 8 X
Figure 1.36
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For x > 3 (Figure 1.35b), A(x) is the area of the triangle on the interval [0, 3]
plus the area of the rectangle on the interval [3, x]:

area of the .
. area of the
triangle
—_— rectangle

1 e —
A(x) = 5(3)(6) + (x = 3)(6) = 6x — 9.
Therefore, the area function A (Figure 1.36) has the piecewise definition

y=A(X)={

x? if0=x=3
6x — 9 ifx > 3.
Related Exercises 3942 <

Transformations of Functions and Graphs

There are several ways to transform the graph of a function to produce graphs of new
functions. Four transformations are common: shifts in the x- and y-directions and scalings
in the x- and y-directions. These transformations, summarized in Figures 1.37-1.42, can
save time in graphing and visualizing functions.

The graph of y = f(x) + d is the graph
of y = f(x) shifted vertically by d units
(up if d > 0 and down if d < 0).

y=fx)+3

Figure 1.37

For ¢ > 0, the graph of y = ¢f(x) is the graph
of y = f(x) scaled vertically by a factor of ¢
(wider if 0 < ¢ < 1 and narrower if ¢ > 1).

y y=f)

Figure 1.39

The graph of y = f(x — b) is the graph
of y = f(x) shifted horizontally by b units
(right if » > 0 and left if b < 0).

Figure 1.38

For ¢ < 0, the graph of y = ¢f(x) is the graph of
y = f(x) scaled vertically by a factor of |c| and
reflected across the x-axis (wider if

—1 < ¢ < 0 and narrower if ¢ < —1).

y

L
N

= —2fx)

Figure 1.40
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For a > 0, the graph of y = f(ax) is the graph of y = f(x) For a < 0, the graph of y = f(ax) is the graph of y = f(x)
scaled horizontally by a factor of a (widerif 0 < a < 1 scaled horizontally by a factor of |a| and reflected across the
and narrower if a > 1). y-axis (wider if —1 < a < 0 and narrower if a < —1).
ya Y=1C29 y
y=/f®
1
y=1(5)

s
N[ x

Figure 1.41 Figure 1.42

EXAMPLE 8 Shifting parabolas The graphs A, B, and C in Figure 1.43 are obtained
from the graph of f(x) = x? using shifts and scalings. Find the function that describes
each graph.

SOLUTION
a. Graph A is the graph of f shifted to the right by 2 units. It represents the function
flx—2)=(x—2)%=x>—4x + 4
b. Graph B is the graph of f shifted down by 4 units. It represents the function
fx) —4=x*—4

c. Graph C is a wider version of the graph of f shifted down by 1 unit. Therefore, it

represents ¢f(x) — 1 = cx? — 1, for some value of ¢, with 0 < ¢ < 1 (because the
Figure 1.43 graph is widened). Using the fact that graph C passes through the points ( +2,0), we
find that ¢ = i. Therefore, the graph represents

» You should verify that graph C also
corresponds to a horizontal scaling 1
and a vertical shift. It has the equation y = Z f(x ) - 1= Z x? =1
y = f(ax) — 1, wherea = . )
Related Exercises 43-54 <

QUICK CHECK 4 How do you modify EXAMPLE9 Scaling and shifting Graph g(x) = |2x + 1]|.

the graph of f(x) = 1/x to produce SOLUTION We write the function as g(x) = | 2(x + 3) | Letting f(x) = |x|, we have

the graph of g(x) = 1/(x + 4)? < g(x) = f(2(x + 3)). Therefore, the graph of g is obtained by scaling (steepening) the
graph of f horizontally and shifting it % unit to the left (Figure 1.44).

Step 1: Horizontal scaling
y=[2x+ 1] v =2

» Note that we can also write
g(x) = 2|x + %|, which means the graph

Basic curve
y = x|

of g may also be obtained by a vertical
scaling and a horizontal shift.

Step 2: Horizontal shift
1
y=|2a+3)

. =|2x+ 1|
Figure 1.44

Related Exercises 43-54 <
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Review Questions
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following steps.

SUMMARY Transformations

Given the real numbers a, b, ¢, and d and the function f, the graph of
y = ¢f(a(x — b)) + d can be obtained from the graph of y = f(x) in the

horizontal scaling
by a factor of | a|

y = f(x) y = flax)
horizontal shift
by b units
y = fla(x = b))

vertical scaling
by a factor of | c

by = eftats — 1)
vertical shift
by d uni
yo e y = flalx = b)) +d

12.

Give four ways that functions may be defined and represented.

What is the domain of a polynomial?

What is the domain of a rational function?

Sketch a graph of y = x°.

Sketch a graph of y = x'/°.

1
2
3
4. Describe what is meant by a piecewise linear function.
5
6
7

How do you obtain the graph of y
y =fx)?

8. How do you obtain the graph of y
y = f(x)?

9. How do you obtain the graph of y
y =f(x)?

10.
graph of y = x??

Basic Skills

How do you obtain the graph of y = 4(x + 3)? + 6 from the

f(x + 2) from the graph of

—3f(x) from the graph of

f(3x) from the graph of

15.

11-12. Graphs of functions Find the linear functions that correspond

to the following graphs.
11. y

16.

17.

. Graph of a linear function Find and graph the linear function

that passes through the points (1, 3) and (2, 5).

Graph of a linear function Find and graph the linear function
that passes through the points (2, —3) and (5, 0).

Demand function Sales records indicate that if Blu-ray players
are priced at $250, then a large store sells an average of 12 units
per day. If they are priced at $200, then the store sells an average
of 15 units per day. Find and graph the linear demand function for
Blu-ray sales. For what prices is the demand function defined?

Fundraiser The Biology Club plans to have a fundraiser for
which $8 tickets will be sold. The cost of room rental and refresh-
ments is $175. Find and graph the function p = f(n) that gives
the profit from the fundraiser when n tickets are sold. Notice that
f(0) = —$175; that is, the cost of room rental and refreshments
must be paid regardless of how many tickets are sold. How many
tickets must be sold to break even (zero profit)?

Population function The population of a small town was 500

in 2015 and is growing at a rate of 24 people per year. Find and
graph the linear population function p(t) that gives the population
of the town ¢ years after 2015. Then use this model to predict the
population in 2030.
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18. Taxicab fees A taxicab ride costs $3.50 plus $2.50 per mile. Let 3Ix — 1 ifx<1
m be the distance (in miles) from the airport to a hotel. Find and 26. f(x) = { Y+ 1 ifx=1
graph the function c(m) that represents the cost of taking a taxi -
from the airport to the hotel. Also determine how much it costs if
the hotel is 9 miles from the airport. —2x — 1 ifx < -1

27. f(x) =41 if —1=x=1

19-20. Graphs of piecewise functions Write a definition of the func- 2 — 1 x> 1

tions whose graphs are given.

19. y
2x+2  ifx <0
6T 28. f(x)=qx+2 f0=x=2
5T 3—x/2 ifx>2
4__

29-34. Graphs of functions

a. Use a graphing utility to produce a graph of the given function.
Experiment with different windows to see how the graph changes on
different scales. Sketch an accurate graph by hand after using the
graphing utility.

b. Give the domain of the function.

c. Discuss interesting features of the function, such as peaks, valleys,
and intercepts (as in Example 5).

29, f(x) =x3— 22+ 6 30. f(x) = V-8

20. vy
1 st = 222 o Va1
- 8 x+3 - T x+ 1
5 —
4l 33. f(x) =3 - |2x— 1|
y =g
T x—1]
24 ifx # 1
M. flx) =9 x—1
/1 0 ifx =1
I 2 3 4 5 6 7 8§ X 35-38. Slope functions Determine the slope function for the following
T functions.
72 —
35 f(x) =2x+ 1
. . . 36. f(x) = |x]
21. Parking fees Suppose that it costs 5S¢ per minute to park at
the airport with the rate dropping to 3¢ per minute after 9 P.M. 37. Use the figure for Exercise 19.
Find and graph the cost function ¢() for values of  satisfying 38. Use the figure for Exercise 20.

0 = t = 120. Assume that 7 is the number of minutes after 8 p.M.
39-42. Area functions Let A(x) be the area of the region bounded by
the t-axis and the graph of y = f(t) fromt = 0to t = x. Consider the
following functions and graphs.

22. Taxicab fees A taxicab ride costs $3.50 plus $2.50 per mile for
the first 5 miles, with the rate dropping to $1.50 per mile after the
fifth mile. Let m be the distance (in miles) from the airport to a

hotel. Find and graph the piecewise linear function c(m) that rep- % F l:"d A(2).
resents the cost of taking a taxi from the airport to a hotel m miles b. Find A(6).
away. ¢. Find a formula for A(x).
23-28. Piecewise linear functions Graph the following functions. 39. f(r) =6
2 _ y
ad 1x ifx # 1 .
X — 4
23. =
S =12 ifx =1 L
y =/
) 6
—x—2
e S ST
Y —
24. = 4+
F0 =194 ifx =2
3__
2. f(x) = 3x—1 ifx=0 T
YT L2+ 1 ifx >0 T
1
of 1 2 3 4 5 6 7 8 !
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40. f(r) = I y = |x|. Find formulas for f and g. Verify your answers with a
2 graphing utility.
y
y ﬁ-
44+ 5
3+ 4
2+ 37

2
1

fo g
~ 4=
oo
~

—t—+—
0] 1 2 3 4 5

~2%+8 ifr=3
a1. f(r) = { !

2 ift >3

44. Transformations Use the graph of f in the figure to plot the
following functions.

y
a. y = —f(x) b. y = f(x +2)
e y=flx-2) d. v = f(2v)
e y=f(x—1)+2 f. y=2f(x)
y
6__
5__

45. Transformations of f(x) = x? Use shifts and scalings to
transform the graph of f(x) = x?into the graph of g. Use a
graphing utility to check your work.

a. g(x) =f(x = 3) b. g(x) = f(2x — 4)
c. g(x)=-3f(x—2)+4 d. g(x)=6f(%)+l

46. Transformations of f(x) = Vx Use shifts and scalings to

ol 1 5 3 i ; é 7= é ; transform the graph of f(x) = VX into the graph of g. Use a

graphing utility to check your work.

a. g(x) =flx +4) b. g(x) =2f(2x — 1)

c. g(x)=Vx—1 d. g(x) =3Vx—-1-5
43. Transformations of y = |x| The functions fand g in the figure

are obtained by vertical and horizontal shifts and scalings of
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47-54. Shifting and scaling Use shifts and scalings to graph the
given functions. Then check your work with a graphing utility. Be sure
to identify an original function on which the shifts and scalings are
performed.

47. f(x) = (x — 22 +1

48. f(x) = x> — 2x + 3 (Hint: Complete the square first.)
49. g(x) =

50. g(x) =

51. g(x) = 2(x + 3)?

52. p(x) =x*+ 3x -5

53, h(x) = —4x% — 4x + 12

54. h(x) = |3x — 6] +1

Further Explorations

55. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. All polynomials are rational functions, but not all rational
functions are polynomials.

b. If f is a linear polynomial, then f° f is a quadratic polynomial.

c. If f and g are polynomials, then the degrees of fo gand gof
are equal.

d. To graph g(x)
right.

= f(x + 2), shift the graph of f 2 units to the

56-57. Intersection problems Use analytical methods to find the
following points of intersection. Use a graphing utility to check your
work.

56. Find the point(s) of intersection of the parabola y = x*> + 2 and
the line y = x + 4.

57. Find the point(s) of intersection of the parabolas y = x” and
y = —x?+ 8

58-59. Functions from tables Find a simple function that fits the data
in the tables.

8. T, CIN
-1]o 0l -1
01 1l o

12 4 1
2|3 9 2
34 6] 3

60-63. Functions from words Find a formula for a function
describing the given situation. Graph the function and give a domain
that makes sense for the problem. Recall that with constant speed,
distance = speed * time elapsed.

60. A function y = f(x) such that y is 1 less than the cube of x

61. Two cars leave a junction at the same time, one traveling north at
30 mi/hr and the other one traveling east at 60 mi/hr. The function
s(t) is the distance between the cars ¢ hours after they leave the
junction.

62. A function y = f(x) such that if you ride a bike for 50 mi at
x miles per hour, you arrive at your destination in y hours

63. A function y = f(x) such that if your car gets 32 mi/gal and
gasoline costs $x/gallon, then $100 is the cost of taking a
y-mile trip

64. Floor function The floor function, or greatest integer function,
f(x) = |x], gives the greatest integer less than or equal to x.
Graph the floor function, for -3 = x = 3.

65. Ceiling function The ceiling function, or smallest integer func-
tion, f(x) = [x], gives the smallest integer greater than or equal
to x. Graph the ceiling function, for —3 = x = 3.

66. Sawtooth wave Graph the sawtooth wave defined by

f-1=x<0

x + 1

X fo=x<1
=921 if1=x<2

x—2

if2=x<3

67. Square wave Graph the square wave defined by

0 ifx<O0

ifo=x<1
ifl =x<2
if2=x<3

O =

fx) =

—_

68-70. Roots and powers Make a sketch of the given pairs of
functions. Be sure to draw the graphs accurately relative to each other.

68. y=x*andy = x°

69. y=x>andy = x’

70. y = x'/3 andy = x5

71. Features of a graph Consider the graph of the function f shown
in the figure. Answer the following questions by referring to the
points A—1I.

y =fx)

D
\g/g G *

a. Which points correspond to the roots (zeros) of f?
. Which points on the graph correspond to high points or peaks
(soon to be called local maximum values of f)?

¢. Which points on the graph correspond to low points or
valleys (soon to be called local minimum values of f)?

d. As you move along the curve in the positive x-direction, at
which point is the graph rising most rapidly?

e. As you move along the curve in the positive x-direction, at
which point is the graph falling most rapidly?

=3



72. Features of a graph Consider the graph of the function g shown

in the figure.

y
3 —
2 —
y =g
] —
K : :
1 2 3 4 X

. Give the approximate roots (zeros) of g.

. Give the approximate coordinates of the high points or peaks
(soon to be called local maximum values of f).

Give the approximate coordinates of the low points or valleys
(soon to be called local minimum values of f).

. Imagine moving along the curve in the positive x-direction on
the interval [0, 3]. Give the approximate coordinates of the
point at which the graph is rising most rapidly.

Imagine moving along the curve in the positive x-direction on
the interval [0, 3]. Give the approximate coordinates of the
point at which the graph is falling most rapidly.

Applications

73. Relative acuity of the human eye The fovea centralis (or fovea)

is responsible for the sharp central vision that humans use for
reading and other detail-oriented eyesight. The relative acuity of
a human eye, which measures the sharpness of vision, is modeled
by the function

0.568

RO)=—F—"—7
®) 0.331]0]| + 0.568

where 6 (in degrees) is the angular deviation of the line of sight
from the center of the fovea (see figure).

a. Graph R, for —15 = 0 = 15.

b. For what value of 0 is R maximized? What does this fact indi-
cate about our eyesight?

c. For what values of # do we maintain at least 90% of
our maximum relative acuity? (Source: The Journal of
Experimental Biology, 203, Dec 2000)

74. Tennis probabilities Suppose the probability of a server winning

any given point in a tennis match is a constant p, with 0 = p = 1.

75.

Number of pairs
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Then the probability of the server winning a game when serving
from deuce is
2

_ p
flp) = Tl = p)

a. Evaluate £(0.75) and interpret the result.
b. Evaluate f(0.25) and interpret the result.
(Source: The College Mathematics Journal 38, 1, Jan 2007)

Bald eagle population After DDT was banned and the
Endangered Species Act was passed in 1973, the number of bald
eagles in the United States increased dramatically (see figure). In
the lower 48 states, the number of breeding pairs of bald eagles
increased at a nearly linear rate from 1875 pairs in 1986 to 6471
pairs in 2000.

Use the data points for 1986 and 2000 to find a linear func-
tion p that models the number of breeding pairs from 1986 to
2000 (0 = ¢ = 14).

. Using the function in part (a), approximately how many breed-
ing pairs were in the lower 48 states in 1995?

a.

12,000
(=)
&
10,000 =
8000 g
4 =
o= =
233 ]
+ & =[]
6000 a2ae
Q- RV
<+ o
a3
228
4000 s g-ao
n %o T
w02 R
~ w T A
g an
2000 = = H H "
= 3 H
o0 o~
<t
’l
‘63 74 84 ‘86°87°88°89°90°91°929394°95°96°97 989900  ‘05°06

Year

(Source: U.S. Fish and Wildlife Service)

76.

77.

78.

79.

Temperature scales

a. Find the linear function C = f( F) that gives the reading on
the Celsius temperature scale corresponding to a reading on
the Fahrenheit scale. Use the facts that C = 0 when F' = 32
(freezing point) and C = 100 when F' = 212 (boiling point).

b. At what temperature are the Celsius and Fahrenheit readings
equal?

Automobile lease vs. purchase A car dealer offers a purchase op-

tion and a lease option on all new cars. Suppose you are interested

in a car that can be bought outright for $25,000 or leased for a

start-up fee of $1200 plus monthly payments of $350.

a. Find the linear function y = f(m) that gives the total amount
you have paid on the lease option after m months.

With the lease option, after a 48-month (4-year) term, the car
has a residual value of $10,000, which is the amount that you
could pay to purchase the car. Assuming no other costs, should

you lease or buy?

b.

Surface area of a sphere The surface area of a sphere of radius r
is S = 4arr”. Solve for r in terms of S and graph the radius func-
tion for § = 0.

Volume of a spherical cap A single slice through a sphere of
radius r produces a cap of the sphere. If the thickness of the cap
is h, then its volume is V = §ah? (3r — h). Graph the volume as
a function of 4 for a sphere of radius 1. For what values of 4 does
this function make sense?
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80.

81.

Additional Exercises
82.

CHAPTER 1 ¢ FUNCTIONS

Walking and rowing Kelly has finished a picnic on an island 83.

that is 200 m off shore (see figure). She wants to return to a beach
house that is 600 m from the point P on the shore closest to the
island. She plans to row a boat to a point on shore x meters from P
and then jog along the (straight) shore to the house.

oS 85.

a. Let d(x) be the total length of her trip as a function of x. Find 86
and graph this function.

b. Suppose that Kelly can row at 2 m/s and jog at 4 m/s. Let
T(x) be the total time for her trip as a function of x. Find and
graph y = T(x).

c. Based on your graph in part (b), estimate the point on the shore
at which Kelly should land to minimize the total time of her
trip. What is that minimum time?

Optimal boxes Imagine a lidless box with height /2 and a square base
whose sides have length x. The box must have a volume of 125 ft>.

a. Find and graph the function S(x) that gives the surface area of
the box, for all values of x > 0.

b. Based on your graph in part (a), estimate the value of x that
produces the box with a minimum surface area.

Composition of polynomials Let f be an nth-degree polynomial
and let g be an mth-degree polynomial. What is the degree of the
following polynomials?

84.

87.

Parabola vertex property Prove that if a parabola crosses the
x-axis twice, the x-coordinate of the vertex of the parabola is half-
way between the x-intercepts.

Parabola properties Consider the general quadratic function
f(x) = ax? + bx + ¢, witha # 0.

a. Find the coordinates of the vertex in terms of a, b, and c.
b. Find the conditions on a, b, and ¢ that guarantee that the graph
of f crosses the x-axis twice.

Factorial function The factorial function is defined for positive

integersasn! = n(n — 1)(n — 2)---3-2-1.

a. Make a table of the factorial function, forn = 1,2, 3,4, 5.

b. Graph these data points and then connect them with a smooth
curve.

¢. What is the least value of n for which n! > 10°?

. Sum of integers Let S(n) = 1 + 2 + - -+ + n, where n is a posi-

tive integer. It can be shown that S(n) = n(n + 1)/2.

a. Make a table of S(n), forn = 1,2,...,10.
b. How would you describe the domain of this function?
c. What is the least value of n for which S(n) > 1000?

Sum of squared integers Let 7(n) = 12 + 22 + « -+ + 1,
where 7 is a positive integer. It can be shown that

T(n) = n(n + 1)(2n + 1)/6.

a. Make a table of T(n), forn = 1,2, ..., 10.

b. How would you describe the domain of this function?

c. What is the least value of n for which T(n) > 1000?

QUICK CHECK ANSWERS

1. Yes;no 2. (—o0, ©);[0, )
are (— o0, ). Domain and range are [0, ).
graph of f horizontally 4 units to the left. <

3. Domain and range
4. Shift the
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a. f-f b. fof ¢ f-g d. fog
Degrees Radians
nometric functions.
0 0
30 m/6 Radian Measure
45 /4
60 /3
90 )2
120 27 /3
135 3m/4
150 57/6
180 T

This section is a review of what you need to know in order to study the calculus of trigo-

Calculus typically requires that angles be measured in radians (rad). Working with a cir-
cle of radius r, the radian measure of an angle 6 is the length of the arc associated with
0, denoted s, divided by the radius of the circle r (Figure 1.45a). Working on a unit circle
(r = 1), the radian measure of an angle is simply the length of the arc associated with 0
(Figure 1.45b). For example, the length of a full unit circle is 27r; therefore, an angle with
a radian measure of 7 corresponds to a half circle (# = 180°) and an angle with a radian

measure of 77 /2 corresponds to a quarter circle (6 = 90°).



» When working on a unit circle (r =
these definitions become

sinf =y, cosf = x,
X

tan 6 = X, coth = —,
X y

1 1

sec = —, csch = —.
x y

1),
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On a circle of radius r,
. .S
radian measure of 6 is e

(a)
Figure 1.45

On a circle of radius 1,
radian measure of 6 is s.

(b)

QUICK CHECK 1 What is the radian measure of a 270° angle? What is the degree measure

of a 57 /4-rad angle? <

Trigonometric Functions

For acute angles, the trigonometric functions are defined as ratios of the lengths of the
sides of a right triangle (Figure 1.46). To extend these definitions to include all angles, we
work in an xy-coordinate system with a circle of radius  centered at the origin. Suppose
that P(x, y) is a point on the circle. An angle 6 is in standard position if its initial side is
on the positive x-axis and its terminal side is the line segment OP between the origin and
P. An angle is positive if it is obtained by a counterclockwise rotation from the positive
x-axis (Figure 1.47). When the right-triangle definitions of Figure 1.46 are used with the
right triangle in Figure 1.47, the trigonometric functions may be expressed in terms of x,

v, and the radius of the circle, r =

Hypotenuse (H)

Opposite
side (O)
A [
Adjacent side (A)
N _A
sinf = H cosfh = H
_0 _A
tanf = A coth = 0
_H _H
sech = A csch = 0
Figure 1.46

x2 + yz.

P(x, y)
r="Va2 +y?

o

A positive angle 6 results from
a counterclockwise rotation.

Figure 1.47

DEFINITION Trigonometric Functions

Let P(x, y) be a point on a circle of radius r associated with the angle 6. Then

sinf = X,
’

cotf =

=, =

cos 0

sec 0

X
-, tan @ = X,
r X

;
2 csch = —.
y
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» Standard triangles
-+
2° 2
_ 87
=3
Figure 1.49
(3]
2° 72
_ U=z e
0= 3 T?
1
2
Figure 1.50

To find the trigonometric functions of the standard angles (multiples of 30° and 45°),
it is helpful to know the radian measure of those angles and the coordinates of the associ-
ated points on the unit circle (Figure 1.48).

©, D

0° = 0 radians

(=1,0)

(1,0)

Figure 1.48 0, -1

Combining the definitions of the trigonometric functions with the coordinates shown in
Figure 1.48, we may evaluate these functions at any standard angle. For example,

sin 2m _ V3 cos S V3 tan m ! tan 3T is undefined
in— = ——, — = -, — = ——is undefined,
3 2 6 2 6 V3
5 1 7 3

cot?w = _W’ sec Tw = V72, csc 777 = —1, sec%is undefined.
EXAMPLE 1 Evaluating trigonometric functions Evaluate the following expressions.
a. sin (87/3) b. csc (—117/3)
SOLUTION

a. The angle 87 /3 = 27 + 27 /3 corresponds to a counterclockwise revolution of one
full circle (277 radians) plus an additional 27 /3 radians (Figure 1.49). Therefore, this
angle has the same terminal side as the angle 277 /3, and the corresponding point on
the unit circle is (—1/2, V/3/2). It follows that sin (87/3) = y = V3/2.

b. The angle 8 = —117/3 = =27 — 517 /3 corresponds to a clockwise revolution of
one full circle (27 radians) plus an additional 57 /3 radians (Figure 1.50). Therefore,
this angle has the same terminal side as the angle 77 /3. The coordinates of the corre-
sponding point on the unit circle are (1/2, V3/2),socsc (—117/3) = 1/y = 2/V3.

Related Exercises 9-22 <

QUICK CHECK 2 Evaluate cos (1177/6) and sin (57 /4). <



» In addition, to these identities, you should
be familiar with the Law of Cosines and
the Law of Sines. See Exercises 66
and 67.

=
=

» By rationalizing the denominator

o8

observe that

$I-
SIS

B
V2

» Notice that the assumption cos 2x # 0 is
valid for these values of x.
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Trigonometric Identities

Trigonometric functions have a variety of properties, called identities, that are true for all
angles in their domain. Here is a list of some commonly used identities.

Trigonometric Identities

Reciprocal Identities

tan 0 sin 6 ‘0 1 cos 6
an 0 = coth = = —

cos 0 tan 6 sin 6

0 ! 0
csch = sec =
sin 6 cos 0
Pythagorean Identities
sin?f + cos’0 = 1 1 + cot?6 = csc?0 tan’0 + 1 = sec’6

Double- and Half-Angle Formulas

sin 20 = 2 sin 6 cos 0 cos 20 = cos’# — sin’6
1 + cos 260 . 5 1 — cos 26
e sin“ = ——

2 —
0 =
COS 5 )

QUICK CHECK 3 Use sin” @ + cos?# = 1 to prove that 1 + cot’§ = csc’6. <

EXAMPLE 2 Solving trigonometric equations Solve the following equations.
a. \V2sinx+1=0 b. cos 2x = sin 2x, where 0 = x < 27
SOLUTION

a. First, we solve for sin x to obtain sinx = —1/V2 = —V/2/2. From the unit circle
(Figure 1.48), we find that sinx = —\/2/2if x = 57 /4 or x = 77 /4. Adding inte-
ger multiples of 27 produces additional solutions. Therefore, the set of all solutions is

S 1
x=7+2n7r and x=7+2mr, forn =0, x1, X2, £3,....

b. Dividing both sides of the equation by cos 2x (assuming cos 2x # (), we obtain
tan 2x = 1. Letting § = 2x gives us the equivalent equation tan § = 1. This equation
is satisfied by

921,7,7,74, 4,....

Dividing by two and using the restriction 0 = x < 27 gives the solutions

Related Exercises 23—40 <

Graphs of the Trigonometric Functions

Trigonometric functions are examples of periodic functions: Their values repeat over ev-
ery interval of some fixed length. A function f is said to be periodic if f(x + P) = f(x),
for all x in the domain, where the period P is the smallest positive real number that has
this property.
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Period of Trigonometric Functions

The functions sin 6, cos 6, sec 0, and csc 6 have a period of 27:

sin (0 + 27) = sin6 cos (6 + 2m) = cos O
sec (6 + 2m) = secd csc (6 + 2m) = csc b,

for all 6 in the domain.
The functions tan # and cot 6 have a period of 7:

tan (0 + 7) = tan 6 cot (0 + m) = cot#,

for all 6 in the domain.

The graph of y = sin 6 is shown in Figure 1.51a. Because csc § = 1/sin 6, these
two functions have the same sign, but y = csc 6 is undefined with vertical asymptotes
at = 0, £, =27, .... The functions cos 0 and sec 6 have a similar relationship
(Figure 1.51b).

[The graphs of y = sin 6 and its reciprocal, y = csc 9]

[The graphs of y = cos 6 and its reciprocal, y = sec 0]

Y | | | | Y | | |
| | | | | | |
R | | | | + i | |
| | | | | | | = sec 0
i | | | I\ y=csch 1 /i | | y = sec
| | | 1\ | | |
| | | | | & | | |
- | | | I ,y=sin@ | | | -
y =cosf
: I I I :/ I I I :
U 0 i &l 5 fim 4w 0
42 | + 2 2 2 2
| | | | | |
i | | 1 | | |
| | | | | |
| | | | | |
| | + | | |
| | | | | |
| | | | | |
(a) (b)
Figure 1.51

The graphs of tan 0 and cot 6 are shown in Figure 1.52. Each function has points, sepa-
rated by 77 units, at which it is undefined.

[ The graph of y = tan 6 has period 7. ]

[ The graph of y = cot 6 has period 7. ]

Y | | | | Y | | | |

| | | | | | | |
4+ | | | | - | | | |

| | | | | | | |
1| | | | 1 | | | [ —

I I I | y=tan@ I I I (| y=cotd

| | | | | | | |
1/ | | | 1+ | | | |

| | | | | | | |

1 1 1 1 1 1 1 1

T T T T T T T T

7 [7 3w Lm 57 fr Tx fpmx 0 a\ 7 3m\ 27 5™\ 37 1m\ 47 0
4+ 2 2 2 2 4+ 2\ 2\ 2\ 2\

| | | | | | | |
1 | | | 1 | | | |

| | | | | | | |

| | | | | | | |
+ 1 | | | = | | | |

| | | | | | | |

| | | | | | | |

(a) (b)

Figure 1.52
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Transforming Graphs

Many physical phenomena, such as the motion of waves or the rising and setting of the
sun, can be modeled using trigonometric functions; the sine and cosine functions are es-
pecially useful. Using the transformation methods introduced in Section 1.2, we can show
that the functions

y=Asin(B(0 — C)) +D and y =Acos(B(0 — C)) + D,

when compared to the graphs of y = sin6 and y = cos 6, have a vertical stretch (or am-
plitude) of |A|, a period of 277 /| B|, a horizontal shift (or phase shift) of C, and a verti-
cal shift of D (Figure 1.53).

For example, at latitude 40° north (Beijing, Madrid, Philadelphia), there are 12 hours
of daylight on the equinoxes (approximately March 21 and September 21), with a maxi-
mum of 14.8 hours of daylight on the summer solstice (approximately June 21) and a
minimum of 9.2 hours of daylight on the winter solstice (approximately December 21).
Using this information, it can be shown that the function

2m

D(t) = 2.8si t—81) |+ 12

() = 285in (2% - s1))

models the number of daylight hours 7 days after January 1 (Figure 1.54; Exercise 58). The
graph of this function is obtained from the graph of y = sin ¢ by (1) a horizontal scaling

by a factor of 277 /365, (2) a horizontal shift of 81, (3) a vertical scaling by a factor of 2.8,

and (4) a vertical shift of 12.

y=Asin(B(® — C)) + D

Horizontal shift C

Amplitude Al
D+ A+

y (hours) Daylight function gives length
of day throughout the year.

D — A
(0]
Vertical shift D 27
IBI
Figure 1.53

SECTION 1.3 EXERCISES

Review Questions

1. Define the six trigonometric functions in terms of the sides of a
right triangle.

2. Explain how a point P(x, y) on a circle of radius r determines an
angle 0 and the values of the six trigonometric functions at 6.

3. How is the radian measure of an angle determined?

4. Explain what is meant by the period of a trigonometric function.
What are the periods of the six trigonometric functions?

5.  What are the three Pythagorean identities for the trigonometric
functions?

6. How are the sine and cosine functions related to the other four
trigonometric functions?

7.  Where is the tangent function undefined?

8. What is the domain of the secant function?

6+ D(1) = 2.8 sin (%(1781))+ 12
3 ——
} } } }
0 81 173 265 356 t (days)
Jan 1 Mar 21 June 21 Sep 21 Dec 21
Figure 1.54

Basic Skills

9-16. Evaluating trigonometric functions Evaluate the following
expressions using a unit circle. Use a calculator to check your work.
All angles are in radians.

9. cos(27/3) 10. sin (27/3) 11. tan (—37/4)
12. tan (157 /4) 13. cot (—137/3) 14. sec (77/6)
15. cot (—177/3) 16. sin (167/3)

17-22. Evaluating trigonometric functions Evaluate the following
expressions or state that the quantity is undefined. Use a calculator to
check your work.

17. cosO 18. sin (—7/2) 19. cos (—)
20. tan 3w 21. sec (57/2) 22. cotmw



32 CHAPTER 1 ¢ FUNCTIONS

23-30. Trigonometric identities

1
cos 6’

23. Prove that sec 0 =

sin O
24. Prove that tan 0 =

cos 6’
25. Prove that tan’ 6 + 1 = sec? 0.

sin 6 cosf

26. Prove that

csch  sech

27. Prove that sec (7/2 — ) = csc .

28. Prove that sec (x + 7) = —sec x.

29. Find the exact value of cos (7 /12).

30. Find the exact value of tan (37/8).

31-40. Solving trigonometric equations Solve the following equations.
31. tanx =1 32. 20cosf + 6 =0
33, sinfd=Lo0=0<2m

35. V2sinx—1=0

34. cos’ =10=0<2m

36. sin3x:$,05x<277

37. cos3x =sin3x, 0 = x <27
38. sin®0 —1=0

39. sinfcosf = 0,0 =6 <27
40. tan’20 = 1,0 =60 <m

Further Explorations

41. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. sin (a + b) = sina + sinb.

. The equation cos § = 2 has multiple real solutions.

The equation sin § = %has exactly one solution.

. The function sin (7x/12) has a period of 12.

Of the six basic trigonometric functions, only tangent and
cotangent have a range of (—, ).

e e

42-45. One function gives all six Given the following information
about one trigonometric function, evaluate the other five functions.

4

42. sin0=f§andﬂ-<0<3ﬂ'/2
5

43. cosO=Eand0<9<n’/2
5

44. se06=§and3ﬂ'/2<0<2ﬂ'

13
45. csch = BandO <0<m/2
46—49. Amplitude and period Identify the amplitude and period of the
following functions.
46. f(6) = 2sin20
47. g(0) = 3cos (6/3)

56.

i 57.

48. p(r) = 2.5sin (3(r — 3))
49. g(x) = 3.6 cos (mx/24)

50-53. Graphing sine and cosine functions Beginning with the
graphs of y = sinx ory = cos x, use shifting and scaling transforma-
tions to sketch the graph of the following functions. Use a graphing
utility to check your work.

50. f(x) = 3sin2x

51. g(x) = —2cos (x/3)

52. p(x) = 3sin (2x — w/3) + 1
53. g(x) = 3.6cos (mx/24) + 2

54-56. Designer functions Design a sine function with the given
properties.

54. It has a period of 12 hr with a minimum value of —4 at# = O hr
and a maximum value of 4 at t = 6 hr.

55. It has a period of 24 hr with a minimum value of 10 at = 3 hr
and a maximum value of 16 at# = 15 hr.

It has a period of 24 hr with a maximum value of 25 at# = 6 hr
and a minimum value of 5 at + = 18 hr.

A surprising result The Earth is approximately circular in cross
section, with a circumference at the equator of 24,882 miles.
Suppose we use two ropes to create two concentric circles: one by
wrapping a rope around the equator and another using a rope 38 ft
longer (see figure). How much space is between the ropes?

Applications
58. Daylight function for 40° N Verify that the function

2m

D(t) = 2.8 sin(365 (r — 81)) + 12

has the following properties, where ¢ is measured in days and D is
the number of hours between sunrise and sunset.

a. Ithas a period of 365 days.

b. Its maximum and minimum values are 14.8 and 9.2, respec-
tively, which occur approximately at + = 172 and t = 355,
respectively (corresponding to the solstices).

c. D(81) = 12 and D(264) = 12 (corresponding to the
equinoxes).

59. Block on a spring A light block hangs at rest from the end of a
spring when it is pulled down 10 cm and released (see figure).
Assume the block oscillates with an amplitude of 10 cm on either
side of its rest position with a period of 1.5 s. Find a trigonometric
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function d(#) that gives the displacement of the block # seconds after sunrise and the earliest sunset do not occur on the winter solstice,

it is released, where d(¢) > 0 represents downward displacement. and the earliest sunrise and the latest sunset do not occur on the
= summer solstice. At latitude 40° north, the latest sunrise occurs on
= January 4 at 7:25 A.M. (14 days after the solstice), and the earliest
% sunset occurs on December 7 at 4:37 p.M. (14 days before the sol-
= stice). Similarly, the earliest sunrise occurs on July 2 at 4:30 A.m.
% (14 days after the solstice) and the latest sunset occurs on June 7
= at 7:32 p.M. (14 days before the solstice). Using sine functions,

3 devise a function s(7) that gives the time of sunrise 7 days after
= January 1 and a function S(7) that gives the time of sunset ¢ days

<o after January 1. Assume that s and S are measured in minutes and

s = 0and § = 0 correspond to 4:00 A.M. Graph the functions.

Then graph the length of the day function D(¢) = S(t) — s(¢)
60. Approaching a lighthouse A boat approaches a 50-ft-high light- and show that the longest and shortest days occur on the solstices.
house whose base is at sea level. Let d be the distance between the
boat and the base of the lighthouse. Let L be the distance between
the boat and the top of the lighthouse. Let 6 be the angle of eleva-

tion between the boat and the top of the lighthouse.

64. Viewing angles An auditorium with a flat floor has a large flat-
panel television on one wall. The lower edge of the television is
3 ft above the floor and the upper edge is 10 ft above the floor

) (see figure). Estimate the viewing angle 6 at a distance x = 10 ft
a. Express d as a function of 6. from the screen.

b. Express L as a function of 6.

61. Ladders Two ladders of length a lean against opposite walls of an
alley with their feet touching (see figure). One ladder extends
h feet up the wall and makes a 75° angle with the ground. The
other ladder extends & feet up the opposite wall and makes a
45° angle with the ground. Find the width of the alley in terms of /.
Assume the ground is horizontal and perpendicular to both walls.

Additional Exercises

65. Area of a circular sector Prove that the area of a sector of a
circle of radius r associated with a central angle # (measured in
radians) is A = 377 6.

62. Pole in a corner A pole of length L is carried horizontally around
a corner where a 3-ft-wide hallway meets a 4-ft-wide hallway (see
figure). For 0 < 6 < ar/2, find the relationship between L and 0 "%

at the moment when the pole simultaneously touches both walls
and the corner P. Estimate § when L = 10 ft.

66. Law of Cosines Use the figure to prove the Law of Cosines

| d (which is a generalization of the Pythagorean theorem):
c* = a* + b* — 2abcos 6.
Pole, length L
; 4 ft y

3 / 0 (b cos 0, b sin )
=
P .
h
3 N

a (a,0)

63. Little-known fact The shortest day of the year occurs on the
winter solstice (near December 21) and the longest day of the year
occurs on the summer solstice (near June 21). However, the latest
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67. Law of Sines Use the figure to prove the Law of Sines:
sinA _ sinB _ sinC

a b c

CHAPTER1 REVIEW EXERCISES

QUICK CHECK ANSWERS

1. 37/2;225° 2. V/3/2;—V2/2 3. Divide both
sides of sin”# + cos® 6 = 1 by sin’ 6. <

1. Explain why or why not Determine whether the following state- S.
ments are true and give an explanation or counterexample.
a. A function could have the property that f(—x) = f(x), for all x.
b. cos (a + b) = cosa + cos b, forall a and b in [0, 27].
c. If f is a linear function of the form f(x) = mx + b, then
f(u +v) = f(u) + f(v), forall u and v.

d. The function f(x) = 1 — x has the property that f( f(x)) = x.  10.

e. Theset {x:|x + 3| > 4} can be drawn on the number line
without lifting your pencil.

11.
2. Domain and range Find the domain and range of the following
functions.
1
a. f(x) =2+ Vax b. g(y) = ))—72

c h(z) =

3. Equations of lines In each part below, find an equation of the line
with the given properties. Graph the line.
a. The line passing through the points (2, —3) and (4, 2)
b. The line with slope 3 and x-intercept (—4, 0)
c. The line with intercepts (4, 0) and (0, —2)

4. Piecewise linear functions The parking costs in a city garage
are $2 for the first half hour and $1 for each additional half hour.
Graph the function C = f() that gives the cost of parking for
t hours, where 0 = ¢t = 3.

5. Graphing absolute value Consider the function f(x) =
2 (x — |x|). Express the function in two pieces without using the

absolute value. Then graph the function by hand. Use a graphing

utility to check your work. 14.

6. Function from words Suppose you plan to take a 500-mile trip in
a car that gets 35 mi/gal. Find the function C = f(p) that gives
the cost of gasoline for the trip when gasoline costs $p per gallon.

7. Graphing equations Graph the following equations. Use a graph-

ing utility to check your work.

. 2x—3y+10=0
y=x>+2x—3
22+ Y+ 4y +1=0
LxP =2+ yP -8y +5=0

o

an T

V2 —2:-3 12.

13.

Root functions Graph the functions f(x) = x'/? and
g(x) = x'/* Find all points where the two graphs intersect. For

x > 1,is f(x) > g(x) oris g(x) > f(x)?

Root functions Find the domain and range of the functions
F(x) = x"7 and g(x) = x4,

Intersection points Graph the equations y = x* and
x2 + y*> =17y + 8 = 0. At what point(s) do the curves intersect?

Boiling-point function Water boils at 212° F at sea level and at
200° F at an elevation of 6000 ft. Assume that the boiling point B
varies linearly with altitude a. Find the function B = f(a) that
describes the dependence. Comment on whether a linear function
is a realistic model.

Publishing costs A small publisher plans to spend $1000 for
advertising a paperback book and estimates the printing cost is
$2.50 per book. The publisher will receive $7 for each book sold.

a. Find the function C = f(x) that gives the cost of producing
x books.

b. Find the function R = g(x) that gives the revenue from selling
x books.

c. Graph the cost and revenue functions; then find the number of
books that must be sold for the publisher to break even.

Shifting and scaling Starting with the graph of f(x) = x, plot
the following functions. Use a graphing calculator to check your
work.

a. fx+3) b.2f(x—4) ¢ —f3x) d. f(2(x —3))

Shifting and scaling The graph of fis shown in the figure. Graph
the following functions.

a. fx+1) b 2f(x—1) ¢ —f(x/2) d f2(x — 1))




15. Composite functions Let f(x) = x>

h(x) = V.
a. Evaluate h(g(7/2)).

c. Find f(g(h(x))).
e. Find the range of fo g.

,g(x) = sinx, and

b. Find h( f(x)).
d. Find the domain of g o f.

16. Composite functions Find functions f and g such that h = fo g.
a. h(x) = sin (x2 + 1) b. h(x) = (x* — 4)73

17-20. Simplifying difference quotients Evaluate and simplify the
fe+h) —flx)  flx) = fla)

difference quotients W and for each
X—a

function.

17. f(x) = x> — 2x 18. f(x) = 4 — 5x

20, f(x) = —

19. =x’+2 =
9f(x) o x+3

21. Symmetry Identify the symmetry (if any) in the graphs of the
following equations.
a. y = cos 3x b. y =3x*—3x2+ 1
c. Y —4x>=4

22. Trigonometric identities Prove each of the following identities.

1 + cosf sin 6 . .
: = (Hint: Multiply numerator and
sin 6 1 — cosé
. 1 + cos6
denominator of —————by 1 — cos .)
sin 6

secl —1  tan0

tan 6 secH — 1

23. Degrees and radians

a. Convert 135° to radian measure.

b. Convert 477 /5 to degree measure.

c. What is the length of the arc on a circle of radius 10 associated
with an angle of 47 /3 (radians)?

24. Graphing sine and cosine functions Use shifts and scalings
to graph the following functions and identify the amplitude and
period.

a. f(x) = 4cos (x/2)
c. h(0) = —cos (2(0 — m/4))

b. g(6) = 2sin (2m0/3)

25. Designing functions Find a trigonometric function f that satisfies
each set of properties. Answers are not unique.

a. It has a period of 6 with a minimum value of —2 at r = 0 and
a maximum value of 2 at = 3.

b. It has a period of 24 with a maximum value of 20 at ¢+ = 6 and
a minimum value of 10 at # = 18.

26. Graph to function Find a trigonometric function f represented
by the graph in the figure.

A
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Review Exercises

27. Matching Match each function a—f with the corresponding
graphs A-F.

a. f(x) = —sinx b. f(x) = cos2x
c. f(x) = tan (x/2) d. f(x) = —secx
e. f(x) = cot2x f. f(x) = sin’x
y
- %T i 757 T X
(A)
I y I
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Chapter 1 Guided Projects

information, see the Preface.

* Problem-solving skills

Functions in action I

Constant rate problems

\:.\
|
vy
vy
3
=

(F)

28-29. Intersection points Find the points at which the curves inter-
sect on the given interval.

28. y
29. y

secxandy = 2on (—7/2,7/2)

sinxand y = — on (0, 277)

30. Stereographic projections A common way of displaying a

sphere (such as Earth) on a plane (such as a map) is to use a
stereographic projection. Here is the two-dimensional version
of the method, which maps

a circle to a line. Let P be North Pole

a point on the right half of

a circle of radius R identi- R

fied by the angle ¢. Find

the function x = F(¢) R P

that gives the x-coordinate
(x = 0) corresponding to ¢ :

for0 < ¢ = . 0 x

Applications of the material in this chapter and related topics can be found in the following Guided Projects. For additional

Functions in action II
Supply and demand
* Phase and amplitude
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Chapter PrEVIEW All of calculus is based on the idea of a limit. Not only are The Idea of Limits
limits important in their own right but they also underlie the two fundamental operations
of calculus: differentiation (calculating derivatives) and integration (evaluating integrals).
Derivatives enable us to talk about the instantaneous rate of change of a function, which, Techniques for Computing
in turn, leads to concepts such as velocity and acceleration, population growth rates, mar- Limits

ginal cost, and flow rates. Integrals enable us to compute areas under curves, surface areas, Infinite Limits

and volumes. Because of the incredible reach of this single idea, it is essential to develop a
solid understanding of limits. We first present limits intuitively by showing how they arise
in computing instantaneous velocities and finding slopes of tangent lines. As the chapter Continuity
progresses, we build more rigor into the definition of the limit and examine different ways
in which limits arise. The chapter concludes by introducing the important property of con-
tinuity and by giving the formal definition of a limit.

2.1 The Idea of Limits

This brief opening section illustrates how limits arise in two seemingly unrelated problems:
finding the instantaneous velocity of a moving object and finding the slope of a line tangent
to a curve. These two problems provide important insights into limits on an intuitive level. In
the remainder of the chapter, we develop limits carefully and fill in the mathematical details.

Limits

Definitions of Limits

Limits at Infinity

Precise Definitions of Limits

Average Velocity

Suppose you want to calculate your average velocity as you travel along a straight highway.
If you pass milepost 100 at noon and milepost 130 at 12:30 p.M., you travel 30 miles in a half
hour, so your average velocity over this time interval is (30 mi) /(0.5 hr) = 60 mi/hr.
By contrast, even though your average velocity may be 60 mi /hr, it’s almost certain that
your instantaneous velocity, the speed indicated by the speedometer, varies from one
moment to the next.

EXAMPLE 1 Average velocity A rock is launched vertically upward from the ground
with a speed of 96 ft/s. Neglecting air resistance, a well-known formula from physics
states that the position of the rock after ¢ seconds is given by the function

s(t) = —161> + 96t.

The position s is measured in feet with s = 0 corresponding to the ground. Find the aver-
age velocity of the rock between each pair of times.

a.t=1sandt = 3s b.t=1sandr = 2s



38

CHAPTER 2

LiMiITs

144 +—

80

Height above ground (ft)

Va

SOLUTION Figure 2.1 shows the position function of the rock on the time interval 0 = ¢ = 3.
The graph is not the path of the rock. The rock travels up and down on a vertical line.

Position of rock ¢
at various times ’ s(t) = — 161 + 96t

(3,53)
s@)=l44fte—1444+—-———————————=

s(2) =128 ft - —128 +———————— (2, 5(2))

s(1) =80ft&——80+————4 (1, s5(1))

Height above ground (ft)

0 1 2 3 !
Time (s)

Figure 2.1

a. The average velocity of the rock over any time interval [ 7, ¢, ] is the change in posi-
tion divided by the elapsed time:

s(t1) — s(t)
h—ty
Therefore, the average velocity over the interval [1, 3] is

Cs(3) —s(1) 144t — 80ft 641t

v 3 -1 3s — 1s 2s

= 32 ft/s.

Here is an important observation: As shown in Figure 2.2a, the average velocity is
simply the slope of the line joining the points (1, s(1)) and (3, s(3)) on the graph of
the position function.

b. The average velocity of the rock over the interval [ 1, 2] is

_os(2) —s(1)  128ft — 80ft  48ft
2 -1 2s —1s 1s

= 48 fi/s.

av

Again, the average velocity is the slope of the line joining the points (1, s(1)) and
(2, 5(2)) on the graph of the position function (Figure 2.2b).

, = slope = )

64 Sﬂ = 48 fi/s

= 32 ft/s v,, = slope =

a

48 ft
1s

(2, 128)

[N
3

Change in position
=s(3) — s(1)
= 64 ft

} Change in position
I =5(2) — s(1)
! =48 ft

(o]
(=]
f
[

[

[

Elapsed time
=3s—1s=2s

Elapsed time
=2s—1s=1s

Height above ground (ft)

Figure 2.2

1 2 3 t 0 1 2 3 1
Time (s) Time (s)

(a) ()

Related Exercises 7-14 <



» See Section 1.1 for a discussion of secant

lines.
Table 2.1
Time Average

interval velocity
[1,2] 48 ft/s
[1,1.5] 56 ft/s
[1,1.1] 62.4ft/s
[1,1.01] 63.84 ft/s
[1,1.001] 63.984 ft/s
[1,1.0001] 63.9984 ft/s

» The same instantaneous velocity is
obtained as ¢ approaches 1 from the left
(with # < 1) and as ¢ approaches 1 from
the right (with z > 1).

0 t 1 t 2 t
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QUICK CHECK 1 In Example 1, what is the average velocity between t = 2 and t = 37 <

In Example 1, we computed slopes of lines passing through two points on a curve.
Any such line joining two points on a curve is called a secant line. The slope of the secant
line, denoted my, for the position function in Example 1 on the interval [, 7] is

e — s(t1) — s(to)
sec t — to .

Example 1 demonstrates that the average velocity is the slope of a secant line on the graph
of the position function; that is, v,, = mg. (Figure 2.3).

s(1,) — s(1,)

V«'lV = mSSC = t —_ t
1Yo
Change in position
= s(t)) — s(t,)
= s
&
<
5 s(tpT .
9] \
bl
1) |
g |
4 N P &
£ T
%3 Change in time
5 =1 —t
k> : : 1Yo
0 t
Ty h
Time (s)

Figure 2.3

Instantaneous Velocity

To compute the average velocity, we use the position of the object at two distinct points
in time. How do we compute the instantaneous velocity at a single point in time? As il-
lustrated in Example 2, the instantaneous velocity at a point t = ¢, is determined by com-
puting average velocities over intervals [ 7o, ;] that decrease in length. As ¢, approaches
19, the average velocities typically approach a unique number, which is the instantaneous
velocity. This single number is called a limit.

QUICK cHECK 2 Explain the difference between average velocity and instantaneous
velocity. <«

EXAMPLE 2 Instantaneous velocity Estimate the instantaneous velocity of the rock in
Example 1 at the single point t = 1.

SOLUTION We are interested in the instantaneous velocity at t = 1, so we compute the
average velocity over smaller and smaller time intervals [ 1, ¢] using the formula

_ sl = s()

-1

av

Notice that these average velocities are also slopes of secant lines, several of which are
shown in Table 2.1. For example, the average velocity on the interval [1, 1.0001] is
63.9984 ft/s. Because this time interval is so short, the average velocity gives a good
approximation to the instantaneous velocity at # = 1. We see that as ¢ approaches 1, the
average velocities appear to approach 64 ft/s. In fact, we could make the average veloc-
ity as close to 64 ft/s as we like by taking ¢ sufficiently close to 1. Therefore, 64 ft /s is a
reasonable estimate of the instantaneous velocity at r = 1.

Related Exercises 15-20 <

In language to be introduced in Section 2.2, we say that the limit of v, as t approaches
1 equals the instantaneous velocity vi,, which is 64 ft/s. This statement is illustrated in
Figure 2.4 and written compactly as

. . s(r) — (1)
Vingt = limv,, = lim
t—1 t—1 r—

= 64 ft/s.
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» We define tangent lines carefully in
Section 3.1. For the moment, imagine
zooming in on a point P on a smooth
curve. As you zoom in, the curve appears
more and more like a line passing
through P. This line is the tangent line at
P. Because a smooth curve approaches a
line as we zoom in on a point, a smooth
curve is said to be locally linear at any
given point.

y — \
P
N Py

QUICK CHECK 3 In Figure 2.5, is m,, at
t = 2 greater than or less than m,,, at
t=17<

Position of rock
at various times

s —s(1) _ 128 —80
128 ft — ./I:ZSGC */ Vav = 2—1 - 1 =48 1Us
_s(1.5) —s(1) _ 108 — 80 _ ‘
108 ft — @ t = 1.5 sec Voo T T 15-1 03 = 56 ft/s
Cs(LD) —s(1) _ 8624 —80 _
86.24 ft — ® 1 = 1.1 sec ]/Vav— =1 o1 6z4fus
80ft — @ r=1sec - see v = 64 fis

inst

... the average velocities approach 64 ft/s—

I As these intervals shrink...
the instantaneous velocity atz = 1.

t = 0 (rock thrown at 96 ft/s)
Figure 2.4

Slope of the Tangent Line

Several important conclusions follow from Examples 1 and 2. Each average velocity in
Table 2.1 corresponds to the slope of a secant line on the graph of the position function
(Figure 2.5). Just as the average velocities approach a limit as ¢ approaches 1, the slopes of
the secant lines approach the same limit as ¢ approaches 1. Specifically, as ¢ approaches 1,
two things happen:

1. The secant lines approach a unique line called the tangent line.

2. The slopes of the secant lines mg.. approach the slope of the tangent line m,, at the
point (1, s(1)). Therefore, the slope of the tangent line is also expressed as a limit:

s(r) — s(1)

= 64.
t—1

Mgy = lim mge, = lim

This limit is the same limit that defines the instantaneous velocity. Therefore, the
instantaneous velocity at 1 = 1 is the slope of the line tangent to the position curve att = 1.

Slopes of the secant lines approach

s slope of the tangent line. m, =64  mg =624
= mg. = 56
% The secant lines approach my, =48
=] the tangent line.
2 128+
& 2., 128)
o 108+
o) (1.5, 108)
s (1, 80)
E 807 ’ (1.1, 86.24)
=
Q
=

s(f) = —16¢% + 96¢
f — f f
0 05 1\, 15 2.0 t

Time (s)
Figure 2.5

The parallels between average and instantaneous velocities, on one hand, and be-
tween slopes of secant lines and tangent lines, on the other, illuminate the power behind
the idea of a limit. As t — 1, slopes of secant lines approach the slope of a tangent line.
And as t — 1, average velocities approach an instantaneous velocity. Figure 2.6 summa-
rizes these two parallel limit processes. These ideas lie at the foundation of what follows
in the coming chapters.
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AVERAGE VELOCITY <— > SECANT LINE

<~ (1) = — 16> + 961

Average velocity is the

Slope of the secant line is

change in position divided

by the change in time:

_ S(tl) - s(to)
h=h

av

As the time interval
shrinks, the average
velocity approaches
the instantaneous
velocity atr = 1.

The instantaneous velocity
at r = 1 is the limit of the
average velocities as ¢
approaches 1.

Figure 2.6

\ the change in s divided by
the change in 7:

18— m . 128) s(t)) = s(ty)
m el — .

sec =1

0.5 1.0 L5 2.0 !
3
B B~ (1.5, 108)
80— (1, 80)
msec = vaV = 56

As the interval on the

} } } } > | r-axis shrinks, the slope of
0.5 1.0 15 2.0 I the secant line approaches
the slope of the tangent
line through (1, 80).

o b (1.1, 86.24)

(1, 80)

mg =v, =624

0.5 1.0 15 2.0 t

The slope of the tangent
line at (1, 80) is the limit
of the slopes of the secant
lines as ¢ approaches 1.

_ i SO — s _
mmn—lgxll Y =64

~Y

Slope of the tangent line = 64
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SECTION 2.1 EXERCISES

Review Questions 12.

1.

Suppose s(7) is the position of an object moving along a line at
time ¢ = 0. What is the average velocity between the times t = a
and t = b?

Suppose s(7) is the position of an object moving along a line
at time r = 0. Describe a process for finding the instantaneous
velocity at t = a.

What is the slope of the secant line that passes through the points
(a,f(a)) and (b, f(b)) on the graph of f?

Describe a process for finding the slope of the line tangent to the
graph of f at (a, f(a)).

Describe the parallels between finding the instantaneous velocity
of an object at a point in time and finding the slope of the line
tangent to the graph of a function at a point on the graph.

Graph the parabola f(x) = x2. Explain why the secant lines
between the points (—a, f(—a)) and (a, f(a)) have zero slope.
What is the slope of the tangent line at x = 0?

Basic Skills

7.

no.

10.

11.

Average velocity The function s() represents the position of an 14.

object at time # moving along a line. Suppose s(2) = 136 and
s(3) = 156. Find the average velocity of the object over the
interval of time [2, 3].

Average velocity The function s(7) represents the position of
an object at time 7 moving along a line. Suppose s(1) = 84 and
s(4) = 144. Find the average velocity of the object over the
interval of time [ 1, 4].

Average velocity The position of an object moving vertically
along a line is given by the function s() = —16> + 128t. Find
the average velocity of the object over the following intervals.

a. [1,4] b. [1,3]

c [1,2] d. [1,1 + h], where h > 0 is a real number

Average velocity The position of an object moving vertically
along a line is given by the function s(¢) = —4.9¢> + 30t + 20.
Find the average velocity of the object over the following
intervals.

a. [0,3]
c. [0,1]

b. [0,2]
d. [0, h], where i > 0 is a real number

Average velocity The table gives the position s(¢) of an object
moving along a line at time #, over a two-second interval. Find the
average velocity of the object over the following intervals.

a. [0,2] b. [0,1.5]
c. [0,1] d. [0,0.5]
17.
t 0(05] 1 [15] 2

s())y [ 0] 30 | 52|66 | 72

13.

15.

16.

Average velocity The graph gives the position s(#) of an object
moving along a line at time 7, over a 2.5-second interval. Find the
average velocity of the object over the following intervals.

a. [0.5,2.5] b. [0.5,2]
c. [0.5,1.5] d. [0.5,1]
$ s(1)
150 —————mm e —
1B36+-——————""="==———~— |
M4 ————mm | |
Baf-———— T
| | | |
wt-—x" 1 1
| | | | |
l l l l l
0.'5 i 1.'5 é 2!5 t

Average velocity Consider the position function

s(f) = —161> + 100t representing the position of an object
moving vertically along a line. Sketch a graph of s with the secant
line passing through (0.5, 5(0.5)) and (2, s(2)). Determine the
slope of the secant line and explain its relationship to the moving
object.

Average velocity Consider the position function s(¢) = sin 7t
representing the position of an object moving along a line on

the end of a spring. Sketch a graph of s together with a secant
line passing through (0, s(0)) and (0.5, s(0.5)). Determine the
slope of the secant line and explain its relationship to the moving
object.

Instantaneous velocity Consider the position function

s(f) = —161% + 128t (Exercise 9). Complete the following table
with the appropriate average velocities. Then make a conjecture
about the value of the instantaneous velocity at t = 1.

Time

interval [1’ 21

[1,1.5] | [1,1.1]{ [1,1.01] | [1,1.001]

Average
velocity

Instantaneous velocity Consider the position function

s(f) = —4.91> + 30t + 20 (Exercise 10). Complete the following
table with the appropriate average velocities. Then make a
conjecture about the value of the instantaneous velocity at t = 2.

Time

interval [2’ 31

[2,2.5] | [2.2.1]{ [2.2.01] | [2,2.001]

Average
velocity

Instantaneous velocity The following table gives the position
s(t) of an object moving along a line at time 7. Determine the
average velocities over the time intervals [1, 1.01], [1, 1.001],



and [ 1, 1.0001]. Then make a conjecture about the value of the
instantaneous velocity at r = 1.

1.0001
64.00479984

1.001
64.047984

1.01
64.4784

t 1
s(?) 64

Instantaneous velocity The following table gives the position
s(t) of an object moving along a line at time z. Determine the
average velocities over the time intervals [2,2.01], [2, 2.001],
and [2,2.0001]. Then make a conjecture about the value of the
instantaneous velocity at r = 2.

18.

t 2
s(2) | 56

Instantaneous velocity Consider the position function

s(f) = —161* + 100z. Complete the following table with the
appropriate average velocities. Then make a conjecture about the
value of the instantaneous velocity at ¢ = 3.

2.0001
55.99959984

2.001
55.995984

2.01
55.9584

19.

Time interval
(2.3]
[2.9,3]
[2.99, 3]
[

[

Average velocity

2.999, 3]
2.9999, 3]

20. Instantaneous velocity Consider the position function

s(t) = 3 sin that describes a block bouncing vertically on a
spring. Complete the following table with the appropriate
average velocities. Then make a conjecture about the value of

the instantaneous velocity at 1 = 77 /2.

Time interval
[7/2, ]
[7/2,7/2 + 0.1]
[m/2,7/2 + 0.01]
[

[

Average velocity

/2, w/2 + 0.001]
/2, /2 + 0.0001]

Further Explorations

21-24. Instantaneous velocity For the following position functions,
make a table of average velocities similar to those in Exercises 19-20
and make a conjecture about the instantaneous velocity at the
indicated time.

21. s(r) = —16:> + 80r + 60 atr =3
22. s(t) = 20cost att= /2
atr = 0

. os(t
23. (1) = 40sin2r
24. s(r) =20/(t+1) att=20

25-28. Slopes of tangent lines For the following functions, make a
table of slopes of secant lines and make a conjecture about the slope of
the tangent line at the indicated point.

25. f(x) =2x% atx =2 26. f(x) =3cosx atx = /2
27. f(x) =1/(1 + x*)atx = —1
28. f(x) =x* —xatx =1

2.1 The Idea of Limits 43

29. Tangent lines with zero slope

Graph the function f(x) = x? — 4x + 3.

Identify the point (a, f(a)) at which the function has a tangent
line with zero slope.

Confirm your answer to part (b) by making a table of slopes of se-
cant lines to approximate the slope of the tangent line at this point.

a.
b.

30. Tangent lines with zero slope

Graph the function f(x) = 4 — x%

Identify the point (a, f(a)) at which the function has a tangent
line with zero slope.

Consider the point (a, f(a)) found in part (b). Is it true that the
secant line between (@ — h, f(a — h)) and (a + h, f(a + h))
has slope zero for any value of 2 # 0?

a.
b.

31. Zero velocity A projectile is fired vertically upward and has a

position given by s(r) = —16¢> + 128t + 192, for0 < 1 < 9.

Graph the position function, for 0 = t = 9.

From the graph of the position function, identify the time at
which the projectile has an instantaneous velocity of zero; call
this time t = a.

Confirm your answer to part (b) by making a table of average
velocities to approximate the instantaneous velocity at r = a.
. For what values of ¢ on the interval [0, 9] is the instantaneous
velocity positive (the projectile moves upward)?

For what values of 7 on the interval [0, 9] is the instantaneous
velocity negative (the projectile moves downward)?

a.
b.

32. Impact speed A rock is dropped off the edge of a cliff, and its
distance s (in feet) from the top of the cliff after ¢ seconds is
s(f) = 161> Assume the distance from the top of the cliff to the

ground is 96 ft.

a. When will the rock strike the ground?
b. Make a table of average velocities and approximate the
velocity at which the rock strikes the ground.

33. Slope of tangent line Given the function f(x) = 1 — cos x and
the points A(w /2, f(7/2)), B(w/2 + 0.05, f(7/2 + 0.05)),
C(m/2 + 0.5, f(7/2 + 0.5)), and D(7, f(7)) (see figure), find
the slopes of the secant lines through A and D, A and C, and A
and B. Then use your calculations to make a conjecture about the

slope of the line tangent to the graph of f at x = 7 /2.

y
D
2__
C y=1—cosx
B
14 A
H— f
0 T X
/ E\5+0.5 ™
74005

QUICK CHECK ANSWERS

1. 16 ft/s 2. Average velocity is the velocity over an
interval of time. Instantaneous velocity is the velocity at one
point of time. 3. Less than <«
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» The terms arbitrarily close and
sufficiently close will be made precise
when rigorous definitions of limits are
given in Section 2.7.

54 ° y=fx)

Figure 2.7

fay=2

—+ ° y=f

... f(x) approaches 2.

|
|
1
|
|
I
T

0 1 6
As x approaches 1...

Figure 2.8

2.2 Definitions of Limits

Computing slopes of tangent lines and instantaneous velocities (Section 2.1) are just two
of many important calculus problems that rely on limits. We now put these two problems
aside until Chapter 3 and begin with a preliminary definition of the limit of a function.

DEFINITION Limit of a Function (Preliminary)

Suppose the function f is defined for all x near a except possibly at a. If f(x) is
arbitrarily close to L (as close to L as we like) for all x sufficiently close (but not equal)
to a, we write

lim f(x) =

x—a

and say the limit of f(x) as x approaches a equals L.

Informally, we say that lim f(x) = L if f(x) gets closer and closer to L as x gets
closer and closer to a from both s1des of a. The value of 11m f( ) (if it exists) depends on

the values of f near a, but it does not depend on the Value of f(a). In some cases, the limit
lim f(x) equals f(a). In other instances, lim f(x) and f(a) differ, or f(a) may not even
X—a x—a

be defined.

EXAMPLE 1 Finding limits from a graph Use the graph of f (Figure 2.7) to
determine the following values, if possible.

a. f(1)and limlf(x) b. f(2) and limzf(x) c. f(3)and lirréf(x)
SOLUTION

a. We see that f(1) = 2. As x approaches 1 from either side, the values of f(x)
approach 2 (Figure 2.8). Therefore, liml flx) =2
Xx—>

b. We see that f(2) = 5. However, as x approaches 2 from either side, f(x) approaches
3 because the points on the graph of f approach the open circle at (2, 3) (Figure 2.9).
Therefore, lim2 f(x) = 3 even though f(2) =

X—>

c. In this case, f(3) is undefined. We see that f(x) approaches 4 as x approaches 3 from
either side (Figure 2.10). Therefore, lirré f(x) = 4 even though f(3) does not exist.
X

=5 £(3) undefined

y =1 T ° y=r

34 ———— ... f(x) approaches 3. - ... f(x) approaches 4.
|
| | i |
I |
| |
+ | 4 |
| |
| |
} } } } } } } } } } } }
0 2 6 X 0 3 6 X
As x approaches 2... As x approaches 3...

Figure 2.9 Figure 2.10

Related Exercises 7-10 <



» In Example 2, we have not stated with
certainty that ler} f(x) = 0.5. But this
isa reasonablé conjecture based on
the numerical evidence. Methods for
calculating limits precisely are introduced
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QUICK CHECK 1 In Example 1, suppose we redefine the function at one point so that
f(1) = 1. Does this change the value of lim] f(x)? <«
x>

In Example 1, we worked with the graph of a function to estimate limits. Let’s now
estimate limits using tabulated values of a function.

Vx- 1
x—1
corresponding to values of x near 1. Then make a conjecture about the value of liml F(x).

X—>

EXAMPLE 2 Finding limits from a table Create a table of values of f(x) =

SOLUTION Table 2.2 lists values of f corresponding to values of x approaching 1 from

in Section 2.3. both sides. The numerical evidence suggests that f(x) approaches 0.5 as x approaches 1.
Therefore, we make the conjecture that liml f(x) = 0.5.
X—
Table 2.2 1
X 0.9 0.99 0.999 0.9999 1.0001 1.001 1.01 1.1
flx) = L_ll 0.5131670 0.5012563 0.5001251 0.5000125 0.4999875 0.4998751 0.4987562 0.4880885
X —

» As with two-sided limits, the value of a
one-sided limit (if it exists) depends on
the values of f(x) near a but not on the
value of f(a).

» Computer-generated graphs and tables
help us understand the idea of a limit.
Keep in mind, however, that computers
are not infallible and they may produce
incorrect results, even for simple
functions (see Example 5).

Related Exercises 11-14 <

One-Sided Limits
The limit lim f(x) = L is referred to as a two-sided limit because f(x) approaches L as x
x—>a

approaches a for values of x less than a and for values of x greater than a. For some
functions, it makes sense to examine one-sided limits called right-sided and left-sided limits.

DEFINITION One-Sided Limits

1. Right-sided limit Suppose f is defined for all x near a with x > a. If f(x) is
arbitrarily close to L for all x sufficiently close to a with x > a, we write

lim_f(x) = L
Xx—a

and say the limit of f(x) as x approaches a from the right equals L.

2. Left-sided limit Suppose f is defined for all x near a with x < a. If f(x) is
arbitrarily close to L for all x sufficiently close to a with x < a, we write

lim f(x) = L

and say the limit of f(x) as x approaches a from the left equals L.

-8
4(x — 2)
Use tables and graphs to make a conjecture about the values of 1i1121+ f(x), linzlf f(x), and

x> x>

EXAMPLE 3 Examining limits graphically and numerically Let f(x) =

limzf(x), if they exist.
X—>

SOLUTION Figure 2.11a shows the graph of f obtained with a graphing utility. The
graph is misleading because f(2) is undefined, which means there should be a hole in the
graph at (2, 3) (Figure 2.11b).
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Table 2.3
x

3

x° — 8

e LiMITS
1.9 1.99
2.8525 2.985025

» Remember that the value of the limit

does not depend on the value of f(2). In
Example 3, limzf(x) = 3 despite the fact
xX—>

that f(2) is undefined.

This computer-
generated graph is

The hole in the graph
at x = 2 indicates that

-~ inaccurate because f T the function is
is undefined at x = 2. undefined at this point.
1 1 1 1 1
T T T T T
0 1 2 x 0 1 2 x
(@ (b)
Figure 2.11

The graph in Figure 2.12a and the function values in Table 2.3 suggest that f(x)
approaches 3 as x approaches 2 from the right. Therefore, we write the right-sided limit

lim f(x) = 3,
x—2"

which says the limit of f(x) as x approaches 2 from the right equals 3.

... f(x) approaches 3.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X

f) =

-8
4x — 2)

... f(x) approaches 3.

_/ _/
0 1 ) ' x 0
As x approaches
2 from the right...
(a)
Figure 2.12
1.999 1.9999 2.0001 2.001
2.99850025 2.99985000 3.00015000 3.00150025

[
[
[
[
[
[
[
[
[
\

1Y 2 x

As x approaches

2 from the left...

(®)
2.01 2.1
3.015025 3.1525

Similarly, Figure 2.12b and Table 2.3 suggest that as x approaches 2 from the left,
f(x) approaches 3. So we write the left-sided limit

lirrzlf fx) =3,

which says the limit of f(x) as x approaches 2 from the left equals 3. Because f(x)
approaches 3 as x approaches 2 from either side, we write the two-sided limit lim2 f(x) = 3.
X—>

Related Exercises 15—18 <



» Suppose P and Q are statements. We
write P if and only if Q when P implies Q
and Q implies P.

Figure 2.13
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Based on the previous example, you might wonder whether the limits
lim f(x), lim_f(x), and lim f(x) always exist and are equal. The remaining examples
xX—>a xX—a xX—a

demonstrate that these limits may have different values, and in some cases, one or more
of these limits may not exist. The following theorem is useful when comparing one-sided
and two-sided limits.

THEOREM 2.1 Relationship Between One-Sided and Two-Sided Limits
Assume f is defined for all x near a except poss1bly at a. Then 11m f(x) = Lif
and only if hm  f(x) = L and 11m  f(x) =

A proof of Theorem 2.1 is outlined in Exercise 44 of Section 2.7. Using this theorem,
it follows that lim f(x) # L if either lim f(x) # L or lim f(x) # L (or both).
xX—>a Xx—>a x—>a

Furthermore, if either lim f(x) or lim f(x) does not exist, then lim f(x) does not exist.
x—>a x—a xX—>a

We put these ideas to work in the next two examples.

EXAMPLE 4 A function with a jump Given the graph of g in Figure 2.13, find the
following limits, if they exist.

a. lim g(x) b. lim g(x) c. lim g(x)
x—2" x—2" x—2
SOLUTION

a. As x approaches 2 from the left, g(x) approaches 4. Therefore, 1irr217 g(x) = 4.
x>
b. Because g(x) = 1 forall x = 2, 1in21+g(x) = 1.
x>
c. By Theorem 2.1, lim2 g(x) does not exist because lirrzlf glx) # 1irr21+ g(x).
x> x> x>

Related Exercises 19-24 <

EXAMPLE 5 Some strange behavior Examine lim cos (1/x).

x—0

SOLUTION From the first three values of cos (1/x) in Table 2.4, it is tempting to conclude
that lin&cos (1/x) = —1. But this conclusion is not confirmed when we evaluate
X!

cos (1/x) for values of x closer to 0.

Table 2.4 We might incorrectly
conclude that cos (1/x)
X cos (1/x) approaches —1 as x

approaches 0 from the

0.001 0.56238 / right.

0.0001 —0.95216
0.00001 —0.99936
0.000001 0.93675
0.0000001 —0.90727
0.00000001 —0.36338

The behavior of cos (1/x) near 0 is better understood by letting x = 1/(nm), where n is a
positive integer. By making this substitution, we can sample the function at discrete points
that approach zero. In this case,

1 if nis even

1
COs — = COS N = .
X {—1 if n is odd.
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QUICK CHECK 2 Why is the graph of
y = cos (1/x) difficult to plot near
= 0, as suggested by Figure 2.14? <

As n increases, the values of x = 1/(nm) approach zero, while the values of cos (1/x)
oscillate between —1 and 1 (Figure 2.14). Therefore, cos (1/x) does not approach a single
number as x approaches 0 from the right. We conclude that hm cos (1/x) does not exist,

which implies that hm cos (1/x) does not exist.

The values of cos (1/x) oscillate between — 1
and 1, over shorter and shorter intervals, as

x approaches 0 from the right.

y = cos(1/x)

Figure 2.14

5l
$- 1

1 1 1 1
T T T T
R 1 1
o6m \ 57 4 3w

Related Exercises 25-26 <

Using tables and graphs to make conjectures for the values of limits worked well
until Example 5. The limitation of technology in this example is not an isolated incident.
For this reason, analytical techniques (paper-and-pencil methods) for finding limits are
developed in the next section.

SECTION 2.2 EXERCISES

Review Questions
1. Explain the meaning of lim f(x) = L.

X—a

2. True or false: When lim f(x) exists, it always equals f(a). Explain.

x—a

3. Explain the meaning of lim_f(x) = L.

X a

4. Explain the meaning of lim f(x) = L.

x—a
5. If lim f(x) = Land lim_f(x) = M, where L and M are finite
xX—a x—a
real numbers, then how are L and M related if lim f(x) exists?
x—a
6. What are the potential problems of using a graphing utility to

estimate lim f(x)?
x—a

Basic Skills

7. Finding limits from a graph Use the graph of 4 in the figure to
find the following values or state that they do not exist.

a. h(2) b. limh(x) ¢ h(4) d. limh(x) e limh(x)
x—2 x—4 x—5
y
6__

8. Finding limits from a graph Use the graph of g in the figure to
find the following values or state that they do not exist.

c. g(1)

d. lim g(x)

ag0) b limg() tim

9. Finding limits from a graph Use the graph of f in the figure to
find the following values or state that they do not exist.

a. f(1) b. limf(x) e f(0) d. lim f(x)
y
Nl
Nl
y=fx)




10. Finding limits from a graph Use the graph of f in the figure to
find the following values or state that they do not exist.

c. lim f(x)

a. f(2) b. lim f(x)

11. Estimating a limit from tables Let f(x) = R X
Y —

a. Calculate f(x) for each value of x in the following table.

d. lim f(x)

2
-4
b. Make a conjecture about the value of lim : .
=2 x — 2
x 1.9 [1.99| 1.999 | 1.9999
2
x"— 4
flx) = x —2
x 2.1 |2.01| 2.001 | 2.0001
2
x"— 4
f(x) - — 2
-1
12. Estimating a limit from tables Let f(x) = T
X —

a. Calculate f(x) for each value of x in the following table.

3
-1
b. Make a conjecture about the value of lim1 a
x—>1 X —
x 0.9 1099 | 0.999 | 0.9999
o -1
f(x) - -1
x 1.1 | 1.01 | 1.001 | 1.0001
3
x> =1
f(x) - -1
N R . t—9
[N 13. Estimating a limit numerically Let g(7) = Vis 3

a. Make two tables, one showing values of g for r = 8.9, 8.99,
and 8.999 and one showing values of g for t = 9.1, 9.01, and

9.001.

t—9
b. Make a conjecture about the value of lin}) >
=9\t —

14. Estimating a limit numerically Let f(x) = (1 + x)"/~.

a. Make two tables, one showing values of f for

x = 0.01, 0.001, 0.0001, and 0.00001 and one showing values
of f forx = —0.01, —0.001, —0.0001, and —0.00001. Round

your answers to five digits.
b. Estimate the value of lim (1 + x)"/~.

x—0

¢. What mathematical constant does linz) (1 + x)'/* appear to

m
equal? *

15.

16.

17.

18.

19.

20.

21.

2.2 Definitions of Limits 49

Estimating a limit graphically and numerically
x—2
sin (x — 2)
a. Graph f to estimate lim2 f(x).
X

Let f(x) =

b. Evaluate f(x) for values of x near 2 to support your conjecture
in part (a).

Estimating a limit graphically and numerically

L tan (sin x)
et = .
§(x) 1 — cosx
a. Graph g to estimate liH(l) g(x).
X—>
b. Evaluate g(x) for values of x near 0 to support your conjecture
in part (a).
Estimating a limit graphically and numerically
Let £(x) 1 — cos(2x — 2)
et f(x) =———5—
(x = 1)?
a. Graph f to estimate limlf(x).
X
b. Evaluate f(x) for values of x near 1 to support your conjecture
in part (a).

Estimating a limit graphically and numerically

3sinx — 2cosx + 2
Let g(x) = s
X

a. Graph g to estimate lirr(l) g(x).
X—>

b. Evaluate g(x) for values of x near 0 to support your conjecture
in part (a).
2

- 25
One-sided and two-sided limits Let f(x) = xis
X —

and graphs to make a conjecture about the values of linsl+ f(x),
X

. Use tables

hnsl, f(x), and lirr}3 f(x) or state that they do not exist.
X X

One-sided and two-sided limits Let g(x) x— 100 Use
- - x) = .

# Vx =10
tables and graphs to make a conjecture about the values of

lim x), lim x),and lim g(x) or state that they do
x—>100+g< ) x—>100*g( ) x—>100g( ) y

not exist.

One-sided and two-sided limits Use the graph of f in the figure
to find the following values or state that they do not exist. If a
limit does not exist, explain why.

a. f(1)

c. lim f(x)
x—1*

b. lim f(x)

x—1

d. lirn1 f(x)

y=s
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22. One-sided and two-sided limits Use the graph of g in the figure

23.

24.

CHAPTER 2 ¢ LimiITs

to find the following values or state that they do not exist. If a
limit does not exist, explain why.

a. g(2) b. lim g(x) c. lim g(x)
x—2" x—2"
d. lim g(x) e. g(3) f. lim g(x)
x—2 x—3
g. lim g(x) h. g(4) i. lim g(x)
x—3" x—4
y
5__
4__
y = gl)
34+ —o0
1__
f f f f f
0 1 2 3 4 5 X

Finding limits from a graph Use the graph of f in the figure to
find the following values or state that they do not exist. If a limit
does not exist, explain why.

a. f(1) b. linllif(x) C. lirr11+f(x)
d. lirr} f(x) e. f(3) f. li)rrglﬁf(x)
g. lin31+f(x) h. lingf(x) i f(2)
jo lim () ke Jim /() L tim /()

y

5__

y=fx)
l__
o B R R R

Finding limits from a graph Use the graph of g in the figure to
find the following values or state that they do not exist. If a limit
does not exist, explain why.

a. g(—1) b. lim g(x) c. lim g(x)
x——1" x——1"
d. lim g(x) e. g(1) f. lim g(x)
x——1 x—1
g. lim g(x) h. g(5) i lim g(x)
x—=3 x—5"
y
6__
l__
S A A A

25. Strange behavior near x =0

. 2 2 2
a. Create a table of values of sin (1/x), forx = — —, —,
T 37 S5

2
—, —, and ——. Describe the pattern of values you observe.
T 91 117

b. Why does a graphing utility have difficulty plotting the graph
of y = sin (1/x) near x = 0 (see figure)?
c. What do you conclude about lirrz) sin (1/x)?
x—>

26. Strange behavior near x =0

a. Create a table of values of tan (3/x) for
x =12/m,12/(3m), 12/(57), ..., 12/(11ar). Describe the
general pattern in the values you observe.
b. Use a graphing utility to graph y = tan (3/x). Why do
graphing utilities have difficulty plotting the graph near
x =07
c. What do you conclude about lirrz) tan (3/x)?
x—

Further Explorations

27. Explain why or why not Determine whether the following
statements are true and give an explanation or counterexample.
2

a. The value of lim does not exist.

x—3 X —
b. The value of lim f(x) is always found by computing f(a).
x—a
c. The value of lim f(x) does not exist if f(a) is undefined.
x—a
d. lim Vx = 0.
x—0

e. lim cotx = 0.
x—m/2

28-31. Sketching graphs of functions Skerch the graph of a function
with the given properties. You do not need to find a formula for the
Sfunction.

8. f(1) = 0.f(2) = 4,7(3) = 6, lim f(x) = =3, lim f(x) = 5
29. g(1) = 0.5(2) = 1,8(3) = —2. lim g(x) = 0,
lim_g(x) = —1, lim, g(x) = -2
30. h(=1) =2 lim h(x) =0, lim h(x) =3,
h(1) = lim h(x) = 1, lim h(x) = 4
31. p(0) = 2, li_r)r})p(x) =0, er}lzp<x) does not exist,
p(2) = lim p(x) =1
32-35. Calculator limits Estimate the value of the following limits by

creating a table of function values for h = 0.01, 0.001, and 0.0001,
and h = —0.01, —0.001, and —0.0001.

sin &

. tan3h
lim
h—0

32. lim 33.
h—0



\/ 1 - h
34, lim h+4-—-2 35, hmﬂ
h—0 h h=0

x
36. A step function Let f(x) = u for x # 0.
x

a. Sketch a graph of f on the interval [ -2, 2].
b. Does lim0 f(x) exist? Explain your reasoning after first
P d

examining lirr(}if(x) and 1ir51+f(x).
x—> x—>

37. The floor function For any real number x, the floor function (or
greatest integer function) | x| is the greatest integer less than or
equal to x (see figure).

a. Compute limr [x], lim |x], linzl, |x],and lim |x].
x—— x—

x—>—1" x—2"

b. Compute li li d i .
ompute lim _ [XJ,X_I)IZQyLXJ,an Jim_ |x]

c. For a given integer a, state the values of lim |x| and

lim |x]. e
x—>a+

d. In general, if a is not an integer, state the values of lim [x|
and lim, |x]. e

x—a
e. For what values of a does lim | x| exist? Explain.
x—a
y
3 —
21 *—o0
I+ e—o
1 1 1 ) 1 1
T T T hd T T
-3 -2 -1 12 3 X
—
y=lx]
*—o0 -2+
*—o0 -3

38. The ceiling function For any real number x, the ceiling function
[ x] is the smallest integer greater than or equal to x.
a. Graph the ceiling function y = [x], for -2 = x = 3.
b. Evaluate lim (ﬂ, lim (ﬂ, and lim [x].
x—27 x—1* x—1.5

c. For what values of a does lim [x] exist? Explain.
x—>a

39-42. Limits by graphing Use the zoom and trace features of a
graphing utility to approximate the following limits.

48. Limits by graphs Graph f(x)

I 18(Vx — 1)
39. lim xsin— 40. lim—————
x—0 X x—1 x> — 1
. 9(\/2x—x4—\3/);) _oxt =T 4 1567 — 9x
41. lim 42. lim
x—1 1 — x4 x—3 x—3
Applications

43. Postage rates Assume that postage for sending a first-class
letter in the United States is $0.44 for the first ounce (up to and
including 1 oz) plus $0.17 for each additional ounce (up to and
including each additional ounce).

a. Graph the function p = f(w) that gives the postage p for
sending a letter that weighs w ounces, for 0 < w = 5.
b. Evaluate lin31 3f(w).
w—>3.
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c. Interpret the limits 1irr}+f(w) and lirr}if(w).
w—> w—

d. Does 1im4f(w) exist? Explain.
w—>

44. The Heaviside function The Heaviside function is used in
engineering applications to model flipping a switch. It is defined as

H()— 0 ifx<O
Y71 ifx=o0

a. Sketch a graph of H on the interval [—1, 1].
b. Does lim0 H(x) exist? Explain your reasoning after first
P d

examining lin& H(x) and lin(}+ H(x).
x> x>

Additional Exercises

45. Limits of even functions A function f is even if f(—x) = f(x),
for all x in the domain of f. Suppose f is even, with
lin21+ f(x) = 5and lin217 f(x) = 8. Evaluate the following limits.
x> x>

a. lim f(x) b.

x—>—=2

lim f(x)

x—>=2"

46. Limits of odd functions A function g is odd if g(—x) = —g(x),
for all x in the domain of g. Suppose g is odd, with lin21+ glx) =5
x>

and lirr217 g(x) = 8. Evaluate the following limits.

a. lim g(x b. lim g(x
im_g(x) tim_g(x)
47. Limits by graphs
. . . . tan2x tan 3x
a. Use a graphing utility to estimate lim ———, lim ———, and
x—0 sinx  x—0 sinx
. tan4dx
lim — .
x—0 sinx

tan px
b. Make a conjecture about the value of lim ———, for any real

x—0 sinx
constant p.

= M,forn =1,2,3,and 4
X

(four graphs). Use the window [—1, 1] X [0, 5].
. . sinx . sin2x sin 3x . sindx
a. Estimate lim , lim ,and lim 2
x—>0 X x—0 X x—0 X x—0 X

. . sinpx
b. Make a conjecture about the value of lim ——, for any real
constant p. 0 X

sin px

49. Limits by graphs Use a graphing utility to plot y = — for
sin gx

at least three different pairs of nonzero constants p and g of your

X
- in each case. Then use your work to
x—0 sin gx

sin
choice. Estimate lim

make a conjecture about the value of lim — for any nonzero

x—0 sin gx
values of p and gq.
QUICK CHECK ANSWERS
1. The value of liml f(x) depends on the value of f only
x—

near 1, not at 1. Therefore, changing the value of f(1) will
not change the value of liml f(x). 2. A graphing device has
X

difficulty plotting y = cos (1/x) near 0 because values of
the function vary between —1 and 1 over shorter and shorter
intervals as x approaches 0. <
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2.3 Techniques for Computing Limits

Graphical and numerical techniques for estimating limits, like those presented in the pre-
vious section, provide intuition about limits. These techniques, however, occasionally lead
to incorrect results. Therefore, we turn our attention to analytical methods for evaluating
limits precisely.

Limits of Linear Functions

The graph of f(x) = mx + b is a line with slope m and y-intercept b. From Figure 2.15,

we see that f(x) approaches f(a) as x approaches a. Therefore, if f is a linear function,

we have lim f(x) = f(a). It follows that for linear functions, lim f(x) is found by direct
Xx—a x—a

substitution of x = a into f(x). This observation leads to the following theorem, which is
proved in Exercise 28 of Section 2.7.

' =) ' y=f)
SO - ‘
(a.f(@) (a.f(@) |
fla)+---————~ # ... f(x) approaches f(a). fla)+---————~ : | ...f(x) approaches f(a).
[ [ [
[ [ [
rot--—" o
[ [ [ [
[ [ [ [
[ [ [ [
[ [ [ [
L L
o )Ic ; X o ('1 )Ic X
As x approaches a As x approaches a
from the left... from the right...

lim f(x) = f(a) because f(x) = f(a) as x = a from both sides of a.
xX=da

Figure 2.15

THEOREM 2.2 Limits of Linear Functions
Let a, b, and m be real numbers. For linear functions f(x) = mx + b,

lim f(x) = f(a) = ma + b.

EXAMPLE 1 Limits of linear functions Evaluate the following limits.
a. lin%f(x), where f(x) = 1x — 7
X3
b. lir% g(x), where g(x) = 6
X
SOLUTION
a. limf(x) = lim (3x — 7) = f(3) = -4
x—3 x—3
b. limg(x) = lim6 = g(2) = 6
x—2 x—2

Related Exercises 11-16 €
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Limit Laws

The following limit laws greatly simplify the evaluation of many limits.

THEOREM 2.3 Limit Laws
Assume lim f(x) and lim g(x) exist. The following properties hold, where c is a
x—a xX—>a

real number, and m > 0 and n > 0 are integers.
1. Sum lim (f(x) + g(x)) = lim f(x) + lim g(x)
X—a xX—a Xx—a

2. Difference lim (f(x) — glx)) = lim flx) — lim g(x)

X

3. Constant multiple lim (¢f(x)) = c¢ lim f(x)

x—a xX—>a

4. Product lim (f(x)g(x)) = (lim f(x)) ( lim g(x))

9y Jim )
5. Quotient lim( > =2 , provided lim g(x) # 0
s>a\g(x)/ - lim g(x) x—a

» Law 6 is a special case of Law 7. Letting 6. Power lim (f(x))" = ( lim f(x) )n
m = 11in Law 7 gives Law 6. a a

7. Fractional power lim (f(x))"" = ( lim f(x))”/’", provided f(x) = 0, for x
xX—>a x—a

near a, if m is even and n/m is reduced to lowest terms

A proof of Law 1 is outlined in Section 2.7. Laws 2-5 are proved in Appendix B.
Law 6 is proved from Law 4 as follows.
For a positive integer n, if lim f(x) exists, we have
Xx—a

lim (f(x))" = lim (f(x) f(x) - f(x))

x—a x—a

n factors of f(x)
= ( lim f(x) ) ( lim f(x) ) - ( lim f(x) ) Repeated use of Law 4
x—a x—a xX—>a

- -
~~

n factors of lim f(x)

x—a
. n
= ( lim f(x)) .
X—a
> Recall that to take even roots of a number  In Law 7, the limit of ( f(x))"" involves the mth root of f(x) when x is near a. If the frac-
(for example, square roots or fourth tion n/m is in lowest terms and m is even, this root is undefined unless f(x) is nonnega-
roots), the number must be nonnegative if tive for all x near a, which explains the restrictions shown.
the result is to be real.

EXAMPLE 2 Evaluating limits Suppose 1im2 fx) = 4, 111112 g(x) = 5,and
x> x>

lirri h(x) = 8. Use the limit laws in Theorem 2.3 to compute each limit.
X

oo tim T b i () + 0 e i (600
SOLUTION

S — gy im0 ()

alim™0 Ima) b

x—2

lim f(x) — lim g(x)
_ x—2 x—2

Law 2
lim h(x) o
x—2
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» The conditions under which direct
substitution liﬁm f(x) = f(a)) canbe
used to evalu;te :1 limit become clear
in Section 2.6, when we discuss the
important property of continuity.

QUICK CHECK 1 Evaluate
lirré(2x4 — 8x — 16) and
x—)

b lim (6/(x)g(x) + A(x)) = lim (67(x)g(x)) + lim h(x) Law 1
= 6+ lim (/(x)g(x)) + lim h(x) Law 3

= 6(}1_rgf(x)) ()}I_Ig g(x)) + gl_rg h(x) Law4
=6-4-5+8 =128

c. lim (g(x))* = (lim g(x))3 =5 =125 Law6

x—2 x—2

Related Exercises 17-24 <

Limits of Polynomial and Rational Functions
The limit laws are now used to find the limits of polynomial and rational functions. For
example, to evaluate the limit of the polynomial p(x) = 7x* + 3x? + 4x + 2 at an arbi-
trary point a, we proceed as follows:

lim p(x) = lim (7x3 + 3x? + 4x + 2)

x—>a

xX—>a

lim (7x%) + lim (3x?) + lim (4x + 2)  Law |

x—a x—a x—a
=7 lim (x*) 4+ 3 lim (x?) + lim (4x + 2) Law3
Xx—a x—a Xx—a
= 7(1imx)3 + 3(1imx)2 + lim (4x + 2) Law6
x—a x—a x—a
a a da + 2
=7a> + 3a*> + 4a + 2 = p(a). Theorem 2.2

As in the case of linear functions, the limit of a polynomial is found by direct substitution;
that is, lim p(x) = p(a) (Exercise 89).
x—a
It is now a short step to evaluating limits of rational functions of the form
f(x) = p(x)/q(x), where p and g are polynomials. Applying Law 5, we have

lim p(x)
X —> a
fi P ma @) e g(a) # 0,
x=ag(x) - limg(x)  g(a)

which shows that limits of rational functions are also evaluated by direct substitution.

THEOREM 2.4 Limits of Polynomial and Rational Functions
Assume p and ¢ are polynomials and a is a constant.

a. Polynomial functions: lim p(x) = p(a)
xX—>a
p(x) _ pla)

b. Rational functions: lim —— = ——, provided g(a) # 0
w—aq(x)  q(a)

3x* — 4
EXAMPLE 3 Limit of a rational function Evaluate lim %
=2 5x° — 36

SOLUTION Notice that the denominator of this function is nonzero at x = 2. Using
Theorem 2.4b,

o 3x? — 4x 3(22) —4(2)
lim 3 = 3
x—2 5x° — 36 5(2°) — 36

Related Exercises 25-27 <

oot =32+ 8 -6
QUICK CHECK 2 Use Theorem 2.4b to compute llml 1
x—> X



2.3 Techniques for Computing Limits 55

V2x3+94+3x -1

EXAMPLE 4 An algebraic function Evaluate lim
x—2 dx + 1

SOLUTION Using Theorems 2.3 and 2.4, we have

. 3 _
Va1 o+ a -1 _ M (V2945 )

lim = - Law 5
x—2 4x + 1 lim (4)6 + 1)
x—2
lim (2x* + 9) + lim (3x — 1)
x—2 x—2
_ : Laws 1 and 7
lim (4x + 1)
x—2
2(2)* +9) + (3(2) — 1
( ( ) ) ( ( ) ) Theorem 2.4
(42) + 1)
Vs _ o
9 9

Notice that the limit at x = 2 equals the value of the function at x = 2.
Related Exercises 28-32 <

One-Sided Limits

Theorem 2.2, Limit Laws 1-6, and Theorem 2.4 also hold for left-sided and right-sided

limits. In other words, these laws remain valid if we replace lim with lim_or lim . Law 7
Xx—a Xx—a Xx—a

must be modified slightly for one-sided limits, as shown in the next theorem.

THEOREM 2.3 (CONTINUED) Limit Laws for One-Sided Limits

Laws 1-6 hold with lim replaced with lim_or lim . Law 7 is modified as follows.
x—a x—>a x—>a

Assume m > 0 and n > 0 are integers.

7. Fractional power

a. lim (f(x))ym = ( lim_f(x) )"/"’, provided f(x) = 0, for x near a with x > a,
xX—>a x—a

if m is even and n/m is reduced to lowest terms

b. lim (f(x))"" = ( lim f(x) )”/”‘, provided f(x) = 0, for x near a with x < a,
T e if m is even and n/m is reduced to lowest
terms

y
“f( )= —2x+4 ifx=1
) VTAIVA-T itx>1
T lirlq fx)=2
2__
} o } } }
1
Figure 2.16

EXAMPLE 5 Calculating left- and right-sided limits Let

f()_ —2x+4 ifx=1
* Vx—1 ifx>1.

Find the values of lirrllf f(x), lirrll+ f(x), and lim1 f(x), or state that they do not exist.
x> x> x>

SOLUTION The graph of f (Figure 2.16) suggests that lirrllif(x) = 2 and lin11+f(x) =0.
x> x>

We verify this observation analytically by applying the limit laws. For x = 1,
f(x) = —2x + 4; therefore,

lim f(x) = lir1117 (=2x +4) = 2. Theorem 2.2

x—1" X
For x > 1, note that x — 1 > 0; it follows that

lim f(x) = linll+ Vx —1=0. Law?7
x>

x—1

Because lim f(x) = 2 and linll+ f(x) =0, lim1 f(x) does not exist by Theorem 2.1.
x> x—>

x—1

Related Exercises 33—38 <«
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» The argument used in Example 6 relies
on the fact that in the limit process, x
approaches 2, but x # 2. Therefore, we
may cancel like factors.

Other Techniques
So far, we have evaluated limits by direct substitution. A more challenging problem is
finding lim f(x) when the limit exists, but lim f(x) # f(a). Two typical cases are shown
xX—>a xX—>a
in Figure 2.17. In the first case, f(a) is defined, but it is not equal to lim f(x); in the
x—a

second case, f(a) is not defined at all. In both cases, direct substitution does not work—
we need a new strategy. One way to evaluate a challenging limit is to replace it with an
equivalent limit that can be evaluated by direct substitution. Example 6 illustrates two
common scenarios.

Y lim f(x) # f(a) Y lim f(x) exists, but f(a) is undefined.
fla) o y=rf) y=f)
I I
I I
I I
| |
0 L'{ X 0 c', X
Figure 2.17

EXAMPLE 6 Other techniques Evaluate the following limits.

o ox>—6x+38 o Va—1
a. lim 27 b. lim ———

x—2 x°—4 —1 x—1
SOLUTION

a. Factor and cancel This limit cannot be found by direct substitution because the de-
nominator is zero when x = 2. Instead, the numerator and denominator are factored;
then, assuming x # 2, we cancel like factors:

xP—6x+8 (x—2)(x—4) x—4

x?— 4 (x=2)(x+2) x+2

x> —6x+ 8 x—4 .
Because 3 = whenever x # 2, the two functions have the same
x° — 4 x+ 2
limit as x approaches 2 (Figure 2.18). Therefore,
o x> —6x+8 Cox—4 2-4
lim ————— = lim =
x—2 x°—4 —2x + 2 2+ 2

1
X

Figure 2.18



>

We multiply the given function by

1_\/)?Jrl
Vx+ 1

QUICK CHECK 3 Evaluate

lim

>

x> —7x + 10
x—5

The Squeeze Theorem is also called
the Pinching Theorem or the Sandwich
Theorem.

f(x) = g) = h(x)

¥ = h(x)
y =g

y=fx

[
[
[
[
[
[
f
a x

Squeeze Theorem:
As x=a, h(x) > Land f(x)-> L.
Therefore, g(x) > L.

Figure 2.19

>

The two limits in Example 7 play a
crucial role in establishing fundamental
properties of the trigonometric functions.
The limits reappear in Section 2.6.
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b. Use conjugates This limit was approximated numerically in Example 2 of Section 2.2;
we conjectured that the value of the limit is % Direct substitution fails in this case
because the denominator is zero at x = 1. Instead, we first simplify the function by
multiplying the numerator and denominator by the algebraic conjugate of the numera-
tor. The conjugate of Vx — 1is Vx + 1; therefore,

Ve—1 (Vx—1D(Vx+1)
= Rationalize the numerator; multiply by 1.
x—1 (x = 1)(Vx + 1)
x+ Ve— Vx—1 S t
= “Xpand the numerator.
(x — D(Vx + 1) !
x -1 Simplif
= mplry.
(x — D(Vx + 1) P
! C 1 like f i # 1
= . ancel like factors assuming x .
Vi + 1 ¢
The limit can now be evaluated:
i Vx—1 i 1 1 1
im —— = lim = = -
—1 x—1 x—>1\/);+1 1+1 2

Related Exercises 39-52 <€

The Squeeze Theorem

The Squeeze Theorem provides another useful method for calculating limits. Suppose the
functions f and & have the same limit L at @ and assume the function g is trapped between
f and h (Figure 2.19). The Squeeze Theorem says that g must also have the limit L at a. A
proof of this theorem is outlined in Exercise 54 of Section 2.7.

THEOREM 2.5 The Squeeze Theorem
Assume the functions f, g, and & satisfy f(x

) =
near a, except possibly at a. If lim f(x) = lim h
x—>a x—>a

g(x) = h(x) for all values of x
(x) = L, then lim g(x) = L.
Xx—a

EXAMPLE 7 Sine and cosine limits A geometric argument (Exercise 88) may be used
to show that for —7 /2 < x < /2,

—|x] =sinx=|x| and 0=1—cosx = |x|.
Use the Squeeze Theorem to confirm the following limits.

a. limsinx = 0 b. lim cosx = 1

x—0 x—0
SOLUTION
a. Letting f(x) = —|x|, g(x) = sinx, and h(x) = |x|, we see that g is trapped between

fand hon —7/2 < x < 7 /2 (Figure 2.20a). Because lir%f(x) = lir% h(x) =0
x> x>
(Exercise 37), the Squeeze Theorem implies that lilr%) glx) = lirr%) sinx = 0.
x> x>

b. In this case, we let f(x) = 0, g(x) = 1 — cosx, and h(x) = |x| (Figure 2.20b).
Because lin%) flx) = lin}) h(x) = 0, the Squeeze Theorem implies that
x> x>

lirr(l) gx) = lil% (1 — cosx) = 0. By the limit laws of Theorem 2.3, it follows that
x> x>

Iim1 — limcosx = 0, or lim cosx = 1.
x—0 x—0 x—0
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y=x

.1
sin—
X

Figure 2.21
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—|x| = sinx = ]

™ ™
0n—5<x<5

y =sinx

y =l

y=1-—cosx

Figure 2.20

(a)

=
SIEE

Il
SEE

jus

01’1—2

(b)

i
<)c<2

X

0=1—cosx=ly

Related Exercises 53—56 <

EXAMPLE 8 Applying the Squeeze Theorem Use the Squeeze Theorem to verify that

lim x?sin (1/x) = 0
x—0

}v = ’X‘z

it follows that

5
y=—x

—1 =sin— = 1.
X

Noting that x> > 0 for x # 0, each term in this inequality is multiplied by x*:

—x2 = x%sin— = x2.
X

SOLUTION For any real number 6, —1 < sin = 1. Letting§ = 1/x forx # 0,

These inequalities are illustrated in Figure 2.21. Because lim x> = lim (—x?) = 0, the

x—0 x—0

Squeeze Theorem implies that lim x*sin (1/x) = 0.

x—0

Related Exercises 53—56 <

2

QUICK CHECK 4 Suppose f satisfies | = f(x) = 1 + %for all values of x near zero. Find
lirr(l)f(x), if possible. <
X

SECTION 2.3 EXERCISES

Review Questions

1.

How is

How are lim f(x)
function?”

lim f(x) calculated if f is a polynomial function?
x—a

and lim_f(x) calculated if f is a polynomial
x—a

For what values of a does lim r(x) = r(a) if r is a rational

function?

x—a

10.

Assume lirr% g(x) = 4 and f(x) = g(x) whenever x # 3. Evalu-
x>

ate lir% f(x), if possible.
x>

Explain why lim
x—3

If 1
)

X2 —TIx+ 12

= lim (x — 4).
T —3 im (x )

x—3

(x) = =8, find lim (f(x))*>.

x—2

~

X
Suppose p and g are polynomials. If lim o = 10 and

q(0) = 2, find p(0). x=0 4(x)

Suppose lim f(x) = lim A(x) = 5. Find lim g(x), where
x—2 x—2 x—=2

f(x) = g(x) = h(x), for all x.

Evaluate lim Vx> — 9.

x—=5
Suppose
ifx=3
ifx > 3.

f)

4
x+2

Compute lim f(x) and lim_f(x).
x—3" x—3"



Basic Skills

11-16. Limits of linear functions Evaluate the following limits.

11 lim (3x —7) 12 lim (—2x +5) 13. lim 5x
x—4 x—1 x——9

14. lim (—3x) 15. lim 4 16. lim 7=
x—2 x—6 x—>=5

17-24. Applying limit laws Assume lim1 f(x) =8, lim1 g(x) = 3, and
x— x—

lim1 h(x) = 2. Compute the following limits and state the limit laws
X

used to justify your computations.

. f(x)
17. )}gnl (4f(x)) 18. xgnlfx)
19. lim (f(x) — g(x)) 20 lim (f(x)h(x))
_f(x)g(x) . f(x)
L aTE g - it
23. lim (h(x))’ 24. lim Vi(x)g(x) + 3

25-32. Evaluating limits Evaluate the following limits.

25. lim (2x* — 3x* + 4x + 5)  26. lim (* + 5t + 7)

x—1 —>—2
5x2 + 6x + 1

27. lim > 2272 28. lim V72 — 10

x—1 8x — 4 —3

3b

29, lim ——— 30. lim (x* — x)°

=2 \Vab + 1 — 1 x—2

—5x 3

31, lim ———— 32, lim——————

=3 \Vix — 3 =0 \16 + 3h + 4

33. One-sided limits Let

ifx < —1

x>+ 1
flx) = . _
Vx + 1 ifx=—1.
Compute the following limits or state that they do not exist.

a. lirinrf(x) b. lirzlﬁf(x) c li@lf(x)

34. One-sided limits Let

0 ifx= -5
fx) =9 V25s —x? if-5<x<5
3x ifx = 5.

Compute the following limits or state that they do not exist.
a. lim f(x) b. lim f(x) c. lim f(x)
x—-5 x——5" x—-5
d. lim f(x) e. lim f(x) f. lim f(x)
x—5 x—5" x—5
35. One-sided limits
a. Evaluate 111121+ Vx — 2.
X
b. Explain why hnzl, Vx — 2 does not exist.
X

36. One-sided limits

. x—3
a. Evaluate lim .
x—3" 2 —x

x—3
b. Explain why lim ./ does not exist.
3" V2 —x

37.

38.

2.3 Techniques for Computing Limits 59

Absolute value limit Show that lim |x| = 0 by first evaluating

lim |x| and lim |x]|. Recall that
x—0 x—0"

x| = x ifx=0

T x ifx <o,

Absolute value limit Show that lim |x| = |a|, for any real
x—a

number. (Hint: Consider the cases a < 0 and a = 0.)

39-52. Other techniques Evaluate the following limits, where a and b
are fixed real numbers.

39.

41.

43.

45.

47.

48.

49.

51.

52.

53.

54.

55.

56.

2 2
-1 —2x—3
lim - 40. lim —— =
—1lx—1 x—3 x—3
2 2
- 16 3t =Tt + 2
limxi 42. limit
—4 4 — x —2 2 —t
C (x=b) —x+0b o (xF D)+ (x + )
lim 44. lim
x—b x—0>b x—>—b 4(X + b)
2r— 12 -9 s
TG LY 46. lim 12
x——1 x + 1 h—0 h
 Vx-—3
lim ———
-9 x—9
li ((41 2 )(6 +1 12)>
im - —
—3 t—3
lim——2 4> 0 s0. m2 "9 .50
im—————,a . lim—————,a
x—aVx — Va —a\x — Va
. VI6e+h—4
lim ————
h—0 h
-4
lim
x—a X — d
Applying the Squeeze Theorem

1
a. Show that —|x| = xsin— = |x|, forx # 0.
X
b. Illustrate the inequalities in part (a) with a graph.

1
c. Use the Squeeze Theorem to show that lim x sin — = 0.
x

X

A cosine limit by the Squeeze Theorem It can be shown that
2
1 - % = cosx = 1, for x near O.

a. Illustrate these inequalities with a graph.

b. Use these inequalities to evaluate lim cos x.
x—0

A sine limit by the Squeeze Theorem It can be shown that
2 .
X sin x
l——=—
6

a. Illustrate these inequalities with a graph.
sin x

b. Use these inequalities to evaluate lim .
x—0 X

= 1, for x near Q.

A secant limit by the Squeeze Theorem

a. Draw a graph to verify that 0 =< x%secx? = x* + x> forx
near 0.

b. Use the Squeeze Theorem to determine lim x? sec x2.

x—0
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Further Explorations

57. Explain why or why not Determine whether the following
statements are true and give an explanation or counterexample.
Assume a and L are finite numbers.

a. If lim f(x) = L, then f(a) = L
xX—a

b. If lim f(x) = L, then lim f(x) = L
xX—a Xx—a

c. If lim f(x) = Land lim g(x) = L, then f(a) = g(a).
x

x—a
d. The limit lim ——
x ag(x)

e. If l1m V£( A/ hm f , it follows that
hm V£( A /hm Sflx

does not exist if g(a) = 0.

58-65. Evaluating limits Evaluate the following limits, where ¢ and k

are constants.

100
58. lim —————— 59. lim (5x — 6)%?
h—0 (10h — 1)"" + 2 =2
I
60. lim * 21 61 lim =9 =1
x—3 x—3 x—1 x—1
5+ h)*—25
62. lim ( L 2 ) 63. lim #
—2\x —2  x?-—2x h—0 h
2 _ + 2
64, lim S 2ext
x—c X —cC
w? + Skw + 4k
65. lim —————————fork # 0
w——k w” + kw
66. Finding a constant Suppose
x+b ifx=2
fx) = {x— 2 ifx > 2.
Determine a value of the constant b for which lim f(x) exists and
state the value of the limit, if possible. 2
67. Finding a constant Suppose
(x) x? — 5x ifx = —1
x =
g ax® =7 ifx > 1.

Determine a value of the constant a for which lim g(x) exists

x——1

and state the value of the limit, if possible.

68-74. Useful factorization formula Calculate the following limits
using the factorization formula
—ad"=(x—a) X"V H X" e+ "+

where n is a positive integer and a is a real number.

5 6
- 32 -1
68. lim~——= 69. lim =
=2 x— 2 x—1 X —
X7
70. lim1 Tr 1 (Hint: Use the formula for x” — o’ witha = —1.)
x—>—1 X
5_ 5
71. lim —2
x—a X — d
xn — n
72. lim , for any positive integer n
x—a X — d
73. 1in}7(Hmt x— 1= (Vx)Pi=(1)%)
x—> X —

+xa" %+ a"”

74.

. Wx-2
lim ———

x—16 x — 16

75-78. Limits involving conjugates Evaluate the following limits.

75.

77.

78.

79.

80.

81.

Jim 1 76 lim ———
x-’l\/i_l x—1 dx +5 -3
lim3(x—4)\/x+5
=4 3—Vx+5

where ¢ is a nonzero constant

X

lim ———,

=0 Vex +1—1

Creating functions satisfying given limit conditions Find func-

tions f and g such that limlf(x) = 0 and lim1 (f(x) g(x)) = 5.
x> x>

Creating functions satisfying given limit conditions Find a

. R (CO
function f satisfying hm1 )= 2.
x— X —

Finding constants Find constants » and c in the polynomial

(x)

p(x) = x% + bx + ¢ such that hm %2 = 6. Are the constants
unique? -2

Applications

82.

83.

1),

84.

85.

A problem from relativity theory Suppose a spaceship of
length L travels at a high speed v relative to an observer. To the
observer, the ship appears to have a smaller length given by the
Lorentz contraction formula

where c is the speed of light.

a. What is the observed length L of the ship if it is traveling at
50% of the speed of light?

b. What is the observed length L of the ship if it is traveling at
75% of the speed of light?

c. In parts (a) and (b), what happens to L as the speed of the ship
increases?

2
d. Find lim Ly[1 — Lz and explain the significance of this limit.
v—>c C

Limit of the radius of a cylinder A right circular cylinder with a
height of 10 cm and a surface area of S cm? has a radius given by

r(S) = %( /100 + i—s - 10).

Find Sli—%l* 7(S) and interpret your result.

Torricelli’s Law A cylindrical tank is filled with water to
a depth of 9 meters. At ¢+ = 0, a drain in the bottom of the
tank is opened and water flows out of the tank. The depth
of water in the tank (measured from the bottom of the tank)
t seconds after the drain is opened is approximated by

d(r) = (3 — 0.015¢)% for 0 < ¢ = 200. Evaluate and interpret
hzrgw d(r).
—

Electric field The magnitude of the electric field at a point x
meters from the midpoint of a 0.1-m line of charge is given by
4.35

xVx% + 001

Evaluate lim E(x).

x—10

E(x) = (in units of newtons per coulomb, N/C).



Additional Exercises

86-87. Limits of composite functions

86. If lim /(x) = 4.find lim f(x?).
x> xX—>—

87.

88.

Suppose g(x) = f(1 — x), for all x, lin11+f(x) = 4, and
X

linllif(x) = 6. Find lin(‘)l+ g(x) and linoy g(x).

Two trigonometric inequalities Consider the angle 0 in standard
position in a unit circle, where 0 =< 0 < 7/2or —7/2 < 6 < 0
(use both figures).

a.

Show that |AC| = |[sin 6|, for —7/2 < 6 < /2. (Hint:
Consider the cases 0 = 6 < 7/2and —7/2 < 6 <0
separately.)

Show that |sin 0| < |0, for —7/2 < 6 < /2. (Hint:
The length of arc AB is 6, if 0 =< 0 < 7r/2, and —0, if
/2 <60 <0)

Conclude that — 0| =< sin§ =< |6], for —7/2 < 0 < /2.
Show that0 =< 1 — cos @ = |0], for —m/2 < § < 7/2.

2.4 Infinite Limits 61
o
A -2 <0<O0
C B
]
1 6
0 1
o C B
ko
0=6< ) A

89. Theorem 2.4a Given the polynomial
p(x) = b,x" + b,_x" "'+ -+ + bx + by,

prove that lim p(x) = p(a) for any value of a.
xX—a

QUICK CHECK ANSWERS
1. 0,2 2.2 3.3 41«

2.4 Infinite Limits

Two more limit scenarios are frequently encountered in calculus and are discussed in this
and the following section. An infinite limit occurs when function values increase or de-
crease without bound near a point. The other type of limit, known as a limit at infinity,
occurs when the independent variable x increases or decreases without bound. The ideas
behind infinite limits and limits at infinity are quite different. Therefore, it is important to
distinguish these limits and the methods used to calculate them.

An Overview

To illustrate the differences between infinite limits and limits at infinity, consider the val-

ues of f(x) = 1/x? in Table 2.5. As x approaches 0 from either side, f(x) grows larger

and larger. Because f(x) does not approach a finite number as x approaches 0, lin}) f(x)
x>

does not exist. Nevertheless, we use limit notation and write lim f(x) = oo. The infinity
x—0

symbol indicates that f(x) grows arbitrarily large as x approaches 0. This is an example of
an infinite limit; in general, the dependent variable becomes arbitrarily large in magnitude
as the independent variable approaches a finite number.

y
Table 2.5
x f(x) = 1/x*
+0.1 100
+0.01 10,000
+0.001 1,000,000
l l
0 0
0 X

lim Lz — e
x>0 x
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y |
‘ ...f_(x) grows
I arbitrarily large.
I
I
I
I
I
I
I
I
I
I
I
I
}
o a X
As x approaches a...
(@)
Y As x approaches a...
(0] X

Figure 2.23

y=r

1
T
a
[
[
[
[
[
[
[
I ... f(x) is negative
} and grows

I arbitrarily large

} in magnitude.

(b)

With limits at infinity, the opposite occurs: The dependent variable approaches a fi-
nite number as the independent variable becomes arbitrarily large in magnitude. In
Table 2.6 we see that f(x) = l/x2 approaches 0 as x increases. In this case, we write

lim f(x) = 0.
x—)oc
Table 2.6 !
x flx) = 1/x?
10 0.01
100 0.0001
1000 0.000001
! l
o0 0
0 X
H 1 ; 1
JAm =0 lm <=0

A general picture of these two limit scenarios—occurring with the same function—is
shown in Figure 2.22.

y
} Infinite limit
[
Limit at infinity || Yo asx=a
y—>Lasx—>—© }
\
—_— [
[
|
\
7777777 M__7777}777777777
| | Limit at infinity
I | y=>Masx—>»
[
\
\
\

Figure 2.22

Infinite Limits

The following definition of infinite limits is informal, but it is adequate for most functions
encountered in this book. A precise definition is given in Section 2.7.

DEFINITION Infinite Limits

Suppose f is defined for all x near a. If f(x) grows arbitrarily large for all x suffi-
ciently close (but not equal) to a (Figure 2.23a), we write

lim f(x) = o
x—a
and say the limit of f(x) as x approaches a is infinity.

If f(x) is negative and grows arbitrarily large in magnitude for all x sufficiently
close (but not equal) to a (Figure 2.23b), we write

lim f(x) = —o

and say the limit of f(x) as x approaches a is negative infinity. In both cases, the limit
does not exist.
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EXAMPLE 1 Infinite limits Analyze lim ———and lim ———— using the
graph of the function. =1 (a7 = 1) =l (7 = 1)
SOLUTION The graph of f(x) = * (Figure 2.24) shows that as x approaches 1

Py
(from either side), the values of f grow arbitrarily large. Therefore, the limit does not
exist and we write

lim f(x) = o lim —> =
x=>1 xl—rfll (x2 _ 1)2

As x approaches —1, the values of f are negative and grow arbitrarily large

f) = in magnitude; therefore,

_r
(2 =12

lim f(x) = —o

x>—1

Figure 2.24

Ii a %
im ———— = —o,
X x——1 ()C2 — 1)2

Related Exercises 7-8 <

Example 1 illustrates rwo-sided infinite limits. As with finite limits, we also need to
work with right-sided and left-sided infinite limits.

DEFINITION One-Sided Infinite Limits

Suppose f is defined for all x near a with x > a. If f(x) becomes arbitrarily large for
all x sufficiently close to a with x > a, we write lim_f(x) = co (Figure 2.25a).
x—a

The one-sided infinite limits lim f(x) = —oo (Figure 2.25b), lim f(x) = o
x—a x—a

(Figure 2.25¢), and lim f(x) = —oo (Figure 2.25d) are defined analogously.
x—>a

y | y
v =rw .
: o "l X
| |
| |
| |
| |
| |
| |
| |
| |
| |
} |
0 a x L y=rw
lim f(x) = lim f(x) = —%»
(a) (b)
y | y
y=r® |,
| |
: o ,'1 X
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
0 a x y=rfe|!
lim f(x) = lim f(x) = —
(© (d

Figure 2.25
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QUICK CHECK 1 Sketch the graph In all the infinite limits illustrated in Figure 2.25, the line x = a is called a vertical
of a function and its vertical asymptote; it is a vertical line that is approached by the graph of f as x approaches a.
asymptote that satisfies the

conditions xlianzh f(x) = —o and

DEFINITION Vertical Asymptote

If lim f(x) = * oo, lim f(x) = £ oo, or lim f(x) = £ o, theline x = ais
x—a x—a x—a

lim f(x) = . <
x—2"

called a vertical asymptote of f.

EXAMPLE 2 Determining limits graphically The vertical lines x = 1 and
x—2

x = 3 are vertical asymptotes of the function g(x) = 3 . Use
(x —1)"(x = 3)
Figure 2.26 to analyze the following limits.
a. lim g(x) b. lim g(x) c. lim g(x)
x—1 x—3" x—3

SOLUTION

a. The values of g grow arbitrarily large as x approaches 1 from either side.
Therefore, lirr} g(x) = o,
X—>

b. The values of g are negative and grow arbitrarily large in magnitude as x
approaches 3 from the left, so 1irr317 g(x) = —oo.
Xx—>

c. Note that 1irr31+ g(x) = o and 1111317 g(x) = —oo. Because g behaves
x> X
Figure 2.26 differently as x — 3™ and as x — 3", we do not write lirr; g(x) = o nor do we
X
write lirr% g(x) = —oo. We simply say that the limit does not exist.
X3

Related Exercises 9—16 €

Finding Infinite Limits Analytically

Many infinite limits are analyzed using a simple arithmetic property: The fraction

Table 2.7 a/b grows arbitrarily large in magnitude if b approaches 0 while a remains nonzero
54+ x and relatively constant. For example, consider the fraction (5 + x)/x for values of
* x x approaching 0 from the right (Table 2.7).
5+
0.01 5.0 _ 501 We see that T as x — 0" because the numerator 5 + x approaches
0.01
0.001 5.001 5 while the denominator is positive and approaches 0. Therefore, we write
' 222 = 5001 5 + 5
0.001 lim, L= . Similarly, lim 2 7% — _ % because the numerator approaches
0.0001 5.0001 =00 X =0 X
00001 _ 20001 5 while the denominator approaches 0 through negative values.
l l
o+ o EXAMPLE 3 Determining limits analytically Analyze the following limits.
2-35 2-5
a. lim ~ b lim u
=3 x — 3 =3~ x — 3
SOLUTION
a. As x — 37, the numerator 2 — 5x approaches 2 — 5(3) = —13 while the

denominator x — 3 is positive and approaches 0. Therefore,

approaches —13
——

. 2= 5x
lim
3t x—3
H/_/
positive and approaches 0

= —00,



. x—5
QUICK CHECK 2 Analyze lim
x—0" X

-5
and lim SR by determining the
x—0" X

sign of the numerator and
denominator. <

» We can assume that x # 0 because
we are considering function values near
x = —4

QUICK CHECK 3 Verify that
x(x + 4) — 0 through negative
values as x — —4*, <

» Example 5 illustrates that f(x)/g(x)
might not grow arbitrarily large in
magnitude if both f(x) and g(x)
approach 0. Such limits are called
indeterminate forms; they are examined
in detail in Section 4.7.

» It is permissible to cancel the factor

(x = I)(x = 3)

x — lin lim -——————

=1 (x = 1)(x + 1)

x approaches 1 but is not equal to 1.
Therefore, x — 1 # 0.

because
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b. As x—>37,2 — 5x approaches 2 — 5(3) = —13 while x — 3 is negative and
approaches 0. Therefore,

approaches —13
—

. 2= 5x

lim = o

=3 x—3
N

negative and

approaches 0

These limits imply that the given function has a vertical asymptote at x = 3; they also

2
imply that the two-sided limit lim a does not exist.

x—3 X —

Related Exercises 17-28 €

e . . —x3 + 5x% — 6x
EXAMPLE4 Determining limits analytically Analyze lim ———————

x——4 —x3 — 4x?
SOLUTION First we factor and simplify, assuming x # O:
—x7 +5x —6x  —x(x —2)(x —3)  (x—2)(x—3)
—x3 — 4x? —x?(x + 4) x(x + 4)
As x — —47, we find that
approaches 42
—_——
. —x3 4+ 5x% — 6x . (x = 2)(x — 3)
lim —————————= lm ——— = —
x——4" —x’ — 4x x——4  x(x +4)
——
negative and
approaches 0
This limit implies that the given function has a vertical asymptote at x = —4.
Related Exercises 17-28 <€
. . x> —4x+3 .
EXAMPLE 5 Location of vertical asymptotes Let f(x) = —— . Determine
2=

the following limits and find the vertical asymptotes of f. Verify your work with a graph-
ing utility.

a. lim f(x) b. lim f(x) c. lim f(x)
x—1 x—>—1" x——1"
SOLUTION

a. Notice that as x — 1, both the numerator and denominator of f approach 0, and the
function is undefined at x = 1. To compute lim f(x), we first factor:
x—1

2
x“—4dx + 3
lim = lim
x—>1f(X) x—1 )C2 -1
- -3
= lim Factor.
=1 (x = 1)(x + 1)
. (x—=3)
= lim Cancel like factors, x # 1.
x—1 (x + ])
1—3 .
= = —1. Substitute x = 1.
1+1

Therefore, lirr} f(x) = —1 (even though f(1) is undefined). The line x = 1 is not
X—>

a vertical asymptote of f.
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» Graphing utilities vary in how they
display vertical asymptotes. The errors
shown in Figure 2.27a do not occur on all
graphing utilities.

b. In part (a) we showed that

x2—4x+3 x-3
flx) = Cox+ 17

x2—1

provided x # 1.

We use this fact again. As x approaches —1 from the left, the one-sided limit is

approaches —4

3

x —

li = 1l = o,

x—l>r—nl*f(X) x—ir—nl*x + 1
—

negative and
approaches 0

c. As x approaches —1 from the right, the one-sided limit is

approaches —4

3
X —
lim = i = —ox,
x—>71+f(X) x—llfnl+ x+1
A/_/
positive and
approaches 0
The infinite limits lim1+ f(x) = —o and limr f(x) = o each imply that the line
x—— x——
x = —1is a vertical asymptote of f. The graph of f generated by a graphing utility may

appear as shown in Figure 2.27a. If so, two corrections must be made. A hole should ap-
pear in the graph at (1, —1) because lin} f(x) = —1, but f(1) is undefined.
xX—

It is also a good idea to replace the solid vertical line with a dashed line to emphasize that
the vertical asymptote is not a part of the graph of f (Figure 2.27b).

X —4x+3

Two versions of the graph of y = 7]
2 —

y y

1+

T T T T T T T T T T
-2 X -2 X
1+ 14

Calculator graph Correct graph
(@) (b)

I
|
|
|
|
|
|
|
|
|
|
| | | | | | |
T
|
—
|
|
|
|
|
|

Figure 2.27
Related Exercises 29-34 <

(x—=1)(x—2)
x—2

QUICK CHECK 4 The line x = 2 is not a vertical asymptote of y =
Why not? <



lim cotf =
60"
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EXAMPLE 6 Limits of trigonometric functions Analyze the following limits.

a.

lim cot 6
6—0"

SOLUTION
a. Recall that cot § = cos 6/sin 6. Furthermore (Example 7, Section 2.3), Olin& cosfh =1

b. lim cot®
6—0"

and sin 6 is positive and approaches 0 as # — 0*. Therefore, as  — 07, cot § becomes

é %\ 0 arbitrarily large and positive, which means 911)m+ cot § = oo, This limit is confirmed
by the graph of cot 0 (Figure 2.28), which has a vertical asymptote at § = 0.

; b. In this case, eli)n(}i cosf® = landas 6 — 07, sin 6 — 0 with sin 8 < 0. Therefore, as
s cotf = —o 0 — 07, cot 0 is negative and becomes arbitrarily large in magnitude. It follows that
Figure 2.28 HILH(}— cot = —, as confirmed by the graph of cot 6.

Related Exercises 35—40 <
SECTION 2.4 EXERCISES
Review Questions 8.  Analyzing infinite limits graphically Use the graph of
1. Use a graph to explain the meaning of 1Lm+ f(x) = —oo. flx) = % to determine lim f(x) and lim f(x).
e (x* —2x — 3) x—-1 x—3

2. Use a graph to explain the meaning of lim f(x) = o°.

3. Whatis a vertical asymptote?

4. Consider the function F(x) = f(x)/g(x) with g(a) = 0. Does
F necessarily have a vertical asymptote at x = a? Explain your

reasoning.

5. Suppose f(x) — 100 and g(x) — 0, with g(x) < 0, as x — 2.

f(x)

Determine lim ———.
x—2 g(x)

6. Evaluate lim

x—37 X —

Basic Skills

7. Analyzing infinite limits numerically Compute the values of

+1
flx) = xil)z in the following table and use them to

(x

determine lim] f(x).
x>

x—a

and lim ——
—3"x —

x+1 x +1
x (x — 1) x (x — 1)?
1.1 0.9
1.01 0.99
1.001 0.999
1.0001 0.9999

Analyzing infinite limits graphically The graph of f in the fig-
ure has vertical asymptotes at x = 1 and x = 2. Analyze the fol-
lowing limits.

a. linllif(x) b. lin11+f(x) c. limlf(x)
d. lim f(x) e. lim f(x) £ lim f(x)

| |
l l
i i y=fm
| |
| |
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10. Analyzing infinite limits graphically The graph of g in the 14. Analyzing infinite limits graphically Graph the function
figure has vertical asymptotes at x = 2 and x = 4. Analyze the f(x) = xcotx using a graphing utility. (Experiment with your
following limits. choice of a graphing window.) Use your graph to determine the
a. lirr21_ g(x) b. lirr21+ g(x) c. lin; g(x) following limits.

o o 0 .l . i .l i
d. lim g(x) e. lim g(x) f. lim g(x) a x—1>mﬂ+f(x) b x—lg:*f(x) ¢ x_fgl,-ﬁf(x) d x_}rfn,,*f(x)
x—4 x—4" x—4
y 15. Sketching graphs Sketch a possible graph of a function f,
! ! together with vertical asymptotes, satisfying all the following
| | conditions on [0, 4].
| | f(1) =0,  £(3)is undefined, lim flx) =1,
I I x>
| | : — : — H —
I I I I I 1 ) - 5 -
AN lim, f(x) °,  lmflx) =, lim flx) =
0 2 4 X
} } B 16. Sketching graphs Sketch a possible graph of a function g,
| R ) together with vertical asymptotes, satisfying all the following
} } conditions.

g(2) =1, ¢(5)=-1 limg(x) = —o,
11. Analyzing infinite limits graphically The graph of / in the ) . xd
figure has vertical asymptotes at x = —2 and x = 3. Analyze Xli,n% 8(x) = =, Xli)n% glx) = —=
the following limits.
17-28. Determining limits analytically Determine the following limits

a XEIPZ* h(x) b. Xllrpf h(x) ¢ xl_lfilg h(x) or state that they do not exist.
d. lim A(x) e. lim 7(x) f. lim A(x) |
. 3 3 17. a. lim —— b. lim c. lim
y =25 x — 2 =2 x — 2 x—2x — 2
| | ) )
| | 18. a lim ———— b lim ———— ¢ lim————
| | =3 (x = 3) =37 (x = 3) =3 (x — 3)
| |
| ! -5 -5 -5
l l 19. a. lim——— b, lim ———— ¢ lim———
. = i (x — 4) od (x4 ai(x - 4)
\ \
-2 -2 -2
| [y = o 20. a. lim———~ b lm—— e lim—
! [’ =17 (x = 1) = (x = 1) =1(x — 1)
\ \
| | o a G G DE=2 L oD =2)
12. Analyzing infinite limits graphically The graph of p in the =3 (= 3) = (= 3)
figure has vertical asymptotes at x = —2 and x = 3. Analyze i (x-1Dx—-2)
the following limits. “T -3
a. lim p(x) b. lim p(x) c. lim p(x) (x — 4) (x — 4)
2 =2 S 22. a. lim ———— b. lim ——
d. lin317p(x) e. lirr}1+p(x) f. ling p(x) =2t x(x + 2) x—-2"x(x + 2)
x> x> x>
i )
| y | e x(x +2)
| |
I I 2 2
—4x +3 ~ 4x + 3
= —— 23 a lim > b lim *
-2 3 =2 (x —2) =2 (x —2)
| | g X4+ 3
c. lim———5—
| [y =rw =2 (x - 2)?
‘ ! 3 2 3 2
352+ 6 ~5x2 + 6
} } 24. a. lim % b. lim %
| | x—-2" X = 4x x—=2"  x" — 4x
I x3 = 5x% + 6x d 1 x3 — 5x% + 6x
13. Analyzing infinite limits graphically Graph the function ¢ x_l,n,lz o4 — 42 . XI_I)UZ B4 — 42
1
flx) = —— using a graphing utility with the window
X7 —x
[—1,2] X [—10, 10]. Use your graph to determine the following

limits.
a. lirgif(x) b. 1ir51+f(x) c. lim f(x) d. lim f(x)

x—1" x—1



3 2 2
-5 4t~ — 100
25 lim 26. lim—— —
x—0 X —5 t—5
2
—5x+6 -5
27, lim 2 28 lim——————
x—1 x—1 z—4 (Z — 10z + 24)
29. Location of vertical asymptotes Analyze the following limits
-5
and find the vertical asymptotes of f(x) = )26725
X2 —
a. lim f(x) b. lim f(x) c. lim f(x)
x—5 x—>=5 x——5"
30. Location of vertical asymptotes Analyze the following limits
+7
and find the vertical asymptotes of f(x) = %.
x" — 49x

a lim f(x) b limf(x) e lm f(x)  d limf()

42.

43.

44.
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Finding a function with vertical asymptotes Find polynomials p
and g such that f = p/q is undefined at 1 and 2, but f has a verti-
cal asymptote only at 2. Sketch a graph of your function.

Finding a function with infinite limits Give a formula for a

function f that satisfies lin61+ f(x) = o and liH617 f(x) = —oo.

Matching Match functions a—f with graphs A-F in the figure
without using a graphing utility.

31-34. Finding vertical asymptotes Find all vertical asymptotes
x = a of the following functions. For each value of a, determine

lim_f(x), lim f(x), and lim f(x).
x—a xX—a xX—a

2
x*—9x + 14 CoSs X
3. f(x) = ———— 32. f(x) =
1) x2—=5x+6 1) x2 + 2x
x+ 1 x? = 10x? + l6x
3B, fx)=——""5—" 34 f(x) =—7F5— —
S x5 — 4x? + 4x Jx) x? — 8x
35-38. Trigonometric limits Determine the following limits.
35. lim csc6 36. lim cscx
6—0" x—0"
. . 1
37. lim (—10cotx) 38. lim  —tan6
x—0" 0—m/2" 3
39. Analyzing infinite limits graphically Graph the function
y = tan x with the window [ —7, 7] X [—10, 10]. Use the graph
to analyze the following limits.
a. lin} L tanx b. limT tan x
c. lim tanx d. lim tanx
x——1/2" x—>—m /2"
40. Analyzing infinite limits graphically Graph the function

y = sec x tan x with the window [ —7, ] X [—10, 10]. Use the
graph to analyze the following limits.

a. lim
x—/2

sec x tan x

c. lim ,secxtanx

x—>—/2

Further Explorations

b. lim secxtanx
x—m/[2”

d. lim sec xtanx
x—>—m/2"

X X
. = b. =
a f() = 5 = 5"
1 X
c = d. =
0 = 5 1) =20
1 X
« SO =Ty R W=
A YA B YA,
\ \
- Tl
4 iy
\ \
1 [ 14+ 1
—-'—=v=»z ‘ L ——
—1 1 } X 4 } X
1 4
| |
- | -+ |
l l
C. ‘y | D. y
\ \
|+ T
| |
N+ -
\ \
1 1 l J l 1 1 Il Il |1_- Il Il
T T 7i i T T X T T i i T T X
| T |
| |
| -T- | T
| |
[ 4
l l
E. Y F. Y |
\ \ \
T [
s R
\ \ \
114 14
1 1 l 1 1 1 ! !
| T | |
| | |
i+ i+ \i
| | |
| -+ | -+ |
| | |
| | |

45-52. Asymptotes Use analytical methods and/or a graphing utility

41.

Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The line x = 1 is a vertical asymptote of the function

() x> —Tx+6
X)y=-——"+ -
x2 =1
b. The line x = —1 is a vertical asymptote of the function
x> —=Tx+6
fo) =——F—"—
x- =1

c. If g has a vertical asymptote at x = 1 and lim_g(x) = ,
then hnll, g(x) = . ol
x>

to identify the vertical asymptotes (if any) of the following functions.

45.

46.

47.

48.

2
x“—=3x+ 2
X)=—1(
) = 2
g(x)=cot<x—%), x| =m
coS x
h(x) =
) (x+ 1)
p(x) = sec?,for |x| <2
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0 T 54, f(x) = X3
49. f) = tan — 50. = .
s(0) 0 a(s) s —sins y
S1. /() = = 52. g(x) :
Cflx) = —F— . glx) =
Vi sec x # x(x2=1)
| (B,
Additional Exercises (0,0 l
o = Ix + 12 h
53. Limits with a parameter Let f(x) = ———. T
X —a y=x
a. For what values of a, if any, does lim_f(x) equal a finite
number? o
b. For what values of «, if any, does lim_f(x) = «?
x—a
c. For what values of «, if any, does lim_f(x) = —o? QUICK CHECK ANSWERS
x—a

54-55. Steep secant lines

a. Given the graph of f in the following figures, find the slope of the
secant line that passes through (0, 0) and (h, f(h)) in terms of h,
forh > 0and h < 0.

b. Analyze the limit of the slope of the secant line found in part (a) as
h— 0" and h— 0. What does this tell you about the line tangent
to the curve at (0,0)?

1. Answers will vary, but all graphs should have a vertical
asymptote at x = 2. 2. —©; 0 3. Asx— —4", x <0
and (x + 4) > 0, so x(x + 4) — 0 through negative

(=D —2)
lim ————
x—2 x—2
which is not an infinite limit, so x = 2 is not a vertical
asymptote. <

values. 4. =1lim (x — 1) = 1,
x—2

2.5 Limits at Infinity

Limits at infinity—as opposed to infinite limits—occur when the independent variable
becomes large in magnitude. For this reason, limits at infinity determine what is called
the end behavior of a function. An application of these limits is to determine whether a
system (such as an ecosystem or a large oscillating structure) reaches a steady state as time
increases.

Limits at Infinity and Horizontal Asymptotes

Consider the function f(x) = (Figure 2.29), whose domain is (—, ®). As

X
Vix? + 1
x becomes arbitrarily large (denoted x — ), f(x) approaches 1, and as x becomes arbi-
trarily large in magnitude and negative (denoted x — — ), f(x) approaches —1. These
limits are expressed as

limf(x) = 1

X—>0

and

lim f(x) = —1.

x—>—0

The graph of f approaches the horizontal line y = 1 as x — %, and it approaches the

horizontal line y = —1 as x — — o0, These lines are called horizontal asymptotes.
Y lim f() =1
pren
77777777777 ]__777777777777
/
Horizontal asymptote

T+ SI0===

Vx2+1

f f f f
-2 -1 1 2 X

Figure 2.29
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Y lim f(x) = L DEFINITION Limits at Infinity and Horizontal Asymptotes
Lt+-—-————= If f(x) becomes arbitrarily close to a finite number L for all sufficiently large and
feo+--- ) positive x, then we write
x> = i lim f(x) =
: : S
i x> ! We say the limit of f(x) as x approaches infinity is L. In this case, the liney = L
< is a horizontal asymptote of f (Figure 2.30). The limit at negative infinity,
,,,,,,,,,,,,, Y lim f(x) = M, is defined analogously. When this limit exists, y = M is a
xX—>—®
Jim f() =M horizontal asymptote.
Figure 2.30
QUICK CHECK 1 Evaluate x/(x + 1) EXAMPLE 1 Limits at infinity Evaluate the following limits.
for x = 10, 100, and 1000. What is ; (2 . 10) . <5 . sinx)
i ) a. lim — . lim
lim 7 < Jim (25 5) wgim (5700
» The limit laws of Theorem 2.3 and the SOLUTION

S Th ly if x — a is . .. .
duieeze TACOIEm appry 1A @18 a. As x becomes large and negative, x> becomes large and positive; in turn, 10 /)c2

approaches 0. By the limit laws of Theorem 2.3,

replaced with x — % or x — — .

Y ) 10 . . 10
lim {2+ —]= lm 2+ lm | —5|=2+0=2
N————
equals 2 equals 0

Therefore, the graph of y = 2 + 10/x? approaches the horizontal asymptote y = 2
lim f(x) =2 ) . . 10 . S
i as x —> —oo (Figure 2.31). Notice that lim | 2 + — ] is also equal to 2, which implies

X

X—>w

that the graph has a single horizontal asymptote.

b. The numerator of sin x/ Vx is bounded between —1 and 1; therefore, for x > 0,

1
T
2 X 1 sin x 1

—_— =
Figure 2.31 Vi Vx o \[
As x — %, \/x becomes arbitrarily large, which means that
li = li ! 0
im —— im — = 0.
x—>w \[ xX—>w© X
. sinx
It follows by the Squeeze Theorem (Theorem 2.5) that lim —— = 0.
x—>® X
y Using the limit laws of Theorem 2.3,
. 5+sinx — lm 5 + I sin x
fx) =5+ 30X sin x XEBC Vx ng}c xl—r}}o \f

Vi

(2 ——

5 equals 5 equals 0
4 li =5 sin x
/ Jim.fe) The graphof y =5 + — Vs approaches the horizontal asymptote y = 5 as x becomes
1 X
y = 5 is a horizontal large (Figure 2.32). Note that the curve intersects its asymptote infinitely many times.
1| asymptote. Related Exercises 9—14 <

. . . . . Infinite Limits at Infinity
0 10 50 X

It is possible for a limit to be both an infinite limit and a limit at infinity. This type of
Figure 2.32 limit occurs if f(x) becomes arbitrarily large in magnitude as x becomes arbitrarily large
in magnitude. Such a limit is called an infinite limit at infinity and is illustrated by the
function f(x) = x? (Figure 2.33).
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lim f(x) = o
y
T T =3
T B i i T
- l —
lim f(x) = —

x=>—00

Figure 2.33

QUICK CHECK 2 Describe the behavior

of p(x) = —3x% as x — ® and as

xX— — % <

DEFINITION Infinite Limits at Infinity

If f(x) becomes arbitrarily large as x becomes arbitrarily large, then we write

lim f(x) = .
x—>0
The limits lim f(x) = —o, lim f(x) = o, and lim f(x) = —o are
X—>® xX—>—0© x——©

defined similarly.

Infinite limits at infinity tell us about the behavior of polynomials for large-magnitude
values of x. First, consider power functions f(x) = x", where n is a positive integer.

Figure 2.34 shows that when n is even, lim x" = oo, and when n is odd, lim x" = o
. no_ x— t oo xX—>®
and lim x" = —oo,
xX—>—©
n > 0even: y n >0 odd: y
lim x" = o lim x" = o; lim x" = —o©
x> Ew X% xX=>—x
60 1 1
-+ 20 ——
404 -+
T X
204
y=x
1 1 1 1
T T T T T T
-3 -2 -1 12 3 X
Figure 2.34

It follows that reciprocals of power functions f(x) = 1/x" = x™", where n is a positive
integer, behave as follows:

Iim x™"* = 0.

xX—>—®©

1 _ 1
lim — = limx™" =0 and lim — =
x—w X X—>0 X—>—0 X

From here, it is a short step to finding the behavior of any polynomial as x — to. Let

p(x) = ax" + a,_x" '+ -+ + ax® + a;x + a;. We now write p in the equivalent
form
Apn—1 | Qn—2 do
x) =x"a, + + +oeet—
P( ) n X ) "
—— —— —
—0 —0 —0

Notice that as x becomes large in magnitude, all the terms in p except the first term
approach zero. Therefore, as x — t o, we see that p(x) = a,x". This means that as
x—> T oo, the behavior of p is determined by the term a,x" with the highest power of x.

THEOREM 2.6 Limits at Infinity of Powers and Polynomials
Let n be a positive integer and let p be the polynomial

p(x) = ax" + a,_ x" '+ -+ ax® + ax + ay, where a,, # 0.
1. lim x" = o when n is even.

x— T
2. lim x" = o and lim x" = —o when n is odd.

x—® Xx—>—00

. 1 . _

3. lim — = lim x™" =0.

x—>towx x—>t o

n —

4. liIE p(x) = 1in+1 a,x + 0, depending on the degree of the polynomial
x— t oo x— t o

and the sign of the leading coefficient a,,.




lim p(x) = »
xX->—00

100 +

lim p(x) = »
x>0

px)=3x*—6x2+x— 10

50+
} } } }
-2\l \1_/2 x
Figure 2.35
lim g(x) = Y
X=>—x 20__

gx) = —2x° + 3x? — 12

Figure 2.36

lim g(x) = —»

x>

» Recall that the degree of a polynomial is

the highest power of x that appears.

Figure 2.37

lim f(x) = 0

x>0
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EXAMPLE 2 Limits at infinity Evaluate the limits as x — * o of the following
functions.

a. p(x) =3x*—6x2+x— 10 b. g(x) = —2x3 + 3x2 — 12

SOLUTION
a. We use the fact that the limit is determined by the behavior of the leading term:

lim (3x* — 6x? + x — 10) = lim 3x* = 0.
X—>x© X—> — o

Similarly,

lim (3x* — 6x* + x — 10) = lim 3x* = o,

> >
X * X ® 5

Figure 2.35 illustrates these limits.

b. Noting that the leading coefficient is negative, we have

lim (—2x% + 3x% — 12)

X—>0

= lim (—2x°) = —o0
xX—>® g

—> 0

lim (—2x* + 3x? — 12) = lim (—2x°) = .
X—>—0 X—>—® —> —

The graph of ¢ (Figure 2.36) confirms these results.
Related Exercises 15-24 <

End Behavior

The behavior of polynomials as x — =+ o is an example of what is often called end behav-
ior. Having treated polynomials, we now turn to the end behavior of rational and algebraic
functions.

EXAMPLE 3 End behavior of rational functions Determine the end behavior for the
following rational functions.
3x + 2

xr =1

_40xt + 4x? -1
10x* + 8x2 + 1

X =2x+1
2x + 4

a. f(x) = b. g(x) c. h(x) =

SOLUTION

a. An effective approach for determining limits of rational functions at infinity is to
divide both the numerator and denominator by x", where n is the degree of the polyno-
mial in the denominator. This strategy forces the terms corresponding to lower powers
of x to approach 0 in the limit. In this case, we divide by x*:

approaches 0
——
3x + 2 3 2
2 T2
. 3x+2 . . X 0
lim — = lim — = lim =—=0
x—o x° — 1 x—o x< — 1 x—x 1 1
x2 x?
approaches 0
+ 2

. . . . 3x
A similar calculation gives lim ———

x——0 x° —
horizontal asymptote y = 0. You should confirm that the zeros of the denominator are
—1 and 1, which correspond to vertical asymptotes (Figure 2.37). In this example, the
degree of the polynomial in the numerator is less than the degree of the polynomial in
the denominator.

| = 0; therefore, the graph of f has the
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lim gx) =4
Y
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lim g(x) =4

x>

80 = T 8241

Figure 2.38

AARRER

A [ im b =
ho - x->®
|
|
110 +
lim h(x) = = | |
xX>—% |
|
——+— —t+—+—
-8 -4 | 4 g X
3 _
} h(x)=x 2x + 1
ol 2+ 4
I
Figure 2.39

400" + 442 — 1

b. Again we divide both the numerator and denominator by the largest power appearing

in the denominator, which is x*:

40xt 4x? 1
40x* + 4x% — 1 . x* x* x* Divide the numerator and
im ———— = lim . 4
x—o 10x* + 8x% + 1 x—oo 10x? 8x2 1 denominator by x*.
st ot
X X X
approaches 0 approaches 0
4 1
40 + ; - x74
= lim Simplify.
x—>0 8 1
10 + - t =
X X
approaches 0 approaches 0
40+ 0+ 0 o
=— =4 Evaluate limits.
10+0+0

Using the same steps (dividing each term by x*), it can be shown that

40x* + 4x? — 1

im ———————

x——= 10x* + 8x% + 1

(Figure 2.38). Notice that the degree of the polynomial in the numerator equals the
degree of the polynomial in the denominator.

= 4. This function has the horizontal asymptote y = 4

c¢. We divide the numerator and denominator by the largest power of x appearing in the

denominator, which is x, and then take the limit:

3 ..
CoxT —2x+ 1 . X X X Divide the numerator and
lim = lim .
x—e  2x + 4 x—o© 2x 4 denominator by x.
—_ + j—
X X
RPN approaches 0
arbitrarily large o<t .
— L 1
x? - 2 + —
. x . .
= lim Simplify.
fosen 4
2 + -
— X
constant =
approaches 0
= o0, Take limits.

As x — oo, all the terms in this function either approach zero or are constant—except
the x2-term in the numerator, which becomes arbitrarily large. Therefore, the limit of the

3
x7 —2x + 1
function does not exist. Using a similar analysis, we find that lim T a4 = o
x—>—®© X
These limits are not finite, so the graph of the function has no horizontal asymptote (Figure 2.39).
There is, however, a vertical asymptote due to the fact that x = —2 is a zero of the

denominator. In this case, the degree of the polynomial in the numerator is greater than
the degree of the polynomial in the denominator.
Related Exercises 25-34 <€

A special case of end behavior arises with rational functions. As shown in the next
example, if the graph of a function f approaches a line (with finite and nonzero slope) as
x —> T oo, then that line is a slant asymptote, or oblique asymptote, of f.

EXAMPLE 4 Slant asymptotes Determine the end behavior of the function
2x% 4+ 6x — 2
flx) = x+ 1
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SOLUTION We first divide the numerator and denominator by the largest power of x
appearing in the denominator, which is x:

75

2t 6x 2
. 2x% + 6x — 2 . X X X Divide the numerator and
Iim—— = lim ——— .
x—® x+1 x—® X N 1 denominator by x.
X x
arbitrarily large approaches 0
constant —_
—— —t— 2
2x + 6 — —
. x . P
= lim Simplify.
x>0 1
1 + -
— X
constant —
approaches 0
= o0, Take limits.
22+ 6x =2
O e o , o2+ 6 -2 o
x A similar analysis shows that lim ————— = —. Because these limits are
Slant X—>—® x +1
as;‘:n ptote not finite, f has no horizontal asymptote.

long division, the function f is written

However, there is more to be learned about the end behavior of this function. Using

—A 2x% + 6x — 2 6
g fr) =" =+ 4 - :
ol x+1 —_—— xt1
- €(x —
T U =2x+4 [T Graph of f ( approaches 0 as
approaches > %
T graph of € '
4 (@sx>Ee As x—> o, the term 6/(x + 1) approaches 0, and we see that the function f behaves like

Figure 2.40

the linear function €(x) = 2x + 4. For this reason, the graphs of f and € approach each
other as x — o (Figure 2.40). A similar argument shows that the graphs of f and € also

approach each other as x — — . The line described by ¢ is a slant asymptote; it occurs

» More generally, aline y = €(x)
(with finite and nonzero slope) is a he d £ th | "ol in the d ) b v 1
slant asymptote of a function f if the degree of the polynomial in the denominator by exactly 1.

lim (f(x) ~ £(x)) = Oor

with rational functions only when the degree of the polynomial in the numerator exceeds

Related Exercises 3540 <

lim (f(x) — €(x)) = 0. The conclusions reached in Examples 3 and 4 can be generalized for all rational

functions. These results are summarized in Theorem 2.7 (Exercise 68).

QUICK CHECK 3 Use Theorem 2.7 to
find the vertical and horizontal asymp-

X
10x < Suppose f(x) = Py is a rational function, where
x — 1 q(x

THEOREM 2.7 End Behavior and Asymptotes of Rational Functions

totes of y =
3
p(x) = a,x™" + am_lxm_] + o+ a2x2 +ax+ ay and
Q(x) =bp" + bn—lxn_1 +-eet bz)Cz + bix + by,
witha,, # Oand b, # 0.

a. Degree of numerator less than degree of denominator If m < n, then
lim f(x) = 0and y = 0 is a horizontal asymptote of f.

x— =t
b. Degree of numerator equals degree of denominator If m = n, then
lirE f(x) = a,/b,and y = a,,/b, is a horizontal asymptote of f.
X—™> T ®

c. Degree of numerator greater than degree of denominator If m > n, then
lirE f(x) = o or — and f has no horizontal asymptote.
X—™> T ®
d. Slant asymptote If m = n + 1, then lirE f(x) = o or —, f has no
X—™> T ®
horizontal asymptote, but f has a slant asymptote.

e. Vertical asymptotes Assuming that f is in reduced form (p and ¢ share no
common factors), vertical asymptotes occur at the zeros of g.
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» Recall that
\/; = |x| = X ifx=0
—x ifx <O0.
Therefore,
’5 .
\/7;= 3 X ifx =0
=) {*x3 ifx < 0.
Because x is negative as x —> — %, we
have \/)F = —x.
y
1003 — 3x% + 8

foy = V25x0 + x4 + 2

Figure 2.41

Although it isn’t stated explicitly, Theorem 2.7 implies that a rational function can
have at most one horizontal asymptote, and whenever there is a horizontal asymptote,

plx) px) . . .
lim = lim ——=. The same cannot be said of other functions, as shown in the next
x> g(x)  x——=g(x)
example.

EXAMPLE 5 End behavior of an algebraic function Determine the end behavior of
10x® — 3x* + 8

f) = e

V25x% + x* + 2

SOLUTION The square root in the denominator forces us to revise the strategy used
with rational functions. First, consider the limit as x — . The highest power of the
polynomial in the denominator is 6. However, the polynomial is under a square root, so
effectively, the term with the highest power in the denominator is Vb = 3. Dividing
the numerator and denominator by x3, for x > 0, the limit becomes

10x?  3x* 8

. 10x% — 3x% + 8 . x3 x3 x3 Divide by
lim = lim ¢ 3
=2 \25x0 + xt 42 xmm 250yt 2 Vit =23,

.X6 .X6 x6
approaches O approaches 0
3 8
10 — - + )
. X X
= lim Simplify.
o \/ 35+ + 4 2
X2 X()
approaches 0 approaches 0
10 ) Evaluate limi
= = 4. valuate limits.
V25

As x — — 0, x3 is negative, so we divide the numerator and denominator by

Vb = —x3 (which is positive):
10x°  3x? 8

- +
. 1ox® —3x* + 8 R S S & Divide by
lim = lim \/7, _ 3
xX—>—® \ /25x6 + x4 + 2 Xx—>—® 25X6 )C4 2 x° = —x>> 0.
X6 X6 X6
approaches 0 approaches 0
3 8
-0+ > - =
. X X
= lim Simplify.
x—>—0 1 2
25 + - + =
X X

approaches 0 approaches 0

10
= ——= -2 Evaluate limits.
V25
The limits reveal two asymptotes, y = 2 and y = —2. Observe that the graph crosses

both horizontal asymptotes (Figure 2.41).
Related Exercises 41-44 <

End Behavior of sin x and cos x

Our future work requires knowing about the end behavior of sinx and cos x. The val-
ues of both functions oscillate between —1 and 1 as x increases in magnitude. There-
fore, lim sinx and lim cosx do not exist. However, both functions are bounded as

x—>t o x—>too

x — * o; that is,

sinx| = 1 and |cosx| = 1 forall x.



SECTION 2.5 EXERCISES

Review Questions

1. Explain the meaning of lim f(x) = 10.

x—>—%

2.  What is a horizontal asymptote?

x
3. Determine lim & if f(x) — 100,000 and g(x) — o as x —> .

x—» glX
4. Describe the end behavior of g(x) = (sinx)/x.
5. Describe the end behavior of f(x) = —2x°.

6. The text describes four cases that arise when examining the end
behavior of a rational function f(x) = p(x)/q(x). Describe the
end behavior associated with each case.

— — 42
7. Evaluate lim —, lim ~—, and lim

x—w X x——% X x—w

8. Describe with a sketch the end behavior of f(x) = cosx.

Basic Skills
9-14. Limits at infinity Evaluate the following limits.
10 1 10
9. lim (3 + —2) 10. lim (5 + —+ —2>
X—>® X xX—>®% X X
s + 2x + 4x?
1. 1im &0 12, limo XA
0—>o0 02 x—w x2
5 s 4.3
COS X 100 sin” x
13. i 14. lim {5+ — +
xgrolc \/); xﬁlrg”( X x2 )
15-24. Infinite limits at infinity Determine the following limits.
15. limx'? 16. lim 3x'!
xX—>® X—>—00
17. limx™® 18. lim x7 !
xX—®© xX—>—®
19. lim (3x'2 — 9x7) 20. lim (3x7 + x?)
X—>® X—>—0
21, lim (—3x'6 + 2) 22, lim 2x78
X—>—0 X—>—00
23, lim (—12x7%) 24. lim (2x7% + 4x?)
xX—>® X—>—®

25-34. Rational functions Determine lim f(x) and lim f(x) for the
xX—>w xX—>—®

following rational functions. Then give the horizontal asymptote of f

(if any).

4x 3x2 -7
25. =— 26. ==
fx) 20x + 1 fx) x2 + 5x
6x> — 9x + 8 4xr — 7
27. == =2 18 =~
) 32+ 2 0 =50 5t
3 -7 xt+7
29. === 30. = — —
f(x) ¥4+ 5y2 f(x) ¥4l —x
2x + 1 12x% -3
3L f(x) = — 32 fx) = —

) 38— 2y
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40x° + x? -3 +1
=T M )=

33. —
fo) =17 o, T8

35-40. Slant (oblique) asymptotes Complete the following steps for
the given functions.
a. Use polynomial long division to find the slant asymptote of f.

b. Find the vertical asymptotes of f.

c¢. Graph f and all its asymptotes with a graphing utility. Then sketch
a graph of the function by hand, correcting any errors appearing in
the computer-generated graph.

35 f(x) = ’;2;63 36 f(x) = ’;2;21

37. flx) = "23_)%;5 38. f(x) = 3)‘22;%
3. fx) 4x3+411xj :27x+4

40. f(x) = %

41-44. Algebraic functions Determine lim f(x) and lim f(x) for
x—w x—>—®

the following functions. Then give the horizontal asymptote(s) of f
(if any).

i £ 403 + 1
. X)) = —— —
23 + Viex® + 1
\/x2+1
2. f0) =7
3/ 6
Vx0 + 8
43. f(x) ol

A+ V3t
44, f(x) = 4x(3x — VoxZ + 1)

Further Explorations

45. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The graph of a function never crosses one of its horizontal
asymptotes.

b. A rational function f has both lim f(x) = L (where L
is finite) and lim f(x) = . A

¢. The graph of );1 function can have at most two horizontal
asymptotes.

46-55. Horizontal and vertical asymptotes
a. Analyze lim f(x) and lim f(x), and then identify any horizontal
X—>x X—>—x
asymptotes.
b. Find the vertical asymptotes. For each vertical asymptote x = a,
analyze lim_f(x) and lim_f(x).
x—a x—a

X2 —4x+3 _2x3+10x2+12x

46. f(x) = 47. f(x) = JEpRp:

x — 1
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Viex* + 64x? + x?

48. f(x) =

2% — 4
50. f(x) = 16x2(4x> — Vi6x* + 1)
51, f(x) = xx(;%z) 52. f(x) = %
53 f) = VX +x2f J]r 073 54 fu) = m

55. f(x) = Vx| = V]x - 1]

56-57. Sketching graphs Sketch a possible graph of a function f that
satisfies all the given conditions. Be sure to identify all vertical and
horizontal asymptotes.

56. f(—1) = =2, f(1) = 2, £(0) = 0, lim f(x) = 1,

lim f(x) = —1 o
x——»
57. lim_f(x) = o, lim f(x) = —o0, lim f(x) = 1,
x—0" x—0" x—®
lim f(x) = =2
x——

58. Asymptotes Find the vertical and horizontal asymptotes of

fx) = ——

x2—x-2

59. Asymptotes Find the vertical and horizontal asymptotes of

fx) = cosx\-l/—);Z\/);

Applications

60-63. Steady states If a function f represents a system that varies in
time, the existence of lim f(t) means that the system reaches a steady
11—

state (or equilibrium). For the following systems, determine whether a
steady state exists and give the steady-state value.

. . L 2500
60. The population of a bacteria culture is given by p(¢) = T
61. The population of a culture of tumor cells is given by
(1) = 3500¢
P t+ 1
62. The population of a colony of squirrels is given by
() = 15001
P 202+ 3

. . L t+ sint
63. The amplitude of an oscillator is given by a(r) = 2(#)

64-67. Looking ahead to sequences A sequence is an infinite, ordered
list of numbers that is often defined by a function. For example, the
sequence {2,4,6,8, ...} is specified by the function f(n) = 2n,
wheren = 1,2,3, ... . The limit of such a sequence is lim f(n),

n—ow
provided the limit exists. All the limit laws for limits at infinity may be

applied to limits of sequences. Find the limit of the following sequences
or state that the limit does not exist.

—_

64. {4, 2,

[SSRIEN
i
&)

4
.. .}, which is defined by f(n) = —, for
n

3
I
—_
W |
W |

65.

} which is defined by f(n) = —

—

=

0=
o W o
W AW W

3
I
—_

—
@)}

66.

2
. }, which is defined by f(n) =

}”u-‘

D=
SRR

67.

+ 1
. }, which is defined by f(n) = n , for
n

3|

S A S A
IS
NN
RS

Il
_
»
e

Additional Exercises

X
68. End behavior of a rational function Suppose f(x) = I%
q(x
is a rational function, where
p(x) = an’rxm + am*l-xm_1 + oot a2x2 + ax + a,
q(x) = bx" + b, x" '+ -+ byx* + bix + by, a,, # 0,
and b, # 0.

Q

a. Prove thatif m = n,then lim f(x) =

m
— t
AT n

b,
b. Prove thatif m < n, then 1in+1 flx) =0.

69. Horizontal and slant asymptotes

a. Is it possible for a rational function to have both slant and hori-
zontal asymptotes? Explain.

b. Is it possible for an algebraic function to have two different
slant asymptotes? Explain or give an example.

QUICK CHECK ANSWERS

1. 10/11,100/101, 1000/1001; 1 2. p(x)—> —o as

x— © and p(x) —> % as x — —o 3. Horizontal

asymptote is y = % vertical asymptote is x = % <«



QUICK CHECK 1 For what values of ¢ in
(0, 60) does the graph of y = ¢(t) in
Figure 2.42b have a discontinuity ?7<

2.6 Continuity 79

2.6 (ontinuity

The graphs of many functions encountered in this text contain no holes, jumps, or breaks.
For example, if L = f(t) represents the length of a fish ¢ years after it is hatched, then the
length of the fish changes gradually as ¢ increases. Consequently, the graph of L = f(¢)
contains no breaks (Figure 2.42a). Some functions, however, do contain abrupt changes in
their values. Consider a parking meter that accepts only quarters and each quarter buys
15 minutes of parking. Letting ¢(¢) be the cost (in dollars) of parking for # minutes, the
graph of ¢ has breaks at integer multiples of 15 minutes (Figure 2.42b).

L y
125+
.,E\ E‘; 1.00 + y = (1) (o —
= S 075+ o——e
&b g
E é‘ 0.50 + o——e
0.25 I_.
f f f f f f f }
0 1 2 3 4 t OT 15 30 45 60 t
Time (yr) Time (min)
(a) (b)
Figure 2.42

Informally, we say that a function f is continuous at a if the graph of f does not have
a hole or break at a (that is, if the graph near a can be drawn without lifting the pencil). If
a function is not continuous at a, then a is a point of discontinuity.
Continuity at a Point

This informal description of continuity is sufficient for determining the continuity of sim-
ple functions, but it is not precise enough to deal with more complicated functions such as

1
h(x) = xsin; ifx # 0
0 ifx = 0.

It is difficult to determine whether the graph of / has a break at 0 because it oscillates rap-
idly as x approaches 0 (Figure 2.43). We need a better definition.

Is i continuous
02 | atx=0?

xsinl ifx#0
x
0 ifx=20

Figure 2.43
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y
5T T
y:f(X)}
|
34 ° :
|
T I
|
|
|
bttt
0 1 3 5 7
Figure 2.44

» In Example 1, the discontinuities at
= 1 and x = 2 are called removable

discontinuities because they can be
removed by redefining the function at
these points (in this case, f(1) = 3
and f(2) = 1). The discontinuity at
x = 3 is called a jump discontinuity.
The discontinuity at x = 5 is called an
infinite discontinuity. These terms are
discussed in Exercises 89-95.

DEFINITION Continuity at a Point

A function f is continuous at « if lim f(x) = f(a). If f is not continuous at a, then a
is a point of discontinuity. o

There is more to this definition than first appears. If hm f(x) = f(a), then f(a) and
lim f(x) must both exist, and they must be equal. The followmg checklist is helpful in
x—>a

determining whether a function is continuous at a.

Continuity Checklist
In order for f to be continuous at a, the following three conditions must hold.

1. f(a) is defined (a is in the domain of f).

2. lim f(x) exists.
Xx—a

3. lim f(x) = f(a) (the value of f equals the limit of f at a).
Xx—a

If any item in the continuity checklist fails to hold, the function fails to be continuous at a.
From this definition, we see that continuity has an important practical consequence:

If f is continuous at a, then 11m f( ) = f(a), and direct substitution may be used to
evaluate 11m f( ).

EXAMPLE 1 Points of discontinuity Use the graph of f in Figure 2.44 to identify val-
ues of x on the interval (0, 7) at which f has a discontinuity.

SOLUTION The function f has discontinuities at x = 1,2, 3, and 5 because the graph
contains holes or breaks at these locations. The continuity checklist tells us why f is not
continuous at these points.

f(1) is not defined.
* f(2) = 3 and lim f(x) = 1. Therefore, f(2) and lim f(x) exist but are not equal.
. }1_1}13 f(x) does not exist because the left-sided hmlt xli)m f(x) = 2 differs from the
right-sided limit xli)n31+ f(x) = L
* Neither )}1_1}15f(x) nor f(5) exists.
Related Exercises 9—12 <

EXAMPLE 2 Identifying discontinuities Determine whether the following functions
are continuous at a. Justify each answer using the continuity checklist.

3x2 4+ 2x + 1
a fx)=———— a=1
x—1
3x2 4+ 2x + 1
b.g(x)zil; a=2
X —

1
xsin— ifx # 0
X ca =

0 ifx =20
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SOLUTION

a. The function f is not continuous at 1 because f(1) is undefined.

b. Because g is a rational function and the denominator is nonzero at 2, it follows by
Theorem 2.4 that lirré g(x) = g(2) = 17. Therefore, g is continuous at 2.
Xx—>

c. By definition, 2(0) = 0. In Exercise 53 of Section 2.3, we used the Squeeze Theorem

1
to show that lim x sin = 0. Therefore, lir% h(x) = h(0), which implies that / is
x>

x—0

continuous at 0. Related Exercises 13-20 <

The following theorems make it easier to test various combinations of functions for
continuity at a point.

THEOREM 2.8 Continuity Rules
If f and g are continuous at a, then the following functions are also continuous at a.
Assume c is a constant and n > 0 is an integer.

a. f+g b. f—g
c of d. fg
e. f/g, provided g(a) # 0 f. (f(x))"

To prove the first result, note that if f and g are continuous at a, then lim f(x) = f(a)
xX—a
and lim g(x) = g(a). From the limit laws of Theorem 2.3, it follows that
x—>a

lim (f(x) + g(x)) = fla) + g(a).

x—>a

Therefore, f + g is continuous at a. Similar arguments lead to the continuity of differ-
ences, products, quotients, and powers of continuous functions. The next theorem is a
direct consequence of Theorem 2.8.

THEOREM 2.9 Polynomial and Rational Functions
a. A polynomial function is continuous for all x.

b. A rational function (a function of the form g where p and g are polynomials) is

continuous for all x for which g(x) # 0.

EXAMPLE 3 Applying the continuity theorems For what values of x is the function

X
X) = ——————— continuous?

f@) x* = Tx + 12

SOLUTION Because f is rational, Theorem 2.9b implies it is continuous for all x at

which the denominator is nonzero. The denominator factors as (x — 3)(x — 4), so itis

zero at x = 3 and x = 4. Therefore, f is continuous for all x exceptx = 3 and x = 4

(Figure 2.45). Related Exercises 21-26 <

The following theorem allows us to determine when a composition of two functions is
continuous at a point. Its proof is informative and is outlined in Exercise 96.
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QUICK CHECK 2 Evaluate lim Vxi+9
X—>
and V lin}1 (x*> + 9). How do these
x>

results illustrate that the order of a
function evaluation and a limit may be
switched for continuous functions? <

THEOREM 2.10 Continuity of Composite Functions at a Point
If g is continuous at a and f is continuous at g(a), then the composite function
S gis continuous at a.

Theorem 2.10 is useful because it allows us to conclude that the composition of two con-

3
tinuous functions is continuous at a point. For example, the composite function ( ] >
X —

is continuous for all x # 1. Furthermore, under the stated conditions on f and g, the limit
of fo g is evaluated by direct substitution; that is,

lim f(g(x)) = f(8(a)).

.. . . xt =20+ 2\
EXAMPLE4 Limit of a composition Evaluate lim | ———————-] .
=0\ x> + 2x" + 1

xt—2x+2

3 1 is continuous for all x because its
x° + 2x" + 1

SOLUTION The rational function

. . . xt =2+ 2\ .
denominator is always positive (Theorem 2.9b). Therefore, o a which
x° + 2x" + 1
is the composition of the continuous function f(x) = x'° and a continuous rational func-
tion, is continuous for all x by Theorem 2.10. By direct substitution,

_(xt =2+ 2\ 0*—2-0+2\"°
=0 \x® + 2x* + 1 0°+2-0*+ 1

Related Exercises 27-30 <€

Closely related to Theorem 2.10 are two useful results dealing with limits of composite
functions. We present these results—one a more general version of the other—in a single
theorem.

THEOREM 2.11 Limits of Composite Functions

1. If g is continuous at @ and f is continuous at g(a), then
lim f(g(x)) = f( lim () ).
x—a xX—>a
2. If lim g(x) = L and f is continuous at L, then
x—>a
lim f(g(x)) = f( lim (x) ).
xX—>a xX—>a

Proof: The first statement follows directly from Theorem 2.10, which states that
lim f(g(x)) = f(g(a)). If g is continuous at g, then lim g(x) = g(a), and it follows that
x—a x—a

lim f(g(x)) = f(g(a)) = /( lim g(x) ).
lim g(x)

The proof of the second statement relies on the formal definition of a limit, which is dis-
cussed in Section 2.7. <
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Both statements of Theorem 2.11 justify interchanging the order of a limit and a function
evaluation. By the second statement, the inner function of the composition needn’t be con-

tinuous at the point of interest, but it must have a limit at that point. Note also that lim can
x—a

be replaced with lim_or lim in Theorem 2.11, provided g is right- or left-continuous at
x—a xX—>a

a, respectively, in statement (1). In statement (2), lim can be replaced with lim or lim .

Xx—a xX—>® X—>—

EXAMPLE 5 Limits of a composite functions Evaluate the following limits.

2
—4
a. lim V2x? — 1 b. lim cos(x )

x——1 x—2 x—2

SOLUTION

a. We show later in this section that Vx is continuous for x = 0. The inner function of
the composite function V' 2x? — 11is 2x> — 1; it is continuous and positive at —1. By
the first statement of Theorem 2.11,

lim Vaaxl—1=1/ lim (2x*=1)=V1=1
xX—>— X—>—
L
1

b. We show later in this section that cos x is continuous at all points of its domain. The

2 2
. . ) . xT—4\. x° — L
inner function of the composite function cos< ) is , which is not con-
. x—2 x—2
tinuous at 2. However,
2 _

. oxt—4 o (x=2)(x+ 2 .

lim = lim ( X ) = lim (x + 2) = 4.

x—2 X — x—2 x—2 x—2

Therefore, by the second statement of Theorem 2.11,

. x> —4 o x2—4
lim cos 5 = cos| lim = cos4 = —0.654.
X

x—2 =2 x — 2

4

Related Exercises 31-34 <

Continuity on an Interval

A function is continuous on an interval if it is continuous at every point in that interval.
Consider the functions f and g whose graphs are shown in Figure 2.46. Both these func-
tions are continuous for all x in (a, b), but what about the endpoints? To answer this ques-
tion, we introduce the ideas of left-continuity and right-continuity.

DEFINITION Continuity at Endpoints

A function f is continuous from the right (or right-continuous) at a if
lim f(x) = f(a) and f is continuous from the left (or left-continuous) at b
x—a

if linblff(x) = f(b).

Combining the definitions of left-continuous and right-continuous with the definition
of continuity at a point, we define what it means for a function to be continuous on an
interval.

DEFINITION Continuity on an Interval

A function f is continuous on an interval [ if it is continuous at all points of /. If /
contains its endpoints, continuity on / means continuous from the right or left at the
endpoints.
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Continuous
on (=, 0]

e LiMITS

Continuous
on (0, o)

Left-continuous
atx =0

-2

Figure 2.47

To illustrate these definitions, consider again the functions in Figure 2.46. In Figure 2.46a,
f is continuous from the right at @ because lim _f(x) = f(a), but it is not continuous from
x—a

the left at b because f(b) is not defined. Therefore, f is continuous on the interval [a, b). The
behavior of the function g in Figure 2.46b is the opposite: It is continuous from the left at b, but
it is not continuous from the right at a. Therefore, g is continuous on (a, b].

QUICK CHECK 3 Modify the graphs of the functions f and g in Figure 2.46 to obtain func-
tions that are continuous on [a, b]. <

EXAMPLE 6 Intervals of continuity Determine the intervals of continuity for

) = {x2 +1

3x + 5

ifx =0
ifx > 0.
SOLUTION This piecewise function consists of two polynomials that describe a parabola

and a line (Figure 2.47). By Theorem 2.9, f is continuous for all x # 0. From its graph,
it appears that f is left-continuous at 0. This observation is verified by noting that

lim f(x) = lim (x2+ 1) = I,
x—0" x—0"
which means that hn(}* f(x) = f(0). However, because
X
lim f(x) = lim (3x +5) =5 # f(0),
x—0" x—0"

we see that f is not right-continuous at 0. Therefore, f is continuous on (—20, 0] and on
(0, o). Related Exercises 35-40 <

Functions Involving Roots
Recall that Limit Law 7 of Theorem 2.3 states

lim (f(x))"" = (lim f(x) )",

provided f(x) = 0, for x near a, if m is even and n/m is reduced. Therefore, if m is odd
and f is continuous at a, then ( f(x))”/ " is continuous at a, because

)}im )M = (hmf )”/’" = (f(a))"™

When m is even, the continuity of (f(x ))”/ " must be handled more carefully because
this function is defined only when f(x) = 0. Exercise 59 of Section 2.7 establishes an
important fact:

Iffis continuous at a and f (a) > 0, then f(x) > 0 for all values of x
in some interval containing a.

Combining this fact with Theorem 2.10 (the continuity of composite functions), it follows
that (f(x))"™ is continuous at a provided f(a) > 0. At points where f(a) = 0, the be-
havior of ( f(x))"/™ varies. Often we find that ( f(x))""™ is left- or right-continuous at that
point, or it may be continuous from both sides.

THEOREM 2.12 Continuity of Functions with Roots
Assume that m and n are positive integers with no common factors. If m is an odd
integer, then (f(x))""™ is continuous at all points at which f is continuous.

If m is even, then (f(x))"™ is continuous at all points a at which f is continuous
and f(a) > 0.




Continuous on [—3, 3]

y
4 -+
gx) =V9 — 2
2 -+
1 1 1 1
v T T T T v
-3 3 X
Right-continuous Left-continuous
atx = —3 atx =3
Figure 2.48
y
y = sinx
,,,,,,,,,,,,, :
I
I
) (a, sin a) |
SIma=====- ' ..sinx>sina
| |
| |
| |
L | |
| | |
I
L l L
T
a X
Asx=a...
Figure 2.49
‘ . ‘ y= ‘sec X
I I I I
I N3+ [ I
I I I I
I [ W I
I I I I
I I I I
I |1 I I
I I I I
1 1 1 1 1 1 1 1
T T T T T T T T
37 _z fus 3w X
2 2 2
I I
I I
I I
I I
- I
I I
I I

3__

2
[
[
[
[
[
[
[

sec x is continuous at all
points of its domain.

Figure 2.50

2.6 Continuity 85

EXAMPLE 7 Continuity with roots For what values of x are the following functions
continuous?

a. g(x) = V9 — x? b. f(x) = (x2 — 2x + 4)2/3

SOLUTION

a. The graph of g is the upper half of the circle x> + y* = 9 (which can be verified
by solving x> + y? = 9 for y). From Figure 2.48, it appears that g is continuous on
[—3, 3]. To verify this fact, note that g involves an even root (m = 2,n = 1 in
Theorem 2.12). If =3 < x < 3, then 9 — x> > 0 and by Theorem 2.12, g is continu-
ous for all x on (=3, 3).
At the right endpoint, 1in317 V9 — x* = 0 = g(3) by Limit Law 7, which
X

implies that g is left-continuous at 3. Similarly, g is right-continuous at —3 because
lim V9 — x* = 0 = g(—3). Therefore, g is continuous on [—3, 3].

x——3
b. The polynomial x> — 2x + 4 is continuous for all x by Theorem 2.9a. Because f
involves an odd root (m = 3,n = 2 in Theorem 2.12), f is continuous for all x.
Related Exercises 41-50 <€

QUICK CHECK4 On what interval is f(x) = x'/* continuous? On what interval is
f(x) = x*?° continuous? <

Continuity of Trigonometric Functions
In Example 7 of Section 2.3, we used the Squeeze Theorem to show that lin}) sinx =0

X!
and lin}) cosx = 1. Because sin0 = 0 and cos 0 = 1, these limits imply that sin x
X—>

and cos x are continuous at 0. The graph of y = sinx (Figure 2.49) suggests that
lim sin x = sin a for any value of a, which means that sin x is continuous everywhere.

X—a
The graph of y = cosx also indicates that cos x is continuous for all x. Exercise 99
outlines a proof of these results.

With these facts in hand, we appeal to Theorem 2.8e to discover that the remain-
ing trigonometric functions are continuous on their domains. For example, because
secx = 1/cos x, the secant function is continuous for all x for which cos x # 0 (for all
x except odd multiples of 7 /2) (Figure 2.50). Likewise, the tangent, cotangent, and cose-
cant functions are continuous at all points of their domains.

THEOREM 2.13 Continuity of Trigonometric Functions
The functions sin x, cos x, tan x, cot x, sec x, and csc x are continuous at all points of
their domains.

For each function listed in Theorem 2.13, we have lim f(x) = f(a), provided a is in
Xx—a

the domain of the function. This means that limits involving these functions may be
evaluated by direct substitution at points in the domain.

EXAMPLE 8 Limits involving trigonometric functions Evaluate

cos’x — 1

x—0 cosx — 1~
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» Limits like the one in Example 8 are
denoted 0/0 and are known as indeterminate
forms, to be studied further in Section 4.7.

fis not continuous on [a, b]...

f®)+ y TV

L S —
f@+ /
} }
o a b X
... and there is no number ¢
in (a, b) such that f(c¢) = L.
Figure 2.52

QUICK CHECK 5 Does the equation
f(x) = x* + x + 1 = 0 have a solu-
tion on the interval [—1, 1]?

Explain. <

SOLUTION Both cos’x — 1 and cosx — 1 are continuous for all x by Theorems 2.8 and
2.13. However, the ratio of these functions is continuous only when cos x — 1 # 0, which
occurs when x is not an integer multiple of 27r. Note that both the numerator and denomina-

tor of osx — 1 approach 0 as x — 0. To evaluate the limit, we factor and simplify:
cosx —

. cos’x — 1 . (cosx — I)(cosx + 1) .
lim —————— = lim = lim (cosx + 1)
x—0 cosx — 1 x—0 cosx — 1 x—0

(where cos x — 1 may be canceled because it is nonzero as x approaches 0). The limit on
the right is now evaluated using direct substitution:
lir% (cosx + 1) =cos0 + 1 =2.

X

Related Exercises 51-54 <

Intermediate Value Theorem

A common problem in mathematics is finding solutions to equations of the form
f(x) = L. Before attempting to find values of x satisfying this equation, it is worthwhile
to determine whether a solution exists.

The existence of solutions is often established using a result known as the Intermediate
Value Theorem. Given a function f and a constant L, we assume L lies strictly between
f(a) and f(b). The Intermediate Value Theorem says that if f is continuous on [a, b],
then the graph of f must cross the horizontal line y = L at least once (Figure 2.51).
Although this theorem is easily illustrated, its proof is beyond the scope of this text.

Intermediate Value Theorem

y y

OE
L

)+

0

There is at least one number ¢ in (a, b) such that f(c) = L,

Figure 2.51 where L is between f(a) and f(b).

THEOREM 2.14 Intermediate Value Theorem
Suppose f is continuous on the interval [a, b] and L is a number strictly between
f(a) and f(b). Then there exists at least one number c in (a, b) satisfying f(c) = L.

The importance of continuity in Theorem 2.14 is illustrated in Figure 2.52, where we
see a function f that is not continuous on [a, b]. For the value of L shown in the figure,
there is no value of ¢ in (a, b) satisfying f(c) = L. The next example illustrates a practi-
cal application of the Intermediate Value Theorem.

EXAMPLE 9 Finding an interest rate Suppose you invest $1000 in a spe-
cial 5-year savings account with a fixed annual interest rate r, with monthly com-
pounding. The amount of money A in the account after 5 years (60 months) is

60
A(r) = 1000(1 + lr2> . Your goal is to have $1400 in the account after 5 years.
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a. Use the Intermediate Value Theorem to show there is a value of r in (0, 0.08)—that is,
an interest rate between 0% and 8%—for which A(r) = 1400.

b. Use a graphing utility to illustrate your explanation in part (a) and then estimate the
interest rate required to reach your goal.

SOLUTION

60
a. As a polynomial in r (of degree 60), A(r) = 1000<1 + 12) is continuous for all r.

Evaluating A(r) at the endpoints of the interval [0, 0.08], we have A(0) = 1000 and
A(0.08) =~ 1489.85. Therefore,

y A(0) < 1400 < A(0.08),
) § 2000 1 y =A@ and it follows, by the Intermediate Value Theorem, that there is a value of r in
g 1 y=1400 (0, 0.08) for which A(r) = 1400.
s 8 . . .
2 = i / b. The graphs of y = A(r) and the horizontal line y = 1400 are shown in
é £ | [ Interest rate that yields Figure 2.53; it is evident that they intersect between r = 0 and r = 0.08.
<3S 500+ | | $1400 after 5 years Solving A(r) = 1400 algebraically or using a root finder reveals that the
. . I} / . . curve and line intersect at r = 0.0675. Therefore, an interest rate of ap-
of om 00675 010 r proximately 6.75% is required for the investment to be worth $1400 after
Interest rate 5 years. Related Exercises 55-62 <
Figure 2.53
SECTION 2.6 EXERCISES
Review Questions Basic Skills
1. Which of the following functions are continuous for all values in 9-12. Discontinuities from a graph Determine the points at which the
their domain? Justify your answers. following functions f have discontinuities. At each point of discontinu-
a. a(7) = altitude of a skydiver 7 seconds after jumping from a ity, state the conditions in the continuity checklist that are violated.
plane 9. v 0.
b. n(f) = number of quarters needed to park legally in a metered
parking space for # minutes T 5T
c. T(t) = temperature ¢ minutes after midnight in Chicago on 4L
January 1 y=fx
d. p(r) = number of points scored by a basketball player after T O/\
¢ minutes of a basketball game 2 -/\
2. Give the three conditions that must be satisfied by a function to be 14
continuous at a point. } —
507 o 1 2 3 4 5 «x
3. What does it mean for a function to be continuous on an interval?
4. We informally describe a function f to be continuous at a if its 1.y 12.
graph contains no holes or breaks at a. Explain why this is not an
adequate definition of continuity. y =) T Ly =W
4+ ! :
5. Complete the following sentences. |
a. A function is continuous from the left at a if T |
b. A function is continuous from the right at a if 2 re
|
14
6. Describe the points (if any) at which a rational function fails to be |
continuous. i é i M 0 i é é i T X
7. What is the domain of f(x) = V1 — x?? Where is f
continuous? 13-20. Continuity at a point Determine whether the following functions
) . ) ) are continuous at a. Use the continuity checklist to justify your answer.
8. Explain the Intermediate Value Theorem using words and pictures.

2x7 +3x + 1
13. f(\)="———"——0a=5
f() x2 + 5x
22+ 3x + 1
14. f(x)=¥;a=—5

x% + 5x
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15. f(x) = Vx—2,a=1

1
16. g(x) = ——a=3
x—3
2
¥ =
if 1
17 fn =4 x-1 7oy
3 ifx =1
x2—4x+3
ifx # 3
18. f(x) = x—3 ;a=3
2 ifx =23
5Sx — 2
19. =——————,a=4
J) x% — 9x + 20 ¢
2
+
0Tk # -1
20. f(x)=4q x+1 v a=—1
2 ifx = —1

21-26. Continuity on intervals Use Theorem 2.9 to determine the
intervals on which the following functions are continuous.

3x2 — 6x + 7
21. p(x) = 4x° — 3x* + 1 22, gx)="—F—"—
p(x) g(x) e
x>+ 6x + 17 xX2—4x + 3
23. == 24. = -
f(x) 29 s(x) 2
1 t+2
25. = 26. f(t) =
f(x) 22 £(1) 24

27-30. Limits of compositions Evaluate each limit and justify your
answer.

3 4
27. lim (x* = 3x° — 1)¥ 28. lim <5—2)
x—0 =2\ 2x° — 4x° — 50
+ 5\* 2+ 1Y)
29. lim (x ) 30. lim( al )
—1\x + 2 x—w X

31-34. Limits of composite functions Evaluate each limit and justify

your answer.

3 _ 2 2 _ — 4
3. lim g o 32. limtan
x4 x— 4 =4 \t—2

. 2sin x . . . .
33. lim cos (T) (Hint: See Exercise 55 in Section 2.3.)

x—0

( X )1/3
4. lim | —F——
ONVI6r + 1 -1

35-38. Intervals of continuity Determine the intervals of continuity

for the following functions.
35. The graph of Exercise 9 36. The graph of Exercise 10

37. The graph of Exercise 11 38. The graph of Exercise 12

39. Intervals of continuity Let

fx) = {2x

X2+ 3x

ifx <1
ifx = 1.

a. Use the continuity checklist to show that f is not continuous
at 1.

b. Is f continuous from the left or right at 1?

c. State the interval(s) of continuity.

40. Intervals of continuity Let

{x3+4x+1 ifx=0
2x3 ifx > 0.

flx) =

a. Use the continuity checklist to show that f is not continuous
at 0.

b. Is f continuous from the left or right at 0?

c. State the interval(s) of continuity.

41-46. Functions with roots Determine the interval(s) on which the
following functions are continuous. Be sure to consider right- and left-
continuity at the endpoints.

41. f(x) = V2x* - 16 2. g(x) = Vxt-1
43. f(x) = Vx?—2—3 4. f(1) = (1> — 1)
45. f(x) = (2x — 3)*3 46. f(z) = (z — 1)**

47-50. Limits with roots Evaluate each limit and justify your answer.

4x + 10
47. lim | /ﬁ 48. lim (x> — 4 + Va? - 9)
x> X —

x——1
49. lim VX2 + 7 50.

x—3

, ?+5
lim ————
VTS
51-54. Continuity and limits with trigonometric functions
Determine the interval(s) on which the following functions are
continuous; then evaluate the given limits.

51. f(x) = cscx; XEI}Tle(X); xglzl;,f(x)

52. f(x) = Vsinx; lin1/2f(X); lim, f(x)
1 + sinx

53. =— ;i

f) cosx * ,lm f(x); lim /Sf(X)
5. f(x) = 5 lim f(x)
. f(x) =———  lim f(x
2cosx — 1 x—w/6
55. Intermediate Value Theorem and interest rates Suppose

$5000 is invested in a savings account for 10 years

(120 months), with an annual interest rate of r, compounded

monthly. The amount of money in the account after 10 years is

A(r) = 5000(1 + r/12)'%,

a. Use the Intermediate Value Theorem to show there is a value
of rin (0, 0.08)—an interest rate between 0% and 8 %—that
allows you to reach your savings goal of $7000 in 10 years.

b. Use a graph to illustrate your explanation in part (a); then
approximate the interest rate required to reach your goal.

56. Intermediate Value Theorem and mortgage payments You

are shopping for a $150,000, 30-year (360-month) loan to buy a
house. The monthly payment is

B 150,000(r/12)

Sl = (14 r/12)7

m(r

where r is the annual interest rate. Suppose banks are currently
offering interest rates between 6% and 8%.

a. Use the Intermediate Value Theorem to show there is a value
of r in (0.06, 0.08)—an interest rate between 6% and 8%—that
allows you to make monthly payments of $1000 per month.

b. Use a graph to illustrate your explanation to part (a). Then deter-
mine the interest rate you need for monthly payments of $1000.



57-62. Applying the Intermediate Value Theorem

a.

b.

C.

57.
58.
59.
60.

61.

62.

Use the Intermediate Value Theorem to show that the following

equations have a solution on the given interval.

Use a graphing utility to find all the solutions to the equation on the

given interval.
Hllustrate your answers with an appropriate graph.

23+ x—2=0; (—1,1)

V't + 2503 + 10 = 5; (0, 1)

¥ = 5x2 4+ 20 = —1; (—1,5)
—x° —4x? +2Vx + 5 =0; (0,3)

0 (o ”)
cosx —x = 0; , —
2

. T
1+ x+sinx =0; (—5,0)

Further Explorations

63.

64.

Explain why or why not Determine whether the following
statements are true and give an explanation or counterexample.

a. If a function is left-continuous and right-continuous at a, then
it is continuous at a.

b. If a function is continuous at a, then it is left-continuous and
right-continuous at a.

c. Ifa < band f(a) = L = f(b), then there is some value of ¢
in (a, b) for which f(c) = L.

d. Suppose f is continuous on [a, b]. Then there is a point ¢ in

(a, b) such that f(c) = (f(a) + f(b))/2.

Continuity of the absolute value function Prove that the
absolute value function | x| is continuous for all values of x.
(Hint: Using the definition of the absolute value function,
compute lim |x| and lim |x|.)

x—0" x—0"

65-68. Continuity of functions with absolute values Use the
continuity of the absolute value function (Exercise 64) to determine the
interval(s) on which the following functions are continuous.

65.

67.

f(x) = |x*+3x — 18] 66. g(x) =

x+4‘
x2—4

h(x 68. h(x) = |x>+2x + 5] + Vx

-l
CVa-4

69-76. Miscellaneous limits Evaluate the following limits or state
that they do not exist.

69.

71.

73.

75.

cos’x + 3cosx + 2 sin®x + 6sinx + 5

lim 70. lim —
x—> cosx + 1 x—37/2 sin“x — 1
1 1
. sinx — 1 . 2+ sinf 2
lim ——— 72. lim —————
x—7/2 \/me -1 0—0 sin 6
. ocosx — 1 1 —cos’x
lim ———— 74. lim ———
x—0 sin“x x—0"  sinx
. sint . cosx
lim 5 76. lim
t—o f =07 X

77.

78.

79.

80.

81.

2.6 Continuity 89

Pitfalls using technology The graph of the sawtooth function

y = x — | x|, where | x| is the greatest integer function or
floor function (Exercise 37, Section 2.2), was obtained using a
graphing utility (see figure). Identify any inaccuracies appearing
in the graph and then plot an accurate graph by hand.

y=x- 1
1.5

-2 L 2

—0.5

sin x

Pitfalls using technology Graph the function f(x) = using

a graphing window of [—m, ] X [0, 2].
a. Sketch a copy of the graph obtained with your graphing device

and describe any inaccuracies appearing in the graph.
b. Sketch an accurate graph of the function. Is f continuous at 0?

. . sinx
c. What is the value of hn%) —7
x> X

Sketching functions

a. Sketch the graph of a function that is not continuous at 1, but is
defined at 1.

b. Sketch the graph of a function that is not continuous at 1, but
has a limit at 1.

An unknown constant Determine the value of the constant a for
which the function

X2+ 3x + 2
x+ 1
a ifx = —1

) ifx # —1

is continuous at —1.

An unknown constant Let

Kt ifx <1
glx) =4qa ifx =1
3x+5 ifx> 1

a. Determine the value of a for which g is continuous from the
left at 1.

b. Determine the value of a for which g is continuous from the
right at 1.

c. Is there a value of a for which g is continuous at 1? Explain.

82-83. Applying the Intermediate Value Theorem Use the
Intermediate Value Theorem to verify that the following equations have
three solutions on the given interval. Use a graphing utility to find the
approximate roots.

82.
83.

x¥ 4+ 10x2 — 100x + 50 = 0; (—20, 10)
70x% — 87x% + 32x — 3 = 0; (0,1)
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Applications

84. Parking costs Determine the intervals of continuity for the
parking cost function c introduced at the outset of this section (see
figure). Consider 0 = t = 60.

y

125+
g 1.00 + y = c(1) o——o
S 075 o——e
8 050+ o——e
)

0.25 I_‘

} } } }
(’T 15 30 45 60 4
Time (min)

85. Investment problem Assume you invest $250 at the end
of each year for 10 years at an annual interest rate of r.
The amount of money in your account after 10 years is

A = 250((1 +rr)1° -1)

in your account after 10 years.

. Assume your goal is to have $3500

a. Use the Intermediate Value Theorem to show that there is an
interest rate r in the interval (0.01, 0.10)—between 1% and
10%—that allows you to reach your financial goal.

b. Use a calculator to estimate the interest rate required to reach
your financial goal.

86. Applying the Intermediate Value Theorem Suppose you park
your car at a trailhead in a national park and begin a 2-hr hike to
a lake at 7 A.M. on a Friday morning. On Sunday morning, you
leave the lake at 7 A.M. and start the 2-hr hike back to your car.
Assume the lake is 3 mi from your car. Let f() be your distance
from the car ¢ hours after 7 .M. on Friday morning and let g(t)
be your distance from the car ¢ hours after 7 A.M. on Sunday
morning.

a. Evaluate f(0),f(2), g(0), and g(2).

b. Let h(t) = f(¢) — g(¢). Find h(0) and h(2).

c. Use the Intermediate Value Theorem to show that there is
some point along the trail that you will pass at exactly the
same time of morning on both days.

87. The monk and the mountain A monk set out from a monastery
in the valley at dawn. He walked all day up a winding path, stop-
ping for lunch and taking a nap along the way. At dusk, he arrived
at a temple on the mountaintop. The next day the monk made the
return walk to the valley, leaving the temple at dawn, walking
the same path for the entire day, and arriving at the monastery in
the evening. Must there be one point along the path that the monk
occupied at the same time of day on both the ascent and descent?
(Hint: The question can be answered without the Intermediate
Value Theorem.) (Source: Arthur Koestler, The Act of Creation)

Additional Exercises
88. Does continuity of | f| imply continuity of f? Let

{l ifx =0

8 =11 ife <o,

Write a formula for | g(x)]|.

. Is g continuous at x = 0? Explain.

Is | g| continuous at x = 0? Explain.

. For any function f, if || is continuous at @, does it necessarily
follow that f is continuous at a? Explain.

an T

89-90. Classifying discontinuities The discontinuities in graphs (a)
and (b) are removable discontinuities because they disappear if we
define or redefine f at a so that f(a) = liin f(x). The function in
graph (c) has a jump discontinuity becc;usz left and right limits ex-
ist at a but are unequal. The discontinuity in graph (d) is an infinite
discontinuity because the function has a vertical asymptote at a.

y y
°
Removable Removable
discontinuity discontinuity
f f
o a X o0 a X
(@) (b)
y Jump y |
discontinuity Hy=r®
[
[
y=r \
T~ "\ [ Infinite
| discontinuity
[
[
f f
O a X o a X
(© ()

89. Is the discontinuity at a in graph (c) removable? Explain.
90. Is the discontinuity at a in graph (d) removable? Explain.

91-92. Removable discontinuities Show that the following functions
have a removable discontinuity at the given point. See Exercises 89—-90.

2
x°—Tx + 10
91. =—x=2
flo) =
2
x“—=1 .
92. g(x) =4 1—x lfx;él;le
3 ifx =1

93. Do removable discontinuities exist? See Exercises 89-90.

a. Does the function f(x) = xsin (1/x) have a removable
discontinuity at x = 0?

b. Does the function g(x) = sin (1/x) have a removable
discontinuity at x = 0?

94-95. Classifying discontinuities Classify the discontinuities in the

following functions at the given points. See Exercises 89-90.

lx - 2|
94, flx) =" x=2
X

X3 — 4x? + 4x

95. h(x) = 1)

;x=0andx = 1

96. Continuity of composite functions Prove Theorem 2.10: If g is
continuous at @ and f is continuous at g(a), then the composition
fo giscontinuous at a. (Hint: Write the definition of continuity
for f and g separately; then combine them to form the definition
of continuity for feo g.)

97. Continuity of compositions

a. Find functions f and g such that each function is continuous at
0 but fe g is not continuous at 0.

b. Explain why examples satisfying part (a) do not contradict
Theorem 2.10.



98.

99.

Violation of the Intermediate Value Theorem? Let

|x|

flx) =

X

f(=2) < 0 < f(2), but there is no value of ¢ between —2 and 2
for which f(c¢) = 0. Does this fact violate the Intermediate Value

Theorem? Explain.

Continuity of sin x and cos x

. Then f(—=2) = —1and f(2) = 1. Therefore,
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QUICK CHECK ANSWERS

1. + = 15,30,45 2. Both expressions have a value of 5,
showing that lim f(g(x)) = f(lim g(x)). 3. Fill
x—a x—>a

in the endpoints. 4. [0, ®); (=%, %) 5. The equation
has a solution on the interval [ —1, 1] because f is continu-
ouson[—1,1]and f(—1) < 0 < f(1). <

a. Use the identity sin (a + h) = sinacos h + cos a sin h with
the fact that lim sin x = 0 to prove that lim sinx = sina,

—0

—,

X X—a
thereby establishing that sin x is continuous for all x. (Hint:
Leth = x — asothatx = a + h and note that A — 0

as x—a.)

b. Use the identity cos (a + h) = cosacos h — sina sin h with
the fact that lim cos x = 1 to prove that lim cos x = cos a.
xX—a

x—0

The phrase for all x near a means for all
X in an open interval containing a.

The Greek letters 6 (delta) and
& (epsilon) represent small positive
numbers in the discussion of limits.

The two conditions |x — a| < &
and x # a are written concisely as
0<|x—al <é.

Y=

lim f() =5

0

Figure 2.54

>

The founders of calculus, Isaac Newton
(1642-1727) and Gottfried Leibniz
(1646-1716), developed the core ideas
of calculus without using a precise
definition of a limit. It was not until the
19th century that a rigorous definition
was introduced by Augustin-Louis
Cauchy (1789-1857) and later refined by
Karl Weierstrass (1815-1897).

1 3 5 7 X

2.7 Precise Definitions of Limits

The limit definitions already encountered in this chapter are adequate for most elementary
limits. However, some of the terminology used, such as sufficiently close and arbitrarily
large, needs clarification. The goal of this section is to give limits a solid mathematical foun-
dation by transforming the previous limit definitions into precise mathematical statements.

Moving Toward a Precise Definition

Assume the function f is defined for all x near a, except possibly at a. Recall that
lim f(x) = L means that f(x) is arbitrarily close to L for all x sufficiently close (but not
xX—>a

equal) to a. This limit definition is made precise by observing that the distance between

f(x)and Lis | f(x) — L| and that the distance between x and a is |x — a|. Therefore, we

write lim f(x) = L if we can make | f(x) — L| arbitrarily small for any x, distinct from
x—a

a, with |x — a| sufficiently small. For instance, if we want | f(x) — L| to be less than
0.1, then we must find a number 6 > 0 such that

|f(x) = L| < 0.1 whenever |x—a|] <& and x # a.

If, instead, we want |f(x) — L| to be less than 0.001, then we must find another number
0 > 0 such that

|f(x) — L| < 0.001 whenever 0 < |x —a| <.
For the limit to exist, it must be true that for any ¢ > 0, we can always finda & > 0 such that

|f(x) —L| <& whenever 0 < |x —al| <.

EXAMPLE 1 Determining values of 6 from a graph Figure 2.54 shows the graph
of a linear function f with ling f(x) = 5. For each value of ¢ > 0, determine a value of
X

0 > 0 satisfying the statement

|f(x) — 5] <& whenever 0 < |x — 3| <é.

SOLUTION

a. With ¢ = 1, we want f(x) to be less than 1 unit from 5, which means f(x) is between
4 and 6. To determine a corresponding value of §, draw the horizontal lines y = 4 and
y = 6 (Figure 2.55a). Then sketch vertical lines passing through the points where the
horizontal lines and the graph of f intersect (Figure 2.55b). We see that the vertical
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6
|f(x)5|<1{5
4

Values of x such that

Y y o - sl<1
___________74_ 6____:________%___
-~ st }Vm—ﬂ<1
L~ e |
74——————————— 4—%———————?—————
0 1 3 5 0 i 3 é 7 X

Figure 2.55

» Once an acceptable value of 6 is found
satisfying the statement

|[f(x) = L| <& whenever
0<|x—al <5,

any smaller positive value of § also works.

(a)

0<lx—3l<2
(b)

lines intersect the x-axis at x = 1 and x = 5. Note that f(x) is less than 1 unit from
5 on the y-axis if x is within 2 units of 3 on the x-axis. So fore = 1, welet 6 = 2 or

any smaller positive value.

b. With & = 1, we want f(x) to lie within a half-unit of 5, or equivalently, f(x) must lie

between 4.5 and 5.5. Proceeding as in part (a), we see that f(x) is within a half-unit
of 5 on the y-axis (Figure 2.56a) if x is less than 1 unit from 3 (Figure 2.56b). So for
e = %, we let 8 = 1 or any smaller positive number.

55
1
=<3 {5 F

Values of x such that

Figure 2.56

Values of x such that
1
lfeo -5/ <3

-

5+%5\______ﬂ_{_/___}\
R I e B> ot e m
=T e -5l <

I
I
4 T
I
|

0 2 /13\
3=y

4 X

1

Figure 2.57

(a)

Al -si<g
| |
| |
| |
55 -t
5 - - Frw-si<4
4.5 —————I—————:——- ——r T
| |
| |
| |
| |
| |
| |
| |
| |
| |
} }
0 2 3 4 X

0<p—3l<1
(®)

Related Exercises 9—-12 <

The idea of a limit, as illustrated in Example 1, may be described in terms of a contest

between two people named Epp and Del. First, Epp picks a particular number € > 0; then
he challenges Del to find a corresponding value of 6 > 0 such that

| f(x) = 5] <& whenever 0 < |x — 3| <é. (1)

To illustrate, suppose Epp chooses € = 1. From Example 1, we know that Del will satisfy
(1) by choosing 0 < 6 = 2. If Epp chooses ¢ = %, then (by Example 1) Del responds by
letting 0 < 6 = 1. If Epp lets ¢ = é, then Del chooses 0 < 6 = le (Figure 2.57). In fact,
there is a pattern: For any € > 0 that Epp chooses, no matter how small, Del will satisfy (1)
by choosing a positive value of 0 satisfying 0 < 6 = 2e. Del has discovered a mathemati-
341 cal relationship: If 0 < 8§ = 2e and 0 < |x — 3| < §, then | f(x) — 5| < &, for any
€ > 0. This conversation illustrates the general procedure for proving that lim f(x) = L.
Xx—a



» The value of 8 in the precise definition of
a limit depends only on &.

» Definitions of the one-sided limits
lim_f(x) = Land lim f(x) = L are
Xx—a Xx—a

discussed in Exercises 39-43.
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QUICK cHECK 1 In Example 1, find a positive number 6 satisfying the statement

1
If(x) = 5] <100 whenever 0 < |x — 3| < 8. <

A Precise Definition

Example 1 dealt with a linear function, but it points the way to a precise definition of a
limit for any function. As shown in Figure 2.58, lim f(x) = L means that for any positive
x—>a

number &, there is another positive number 6 such that
|f(x) —L| <e whenever 0 < |x —al| <.
In all limit proofs, the goal is to find a relationship between & and é that gives an admissible

value of 8, in terms of & only. This relationship must work for any positive value of &.

lim f(x) =L

x-=a

L+ &

yACY)

L+ ... then [f(x) — L| < e.

L — e

If0<|x—a <é..

Figure 2.58

DEFINITION Limit of a Function

Assume that f(x) exists for all x in some open interval containing a, except possibly at
a. We say the limit of f(x) as x approaches a is L, written

lim f(x) = L,

if for any number € > 0 there is a corresponding number § > 0 such that

| f(x) = L] <& whenever 0 < |x —a| <3.

EXAMPLE 2 Finding 6 for a given £ using a graphing utility Let
f(x) = x> — 6x* + 12x — 5 and demonstrate that limzf(x) = 3 as follows. For the
X—>

given values of €, use a graphing utility to find a value of 6 > 0 such that

| f(x) — 3| <& whenever 0 < |x — 2| <d.

a. =1 b. £ = %
SOLUTION

a. The condition | f(x) — 3| < & = 1 implies that f(x) lies between 2 and 4. Using a
graphing utility, we graph f and the lines y = 2 and y = 4 (Figure 2.59). These lines
intersect the graph of f at x = 1 and at x = 3. We now sketch the vertical lines x = 1
and x = 3 and observe that f(x) is within 1 unit of 3 whenever x is within 1 unit of 2 on
the x-axis (Figure 2.59). Therefore, with € = 1, we can choose any 6 with0 < 6 = 1.
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b. The condition | f(x) — 3| < & = 1 implies that f(x) lies between 2.5 and 3.5 on
the y-axis. We now find that the lines y = 2.5 and y = 3.5 intersect the graph of f at
x = 1.21 and x = 2.79 (Figure 2.60). Observe that if x is less than 0.79 unit from 2
on the x-axis, then f(x) is less than a half unit from 3 on the y-axis. Therefore, with
e = % we can choose any 6 with 0 < 6 = 0.79.
y y
T T 1 5 T T
i YRt I |
' ' ! Ly =T
- : :
| | | I
I I 35 =7 —:———‘-———I —————
| |
o —3l<14 3 ; ; o =31 < %{ 3 : :
! : 25 F———+ e s st
| | |
24 —=—~f—7—7———— s Amae t t
| | | I
| | | |
| | | |
i I ! l i
| | | |
| I | 1
/ I | / | |
} } ' :
0 1 2 3 X 0 121 2 279 4 X
N — "
0<|xr—2/<1 0<l|x—12/<0.79
Figure 2.59 Figure 2.60

QUICK CHECK 2 For the function f
given in Example 2, estimate a value of
& > 0 satisfying | f(x) — 3| < 0.25
whenever 0 < |x — 2] < 8. <

y

6

5

y =g

4

3 v

2 /

1

0 12 3 5 6
Figure 2.61

This procedure could be repeated for smaller and smaller values of € > 0. For each
value of &, there exists a corresponding value of 8, proving that the limit exists.
Related Exercises 13—14 <

The inequality 0 < |x — a| < 8 means that x lies between a — 8 and a + 8 with
x # a. We say that the interval (¢ — 8,a + ) is symmetric about a because a is the
midpoint of the interval. Symmetric intervals are convenient, but Example 3 demonstrates
that we don’t always get symmetric intervals without a bit of extra work.

EXAMPLE 3 Finding a symmetric interval Figure 2.61 shows the graph of g with
lim2 g(x) = 3. For each value of ¢, find the corresponding values of § > 0 that satisfy
X—>

the condition
lg(x) — 3| <& whenever 0 < |x — 2] <.
ae=2
b.e =1
c. For any given value of &, make a conjecture about the corresponding values of 6 that
satisfy the limit condition.

SOLUTION

a. With e = 2, we need a value of § > 0 such that g(x) is within 2 units of 3, which
means g(x) is between 1 and 5, whenever x is less than 8§ units from 2. The horizontal
lines y = 1 and y = 5 intersect the graph of g at x = 1 and x = 6. Therefore,
|g(x) — 3| < 2ifxlies in the interval (1, 6) with x # 2 (Figure 2.62a). However,
we want x to lie in an interval that is symmetric about 2. We can guarantee that
|g(x) — 3| < 2in an interval symmetric about 2 only if x is less than 1 unit away
from 2, on either side of 2 (Figure 2.62b). Therefore, with e = 2, we take 6 = 1 or
any smaller positive number.



2.7 Precise Definitions of Limits 95

y y
T 1 T T
| | | |
5Dl R spee bl UL L
| /: | | /
| | | |
' V=g | ' ' )
| = | | y =8k
s -3/ <24 3 :// ] 3 :/ :
| | | |
| | | |
| | | |
| | | |
1 1 — R = = PR S AL ) D o B S S R S
| | | |
I | I I
f f f f
0 1 2 3 4 5 6 0 1 2 3 4 5 6 X
AN v J ~

Values of x such that
lg(x) — 3] <2
(@)
Figure 2.62

Symmetric interval 0 < |x — 2| < 1

that guarantees |g(x) — 3| <2

(b)

b. With & = 1, g(x) must lie between 2 and 4 (Figure 2.63a). This implies that x must
be within a half unit to the left of 2 and within 2 units to the right of 2. Therefore,
|g(x) — 3| < 1 provided x lies in the interval (1.5, 4). To obtain a symmetric
interval about 2, we take 6 = % or any smaller positive number. Then we are still
guaranteed that | g(x) — 3| < 1 when 0 < |x — 2| < 1 (Figure 2.63b).

y y
T T T T
| 1 | |
| | | |
l I l l
1 | 1 I -
| I I
4“———1—‘—‘7%4_(‘)“ 4"———1—-1—7 == 7
| 1y =gk | | y:g(x)
lg() =3[ <1< 3 L LAT 3 | A
| I | |
i
I
24+ ——+ ———————:—————— PR e i B e e e i
| | | |
| | | |
| | | |
] I ] ]
I : I I
0 1.5 4 0 15 25 4 X
- N
Values of x such that Symmetric interval 0 < |x — 2| < %
|g(x) — 3| <1 that guarantees | g(x) — 3| < 1
(a) (b)
Figure 2.63

c. From parts (a) and (b), it appears that if we choose 8 = &/2, the limit condition is sat-

isfied for any € > 0.

Related Exercises 15—18 <

In Examples 2 and 3, we showed that a limit exists by discovering a relationship
between ¢ and d that satisfies the limit condition. We now generalize this procedure.
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» The first step of the limit-proving process
is the preliminary work of finding a
candidate for 8. The second step verifies
that the 6 found in the first step actually
works.

Limit Proofs
We use the following two-step process to prove that lim f(x) = L.

xX—>a

Steps for proving that lim f(x) = L
x—a

1. Find 6. Let & be an arbitrary positive number. Use the inequality [f(x) — L| < &
to find a condition of the form |x — a| < 8, where & depends only on the
value of e.

2. Write a proof. For any & > 0, assume 0 < |x — a| < & and use the rela-
tionship between & and § found in Step 1 to prove that |f(x) — L| < e.

EXAMPLE 4 Limit of a linear function Prove that lim (4x — 15) = 1 using the pre-
cise definition of a limit. o

SOLUTION

Step 1: Find 6. In this case, a = 4 and L = 1. Assuming ¢ > 0 is given, we use
|(4x — 15) — 1| < e to find an inequality of the form |x — 4| < §.If
|(4x — 15) — 1] < &, then

l4x — 16| < &
4|x — 4| < e Factor4x — 16.

€
|x — 4] < T Divide by 4 and identify 6 = ¢/4.

We have shown that | (4x — 15) — 1| < e implies that |x — 4| < &/4.
Therefore, a plausible relationship between 6 and ¢ is 6 = ¢/4. We now write
the actual proof.

Step 2:  Write a proof. Let & > 0 be given and assume 0 < |x — 4| < & where
8 = &/4. The aim is to show that | (4x — 15) — 1| < & for all x such that
0 < |x — 4| < 8. Wesimplify | (4x — 15) — 1| and isolate the |x — 4|
term:
[(4x — 15) — 1] = |4x — 16|

=4 |x — 4|
N——
less than 6 = ¢/4

<48>—
4 €.
We have shown that for any ¢ > 0,

| f(x) = L| = |(4x — 15) — 1] < & whenever 0 < |x — 4| < §,
provided 0 < & = /4. Therefore, lim (4x — 15) = 1.
x4 Related Exercises 19-24 <
Justifying Limit Laws

The precise definition of a limit is used to prove the limit laws in Theorem 2.3. Essential
in several of these proofs is the triangle inequality, which states that

lx +y[ = [x[ + |y

, for all real numbers x and y.

EXAMPLE 5 Proof of Limit Law 1 Prove that if lim f(x) and lim g(x) exist, then

x—a Xx—>a

lim (f(x) + g(x)) = lim f(x) + lim g(x).

Xx—a



Because lim f(x) exists, if there exists
x—a

a6 > 0 for any given € > 0, then there
also exists a 8 > 0 for any given 5.

The minimum value of @ and b is denoted
min {a,b}.If x = min {a, b}, then x is
the smaller of ¢ and b. If a = b, then x
equals the common value of @ and b. In

either case, x = g and x =< b.

Proofs of other limit laws are outlined in

Exercises 25-26.

Notice that for infinite limits, N plays

the role that & plays for regular limits. It
sets a tolerance or bound for the function

values f(x).

Precise definitions for lim f(x) = —oo,
xX—a

lim  f(x) = —o°, lim  f(x) = o,
‘hm L f(x) = —oo, and 11m  f(x) =

are g1ven in Exercises 45—49

[oe}
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SOLUTION Assume that ¢ > 0 is given. Let lim f(x) = L, which implies that there ex-
ists a 8, > 0 such that xa

| f(x) = L] < g whenever 0 < |x — a| < §,.
Similarly, let lim g(x) = M, which implies there exists a , > 0 such that
x—a

lg(x) — M| <§ whenever 0 < |x — a| < 8,.

Let 8 = min {8, 8,} and suppose 0 < |x — a| < §. Because § = §,, it follows that
0<|x—al <d and|f(x) — L| < &/2.Similarly, because § = §,, it follows
that 0 < |x — a| < &, and |g(x) — M| < &/2. Therefore,
‘(f(x) + g(x)) — (L + M)’ ‘ f(x — L)+ (g(x) — M)’ Rearrange terms.
| - L‘ + ‘g M| Triangle inequality
e s
<—+=-=
2 2

We have shown that given any ¢ > 0,if 0 < |x — a| < §, then
|(f(x) + g(x)) — (L + M)| < &, which implies that 11m (f(x) + g(x)) =
L+ M= llm f( ) + llm g(x). A Related Exercises 25-28 <

Infinite Limits
In Section 2.4, we stated that lim f(x) = o if f(x) grows arbitrarily large as x ap-
x—a

proaches a. More precisely, this means that for any positive number N (no matter how
large), f(x) is larger than N if x is sufficiently close to a but not equal to a.

DEFINITION Two-Sided Infinite Limit
The infinite limit lim f(x) = o means that for any positive number N, there exists a
xX—>a

corresponding & > 0 such that

f(x) > N whenever 0 < |x —al| <.

As shown in Figure 2.64, to prove that lim f(x) = o, we let N represent any positive
x—a

number. Then we find a value of 6 > 0, depending only on N, such that
f(x) > N whenever 0 < |x —a| <.

This process is similar to the two-step process for finite limits.

fx)

J&) >N~

\
[
E
a+ o x

0<|x—al<?d

Figure 2.64 Values of x such that f(x) > N
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Steps for proving that lim f(x) = o«
x—a
1. Find 6. Let N be an arbitrary positive number. Use the statement f(x) > N

to find an inequality of the form |x — a| < &, where & depends only on N.

2. Write a proof. For any N > 0, assume 0 < |x — a| < & and use the rela-
tionship between N and & found in Step 1 to prove that f(x) > N.

EXAMPLE 6 An Infinite Limit Proof Let f(x) =
limzf(x) = o,
X—>

5. Prove that
(x —

1
Find 8 > 0. Assuming N > 0, we use the inequality W > N to find 6,
X —
where & depends only on N. Taking reciprocals of this inequality, it follows that

1
(=27 =<y

1
|x - 2| < —=. Take the square root of both sides.

VN

1 1
The inequality |x — 2| < —=has the form |x — 2| < dif weletd = ——.
quality [+ = 2| < x =2 T

We now write a proof based on this relationship between § and N.

SOLUTION
Step 1:

» Recall that V/x2 = |x|.
Step 2:

1
Write a proof. Suppose N > 0 is given. Let 56 = ——= and assume

1 VN
0 < |x — 2| < 6 = —=. Squaring both sides of the inequalit
| | o Squaring quality

|x — 2| < —= and taking reciprocals, we have

VN

(x —2)? < Square both sides.

1
N

5 > N. Take reciprocals of both sides.

(x—2)
W that f itive N, if 0 < | 2] <6 ! th
e see that for any positive N, i x — = ——, then
yP VN
x) = ——— > N. It follows that lim ———— = . Note that
S (x —2)? =2 (x — 2)?
1
because & = ——, & decreases as N increases.

VN

Related Exercises 29-32 <

QUICK CHECK 3 In Example 6, if N is increased by a factor of 100, how must 6 change? <

Limits at Infinity

Precise definitions can also be written for the limits at infinity lim f(x) = L and

lim f(x) = L. For discussion and examples, see Exercises 50-51.
X—>—0©

X—>0



SECTION 2.7 EXERCISES

Review Questions

1. Suppose x lies in the interval (1, 3) with x # 2. Find the smallest
positive value of § such that the inequality 0 < |x — 2| < §

is true.

2. Suppose f(x) lies in the interval (2,

of £ such that |f(x) — 4| < &?

6). What is the smallest value

3. Which one of the following intervals is not symmetric about

x = 5?

a. (1,9) b. (4,6)

¢ (3.8) d. (45,55)

4. Doesthe set {x:0 < |x — a| < 8} include the point x = a?

Explain.

5. State the precise definition of lim f(x) = L.

x—a

6. Interpret |f(x

7. Suppose | f(x
all values of § > 0 such that |f(x

) — L| < &in words.

) — 5| < 0.1 whenever 0 < x < 5. Find
) — 5| < 0.1 whenever

0<|x—-2] <s.

8.  Give the definition of lim f(x) = o and interpret it using

. x—a
pictures.

Basic Skills

9. Determining values of 6 from a graph The function f in the
figure satisfies l1m f(x) = 5. Determine the largest value of

6>0 sat1sfy1ng each statement.

a. If0 < |x — 2| <38, y
then |f(x) — 5| < 2.
b. If0 < |x — 2| <8,
then |f(x) — 5| < 1.

10. Determining values of 6 from a graph The function f in the
figure satisfies lim2 f(x) = 4. Determine the largest value of
X

0 > 0 satisfying each statement.

a. If0 < |x — 2| <3, y
then |f(x) — 4| < 1.
b. If0 < |x — 2| <8,
then |f(x) — 4] < 1/2. T

11.

12.

13.

14.

15.
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Determining values of 6 from a graph The function f in the fig-
ure satisfies liné f(x) = 6. Determine the largest value of 6 > 0
x>

satisfying each statement.

a. If0 < |x — 3| < &, then |f(x)
b. If0 < |x — 3| < &, then |f(x)

Determining values of 6 from a graph The function f in the fig-

ure satisfies lin}‘ f(x) = 5. Determine the largest value of § > 0
x>

satisfying each statement.

a. If0 < |x — 4] < &, then |f(x) — 5] < 1.

b. If0 < |x — 4| < &, then |f(x) — 5] < 0.5.

Finding & for a given & using a graph Let f(x) = x> + 3 and
note that hm f( ) = 3. For each value of ¢, use a graphing utility

o find all values of § > 0 such that [f(x) — 3| < & whenever
0 < |x — 0] < 8. Sketch graphs 1llustrat1ng your work.

a. ¢ = 1 b. e = 0.5

Finding 6 for a given € using a graph Let

g(x) = 2x* — 12x% + 26x + 4 and note that lln; g(x) = 24.
For each value of &, use a graphing utility to find all values of

8 > O such that | g(x) — 24| < e whenever 0 < |x — 2| < §.
Sketch graphs illustrating your work.

a. ¢ = 1 b. e =05

Finding a symmetric interval The function f in the figure satisfies
lim2 f(x) = 3. For each value of &, find all values of 8 > 0 such that
x>

[f(x) — 3] <& whenever 0 < |x — 2] <é. ()
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a. =1 b.gzé

c. For any ¢ > 0, make a conjecture about the corresponding
values of § satisfying (2).

y

y=fx)

16. Finding a symmetric interval The function f in the figure satis-
fies lin}‘ f(x) = 5. For each value of ¢, find all values of § > 0
x>

such that

[f(x) — 5] <& whenever 0< |x—4| <38 (3

a. =2 b. e =1
c¢. For any ¢ > 0, make a conjecture about the corresponding
values of 6 satisfying (3).

2 _
17. Finding a symmetric interval Let f(x) = ol _ and note
that lim1 f(x) = 4. For each value of &, use a graphing utility
x>
to find all values of § > 0 such that |[f(x) — 4| < & whenever
0<|x—1] <8
a. =2 b. e =1
c. Forany € > 0, make a conjecture about the valu